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ABSTRACT

Skyline queries have gained considerable attention for multi-
criteria analysis of large-scale datasets. However, the sky-
line queries are known to return too many results for high-
dimensional data. To address this problem, a skycube is in-
troduced to efficiently provide users with multiple skylines
with different strengths. For efficient skycube construction,
state-of-the-art algorithms amortized redundant computa-
tion among subspace skylines, or cuboids, either (1) in a
bottom-up fashion with the principle of sharing result or (2)
in a top-down fashion with the principle of sharing structure.
However, we observed further room for optimization in both
principles. This paper thus aims to design a more efficient
skycube algorithm that shares multiple cuboids using more
effective structures. Specifically, we first develop each prin-
ciple by leveraging multiple parents and a skytree, represent-
ing recursive point-based space partitioning. We then design
an efficient algorithm exploiting these principles. Experi-
mental results demonstrate that our proposed algorithm is
significantly faster than state-of-the-art skycube algorithms
in extensive datasets.

1. INTRODUCTION
Skyline queries have gained considerable attention as an

alternative operator to assist multi-criteria decision making
in large-scale datasets. Given a dataset S, a skyline query
returns a set of “interesting” points, or a skyline, that are
not “dominated” by any other points – a point p dominates
another point q if p is no worse than q on all dimensions
and is better than q on at least one dimension. However,
the well-known downside of the skyline query retrieves too
many results for high-dimensional data, called the curse of
dimensionality.

This problem naturally leads to selecting a subset of di-
mensions to reduce the skyline to a manageable size. To
illustrate this, we provide the following real-life scenario:
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Figure 1: Two skyline queries using a toy dataset in
two-dimensional space

Example 1 (Skyline query scenario) Consider a hotel
retrieval system using a database Hotel(name, price, dis-
tance, size, age, city). The skyline query on all four numer-
ical dimensions renders too many results. (Smaller values
on all dimensions are preferred.) Users would thus narrow
down dimensions of interest: (Q1) a user could find hotels
{a, d, e, f} that are cheap and close to the conference venue
in Seattle using price and distance (Figure 1a); (Q2) another
user could focus on different hotels {b, c, d} using price and
size (Figure 1b). Users could iteratively change the dimen-
sions until the results converge to meaningful candidates.

This scenario has motivated us to study skycube com-
putation [11, 16] which pre-materializes all possible 2d − 1
subspace skylines, or cuboids, for d-dimensional data. Once
the skycube is built up, users can retrieve multiple relevant
skylines with a fast response time, and identify meaningful
skyline results. However, a naive skycube construction that
computes skylines on every subspace incurs prohibitive cost.

For efficient construction, state-of-the-art skycube algo-
rithms [11, 16] have focused on sharing computation across
cuboids by extending well-known skyline algorithms SFS [2]
and DC [1]. From these algorithms, we could observe the
main principles of sharing computation:

• Principle of sharing result: Bottom-Up Skycube
algorithm (BUS) computes a cuboid on subspace U by
exploiting pre-computed cuboids on all subspaces of U .
That is, because skylines on subspaces of U can also
be a skyline on U , we can bypass the computation for
the skylines in computing the skyline on U .

• Principle of sharing structure: Top-Down Skycube
algorithm (TDS) keeps a “working set” of multiple sub-
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spaces, and amortizes the cost of computing skylines
on the subspaces by sharing one “structure” for all
the subspaces. Sharing structure can thus provide a
new opportunity for sharing computation by material-
izing point-wise dominance relationships from preced-
ing cuboid computation.

In addition, TDS leverages the sharing result principle.
Specifically, when computing a skyline on U , TDS exploits
a pre-computed skyline on V such that U ⊂ V , instead of
an entire dataset. TDS, by leveraging both principles of
sharing result and structure, is reported to be faster than
BUS, especially in high-dimensional data [11, 16].

Meanwhile, we observed further room for optimization of
both principles.

First, regarding the sharing result principle, broadening
the working set invites more optimization opportunities. For
example, given a subspace set {D1D2D3, D1D2D4, D1D2},
TDS only leverages a “single parent relationship” in com-
puting a skyline on D1D2. However, we can exploit skylines
on both D1D2D3 and D1D2D4, which can be more efficient
than using one or the other.

Second, regarding the sharing structure principle, TDS

employs two-dimensional space partitioning derived from
DC [1]. This structure not only is incapable of optimiz-
ing both dominance and incomparability in high-dimensional
data but also is limited to sharing cuboids with multiple re-
lationships. In clear contrast, we exploit point-based space
partitioning [6, 17] with a fine-granularity structure.

This paper thus aims to design a more efficient skycube
algorithm that shares multiple cuboids using more effective
structures. Specifically, we first develop each principle by
leveraging multiple parents and a skytree, derived from re-
cursive point-based space partitioning. We then design an
efficient skycube algorithm exploiting these principles.

To sum up, we believe that this paper makes the following
contributions:

• We address the problem of optimizing skycube compu-
tation using point-based space partitioning (Section 3).

• We extend the principles of sharing result and sharing
structure by leveraging multiple parents and a skytree
respectively. (Section 4).

• We propose an efficient skycube algorithm that takes
advantage of two computation sharing principles (Sec-
tion 5).

• We evaluate the efficiency of our proposed algorithm
by comparing state-of-the-art skycube algorithms in
extensive synthetic datasets (Section 6).

The remainder of this paper is organized as follows. Sec-
tion 2 presents the basics on skycube computation. Sec-
tion 3 observes the limitations of existing work and explains
point-based space partitioning. Section 4 extends two com-
putation sharing principles, and Section 5 proposes an ef-
ficient skycube algorithm. Section 6 reports our extensive
evaluation results. Section 7 surveys related work. Finally,
Section 8 concludes this paper.

2. PRELIMINARIES
We first introduce basic notations to address the skycube

problem (Appendix A). Let D be a finite d-dimensional

Table 1: A skycube using a toy dataset

D1 D2 D3 D4

a 7 1 8 4
b 5 7 1 2
c 4 4 2 1
d 1 6 3 3
e 2 5 4 6
f 3 2 6 8
g 5 3 2 6
h 4 5 7 2
i 6 4 5 7
j 6 6 2 6

Subspace Skyline

D1 d

D2 a

D3 b

D4 c

D1D2 a, d, e, f

D1D3 b, c, d

D1D4 c, d

D2D3 a, b, f, g

D2D4 a, c

D3D4 b, c

D1D2D3 a, b, c, d, e, f, g

D1D2D4 a, c, d, e, f, g

D1D3D4 b, c, d, g

D2D3D4 a, b, c, f, g

D1D2D3D4 a, b, c, d, e, f, g

space, i.e., D= {D1, . . ., Dd}, where each dimension has
a domain of non-negative rational number Q+, denoted as
dom(Di) → Q+. Let S be a set of finite n points as a
subset of dom(D), i.e., S ⊂ dom(D) such that dom(D) =
dom(D1)× . . .× dom(Dd). A point p in S is represented by
p = (p1, . . . , pd) such that ∀i ∈ [1, d] : pi ∈ dom(Di).

We then present common notions used in the skyline lit-
erature. Throughout this paper, we consistently use min
operator for skyline queries. Given two points p and q, p
dominates q on D if ∀ i ∈ [1, d] : pi ≤ qi and ∃ j ∈ [1, d] : pj
< qj , denoted as p ≺D q. Also, p and q are incomparable on
D if they do not dominate each other, denoted as p ∼D q.
Given S, a skyline query on D returns a set of points, or a
skyline, that are not dominated by any other points in S,
i.e., SkyD(S) = {p ∈ S|∄q ∈ S : q ≺D p}. A point in the
skyline is called a skyline point.

The notions on D can be intuitively extended to its sub-
space. Given a subspace U ⊆ D (U 6= ∅), p dominates q on
projected |U|-dimensional space if and only if ∀ i ∈ [1, |U|] :
pki
≤ qki

and ∃ j ∈ [1, |U|] : pkj
< qkj

. Using the dominance
notion on U , we define a subspace skyline [11, 14, 16] – given
U , a point p is a skyline point on projected |U|-dimensional
space if no other point q dominates p on U .

Based on this notion, we introduce a skycube [11, 16],
which consists of 2d − 1 subspace skylines on all possible
non-empty subspaces of D. We depict a skycube using a toy
dataset (Table 1), where D is four-dimensional space, de-
noted as D1D2D3D4. For brevity, we represent D1D2D3D4

as D1234 from now on. Formally:

Definition 1 (Skycube) Given S on D, a skycube is a set
of all skylines in 2d − 1 nonempty subspaces, denoted as
Skycube(S,D) = {(U , SkyU (S))|U ⊆ D,U 6= ∅}, where
SkyU (S) is called a cuboid on subspace U .

The skycube can be visualized as a lattice structure like
a data cube. According to the size of subspace, we number
the level of each cuboid from the bottom to the top. Given
two subspaces U and V, if U ⊂ V , SkyV (S) is an ancestor
of SkyU (S), and SkyU (S) is a descendant of SkyV (S). In
particular, if U ⊂ V and |V − U| = 1, SkyV (S) is a parent
of SkyU (S), and SkyU (S) is a child of SkyV (S).

Once the skycube is built up, users can retrieve multiple
relevant skylines with a fast response time. Specifically, us-
ing analytical operations such as “roll-up” or “drill-down”
over the skycube, users can shrink or extend subspace sky-
lines to find out meaningful skyline results.

186



In spite of the usefulness of the skycube, the complexity
of skycube computation is known to be NP-hard [11]. In
particular, skyline or skycube computation depends heavily
on CPU-intensive point-wise comparisons to check the dom-
inance relationships between points, called dominance tests.
To address the problem, we will discuss the opportunities to
share computation in detail.

3. OBSERVATIONS
In this section, we first observe the limitations of existing

skycube algorithms (Section 3.1). To overcome these lim-
itations, we then exploit point-based space partitioning to
share structure in finer granularity (Section 3.2).

From this point on, we “tentatively” assume distinct value
condition as similarly assumed in the prior skyline literature
[11, 16] for simpler presentation. Specifically, two points p
and q in S are distinct on D if ∀i ∈ [1, d] : pi 6= qi. Based
on this assumption, the containment relationship between
cuboids holds, called skyline monotonicity, i.e., if U ⊂ V ,
then SkyU (S) ⊆ SkyV (S) holds. We will later generalize
our discussion beyond this assumption.

3.1 Limitations of Existing Approaches
We first observe the two state-of-the-art skycube algo-

rithms and their limitations.
Bottom-Up Skycube algorithm (BUS): This algo-

rithm serially computes cuboids by using the principle of
sharing result in a bottom-up manner. That is, BUS exploits
skyline monotonicity to bypass dominance tests for skylines
on U , when computing a skyline on V using SFS [2].

The limitation of this approach is, by sharing only the
results, the dominance tests of non-skyline points cannot
be reused. Specifically, if a point p is a non-skyline point
on U , BUS needs to perform dominance tests for p on V
without reusing dominance tests on U . In addition, BUS

requires repeated access to an entire dataset in computing
each cuboid, incurring additional overhead.

Top-Down Skycube algorithm (TDS): This algorithm
is based on DC [1], and leverages both the principles of shar-
ing result and sharing structure in a top-down manner.

Specifically, when computing SkyV (S), TDS first employs
a single parent SkyV ′(S) such that V ⊂ V ′, instead of
S. TDS then amortizes the computation of monotonic sub-
spaces e.g., {D123, D12, D1}, where an adjacent pair has a
parent-child relationship as in U and V. In this process, a
two-dimensional partitioning structure originated from DC

is employed – TDS evenly divides U into four subregions,
and then merges local skylines on each subregion into a
global skyline. Because partitioning-and-merging on U to-
tally overlap with that on V, some of local skylines on U can
be skylines on either U or V. TDS can thus reuse dominance
tests on U when computing a skyline on V .

While TDS computes multiple cuboids simultaneously, it
still has more room for optimizing both principles. First,
TDS solely deals with a single parent by neglecting the op-
portunity of sharing multiple parents. Second, TDS simply
shares a two-dimensional partitioning structure, obtained as
a byproduct of DC. This structure, by being restricted to
partition a dataset into four subsets, cannot optimize domi-
nance and incomparability relationships in high-dimensional
data, which in turn restricts optimization margin of TDS.

To overcome these limitations, we deal with the principle
of sharing result and sharing structure by leveraging multi-

ple parents and a skytree, representing recursive point-based
space partitioning respectively (Section 4).

3.2 Pointbased Space Partitioning
This section investigates point-based space partitioning [6,

17] to further speed up skycube computation. Specifically,
we consider a fine-granularity structure to share dominance
tests on non-skyline points and incomparable points.

Given S, a pivot point pV on D partitions S into 2d dis-
joint subregions in which all dominance tests between S and
pV can be summarized. In particular, the points with the
same relationships can be subsumed in a subregion. For-
mally, let R denote a set of subregions such that R =

{R0, . . . R2
d−1}.

To clarify region-wise relationships, we then introduce
a d-dimensional binary vector. Let B denote a set of bi-
nary vectors, which are mapped into subregions such that
∀Bi ∈ B : Bi → Ri. Given pV , we formally present the ith

dimension value of B with respect to a point q, denoted as
Bi. Note that Bi is the ith most significant bit in B.

Bi ←

{

0, if qi < pVi ;
1, otherwise.

To illustrate this, we describe three-dimensional parti-
tioning. Suppose that pV = (pV1 , . . . , pVd ) divides an en-
tire space into eight subregions, which is associated with
binary vectors, i.e., B = {000, 001, . . ., 111}. If Bi is 0,
the range of possible point values is [0, pVi ). Otherwise,
the range is [pVi , 1]. Accordingly, 001 and 100 are associ-
ated with subregions R1 = [0, pV1 ) × [0, pV2 ) × [pV3 , 1] and
R4 = [pV1 , 1] × [0, pV2 ) × [0, pV3 ), and the points mapped to
001 and 100 are located in R1 and R4.

Based on the binary vectors, we can derive region-wise
relationships [6] in B as follows:

Definition 2 (Dominance in B) Given two vectors B and
B′ , B dominates B′ on D, denoted as B ≺D B′, if and only
if ∀i ∈ [1, d] : Bi < B′

i, i.e., ∀i ∈ [1, d] : Bi = 0 and B′
i = 1.

Definition 3 (Partial dominance in B) Given two vec-
tors B and B′, B partially dominates B′ on D, denoted
as B ≺Par B′, if and only if ∀i ∈ [1, d] : Bi ≤ B′

i and
∃j ∈ [1, d] : Bj = B′

j .

Definition 4 (Incomparability in B) Given two vectors
B and B′, B is incomparable with B′ on D, denoted as
B ∼D B′, if and only if ∃i ∈ [1, d] : Bi < B′

i and ∃j ∈ [1, d] :
B′

j < Bj .

The relationships between binary vectors can be visual-
ized as a lattice (Figure 2a). In this lattice, adjacent node
pairs connected by an arrow have partial dominance rela-
tionships. By transitivity, node pairs reachable by one of
multiple paths also have partial dominance relationships.
As an exception, the dominance holds between the top and
the bottom, e.g., 000 dominates 111. Lastly, the incompa-
rability holds for all non-reachable node pairs, e.g., 001 and
010 are incomparable.

4. SHARING COMPUTATION
This section explores the opportunities for sharing com-

putation across subspaces. As a starting point, we first in-
troduce a skytree, representing recursive point-based space
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Figure 2: A lattice and a skytree on D123

partitioning (Section 4.1). We then develop the principles of
sharing structure and sharing result by leveraging a skytree
(Section 4.2) and multiple parents (Section 4.3). Recall that
we tentatively assume distinct value condition. We will later
drop this assumption (Section 5.2).

4.1 SkyTree as an Input of Skycube Compu
tation

The starting point for sharing structure is to run a sky-
line algorithm [6] using point-based space partitioning on
full space D. To illustrate, the algorithm may pick pV = c
(underline) as the first pivot in a toy dataset S (Table 1)
on D123, based on which we generate a lattice that con-
sists of eight binary vectors associated with subregions parti-
tioned (Figure 2a). After pruning non-skyline points {h, i, j}
mapped to 111, we can again construct lattices by recur-
sively partitioning {d, e} and {a, g} mapped to 011 and 101
in the same way, where these lattices are represented by a
recursive hierarchical structure.

The recursive lattices can be visualized as a tree, called a
skytree. Formally, a skytree on D, denoted as T D = (N, I),
is represented by a set N of nodes and a set I of links. Each
node (p, S) in N consists of a pivot point p that partitions
a subset S of points into child nodes on D, and a link is
associated with a binary vector given by a mapping function
m : I → B. Observe that the lattice in Figure 2(a) is
equivalent to the first-level subtree marked within a dashed
box in Figure 2(b). The second-level tree shows how {d, e}
and {a, g} mapped to 011 and 101 are further partitioned
with respect to e and g as pivot points respectively.

This skytree, obtained as a by-product of the point-based
space partitioning skyline algorithm [6], is an input of our
skycube computation. We then move on to fully exploit this
skytree for the principle of sharing structure.

4.2 Principle of Sharing Structure by Lever
aging the Skytree

We first present how to share point-wise dominance and
incomparability. Given two distinct points p and q on V, we
formally state dominance and incomparability shared across
multiple subspaces. The detailed proofs are described in
Appendix B.

Lemma 1 (Sharing dominance) Given two points p and
q on V, if p ≺V q such that U ⊂ V, then p ≺U q holds.

Lemma 2 (Sharing incomparability) Given two points p
and q on U , if p ∼U q such that U ⊂ V , then p ∼V q holds.

These properties are essential for reusing point-wise rela-
tionships. Specifically, when computing SkyV (S), we can

01∗ 10∗

00∗

11∗

001

011

000

010 100

101 110

111

Figure 3: Sharing lattices between D12 and D123

safely prune out dominated points on V, because they are
non-skyline points on both U and V. Also, for incomparable
points on U , we can bypass their dominance tests on V.

We extend these properties for binary vectors in the lat-
tice. First, when pV partitions S on V, any point mapped
to a binary vector B such that ∀di ∈ V : Bi = 0 dom-
inates all points mapped to a binary vector B′ such that
∀di ∈ V : B′

i = 1 on U and V. Formally, we state sharing
dominance in B as follows:

Theorem 1 (Sharing dominance in B) Given two vectors
B and B′ on V, if B ≺V B′ such that U ⊂ V, then B ≺U B′

holds.

Second, we extend sharing point-wise incomparability for
the lattice. Given two incomparable vectors B and B′ on
U , their extended vectors are still incomparable regardless
the values on V − U . We can thus bypass dominance tests
between incomparable vectors on both U and V. Formally,
sharing incomparability in B is stated as follows:

Theorem 2 (Sharing incomparability in B) Given two
vectors B and B′ on U , if B ∼U B′ such that U ⊂ V , then
B ∼V B′ holds.

Based on these properties, we explore the possibility of
sharing lattices between U and V . When a pivot point pV

divides two subspaces U and V , a subregion on U covers finer

2|V−U | subregions on V. Accordingly, a vector B on U can

be represented by 2|V−U | vectors on V. For brevity, we use
a symbol ∗ to denote all possible binary values on V . We
formally state the principle of sharing lattices:

Theorem 3 (Sharing lattices) Each binary vector B on
V is shared with a vector B′ on U such that U ⊂ V , ∀di ∈
U : B′

i = Bi and ∀dj ∈ V − U : B′
j = ∗.

Figure 3 illustrates sharing lattices between U = D12 and
V = D123. Each vector on D12 can be extended to two
vectors on D123, e.g., 00∗ = {000, 001}. Based on sharing
lattices, we can prune out the points mapped to 111 because
pV dominates the points on both U and V (Theorem 1).
Also, incomparable vectors 01∗ and 10∗ on D12 are also
incomparable on D123 (Theorem 2).

We next compute possible minimum subspaces [15] of each
binary vector based on sharing lattices (shown as a set of
subspaces in Figure 4). Specifically, when binary vectors
are projected to 0 ∗ ∗, the possible minimum subspaces are
covered with all subspaces. Similarly, when projected bi-
nary vectors are 10∗, their minimum subspaces exclude the
smallest subspace D1 because the points mapped to 10∗ are
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Figure 4: Possible minimum subspaces on D123

dominated by a pivot point on D1. That is, based on the po-
sition of binary values with 0’s, we can narrow down possible
minimum subspaces.

We develop Algorithm SSkyTree, which takes a skytree
T V as an input and reuses it to share partial dominance
and incomparability between U and V. While our base-
line skyline algorithm [6] is only optimized to single skyline
computation, SSkyTree focuses mainly on amortizing com-
putation across multiple subspaces.

Specifically, SSkyTree makes use of T V with two main
pillars. First, by leveraging partial dominance relationships
between nodes in T V , we eliminate non-skyline points on U .
Second, by leveraging spatial proximity inferred from binary
vectors, we select a pivot point on U , enabling us to leverage
point-wise incomparability on V as much as possible. The
pseudo-code of SSkyTree is described in Appendix C.

For the sake of representation, we only use a point p for
a node (p, S) in the skytree from now on.

4.2.1 On Reusing Partial Dominance

We present a way of pruning non-skyline points on U from
a skytree T V . First, we can leverage a vertical relationship,
representing two reachable nodes at different levels. For ex-
ample, suppose there are two nodes c and b with a “parent-
child” relationship in the skytree on D123 (Figure 2b). Con-
sidering the skyline on a subspace D12, c can dominate b by
projecting a binary vector 11∗ associated with two nodes on
D12. We formally generalize the parent-child relationship
for all reachable nodes with vertical relationships:

Lemma 3 (Vertical relationship I) Given two nodes p
and q in T V , p dominates q on U such that U ⊂ V , if any
link connected between p and q is associated with a binary
vector B such that ∀di ∈ U : Bi = 1.

In addition, we identify a parent node that is a non-skyline
point on U . Observe a binary vector between two nodes
implies a “mutual” relationship. For example, a child node
f dominates a parent node c on D12 by “flipping” 00∗ into
11∗ (Figure 2b). Formally:

Lemma 4 (Vertical relationship II) Given two nodes p
and q in T V , q dominates p on U such that U ⊂ V , if every
link connected between p and q is associated with a binary
vector B such that ∀di ∈ U : Bi = 0.

Second, we consider a horizontal relationship on T V , rep-
resenting two nodes at the same level. Suppose there are two
nodes f and b with a “sibling” relationship on the skytree
T D123

(Figure 2b). In this case, using vertical relationships
for a common parent node c, we can infer f dominates c on
D12 (Lemma 3), and c dominates b on D12 (Lemma 4). By

t

r ≻D1 q
p ≻D2 q, r

001 010

010

r

p

if p ≻D1 q,
p ≻D12 r.

q

t

r ≻D1 q

p ≻D2 q, r

001 010

010

r

if p ≻D1 r,
p ≻D12 q.

qp

(a) Inferring p ≻D12
r (b) Inferring p ≻D12

q

Figure 5: Combining two relationships on T D123

transitivity, we can derive that f dominates b on D12. For
simplicity, we use a pseudo-link, which presents the domi-
nance relationship between sibling nodes on D12.

Lemma 5 (Horizontal relationship) Given two sibling
nodes p and q with a common parent node r in T V , p
dominates q on U such that U ⊂ V, if a binary vector B
between p and r and a binary vector B′ between q and r are
∀di ∈ U : Bi = 0, B′

i = 1.

We further investigate the skytree T V to reduce non-
skyline points on U by combining the vertical relationship
with the horizontal relationship. Suppose that three nodes
p, q, and r, where p and q are sibling nodes, and q and r
have a parent-child relationship on D123 (Figure 5a). Based
on the horizontal relationship (dotted arrow), p dominates q
and r on D2 (Lemma 5). Also, q dominates r on D1 by the
vertical relationship (Lemma 3). In this case, if p dominates
q on D1 (dashed arrow), then p can also dominate r on D12

by transitivity (gray circle). That is, by performing domi-
nance tests between sibling nodes on D1, we can eliminate
child nodes of a sibling node on D12.

Lemma 6 (Combining relationships I) Given three nodes
p, q and r in T V , suppose p has a pseudo-link with q on W
such that W ⊂ U , and q dominates r on U −W by vertical
relationship I. If p dominates q on U −W, then p dominates
r on U .

Also, we can prune a sibling node by combining two rela-
tionships. Given three nodes p, q and r on D123 (Figure 5b),
we can infer that p dominates q and r on D2 (Lemma 5) by
a horizontal relationship (dotted arrow), and r dominates q
on D1 by a vertical relationship (Lemma 4). In this case, if p
dominates r on D1 (dashed arrow), then p can also dominate
q on D12 (gray circle).

Lemma 7 (Combining relationships II)Given three nodes
p, q and r in T V , suppose p has a pseudo-link with q on W
such that W ⊂ U , and r dominates q on U −W by vertical
relationship II. If p dominates r on U−W, then p dominates
q on U .

4.2.2 On Reusing Incomparability

We present a pivot point selection on U to share incompa-
rability using a skytree T V . When selecting a pivot point,
it is critical to maximize both dominance and incomparabil-
ity [6]. Based on the vertical relationship on T V , observe
that a child node p associated with B such that ∀di ∈ U :
B.di = 0 can be the most promising pivot point on U in that
p cannot be dominated by points associated with the other
binary vectors, and is close to an optimal pivot point by
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spatial proximity. More importantly, the point p can mostly
share incomparability between V and U . For example, when
two skyline points on U are mapped to binary vectors 01∗
and 10∗ on D123, a point p mapped to 00∗ can preserve
the binary vectors mapped to points on D123, which can be
reused for sharing incomparability between points on D12

by simply projecting binary vectors.
We discuss how to find a pivot point on V using T V .

Specifically, we recursively traverse T V in depth-first order
until finding a node that does not have a child node associ-
ated with a binary vector with 0’s on U . Using this pivot
point, we can construct a lattice sharing incomparability on
U by reusing binary vectors associated with points on V .

4.3 Principle of Sharing Result by Leveraging
Multiple Parents

We first present how to share a single parent. Specifically,
when computing a skyline SkyU (S) on U under distinct
value condition, we can safely employ a pre-computed parent
SkyV (S) instead of S. We formally state this property:

Lemma 8 Given a dataset S under distinct value condition,
SkyU (S) = SkyU (SkyV (S)) holds on U such that U ⊂ V .

We then discuss how to extend this property for sharing
multiple parents. Given multiple parents of SkyU (S), each
parent can be a candidate set to compute SkyU (S) by sky-
line monotonicity. In this case, observe that a skyline point
p in SkyU (S) also has to exist in all its parents. This im-
plies that p in SkyU (S) has to be a point intersected with
its parents. Formally:

Lemma 9 A point p cannot be subsumed to SkyU (S) under
distinct value condition, if ∃SkyV (S) : p /∈ SkyV (S) such
that U ⊂ V.

Theorem 4 (Sharing multiple parents) Given multiple
parents of SkyU (S) under distinct value condition, the in-
tersection of multiple parents includes skyline on U , i.e.,
SkyU (S) ⊆

⋂

U⊂V SkyV (S).

The principle of sharing multiple parents can be combined
with that of sharing structure using a skytree. Suppose that
the skycube is computed in a top-down manner. In this
case, when computing SkyU (S), we can remove non-skyline
points on U by reusing a skytree T V . After that, we can
additionally narrow a candidate set by intersecting remain-
ing points for each parent. Using two principles, we can
significantly reduce a candidate set for SkyU (S).

5. SKYCUBE COMPUTATION
This section first proposes an efficient skycube algorithm

QSkycube which leverages two sharing computation princi-
ples (Section 5.1), and then discusses the modifications of
QSkycube in general data case scenarios (Section 5.2).

5.1 Algorithm QSkycube

We develop Algorithm QSkycube, which takes advantage
of two sharing computation principles. QSkycube constructs
the skycube in a top-down fashion, where SSkyTree (Sec-
tion 4) is employed to compute each cuboid. The detailed
pseudo-code of QSkycube can be found in Appendix C.

Specifically, to compute a cuboid SkyU (S), QSkycube first
prunes non-skyline points by the sharing structure principle

c

g b

001 011 101 110

101

e

d

010

Selecting pV = f on D12

Projecting {d, e} on D12 Projecting {a} on D12

f

e a

d

01 10

01

a

f

Figure 6: Illustration of QSkycube on {D123, D12, D1}

(Algorithm SSkyTree), and identifies the points intersected
with multiple parents. QSkycube then computes a skyline
on U using a baseline skyline algorithm [6].

We describe the overall procedure of QSkycube (Figure 6).
For brevity, we provide the computation for {D123 , D12, D1}
with a single parent in a toy dataset (Table 1), which can
be easily extended for multiple parents.

We first construct a skytree T D123
on D123 (in the left).

We can safely prune out non-skyline points {h, i, j} on D123,
which do not appear in T D123

(Theorem 1). After recur-
sive partitioning in {d, e} and {a, g}, we can identify skyline
{a, b, c, d, e, f, g} on D123 as node points on T D123

.
Using T D123

, we then select a pivot point and eliminate
non-skyline points on D12. Specifically, we select a point
f associated with 00∗ as a pivot point on D12, and prune
points b and c by vertical relationships (Lemmas 3 and 4).
Also, we can prune a point g that is dominated by a pivot
point f on D2 by performing a dominance test (Lemma 6).
We lastly share the incomparability on V (Theorem 2) by
projecting binary vectors on D12 (gray colors).

After computing our baseline algorithm [6] using the first-
level lattice and a pivot point f on D12, we can obtain a
skytree T D12

onD12 (in the right), and the skyline {a, d, e, f}
on D12. By following the same process, we can select a point
d as a pivot point on D1, and the other points are pruned
out. Finally, we can identify {d} as a skyline on D1.

5.2 Extending QSkycube for General Cases
This section discusses the modifications in QSkycube to

handle a dataset without distinct value condition, referred
to as a “general case” in the prior literature [11, 16]. Specif-
ically, a point p such that ∀i ∈ [1, |U|] : pki

= qki
for a point

q ∈ SkyU (S) may exist. In this case, p can be a skyline
point on U , but p may be dominated by q on V, implying p
can be a skyline point only on U , i.e., skyline monotonicity
no longer holds. As a result, q can be a “missing” skyline
point in our proposed algorithm.

Though the existing idea [11, 16] using “pre-sorted lists”
on every dimension can be adopted, it may incur high cost.
We briefly explain this naive approach – when a pivot point

pV partitions S into 2|V | subsets on V, we check if there
are missing points for pV by performing a binary search
on the lists, and add missing points into a skyline on V if
they exist. Based on this modification, we can guarantee
the correctness of QSkycube in general cases. Because the
cost of checking sorted lists increases linearly by the size
of the skycube, however, it incurs prohibitive cost for high-
dimensional data.

We thus propose to use an additional lattice structure,
keeping points sharing the same values on each subspace,
i.e., points with equivalence relationships. Specifically, when
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Figure 7: Varying d (n = 200k, best viewed in color)

constructing a skytree, we also keep an additional lattice
storing missing points for each skyline point. Let E denote
a set of binary vectors for equivalence relationships, i.e.,
each vector E is mapped into the subspace with the same
values. Formally, given pV , we present the ith dimension
value of E with respect to a point q, denoted as Ei.

Ei ←

{

0, if qi = pVi ;
1, otherwise.

To illustrate this, we provide three-dimensional partition-
ing. When pV partitions V = D123, a point q with the same
values on D12 is mapped to 001 in the lattice. Also, other
points with same values on D123 are mapped to 000. Recall
that the lattice only stores points with equivalence relation-
ships on any subspace, i.e., no point is mapped to 111. To
compute SkyU (S), we then find missing points by retrieving
the lattice for each skyline point on SkyV (S).

We lastly discuss how to efficiently employ the lattice for
equivalence relationships. First, because all skyline can-
didates are subsumed to SkyD(S) and missing points for
SkyD(S), we construct a lattice for SkyD(S) once, and
reuse the lattice. Second, we can reduce missing points by
exploiting the smallest minimum subspaces of skyline points.
When the minimum subspace of a point p is V , p and miss-
ing points for p can only be a skyline on V, and cannot be a
skyline on any subspace U of V . Thus, we can safely ignore
the points in computing skylines on U .

6. EXPERIMENTS
This section presents empirical evaluation results for our

proposed algorithm. We evaluate the scalability of our pro-
posed algorithm QSkycube, by comparing it with the state-
of-the-art algorithms BUS and TDS (Sections 6.1 and 6.2),
and validate the efficiency of sharing multiple parents (Sec-
tion 6.3) using extensive synthetic datasets. Detailed ex-
perimental settings are presented in Appendix D. We also
evaluate QSkycube using real-life datasets (Appendix E).

6.1 Effect of Dimensionality
This section evaluates the effect of dimensionality by com-

paring four algorithms (Figure 7). We use independent and
anti-correlated datasets with d from 4 to 10 and n = 200k.

In all settings, our proposed algorithm QSkycube is sig-

100 200 300 400 500
0

10

20

30

40

Cardinality (k)

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

 

 

BUS

TDS

BSkyTreeS

QSkycube

100 200 300 400 500
0

100

200

300

400

500

Cardinality (k)

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

 

 

BUS

TDS

BSkyTreeS

QSkycube

100 200 300 400 500
0

200

400

600

800

1000

1200

Cardinality (k)

D
T

 

 

BUS

TDS

BSkyTreeS

QSkycube

100 200 300 400 500
0

2000

4000

6000

8000

Cardinality (k)

D
T

 

 

BUS

TDS

BSkyTreeS

QSkycube

(a) IND (b) ANT

Figure 8: Varying n (d = 8, best viewed in color)

nificantly faster than all the other algorithms. In indepen-
dent datasets, as dimensionality increases, the performance
gap between QSkycube and other algorithms increases ex-
ponentially. For instance, when d = 10, QSkycube is about
four times faster than other algorithms. In anti-correlated
datasets, as many points are skylines, sharing computation
techniques used in QSkycube become less effective. As a re-
sult, the performance gap between QSkycube and BSkyTreeS

is rather small.
Another interesting observation is that BSkyTreeS, in spite

of not sharing any computation between cuboids, outper-
forms existing skycube algorithms in anti-correlated datasets.
This observation suggests the optimization margin coming
from point-based space partitioning alone outweighs that
from sharing computation across subspaces. This observa-
tion supports our decision to adopt point-based partitioning
on top of sharing structure and result principles.

Meanwhile, depending on the performance measures used
(dominance tests vs. response time), evaluation results can
be different. Specifically, TDS shows the worst performance
in d = 10 (Figure 7a), because TDS, though effective in re-
ducing dominance tests per point (DT ), incurs overhead for
too many recursive calls. In addition, in terms of DT, BUS
is more efficient than BSkyTreeS, while in terms of response
time, BUS and BSkyTreeS show similar performances (Fig-
ure 7a). This can be explained by the fact that BUS requires
a sequential scan for an entire dataset in computing each
cuboid, which makes it relatively less efficient in terms of
time. We make consistent observations from another exper-
imental setting (Figure 8a).

6.2 Effect of Cardinality
This section evaluates the effect of cardinality (Figure 8),

where independent and anti-correlated datasets with n from
100k to 500k and d = 8 are used. As cardinality increases,
the performance gap between QSkycube and other algorithms
increases quickly. Specifically, while the performance of
QSkycube stays more or less constant, that of other algo-
rithms increases linearly – when n = 500k, QSkycube is eight
times as fast as other algorithms in independent datasets.

We also observe the difference between BUS and other
algorithm increases, as the cardinality increases (Figure 8b).
This can be explained by the additional data scan overhead
of BUS, incurring cost proportional to cardinality.
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Figure 9: Effect of sharing multiple parents in anti-
correlated datasets

6.3 Effect of Sharing Multiple Parents
This section validates the effect of sharing multiple par-

ents in anti-correlated datasets (Figure 9). We varied di-
mensionality and cardinality. For brevity, we use abbrevi-
ated notations SSP and SMP for “sharing a single parent”
and “sharing multiple parents” respectively.

It is clear that SMP outperforms SSP in all datasets.
In particular, as dimensionality increases, the difference of
SMP and SSP increases rapidly. For instance, when d = 10,
SMP saves about 20 percent more DT than SSP. This gap
stays constant over all cardinality values, which empirically
suggests SMP is a more effective strategy than SSP.

7. RELATED WORK

7.1 Skyline Computation
We first review existing efforts on skyline computation. In

general, existing skyline algorithms can be classified as:
Sorting-based algorithms: This approach employs a

sorted list to prune out non-skyline points as early as pos-
sible. An early block-nested-loop algorithm (BNL) [1] could
be viewed as a sorting-based algorithm accessing points in
stored order. For efficient non-skyline filtering, Tan el al.
[13] proposed Index using multiple sorted lists, and Chomicki
et al. [2] proposed SFS, where points are sorted in decreas-
ing order of the size of dominance regions. Later, Godfrey
et al. [3] developed LESS, which combines the advantages
of both BNL and SFS.

Partitioning-based algorithms: This approach par-
titions a region into multiple subregions to exploit spatial
proximity. An early algorithm DC [1] addressed skyline com-
putation in a divide-and-conquer manner. Later, NN [5] and
BBS [8] leveraged an R-tree to prune out non-skyline points
efficiently. Recently, Lee et al. [7] proposed ZSearch us-
ing a ZB-tree as a new variant of a B-tree. More recently,
point-based space partitioning [6, 17] was employed as an
effective means of optimizing both dominance and incom-
parability in skyline computation. In particular, OSPS [17]
and BSkyTree [6] are known to be the most efficient skyline
algorithms without using pre-computed indices.

7.2 Skycube Computation
To address the curse of dimensionality, the skycube was

recently introduced to construct an effective skyline struc-
ture. Specifically, to amortize the cost of computing multiple
subspace skylines, state-of-the-art skycube algorithms BUS

and TDS [11, 16] were proposed by optimizing SFS [2] and
DC [1] respectively. To optimize the storage overhead of the
skycube, a compressed skycube [15] was proposed as a “con-
cise” alternative, removing duplicated skylines from the sky-

cube and storing skylines only on minimum subspaces. Re-
cently, Kailsam et al. [4] proposed a skycube algorithm using
bitmap structures optimized for low-cardinality datasets.

As another skyline structure, Pei et al. [9, 10, 11] stud-
ied how to annotate each skyline with its decisive subspace,
which is a minimal subspace ensuring skyline monotonic-
ity for its superspaces. Similar to the skycube, they also
proposed a skyline structure, called a skyline group lattice,
using decisive subspaces. The structure can be shown as a
way of identifying the semantics of skyline points. Recently,
Räıssi et al. [12] proposed a skyline cube algorithm to op-
timize the skyline group lattice computation using formal
concept analysis. Because the skycube computation could
be extended to construct the skyline group lattice, this pa-
per focused only on efficient skycube computation.

8. CONCLUSIONS
This paper studied efficient skycube computation using

point-based space partitioning. To achieve this goal, we first
identified more optimization opportunities from the princi-
ples of sharing structure and sharing result. We then lever-
aged a skytree and multiple parents for each principle, based
on which we designed an efficient skycube algorithm. In ex-
perimental results, our proposed algorithm was significantly
faster than existing algorithms.
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APPENDIX

A. NOTATIONS
Table 2 summarizes the notations used in this paper.

Table 2: List of notations

Notation Definition
S A dataset
n Cardinality
D A full-space dimension set
U ,V A subspace of D
d Full-space dimensionality
di A dimension (1 ≤ i ≤ d)
p, q A point in S, p = (p1, . . . , pd)
≺D Dominance on D
∼D Incomparability on D
SkyD(S) A skyline on D in S
Skycube(S,D) A skycube on D in S
pV A pivot point
R A set of subregions partitioned by pV

B A set of binary vectors
Bi The ith dimension value of B
T V A skytree on a subspace V
S Partitioned point sets mapped to B
E A set of binary vectors for equivalence
E A binary vector in E

B. MATHEMATICAL PROOFS
This section proves the lemmas and theorems in this pa-

per.

Lemma 1 (Sharing dominance) Given two points p and
q on V, if p ≺V q such that U ⊂ V, then p ≺U q holds.

Proof. Because U ⊂ V , if p dominates q on V , then p
also dominates q on U .

Lemma 2 (Sharing incomparability) Given two points p
and q on U , if p ∼U q such that U ⊂ V , then p ∼V q holds.

Proof. Because U ⊂ V , if p and q are incomparable on
U , they are also incomparable on V regardless of V −U .

Theorem 1 (Sharing dominance in B) Given two vectors
B and B′ on V, if B ≺V B′ such that U ⊂ V, then B ≺U B′

holds.

Proof. Because the points mapped to B2
|V |−1 on V are

dominated by pV , the points are dominated by pV on both
V and U by Lemma 1.

Theorem 2 (Sharing incomparability in B) Given two
vectors B and B′ on U , if B ∼U B′ such that U ⊂ V , then
B ∼V B′ holds.

Proof. Because each point corresponding to incompara-
ble vectors on U is incomparable, they are also incomparable
on V by Lemma 2.

Theorem 3 (Sharing lattices) Each binary vector B on
V is shared with a vector B′ on U such that U ⊂ V , ∀di ∈
U : B′

i = Bi and ∀dj ∈ V − U : B′
j = ∗.

Proof. The proof is straightforward because a vector B
on V shares the same values with a vector B′ on U .

Lemma 3 (Vertical relationship I) Given two nodes p
and q in T V , p dominates q on U such that U ⊂ V, if any
link connected between p and q is associated with a binary
vector B such that ∀di ∈ U : Bi = 1.

Proof. By Theorem 3, pV dominates the points mapped
to a vector B such that ∀di ∈ U : B.di = 1 and ∀dj ∈ V−U :
B.dj = ∗ on U . As a result, the points are non-skyline points
on U .

Lemma 4 (Vertical relationship II) Given two nodes p
and q in T V , q dominates p on U such that U ⊂ V, if every
link connected between p and q is associated with a binary
vector B such that ∀di ∈ U : Bi = 0.

Proof. By Theorem 3, a point p mapped to a vector B
such that ∀di ∈ U : B.di = 0 and ∀dj ∈ V − U : B.dj = ∗
dominates a pivot point pV on U . As a result, pV is a non-
skyline point on U .

Lemma 5 (Horizontal relationship) Given two sibling
nodes p and q with a common parent node r in T V , p
dominates q on U such that U ⊂ V, if a binary vector B
between p and r and a binary vector B′ between q and r are
∀di ∈ U : Bi = 0, B′

i = 1.

Proof. By transitivity, we can prove that p dominates q
on U using Lemmas 3 and 4.

Lemma 6 (Combining relationships I) Given three nodes
p, q and r in T V , suppose p has a pseudo-link with q on W
such that W ⊂ U , and q dominates r on U −W by vertical
relationship I. If p dominates q on U −W, then p dominates
r on U .

Proof. By transitivity, we can prove that p dominates r
on U using Lemmas 3 and 5.

Lemma 7 (Combining relationships II)Given three nodes
p, q and r in T V , suppose p has a pseudo-link with q on W
such that W ⊂ U , and r dominates q on U −W by vertical
relationship II. If p dominates r on U−W, then p dominates
q on U .

Proof. By transitivity, we can prove that p dominates r
on U using Lemmas 4 and 5.

Lemma 8 Given a dataset S under distinct value condition,
SkyU (S) = SkyU (SkyV (S)) holds on U such that U ⊂ V .

Proof. The proof is obvious because a non-skyline point
on V cannot be skyline on U by Lemma 1.

Lemma 9 A point p cannot be subsumed to SkyU (S) under
distinct value condition, if ∃SkyV (S) : p /∈ SkyV (S) such
that U ⊂ V .

Proof. Assume that a point p is subsumed to SkyU (S).
By skyline monotonicity, p has to be a skyline point on all
superspaces of U , which contradicts the fact that SkyV (S)
exists such that p /∈ SkyV (S).

Theorem 4 (Sharing multiple parents) Given multiple
parents of SkyU (S) under distinct value condition, the in-
tersection of multiple parents includes skyline on U , i.e.,
SkyU (S) ⊆

⋂

U⊂V SkyV (S).

Proof. By skyline monotonicity, a skyline point p on U
has to be a skyline point on all superspaces of U . p is thus
subsumed by an intersected set of all parents of SkyU (S).
As a result, SkyU (S) ⊆

⋂

U⊂V SkyV (S) holds.
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C. DETAILED ALGORITHM
This section presents implementation details of our pro-

posed algorithm. First, we describe the pseudo-code of Al-
gorithm QSkycube (Algorithm 1).

Algorithm 1 QSkycube(S, D)

Input: a dataset S and a full-space dimension set D
Output: a skycube Skycube(S,D)
1: for all subspace U in a level-wise and top-down manner do

2: C ← {} // Initialize a skyline candidate set.
3: if U has any superspace V then
4: for all V ⊃ U such that |V − U| = 1 do

5: C ← SSkyTree(T V , U). // Algorithm 2
6: L ← L ∩ C. // Sharing multiple parents
7: end for
8: else

9: U ← D, L← S. // When U is D
10: end if

11: T U ← ComputeSkyline(L, U). // Sharing dominance
12: Insert SkyU (D) by traversing T U .
13: end for

14: return Skycube(S,D).

We discuss efficient implementation of QSkycube. As in-
puts, QSkycube takes an entire dataset S and full space D.
QSkycube computes each cuboid of Skycube(S,D) in a level-
wise and top-down manner. Specifically, to compute a cuboid
SkyU (S), QSkycube consists of the following steps:

1. Checking a superspace V of U (lines 3–10): By
skyline monotonicity, we can exploit SkyV (S) instead
of S. For efficient implementation, we can map all pos-
sible subspaces to numbers from 0 to 2d−2 in sequential
order. Using this mapping, we can efficiently check a
superspace V of U , such that V ⊃ U and |V − U| = 1,
using bit-wise operators. In addition, we can exploit
a topological order that preserves level-wise and top-
down traversal.

2. Sharing computation (lines 5–6): Given a skytree
T V on V , we first prune out non-skyline points on U us-
ing Algorithm SSkyTree (Algorithm 2), which exploits
the principle of sharing structure by leveraging T V . We
then intersect all skyline candidates to exploit the prin-
ciple of sharing result by leveraging multiple parents.

3. Computing the skyline on U (lines 11–12): Af-
ter performing SSkyTree, we can obtain the first-level
lattice on U . Using the lattice, we can compute the
skyline on U using a skyline algorithm [6] based on re-
cursive point-based space partitioning, which generates
a skytree T U as an output (Algorithm 5). In addition,
we can safely prune out non-skyline points that do not
appear in T U by sharing dominance (Theorem 1).

Next, we describe the pseudo-code of Algorithm SSkyTree

(Algorithm 2). As inputs, SSkyTree takes a skytree T V and
a subspace U . Specifically, SSkyTree consists of the following
steps:

1. Selecting a pivot point: we traverse a skytree T V in
a depth-first order, and check whether a child node is
associated with B such that ∀di ∈ U : B.di = 0. After
selecting a pivot point pV , we make use of the pivot
point not only to eliminate non-skyline points but also
to organize the first-level lattice sharing incomparabil-
ity from T V .

Algorithm 2 SSkyTree(T V , U)

1: pV ← SelectPivotPoint(T V , U).

2: C ← {pV } ∪ Evaluate(T V , U).
3: return C.

2. Evaluating skyline points on V: we traverse T V in
inorder. In this process, we exclude non-skyline points
on U , by comparing pV and other points based on both
vertical and horizontal relationships (Lemmas 3–7). In
addition, for the remaining points in T V , we can simul-
taneously update binary vectors mapped to points with
respect to pV . We can thus infer the first-level lattice
on U from the binary vectors, which enables us to share
incomparability between U and V (Theorem 2).

We describe the detailed pseudo-code of each module used
in SSkyTree. Let T V [q] denote a partial skytree of T V on
which q is a root node.

Algorithm 3 SelectPivotPoint(T V , U)

1: p ← a root node of T V .
2: if p has any child node q then

3: if a link between p and q is ∀di ∈ U : Bi = 0 then

4: pV ← SelectPivotPoint(T V [q], U). // Recursive call.
5: else
6: pV ← p. // When q does not dominate p on U .
7: end if

8: else
9: pV ← q. // When p has no child node.
10: end if

11: return pV

Algorithm 4 Evaluate(pV , T V , U)

1: C ← {}. // Initialize a skyline candidate set on U .
2: p ← a root node of T V .
3: S ← points at child nodes in T V .
4: if |S| > 0 then

5: Set a subspace W such that W ⊂ U and pV ≻W p.
6: // Based on W, traverse T V in inorder.
7: for all q ∈ S such that q ≻U−W p do

8: C ← C ∪ Evaluate(pV , T V [q], U).
9: if a link between p and q is ∀di ∈ U : Bi = 0 then

10: Check p as a non-skyline point on U . // Lemma 4
11: else if pV ≻W q then

12: Check p as a non-skyline point on U . // Lemma 7
13: end if
14: end for

15: if pV ⊁U p or p is still a skyline point on U then

16: Update p.B w.r.t pV . // Sharing incomparability
17: C ← C ∪ {p}.
18: end if

19: for all q ∈ S such that p ≻U−W q do

20: if a link between p and q is ∀di ∈ U : Bi = 1 then
21: Continue. // Lemma 3
22: else if pV ≻U−W p then

23: Continue. // Lemma 6
24: else

25: C ← C ∪ Evaluate(pV , T V [q], U).
26: end if
27: end for

28: else if pV ⊁U p then

29: Update p.B w.r.t pV . // Sharing incomparability
30: C ← C ∪ {p}. // When p is a leaf node in T V
31: end if

32: return C
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We discuss efficient implementation of modules used in
SSkyTree. For efficient tree implementation, each node in
T V stores both a point p and a binary vector B representing
a relationship for its parent node. The binary vector B is
updated by comparing p with a pivot point pV , and used
to organize the first-level lattice on U . In particular, when
performing the intersection between skyline candidates (line
6 in Algorithm 1), we can also update binary vectors for each
point.

In addition, we can associate a binary vector B with the

number from 0 to 2|U |−2 on U similar to subspace mapping.
Using this mapping, we can identify a subspace W, such
that W ⊂ V, on which we can efficiently check dominance
relationships between pV and other points using bit-wise
operators. Also, we can make use of a topological order
that preserves the partial dominance relationships between
sibling nodes.

We lastly describe the pseudo-code of computing skyline
on U (used in Algorithm 1) as below. Note that this compu-
tation is consistent with a skyline algorithm [6] using recur-
sive point-based space partitioning, except that it generates
a skytree on U , which we use as an input of our skycube
computation.

Algorithm 5 ComputeSkyline(S, U)

1: T U ← {}. // Initialize a skytree T U on U .

2: max ← 2|U | − 2. // Set the size of a lattice.
3: L[1,max]← {}. // Initialize a lattice L.
4: if a pivot point in S is decided then

5: pV ← S[1]. // Initialize a pivot point pV .
6: Distribute S to a lattice L.
7: else

8: Select a balanced pivot point pV from S [6].
9: for all p ∈ S do
10: i ← a binary vector mapped to p w.r.t pV .
11: if i ≤ max then

12: L[i] ← L[i] ∪ {p}. // Add p mapped to Bi into L[i].
13: end if
14: end for

15: end if

16: T U .add(p
V ). // Add pV into a current node in T U .

17: for i ← 1 to max do

18: if |L[i]| > 0 then

19: for ∀ j ∈ [1, i]: Bj ≺Par Bi do

20: Remove non-skyline points from L[i] w.r.t L[j].
21: end for

22: if |L[i]| > 0 then

23: T ′ ← ComputeSkyline(L[i]). // Recursive call.
24: T U .add(T

′). // Add a child node T ′ into T U .
25: end if

26: end if

27: end for
28: return T U

D. EXPERIMENTAL SETTINGS
To validate our algorithm, we generate extensive synthetic

datasets. Because real-life datasets limit the evaluation in
various data environments, we employ the most popular
benchmark datasets [1] with three parameters – distribution,
cardinality, and dimensionality, which are widely adopted in
the skyline literatures. Specifically:

• Distribution: We generate three datasets with differ-
ent distributions, named as Correlated (COR), Inde-
pendent (IND) and Anti-correlated (ANT). To gener-

4 6 8 10
0

2

4

6

8
x 10

6

Dimensionality

S
k
y
c
u
b
e
 s

iz
e

 

 

ANT

IND

7,618,368

850,668

2,843,744

257,945
17,824
76,0333,710

790

100 200 300 400 500
2

4

6

8

10

12

14
x 10

5

Cardinality (k)

S
k
y
c
u
b
e
 s

iz
e

 

 

ANT

IND

200,013
257,945 293,945

328,921

355,944

1,308,606

610,872

850,668

1,025,873

1,175,288

(a) Varying d (n = 200k) (b) Varying n (d = 8)

Figure 10: The size of the skycube
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Figure 11: The ratio of full-space skyline size

ate each distribution, we follow the instructions in [1].
Note that we do not report the results for the correlated
distribution in this paper, as the results are consistent
with independent distribution.

• Dimensionality: We vary dimensionality d from 4 to
10. (Default: d = 8)

• Cardinality: We vary cardinality n from 100K to 500K.
(Default: n=200k)

Figure 10 depicts the average size of skycubes in our syn-
thetic datasets, which directly affects the overall perfor-
mances of the algorithms. Figure 11 depicts the ratio of
full-space skyline size |SkyD(S)| to cardinality n in our syn-
thetic datasets. The numbers (Figure 11) are |SkyD(S)|.
The ratio of full-space skylines is used to infer the distribu-
tion of real-life datasets.

Next, we compared QSkycube with existing skycube al-
gorithms BUS and TDS. Specifically, we implemented the
skycube algorithms with some optimizations:

• BUS: We first sorted d dimensions in memory, and then
performed BUS. Specifically, we selected the first di-
mension on U to compute SkyU (S), and used a heuris-
tic filter function [11, 16].

• TDS: We implemented TDS using the principles of
sharing computation [11, 16]. In our implementation,
we observed that too much recursive partitioning in
small-size datasets deteriorates the overall performance
of TDS, though the number of dominance tests is re-
duced. To prevent this phenomenon, we optimized TDS

by combining it with a skyline algorithm. When the
size of the partitioned dataset is less than a threshold
δ, TDS executes a skyline algorithm SFS [2]. Based on
our empirical optimization, we set δ as 10.

• BSkyTreeS: As a naive version of our proposed algo-
rithm, we implemented BSkyTreeS, which serially com-
putes each cuboid by our baseline algorithm BSkyTree [6].
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• QSkycube: The proposed algorithm employed the prin-
ciples of sharing structure and result by leveraging a
skytree and sharing multiple parents. We select a pivot
point using a pre-constructed skytree to preserve point-
wise incomparability. As an exceptional case (U = D),
we use a balanced pivot point selection proposed in [6].

Recall that the computation time of QSkycube includes
this pivot point selection.

Due to the CPU-bound nature of skycube computation,
we adopt CPU-cost measures, response time and the num-
ber of dominance tests per point (DT ) while constructing
the skycube, keeping all the points on the main memory.
Specifically:

DT =
Total number of dominance tests

n

All algorithms were implemented by C++ language. Also,
all experiments were conducted using Windows 7 with an
Intel Core2 Quad 2.33 GHz CPU and 4 GB main memory.
All the values reported are the average of 10 runs.

E. EVALUATION IN REALLIFE DATA
This section evaluates the efficiency of QSkycube in real-

life datasets. We collected “NBA” and “Household” datasets
from http://www.nba.com and http://www.ipums.org respec-
tively. NBA consists of 8-dimensional 17,264 points, repre-
senting a player’s performance per year. Next, Household
consists 6-dimensional 127,931 points, representing the ratio
of the expenditure to an American family’s annual income.
These datasets are widely adopted to evaluate the efficiency
of skyline queries [6, 17] and skycube queries [11].

We report on the response time and DT of all the sky-
cube algorithms over these real-life datasets. Specifically,

Table 3 depicts the response time (and DT in parentheses)
for each skycube algorithm. We can observe that QSkycube

(bold font) consistently outperforms all the other skycube
algorithms in real-life datasets as well. However, unlike our
observations from synthetic datasets, BUS and TDS out-
performs BSkyTreeS in one or both real-life datasets. This
can be explained by the ratio of |SkyD(S)| (Household =
4.51% and NBA = 10.40%) and dimensionality, which sug-
gests that real-life datasets are close to correlated and in-
dependent distribution in our synthetic datasets. This ob-
servation suggests that the optimization margin of sharing
computation (used in TDS and QSkycube) is relatively more
effective in such real-life settings.

Table 3: Comparisons with state-of-the-art algo-
rithms in real-life datasets

Algorithms
Household NBA

d = 6, n = 127,931 d = 8, n = 17,264
|SkyD(S)| = 5,774 |SkyD(S)| = 1,796

BUS 1.725 (DT = 148) 1.129 (DT = 2103)
TDS 1.293 (DT = 65 ) 0.758 (DT = 312 )

BSkyTreeS 1.519 (DT = 157) 2.288 (DT = 2967)
QSkycube 0.276 (DT = 31) 0.231 (DT = 205)

Acknowledgements

This work was supported by the Engineering Research Cen-
ter of Excellence Program of Korea Ministry of Education,
Science and Technology (MEST) / National Research Foun-
dation of Korea (NRF) (Grant 2010-0001728) and Microsoft
Research Asia (MSRA).

196


