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ABSTRACT

Semi-structured data such as XML are popular for data interchange
and storage. However, many XML documents have improper nest-
ing where open- and close-tags are unmatched. Since some semi-
structured data (e.g., Latex) have a flexible grammar and since
many XML documents lack an accompanying DTD or XSD, we
focus on computing a syntactic repair via the edit distance.

To solve this problem, we propose a dynamic programming algo-
rithm which takes cubic time. While this algorithm is not scalable,
well-formed substrings of the data can be pruned to enable faster
computation. Unfortunately, there are still cases where the dynam-
ic program could be very expensive; hence, we give branch-and-
bound algorithms based on various combinations of two heuristics,
called MinCost and MaxBenefit, that trade off between accuracy
and efficiency. Finally, we experimentally demonstrate the perfor-
mance of these algorithms on real data.

1. INTRODUCTION
Semi-structured data provides a flexible representation where da-

ta can be nested as a tree and thus is very widely used, from XML
documents to JSON data interchange files to annotated linguistic
corpora. At the same time, this flexibility makes it prone to errors.
A recent study of XML documents on the Web found that 14.6%
of them (out of a 180K sample) were not well-formed, the majority
of cases due to either open- and close-tag mismatches or missing
tags [15]. Such errors are due to multiple factors including manu-
al input [28], dynamically-generated data from faulty scripts [22],
mapping and conversion errors (e.g., XML to relational mapping,
MS Powerpoint 2007 converted to Powerpoint 2010), and inter-
leaving of multiple sources (e.g., BGPmon pub-sub system which
receives XML streams from multiple routers).

Often there is no known grammar associated with the data to
test for validity; for example, only 25% of XML documents on the
Web have an accompanying DTD or XSD [15]. Inferring one is
a notoriously difficult problem [4], often requiring a whole reposi-
tory rather than a single document, and which for some classes of
documents is not even possible [12]. Therefore, most existing work
assumes that the document is well-formed and tests validity based
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on a supplied grammar [24, 23, 5]; exceptions to this are specifical-
ly tailored for HTML documents.

In this paper, we consider the problem of repairing an arbitrary
semi-structured document into one that is well-formed, based on t-
wo variants of well-formedness (discussed below). We believe this
problem is in itself interesting for a variety of reasons. First, some
existing documents have a very flexible grammar that basically re-
quires only proper nesting. Second, in the absence of a grammar, it
may be “safer” to repair based on well-formedness rather than mak-
ing domain-specific assumptions. Third, since well-formedness is
a pre-condition for validity, well-formed repairs may serve as can-
didates for the user to choose from, similar to the way word pro-
cessors suggest autocorrection.

While verifying well-formedness in semi-structured data can be
done straightforwardly, using a stack, in time linear in the size of
the document, it is a much more challenging problem to repair a
malformed document. Some existing tools, such as modern We-
b browsers, use simple rule-based heuristics to rectify mismatch-
ing tags. Perhaps the most common rule, employed by some we-
b browsers such as Internet Explorer, is to substitute a matching
close-tag whenever the current close-tag does not match the open-
tag on the stack. However, a single extra or missing close-tag is e-
nough to set off a cascade, requiring many close-tags to be replaced
(or deleted). Another commonly used rule is to insert a matching
close-tag whenever the current close-tag does not match, but this
can trigger a similar cascade.
Example: Figure 1(a) shows an example XML document of a bib-
liographic entry that is not well-formed: the <authors> open tag
does not have a matching close tag; <affiliation> occurs out
of place and is missing a matching tag; the </title> close tag is
out of order, occurring after <authors>; etc. Figure 1(b) shows
the document after the substitution rule-based heuristic is applied,
requiring 3 substitutions and 2 insertions.

We focus on the following types of errors which we believe occur
most frequently in practice:

1. Tags may be missing, as it is common to forget to close open
tags, and unmatched close tags may occur when new content
is added and it is assumed a previous open tag existed.

2. Extraneous tags may be present, perhaps due to not fully
deleting tags associated with deleted content.

3. Open and close tags, due to being similar, are sometimes mis-
taken for each other; and tags of different types may appear
in the wrong order or be improperly assigned.

We use standard string edit distance with insertion, deletion and
substitution operators as a model for repair [17]. We believe that
more complex distance functions including other operations, such
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<article>

<title>

A Relational Model for Large Shared Data Banks

<authors>

</title>

<author>

<name> E. F. Codd </name>

IBM <affiliation>

</author>

</article>

<article>

<title>

A Relational Model for Large Shared Data Banks

<authors>

</authors>

<author>

<name> E. F. Codd </name>

IBM <affiliation> </affiliation>

</author>

</title>

</article>

(a) original document (b) rule-based repair

Figure 1: An Example and Rule-based Repair

as block moves and swaps, as well as non-uniform weighting, can
be folded into our methods but we leave this to future work. Edit
distance is used for modeling and correcting errors in many applica-
tions from information retrieval to computational biology [30, 20,
27]. In our illustrative example, a well-formed repair with fewest
edits is given in Figure 2(a), which has edit distance 2: delete
<authors> and delete <affiliation>.

In our second variant of well-formedness, we take into accoun-
t that the text embedded within semi-structured documents often
follows certain patterns. For example, many XML documents only
allow text to occur surrounded by matching open-close tags and re-
quire the existence of text between every adjacent matching pair.
Thus we consider how to exploit embedded text to aid in find-
ing a more judicious repair via a constrained edit distance func-
tion. In our illustrative example, a well-formed repair based on
tags and text with edit distance 3 is given in Figure 2(b): delete
<authors>, insert <affiliation> before IBM, and substi-
tute <affiliation> after IBM by </affiliation>. Note
that this repair consists of more edits than for tags only.

Note that it is not always possible to exactly repair to the orig-
inally intended well-formed string. In the absence of a grammar,
there is inherent ambiguity in what the creator intended. For exam-
ple, consider the string <name> E. F. Codd </author>.
Should this be repaired to <name> E. F. Codd </name> or
<author> E. F. Codd </author>? Or even to <name>

E. F. </name> <author> Codd </author>. It is im-
possible to know what the original intent was. Furthermore, such
ambiguities compound in larger strings, resulting in an explosive
number of reasonable possibilities. Since the user may have a (of-
ten ill-defined) grammar in mind, our methods can provide multiple
repairs in the hope that at least one of these will suffice. But pre-
senting the user with all repairs based on the many ways to resolve
these ambiguities can be overwhelming. Instead, we note that the
differences between some repairs are syntactically trivial, so we
try to consolidate these into representative repairs. For example
among the two alternatives <name> E. F. Codd </name>

and <author> E. F. Codd </author> to repair <name>
E. F. Codd </author>, we canonically choose the former
(see more details in Section 3.2). Consolidating multiple repairs
by such representatives helps to provide more variety in a small
set of repairs returned to the user. For the Tags With Text case,
the surrounding text can be exploited to resolve more of these
ambiguities. For example, if from a well-formed string such as
<name> E. F. Codd </name> a tag gets deleted resulting
in <name> E. F. Codd or E. F. Codd </name>, indeed
our algorithm will repair it by inserting the deleted tag. Therefore,
with a stronger grammar, there are more cues to recover the original
string.

There has been much literature on approximate matching of trees
which has been applied to finding semantically relevant XML doc-

uments [13, 9, 8, 29, 21, 31]. Unfortunately, none of this work ap-
plies to our setting since the input is not well-formed and, therefore,
cannot be represented as a tree. However, a good repair should re-
sult in a short tree edit distance between the repaired string and the
intended error-free string. We use this to show the efficacy of our
algorithms in “undoing” errors introduced to a well-formed string
in Section 5.2. Recall that for the reasons of ambiguity mentioned
above, it is not enough to simply check whether or not the repaired
string is the same as the intended error-free string. In addition, our
experimental evaluation on real XML data with real errors shows
that the number of string edit operations is much smaller when us-
ing our approach compared to the rule-based heuristics (see Sec-
tion 5.2). This effectively establishes the goodness of edit distance

for repair.

Our contributions are as follows. We give a dynamic program-
ming algorithm which computes the (optimal) edit distance. Since
this algorithm is cubic in the size of the input, regardless of the
number of errors, it does not scale to large documents. There-
fore, we present linear-time greedy algorithms that find close to
optimal (within 10%) repairs in practice; these methods are sig-
nificantly more accurate (more than an order of magnitude) than
the rule-based heuristics. We also propose branch-and-bound algo-
rithms for when multiple repairs are desired (such as for an autocor-
rection menu), since the dynamic program and greedy algorithms
are geared towards finding a single repair. We present a variety
of methods, with various trade-offs in accuracy and running time,
whose performance depends on the number of edits rather than the
length of the input. We perform a thorough experimental study to
investigate these strategies on real data.

2. RELATED WORK
While we are not aware of prior work that specifically addresses

the problem of repairing malformed data to make it syntactically
well-formed, there is some work on repairing XML documents to
make them valid with respect to a given DTD [5, 25, 26]. How-
ever, these papers all assume the input is already well-formed. It
is not clear how the techniques used in these papers, such as com-
puting the tree or graph edit distance between a document and a
DTD, can be applied to the problem here where documents are mal-
formed. Some existing tools such as Beautiful Soup, HTML
Tidy and NekoHTML allow for malformed HTML input and ex-
ploit domain knowledge to make them valid; however, they employ
simple rules that can result in verbose repairs.

In the absence of a grammar, a natural approach would be to
infer one for making repairs. For example, a few papers have been
written about using a repository of XML documents to generate
a DTD [11, 3] or XSD [4]. Unfortunately, grammar inference is a
notoriously difficult problem, requiring a large number of examples
and which is impossible for some classes of grammars when only
positive examples are given [12].
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<article>

<title>

A Relational Model for Large Shared Data Banks

</title>

<author>

<name> E. F. Codd </name>

IBM

</author>

</article>

<article>

<title>

A Relational Model for Large Shared Data Banks

</title>

<author>

<name> E. F. Codd </name>

<affiliation> IBM </affiliation>

</author>

</article>

(a) considering tags only (b) considering tags and text

Figure 2: Two Possible Repairs

The problem of computing the edit distance from a string to a
supplied context-free grammar has been studied; since the gram-
mars for our notions of well-formedness can be expressed using
a CFG, these existing solutions can be applied. Aho and Peter-
son [1] gave an O(|G|2n3) algorithm which was later improved
to O(|G|n3) by Myers [19], where n is the length of the input and
|G| =

∑

A→α∈G
(|α|+1) is the size of the grammar. Our dynamic

program runs in O(n3) time, independent of grammar size.
It has been shown that a non-deterministic version of the lan-

guage of well-formed bracketed strings is, in terms of parsing, the
hardest CFG [14]. It is also known that parsing an arbitrary CFG
is at least as hard as boolean matrix multiplication [16]. Therefore,
computing the edit distance to a well-formed string in much less
than cubic time would be a significant accomplishment.

Verifying well-formedness is a related but much easier problem:
it is straightforward to do this using a stack in linear time. The
problem is non-trivial, however, on streaming data where trading
off accuracy (where distance to well-formedness is measured by
Hamming distance) can allow this in sublinear space [18]. Oth-
er papers study the problem of validity checking: using a DTD or
XML Schema, report if a given input document conforms to the
given grammar. Some of these papers (e.g., [24]) perform strong

validation, checking for well-formedness along with validity, while
others (e.g., [23]) perform weak validation, assuming the input is
already well-formed. In fact, our techniques can be used for prepro-
cessing malformed input to enable application of the latter work.

Finally, we mention that our work fits into the context of data
cleaning to satisfy database integrity constraints, including con-
sistency under functional dependencies [2], inclusion dependen-
cies [6] and record matching [10]. These papers all use edit dis-
tance as a notion of a minimal cost repair.

3. TAGSONLY CASE
We assume that the input data is tokenizable by a lexical ana-

lyzer and has been preprocessed into a sequence of brackets. For
example, these brackets could correspond to the open-tags (<...>)
and close-tags (</...>) of an XML document; to the curly braces
or square brackets (and accompanying object name) of a JSON file;
to a Latex file containing \begin{...} and \end{...}; etc.1

Definition 1. The congruent of a bracket x is defined as its sym-
metric opposite bracket, denoted x̄. The congruent of a set of brack-
ets X , denoted X̄ , is defined as {x̄ | x ∈ X}.

We assume a bracket namespace is not given a priori. Let R
and S denote the sets of brackets obtained from the two directions
(i.e., open and close) after tokenization, respectively. We shall use
T = R ∪ S̄ to denote the set of open brackets and T̄ = R̄ ∪ S the

1We shall ignore all other components in the XML document be-
sides tags for now such as attributes and text and treat empty-
element tags as two tags, e.g., <a/> becomes <a></a>.

close brackets. (Each x ∈ T has exactly one congruent x̄ ∈ T̄ and
vice versa.)

Definition 2. A match between two brackets x and y, denoted
x ≍ y, occurs when x ∈ T , y ∈ T̄ and y = x̄.

Consider a string s = s1...sn , of length n, over some bracket
alphabet T , that is, s ∈ (T ∪ T̄ )∗.

Definition 3. A well-formed string over some bracket alphabet
T obeys the context-free grammar GT with productions S → SS,
S → ε and S → aSā for all a ∈ T .2 So |GT | = 4|T |+ 3.

Example: Let T = {a, b, c}. Then abb̄cc̄ā is a well-formed
string, since it can be parsed as S → aSā → a(SS)ā →
a(bSb̄)(cSc̄)ā → ab(ε)b̄c(ε)c̄ā→ abb̄cc̄ā. However, abāb̄ is not
well-formed.

Definition 4. A well-formed bracketed language L(GT ) over
some bracket alphabet T is the set of strings from T ∪ T̄ ∗ accepted
by the grammar GT defined above.

Definition 5. The edit distance E(s, s′) between two strings s
and s′ is the minimum number of insertions, deletions and substitu-
tions needed to transform s into s′, where an insertion of a after po-
sition i transforms s1...sisi+1...sn to s1...siasi+1...sn; a deletion
at position i transforms s1...si−1sisi+1...sn to s1...si−1si+1...sn;
and a substitution to a at position i transforms s1...si−1sisi+1...sn
to s1...si−1asi+1...sn.

Definition 6. The Bracketed Language Edit Distance Problem,
given string s, is to find argmins′ E(s, s′) such that s′ ∈ L(GT ).

We shall henceforth use the term edit distance of a string to mean
the edit distance from the string to a well-formed repair.
Example: The edit distance of abāb̄ to a well-formed string is 2.
For example, it can be changed to aā using 2 deletions and abb̄ā
using 2 substitutions.

3.1 Optimal Solution
Algorithm 1 presents pseudocode for a dynamic program to

compute the edit distance mins′ E(s, s′) to a well-formed string
s′. The algorithm runs in O(n3) time and requires O(n2) space,
where n is the string length and is based on applying the different
grammar productions to the input. Given some substring si...sj ,
j > i, either si and sj could be edited to matching brackets (the
S → aSā production) or else the string could be broken into two
adjacent well-formed substrings (the S → SS production). Let
B[i, j] be the cost of editing si and sj to match. When j = i,

2Some instances of well-formedness additionally require that the
document is nested within a single open-close pair, i.e., s ∈ T (T ∪
T̄ )∗T̄ , but we dispense with this for simplicity.
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B[i, j] = B[i, i] = 1, also C[i, j] = C[i, i] = 1. Hence, the
recurrence is

C[i, j]← min(B[i, j]+C[i+1, j−1], min
i≤k≤j−1

C[i, k]+C[k+1, j])

The following claim establishes the correctness of the recursion
and hence, also of Algorithm 1.3

CLAIM 1. Algorithm 1 correctly finds the edit distance, given

string s, such that it is accepted by GT .

Proof Sketch. Consider any substring of length 1, si. The minimum
edit distance is 1, which can be achieved either by deleting si (by
rule S → ε), or by inserting matching open/close bracket. For
substrings of length 2, sisi+1, B[i, i + 1] is the computed edit
distance and C[i, i+1] = B[i, i+1]. These serve as the base cases.
Suppose, by induction hypothesis, Algorithm 1 correctly computes
minimum edit distance for all substrings of length at most l. We
now take any substring of length l+1. W.l.o.g, let it be s1s2....sl+1.
Consider s1. An optimal algorithm has the following options.
(1) Deletes s1 and the minimum edit distance is 1 + C[2, l + 1],
(2) Matches s1 to some sj , j > 1, possibly by substitution. There
are again few subcases here.

(a) j = l + 1 and s1 ≍ sl+1. In that case, the minimum edit
distance is C[1, l + 1] = C[2, l].
(b) j = l+ 1, s1 ∈ T and substituted to match sl+1. In that case,

the minimum edit distance is C[1, l + 1] = 1 + C[2, l].
(c) j = l + 1, sl+1 ∈ T̄ and substituted to match s1. In that case,

the minimum edit distance is C[1, l + 1] = 1 + C[2, l].
(d) j = l + 1, s1 ∈ T̄ and sl+1 ∈ T , both deleted or substituted

to match each other. In that case, the minimum edit distance is
C[1, l + 1] = 2 + C[2, l].

(e) j < l + 1. In that case, the minimum edit distance is C[1, l +
1] = C[1, j] +C[j + 1, l + 1].

The above options are exhaustive, Algorithm 1 considers all the
options, computes edit distance correctly in all these cases and re-
turns the minimum. Hence, Algorithm 1 computes minimum edit
distance for any substring of length l + 1 correctly, therefore, by
induction, the proof is established.

For ease of exposition, we do not show how to construct an s′.
A single minimum cost repair can be constructed from the dynam-
ic programming tableau straightforwardly. However, constructing
multiple repairs having minimum cost is non-trivial. We defer this
discussion until Section 3.2.

Algorithm 1 Dynamic Program for Edit Distance

Require: tokenized string s = s1...sn
Ensure: edit distance mins′ E(s, s′) where s′ is well-formed
1: for all ℓ from 1 to n− 1 do

2: for all i from 1 to n− ℓ do

3: j ← i+ ℓ
4: C[i, j]← B[i, j] + C[i+ 1, j − 1]
5: for all k from i to j − 1 do

6: C[i, j]← min(C[i, j], C[i, k] + C[k + 1, j])
7: end for

8: end for

9: end for

10: return C[1, n]

The cubic growth in running time as a function of string size be-
comes a problem for large strings. Luckily, one can often prune

3Full version with proofs at http://www.cs.umd.edu/

˜barna/vldb13-xmlrepair.pdf

away well-formed substrings to speed up the running time. Using
a stack, this can be done straightforwardly in linear time by re-
cursively finding matching adjacent pairs and removing them. We
note, however, that this may eliminate some candidate repairs from
consideration. For example, given the string aāb̄ā, the only opti-
mal repair with pruning that can be found is aāaā whereas abb̄ā
also has an edit distance of 1. Nonetheless, there exists at least one
repair of the pruned string with edit distance equal to that optimal
for the original string.

CLAIM 2. Well-formed substrings removal preserves the edit

distance. That is, the edit distance of the pruned string is the same

as the edit distance for the full string.

Proof Sketch. We do an induction on the number of edits. For
strings with edit distance 0, well-formed substring pruning return-
s the empty string with edit distance 0. This serves as the basis.
Considering the claim to be true for all strings with minimum edit
distance less than d, we next take any string s with minimal ed-
it distance d. Consider an optimal algorithm that defers doing the
first edit as much as possible without affecting the optimality, and
let the d edit positions be p[1] < p[2] < ... < p[d]. Also, let t be
the string that results from s after removing the well-formed sub-
strings. Let the prefix in t corresponding to s1s2...sp[1] be t1t2...tq .
Clearly, t1, ..., tq−1 correspond only to open brackets.

Case 1: If sp[1] is not part of any well-formed substring then tq
corresponds to sp[1]. Consider performing the same edit operation
as the optimal algorithm at sp[1] and also at tq . The resultant string
s′ after the edit at sp[1] in s, has edit distance d− 1. If well-formed
substrings are removed from s′, and also from t after the edit at tq
to get t′, then they both return the same processed string. By the
induction hypothesis, s′ and t′ have the same edit distance. Edit
distance of s and t are one more than edit distance of s′ and t′

respectively, hence, both s and t have the same edit distance.
Case 2: Otherwise sp[1] is part of a well-formed substring w.

There are few cases to consider based on whether sp[1] ∈ T or
sp[1] ∈ T̄ . The main idea is to show that in all these cases, there
exists an alternate edit script such that sp[1] is not part of any well-
formed substrings. Then by the same argument as in Case 1, the
proof follows.

There are instances where well-formed substring pruning will
not be very effective; for example, consider the string abcded̄c̄b̄ā.
Here edit distance is 1, but since there is no well-formed substring,
nothing can be eliminated. We investigate its effectiveness on real
data in Section 5.

3.2 Incremental Approach
The dynamic program presented in the previous section has two

deficiencies. The first is that it has the same running time regard-
less of how many errors exist in the input string; that is, its best-case
running time is as slow as the worst-case. Second, it can extract a
single edit script associated with the edit distance found but does
not provide a natural way of enumerating multiple repairs. Here
we describe branch-and-bound strategies, with various trade-offs
between accuracy and running time, that are affected only by the
number of errors, not the length of the string, and are capable of
incrementally reporting repairs. Our algorithms are based on vari-
ous combinations of greedy heuristics. All of our methods maintain
a stack that, at any point, contains open brackets remaining to be
matched with close brackets from the string.

As a warm-up, we consider the case where |T | = 1. Here it
turns out we can apply recursive matching of adjacent pairs to ob-
tain a sequence of zero or more elements from T̄ followed by a
sequence of zero or more elements from T , that is, ā∗a∗. Then
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the minimum cost repair, for the close bracket and open bracket
substrings separately, is obtained by applying substitutions to make
adjacent pairs match and, if a singleton remains, delete it. So if the
pruned string is āiaj , the resulting edit distance is ⌈ i/2 ⌉+⌈ j/2 ⌉.
Hence, for |T | = 1 the edit distance can be computed in Θ(n)
time. Clearly the same edit distance can be obtained via many dif-
ferent matchings, precisely p(i/2)×p(j/2) when i and j are even,
where p(k) is the partition function denoting the number of ways
to write k as a sum of positive integers. Rather than enumerat-
ing all these possibilities, a single canonical form such as only the
minimum- or maximum-depth nesting shall be reported. For exam-
ple, a malformed string such as aaaaaa will be repaired to aaaāāā
or aāaāaā but not to aaāāaā.

When |T | ≥ 2, repairs of these two scenarios are similar to the
|T | = 1 case: adjacent pairs are examined and the appropriate
substitutions are made to make these adjacent pairs match. There is
an additional type of error than can occur besides these two: empty
stack with remaining close brackets and a non-empty stack when
the string has terminated. There could be an open bracket of one
type followed by a close bracket of another type.

Figure 4 (a) shows the pushdown automata for the tags-only case
that allows a well-formed string to be verified. Note that the only
scenarios not handled in Figure 4(a) are precisely the above three
scenarios: (1) a close bracket is read when the stack is empty; (2)
a terminated string when the stack is non-empty; and (3) a close
bracket in the string does not match the open bracket on the stack.

We have already discussed how to handle the first two scenar-
ios. It is the third scenario that is most challenging. Note that each
possible insertion operation has a symmetrically equivalent dele-
tion operation, so for the sake of reducing the enumerated repairs
we shall use a canonical form involving only deletions. Given a
mismatch of types between an adjacent open-close pair, there are
only five edit operations that need to be considered:

1. Delete the open bracket on the left;

2. Delete the close bracket on the right;

3. Substitute the left or right bracket to make a matching pair;

4. Substitute the open bracket on the left to a close bracket;

5. Substitute the close bracket on the right to an open bracket.

For the third alternative, we shall canonically replace the right close
bracket to match the left open bracket. For the last two alternatives,
the way the replacement bracket is chosen is as follows. For an
open bracket substituted to a close bracket, we assign the brack-
et matching the next open bracket on the stack. (We only consider
this alternative when the stack remains non-empty after deleting the
open bracket.) For a close bracket substituted to an open bracket,
we wait to assign the bracket until the first close bracket is encoun-
tered that gets paired with it (until then it is a “ghost” open) and
then assign it so that the pair matches; if the string terminates be-
fore such a pairing occurs then it gets resolved to a deletion rather
than a substitution.

The following claim establishes the correctness of our algorithm.

CLAIM 3. By considering edit operations at only one of the fol-

lowing scenarios, a sequence of choices exists that leads to the opti-

mal edit distance: (1) an empty stack when a close bracket occurs;

(2) a non-empty stack when the string has terminated; and (3) an

open bracket of one type adjacent to a close bracket of a different

type. Furthermore, exhaustive branching to the five edit alterna-

tives above leads to an optimal repair.

Proof Sketch. Since by Claim 2, removal of well-formed substring
does not affect the edit distance, one can greedily match well-
formed substrings whenever possible. Thus after each edit oper-
ation, newly created well-formed substrings can be matched by an
optimal algorithm. If well-formed substring removal does not re-
turn an empty string then the edit distance is non-zero, and either
of the three scenarios listed in the claim must happen. Therefore,
taking actions in these three scenarios is sufficient for guarantee-
ing optimality. Also, our exhaustive branch and bound algorithm
considers all possible repairs at these three scenarios, ensuring that
there exists a branch (edit script) that corresponds to the repairs
made by an optimal algorithm.

We consider two heuristics for choosing from these alternatives,
the first of which makes a greedy decision based on local informa-
tion and the second of which is based on non-local information but
ignores interleaving between bracket types:

• MaxBenefit: At each mismatch, consider all five alterna-
tives and take the one that enables the largest well-formed
substring to be pruned (the size of which is the benefit). The
time to test these alternatives is amortized: an alternative re-
sulting in a larger number of matched brackets takes longer
time but also advances that much further along, requiring in
total linear space and time. When |T | = 1, MaxBenefit finds
an optimal cost repair.

• MinCost: Precompute the imbalance for each bracket type
subsequence (similar to the |T | = 1 case) as follows. Let
σa(s), for a ∈ T , denote the subsequence of s containing
brackets a or ā. For each a ∈ T and each suffix of σa(s), we
find the remaining subsequence after matching pairs elimina-
tion. Suppose the result for σa(s) is āiaj and that there are
currently k open brackets a on the stack. Then the number
of unbalanced brackets in σa(s) is |k − i| + j. Taking all
the subsequences σa(s), for each a ∈ T , the minimum num-
ber of edit operations to well-formedness (via substitutions)
is ⌈ (

∑

a∈T
|ka − ia|)/2 ⌉+ ⌈ (

∑

a∈T
ja)/2 ⌉. This gives a

lower bound on the edit distance. So at each mismatch, the
alternatives are considered in turn and the one which best im-
proves the lower bound is chosen. This strategy can be done
in linear space and time since the imbalance counts (for each
subsequence suffix) can be precomputed and stored globally.
When |T | = 1, MinCost also finds an optimal cost repair.

Unfortunately, both of these heuristics can result in approxima-
tions of the edit distance with a performance ratio that is linear in n.
For example, the string aaaaaabbbbāāāāāā could result in 8 edit
operations with MaxBenefit if the wrong alternative among ties is
chosen at each mismatch (at mismatch of type bā, substitute ā to
a, instead of substituting b to b̄), and the string abcdeāēd̄c̄b̄ could
result in 8 edit operations with MinCost if the wrong alternative a-
mong ties is chosen at each mismatch. To mitigate this, all of the
ties can be maintained in a queue and tried as part of a branch-
and-bound algorithm; we call these variants MaxBenefit ++ and
MinCost ++, respectively.

Interestingly, MinCost performs well on the hard input for
MaxBenefit and MaxBenefit performs well on the hard input for
MinCost: the first string can be repaired in 2 operations using
MaxBenefit and the second in 2 operations using MinCost. There-
fore, we consider hybrid strategies which combine MaxBenefit and
MinCost in various ways to complement each other. In particular,
we consider the following three hybrids.

• Conservative: Try all the choices in the union that Max-
Benefit or Min-Cost gives.
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12 

Figure 3: Illustration of Branch-and-Bound Methods

• Moderate: Try all the choices in the multiset intersection of
the choices that Max-Benefit or Min-Cost gives; if the inter-
section is empty, then try all the choices from their union.

• Liberal: Select one choice at random from the multiset in-
tersection of the choices that Max-Benefit or Min-Cost gives;
if the intersection is empty, then select one choice at random
from their union.

The above three strategies trade off between accuracy, the num-
ber of repairs returned and running time. Conservative has the
highest accuracy and returns the maximum number of alternatives,
whereas Liberal runs the fastest. Moderate seems to have the best
trade off between accuracy and running time (see Section 5).

We note that none of these three approaches return all possible
repairs within a given edit distance. The number of such repairs
can be exponential in the number of errors and presenting the user
with all repairs based on the many ways to resolve the errors can
be overwhelming. Instead, we try to consolidate the repairs with
trivial differences into representative ones: (1) while substitutions
can be repaired by either changing the left tag to match the right
or vice versa, we canonically choose the former; (2) while an un-
matched tag can be resolved by either deleting that tag or inserting
its counterpart, we canonically choose the deletion option; and (3)
while a run of unmatched open (respectively, close) tags can be cor-
rected with many different embeddings, we canonically report the
maximum or minimum depth embedding. Consolidating multiple
repairs by such representatives helps to provide more variety in a
small set of repairs returned to the user.

3.3 Implementation for Branching Strategies
Figure 3 illustrates how the branch-and-bound algorithm works

on the tokenized string rtut̄ann̄fār̄ from Figure 1(a). Two global
structures, bracket list and suffix pairs, are preprocessed in a single
scan to assist the procedure. The bracket list contains the tokenized
brackets and their index positions after well-formed substring prun-
ing. The suffix pairs are constructed based on the suffix of the string
starting from position pos, and for the subsequence σ(x) corre-
sponding each type of bracket x, where a pair 〈i, j〉 represents the
remaining x̄ixj after well-formed substring pruning. For example,
bracket r has two suffix pairs: 〈0, 0〉 at position 1 and 〈0, 1〉 at 13.

The first mismatch occurs at t̄ (position 5). For each of the five
edit alternatives, we list the stack state, the string position after
the edit is applied and the total number of edits incurred for the
repaired prefix. In addition, we show the MaxBenefit and MinCost
values for each alternative. Taking option Del u for instance, t
and t̄ also get matched, so the total benefit value is 3. To get the

MinCost value, we consider the suffix pairs surrounded by dashed
lines. With r and t in the stack, Del u reduces the imbalance from
the suffix pair 〈1, 0〉 at position 4 for u by 1; the pairs 〈0, 1〉 at
13 for r and 〈0, 1〉 at 5 for t get canceled out by the stack; and of
the remaining pairs, 〈0, 0〉 at 6 for a gives 0 (since brackets can
potentially match) and 〈1, 0〉 at 11 for f gives 1, resulting in a total
value of 1.

We show the resulting priority queues for Moderate and Con-
servative at the bottom right of Figure 3. The former contains the
intersection of alternatives where MinCost of 1 is the lowest and
MaxBenefit of 3 is the highest; the latter contains the union of al-
ternatives having MinCost of 1 or MaxBenefit of 3. Candidates are
inserted into the priority queue sorted on ascending order of (#ed-
it+MinCost); this provides a lower bound on the eventual repair
cost. By visiting nodes in this order, it is guaranteed that any fully
repaired string must have edit distance no larger than the existing
partial repairs will have after completion.

Following the Moderate priority queue, the next mismatch oc-
curs at ā, for which the alternative chosen is Del f, with MinCost
value of 0 and MaxBenefit value of 5. The final output is rtt̄ann̄ār̄
with cost of 2. Conservative returns the same repaired string with
the same edit distance but uses more space and time for the extra
candidates generated.

To speed up the algorithm, we can avoid visiting candidates with
the same stack state and string position but having larger cost. This
can done by hashing the candidate’s stack and the (index of the) re-
maining string suffix; when multiple repairs are needed, the hash-
ing function is based on the repaired prefix rather than the stack.

4. TAGS WITH TEXT CASE
A commonly occurring pattern for semi-structured documents,

especially those used for data interchange, is that text content must
occur between all matching leaf-level tags and only between such
tags, that is, it cannot occur immediately before or after any inter-
mediate (non-leaf) tag. This is the norm for JSON files as well as
XML files encoding JSON. Moreover, a study of DTDs on the Web
revealed that only 1% of XML data exchange documents allowed
so-called mixed content elements (allowing both text and tags) [7].
Indeed, we can exploit this pattern to compute a more judicious
repair.

Let Σ be some alphabet and W = {w | w ∈ Σ+} denote a set
of words that can be embedded in a semi-structured document. We
assume that the input data has been preprocessed into a sequence of
brackets and words (which assumes the existence of markers that
tell the lexical analyzer how to distinguish between brackets and
words).

Definition 7. A well-formed string over some bracket alphabet
T with embedded text from W obeys the context-free grammar
GT,W with productions S′ → S | ε and S → SS | xSx̄ | xw+x̄,
for all x ∈ T and where all w ∈ W .

Definition 8. A well-formed bracketed language with tex-

t L(GT,W ) over some set of words W and bracket alphabet T is
the set of strings from (W ∪ T ∪ T̄ )∗ accepted by the grammar
GT,W defined above.

Example: Let W = {w} and T = {a, b}. Then abwb̄ā is a well-
bracketed string, since it can be parsed as S → aSā→ abwb̄ā but
abb̄wā is not.

Definition 9. The Bracketed Language with Text Edit Distance

Problem, given a string s ∈ (W ∪ T ∪ T̄ )∗, is to find
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argmins′ E(s, s′) such that s′ ∈ L(GT,W ). Here we allow in-
sertion, deletion and substitution operations on brackets but do not
allow any operations on words, that is, the words in a string must
remain as they are.

Example: The string abb̄wā has edit distance 2 and can be repaired
to abwb̄ā using one deletion and one insertion.

4.1 Optimal Solution
As shown in Figure 2, if we consider only the bracket subse-

quence of the string and apply the tags-only methods from Sec-
tion 3 to find a solution, the resulting repairs may not obey GT,W .
In fact, GT,W is strictly more constrained than GT (hence, the edit
distance for tags-only lower-bounds that for tags with text). There-
fore, we need to design a new algorithm.

Algorithm 2 presents the pseudocode for the dynamic program.
As with the tags-only case, the algorithm runs in O(n3) time and
requires O(n2) space. Given some substring si...sj , the algorithm
first checks if it contains a word (that is, sk ∈ W for some k ∈
[i, j]) and, if not, deletes si...sj , resulting in cost C[i, j]← j− i+
1. Otherwise, either si and sj could be edited to matching brackets
surrounding a well-formed substring (the S → xSx̄ production);
or si and sj could be edited to matching brackets surrounding a
sequence of one or more words, after deleting all brackets in the
substring si+1..sj−1, denoted by D[i+ 1, j − 1] (the S → xw+x̄
production); or else the string could be broken into two adjacent
well-formed substrings (the S → SS production).

Let B[i, j] be the smallest cost of editing si and sj to match.
When j = i, if si ∈ W , C[i, j] = C[i, i] = 2, else C[i, j] =
C[i, i] = 1. For all other cases, while the substring sisi+1...sj
contains a word, the recurrence is

C[i, j]← min







B[i, j] + C[i+ 1, j − 1],
B[i, j] +D[i+ 1, j − 1],
mini≤k≤j−1 C[i, k] +C[k + 1, j]

If si ∈ W and sj ∈ T̄ , then B[i, j] = 1. Similarly, if sj ∈ W
and si ∈ T , then B[i, j] = 1. Else if, si ∈ W and sj ∈ T , then
B[i, j] = 2. Also, if sj ∈ W and si ∈ T̄ , or both si and sj are
words, then B[i, j] = 2.

Algorithm 2 Dynamic Program for Tags with Text

Require: tokenized string s = s1...sn
Ensure: edit distance mins′ E(s, s′) where s′ is well-formed
1: for all ℓ from 1 to n− 1 do

2: for all i from 1 to n− ℓ do

3: j ← i+ ℓ
4: if sk /∈ W,∀k ∈ [i, j] then

5: C[i, j]← j − i+ 1
6: else

7: C[i, j]← B[i, j] +D[i+ 1, j − 1]
8: C[i, j]← min(C[i, j], B[i, j] +C[i+ 1, j − 1])
9: for all k from i to j − 1 do

10: C[i, j]← min(C[i, j], C[i, k] + C[k + 1, j])
11: end for

12: end if

13: end for

14: end for

15: return C[1, n]

CLAIM 4. Algorithm 2 correctly finds the edit distance, given a

string s, such that it is accepted by GT,W .

The proof of this claim can be found in the full version.

Similar to the tags-only case, we can preprocess the string to en-
able faster computation by removing well-formed substrings using
a stack. We must also mark the presence of each removed substring
to allow local edit operations, such as surrounding matching brack-
ets that would not be allowed otherwise. This pruning can speed up
the dynamic program by shortening the input string. Unfortunately,
it does not guarantee a repair with optimal edit distance. For exam-
ple, the string aaawāāawāāāā has edit distance 1 (by replacing
the second ā to a) but the pruned string awāāā has edit distance
2. We show that the above dynamic program stays within at least a
factor of 2 after well-formed substring pruning.

CLAIM 5. Removing well-formed substrings obtains a 2-

approximation on the edit distance.

Proof Sketch. Define by a block a substring of brackets that appears
between two consecutive occurrence of texts, or before the first tex-
t, or after the last text. Consider a new edit distance function, which
is exactly similar to the original edit distance problem, except that
two consecutive open brackets (close brackets) in a block can both
be deleted at a cost of 1. If this new edit distance function has
minimum distance d, then clearly, the optimal edit distance for the
original problem cannot be more than 2d (we pay 2 to delete two
open (close) brackets in a block). The main insight is to consider
this new function, and show that well-formed substring pruning p-
reserves edit distance for it, and hence guarantees 2-approximation
to the original problem. The proof works by doing induction on the
number of errors and showing by case analysis that if an optimal
algorithm does edit to a well-formed substring, then there exists an
alternate edit script where the positions of the edits are outside of
the well-formed substrings similar to Claim 2.

4.2 Incremental Approach
Once again, the dynamic program is intended for computing the

edit distance, along with perhaps a single repair, but does not pro-
vide a natural way of enumerating multiple repairs. Here we iden-
tify the different scenarios in which repairs should be handled as
well as a set of possible repairs for each of these scenarios, similar
to our approach for the tags-only case. We start by giving push-
down automata in Figure 4(b) that allows a well-formed string to
be verified, for the tags with text case. We have shown in Sec-
tion 3 that only considering the scenarios not handled by the push-
down automata for tags-only case, rather than eagerly repairing the
string, leads to the optimal edit distance while making the running
time proportional to the number of errors rather than the size of the
string. We apply the same idea to tags with text: only scenarios not
covered by the automaton in Figure 4(b) are considered. We show
how to deal with these scenarios in Table 1.

By contrast, there are nine scenarios based on the automaton
for tags with text in Figure 4(b). Furthermore, the alternatives for
open-close bracket mismatch depend on which state the mismatch
occurs in. If this occurs in State 3 then we consider the following al-
ternatives (similar to tags-only): make the open and close brackets
match via substitution; pop the open bracket from the stack; delete
the close bracket in the string; substitute the open bracket in the
stack to close; or substitute the close bracket in the string to ghost-
open (equivalently, substitute the right to match the left). However,
if this occurs in State 2, then there are different options since the
word(s) must be surrounded by a pair of brackets: make the open
and close brackets match via substitution; insert a matching close
bracket, if possible; or delete the close bracket if the next token in
the string is a word (otherwise insert a matching open bracket).

Any input string can be partitioned into blocks of brackets sepa-
rated by text. There are five additional scenarios in addition to the
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(b) tags with text
Figure 4: Automata for tags-only and tags with text

State Token Action Next State

0 open push to stack and advance string 1
0 close sub close in string to ghost open 0

delete close from string 0
0 word insert ghost open before word 0
0 null 4

1 open push to stack and advance string 1
1 close sub open from stack to close and 1

pop matching pair from stack, if possible
pop open from stack, if possible 1
sub close from string to ghost open 1
delete close from string 1

1 word 2
1 null clean-up 4

2 open insert matching close to string before open 2
sub open in string to matching close 2
delete open from string 2

2 match pop from stack and advance string 3
2 close sub string to match stack 2

insert matching close in string, if possible 2
if next token is word, delete string close 2
else push matching open to stack 2

2 word 2
2 null insert matching close to string 2

3 open push to stack and advance string 1
3 match pop from stack and advance string 3
3 close sub close in string to match stack 3

delete close in string 3
pop open from stack 3
sub open in stack to close and 3
pop resulting match from stack, if possible

sub close in string to ghost open 3
3 word insert ghost open in string (before word) 3
3 null clean-up if non-empty stack 4

Table 1: State Transition Table for Tags with Text Case

three for tags-only: (4) a close bracket occurs immediately after an
open bracket; (5) an open bracket occurs immediately after a word;
(6) a word occurs immediately after a close bracket; (7) a word oc-
curs as the first token; and (8) the string terminates in a word. For
these additional scenarios, there are various edit alternatives, which
are listed in Table 1.

The so-called “clean-up” phase referred to in States 1 and 3 of
Table 1 is invoked if the stack is non-empty when the string ter-
minates. In this case, the goal is to take the existing stack, paying
attention to the blocks that each stack open bracket is part of, and
perform the minimum number of substitutions and deletions to ob-
tain a well-formed string. For example, suppose there are three
blocks on the stack, the first with ab, the second with cde and the
third with fg. By deleting d and replacing c with b̄, f with ē and g
with ā, the resulting brackets are well-formed. We omit details for
lack of space.
Example: Let s = aāāwaaawāāā. Repair scenario (4) occurs
after the pair aā in the first block (since there is no text separat-
ing them), causing ā to either be replaced with an open bracket
or deleted (the other two alternatives from State 1 are not possi-
ble). Scenario (4) occurs again at the next ā in the string with
the same edit alternatives. Suppose we choose the substitution al-

ternative both times. Then Scenario (6) occurs after the first w,
which we can repair by either inserting a close, substituting the
open to a close or deleting the open. Suppose we choose to insert a
close. The remaining elements will be read without problem until
the string terminates, at which point the stack will be non-empty
with two open brackets. At that point, they must both be deleted
since they both occurred in the same block. The final repair, then,
is aaawāaaawāāā with a cost of 5. Had we instead chosen the
alternative to delete the close brackets in Scenario (4), the string
would have been repaired to awāaaawāāā at a cost of 3, which is
optimal.

The following claim establishes the correctness of the automa-
ton. Similar to Claim 3, the main idea is to show the states consid-
ered in our automaton are the only scenarios where repair has to be
made if well-formed substrings are removed greedily. If we consid-
er an optimal algorithm for the new edit function defined in Claim
5, then it can be shown that at each error state, repair choices con-
sidered are exhaustive and hence there exists a branch leading to
optimal cost for the new function. Since, any optimal algorithm for
the new edit function returns a solution within twice the minimum
edit distance of our problem, the claim is established.

CLAIM 6. The automaton given in Table 1 with branches to all

the above edit alternatives, obtains a 2-approximation on edit dis-

tance.

As before, for the MaxBenefit strategy, all alternatives are con-
sidered in turn and then the one resulting in the largest number of
brackets that can be paired to matches is chosen. For MinCost,
we employ the same cost estimation formula as the tags-only case,
since it provides a lower bound; the alternatives are sorted with
respect to these costs.

5. EXPERIMENTAL EVALUATION
This section gives a thorough experimental evaluation of meth-

ods for both Tags-Only and Tags With Text problems, against the
Dynamic Programming (DP) and branch-and-bound algorithms.

5.1 Setup
All algorithms were implemented in Java and executed on a serv-

er with a Quad-Core AMD Opteron(tm) Processor 8356@1 GHz
and 128 GB RAM running Centos 5.8. We used the following three
real data sets:

• BGP4 real-time routing information provided by BGP-
mon.We used a portion of the stream output over some time
interval.

• Tree Bank5 annotated linguistic text, with average depth 7.8
and max depth 36. We extracted random subtrees with max-
depth no less than 20 and merged them together.

4http://bgpmon.netsec.colostate.edu/
5http://www.cis.upenn.edu/˜treebank/
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• Web Repository6 a Web repository of XML documents con-
taining 180, 000 files, 10% of which are reported with begin
and end tag mismatched.

Both Tree Bank and BGP normally satisfy the grammar GT,W . For
the XML Collections, we picked two sets of 80 documents which
also satisfy the grammar GT,W . For the Tags-only methods, on-
ly tag subsequences are retained and for tags with text the subse-
quence of tags and text was retained; all attributes were removed.

Error Model: We chose from among six different operations,
with equal probability, to inject errors into a given well-formed
string; the error types are listed in Table 2. The position i of
each operation was either chosen uniformly (without replacement)
in [1, n] or non-uniformly following a normal distribution about a
randomly-chosen “center” with some standard deviation but keep-
ing within [1, n].

Table 2: Types of Injected Errors

Operation Description

Delete(i) delete the tag at the i-th position

Insert(i,a)
insert tag a to the i-th position,
where a is randomly chosen from (T ∪ T̄ )

Swap(i, j)
swap the tag located at the i-th position
with the one at the j-th

Flip(i)
change the i-th tag to close (resp., open)
if it is open (resp., close)

Sub(i,a)
substitute the i-th tag with a,
where a is randomly selected from (T ∪ T̄ )

DeepInsert(a,h)
insert tag a into some position i

having depth(i) > h,
where a is randomly selected from (T ∪ T̄ )

5.2 Effectiveness of Edit Distance Approach
To evaluate the goodness of our edit distance based approach, we

started from a well-formed string s, injected errors randomly to ob-
tain string s′, ran our methods to find a repair s′′, and compared s′′

against the original well-formed string s. Since the original string
and the repair are both well-formed, we are now able to use ap-
proximate tree matching algorithms to evaluate the goodness of our
repairs. For this, we used the recently developed RTED algorithm
from [21], which uses the standard tree edit operations [31]: delete
a node and connect its children to its parent, maintaining the order;
insert a new node between an existing node, v, and a consecutive
subsequence of v’s children; and rename the label of a node. We
compared our approach against the rule-based heuristics mentioned
in Section 1 for dealing with open-close tag mismatches: 1) delete
the open tag; 2) delete the close tag; and 3) substitute the close tag
to match. In the following experiments, we present the best of these
three heuristics.

We used a data set of 100 strings from Tree Bank consisting of
1,000 tags and around 8 errors, with uniformly distributed errors.
(The results with normally distributed error are similar, so we omit
them for lack of space.) Figure 5(a) shows the tree edit distance
using both the two methods for the Tags-with-Text case, where the
x-axis indexes all of the 100 data sets sorted by the tree edit distance
of Exhaustive repair, which is the branch-and-bound algorithm that
tries all five choices at each branch point. There were 20 strings
for which our method obtained dTED(s, s′′) = 0, a complete re-
version of the string compared to the original, and over 60% of the
strings had dTED(s, s′′) ≤ 3. In contrast, the rule-based heuristics
obtained strings with average tree edit distance 25.

In addition, we also did the following comparison. Starting from
the original (well-formed) input string s, we injected errors to ob-
tain string s′ and computed the string edit distance between s and

6http://data.politicalmashup.nl/xmlweb/
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Figure 5: Goodness of Exhaustive and Rule-Based repairs (TagsWith-
Text)
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Figure 6: String Edit Distance with Real Errors

s′. Then we repaired the string to obtain string s′′ and comput-
ed the string edit distance between s′ and s′′. Finally we calcu-

lated
dSED(s,s′′)

dSED(s,s′)+dSED(s′,s′′)
as a measure of how well the error

was “undone”, where 0 means exact reconstruction and 1 means
the repair resulted in no improvement. We compared our approach
with the rule-based heuristics using this measure on real data. Fig-
ure 5(b) plots this ratio for both methods. The rule-based heuristic
ranges from 50% to 100%, with an average of 80% while Exhaus-
tive had an average ratio of 20% with about 20 strings having ratio
0. In fact, Exhaustive beat rule-based on all the 100 strings except
one. From these experiments, we conclude that our edit distance
based approach succeeds in reverting the strings towards their orig-
inal form, far more than the rule-based heuristics.

We also tested our approach using data from Web Repository,
which contains real malformed XML data. Since no gold stan-
dard of what was intended by the creator of any of these XML
documents was available to evaluate goodness of repair, our exper-
iments compare the number of operations to obtain a well-formed
string using our methods with that obtained using the rule-based
heuristics.

Figure 6 presents the results for both Tags-only and Tags-with-
Text cases on 80 malformed XML documents chosen randomly
with number of tags ranging from tens to thousands. Figure 6
presents the results. With few errors in the string, our approach
was only marginally better than the rule-based. However, there was
up to an order of magnitude difference for strings requiring at least
10 edit operations to repair. This trend was evident for both cases
shown in Figure 6( a) and Figure 6( b), respectively.

In the following sections, we study the performance of our al-
gorithms by measuring Average Running Time and Average Edit

Distance.

5.3 TagsOnly, Single Repairs
We compared methods that are designed to return a single re-

pair, including DP as well as MaxBenefit, MinCost and Hybrid,
where Hybrid randomly picks one choice either given by MinCost
or by MaxBenefit. The rule-based heuristics were used as a base-
line here. Finally, we tried five trials of Random, which randomly
chooses one from the five alternatives at each tag mismatch, and re-
ports the lowest edit distance among these. By default, well-formed
substring pruning is applied to speed up the methods.

Figure 7 shows the edit distance and running time as a function
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Figure 7: Single Repair, Error Number (TagsOnly)
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Figure 8: Single-Repair, String Length (TagsOnly)

of the number of errors. For BGP, the errors ranged from 6 to 20
with initial string length fixed at 40, 000; after well-formed sub-
string pruning, the string length was significantly reduced to the
range [20, 160]. For Tree Bank, the error ranged from 2 to 16 with
string length fixed at 4, 000; after pruning the length was reduced
to [40, 280].

While DP gave the smallest edit distance (it is optimal), it was al-
so the slowest in almost all cases. The running time of DP increased
significantly with the number of errors, even with well-formed sub-
string pruning: the string length after pruning increased from 20 to
160 on BGP and from 40 to 280 on Tree Bank. Rule-Based, in
contrast, ran the fastest but gave the highest edit distance. Interest-
ingly, Rule-Based was even less accurate than Random (recall that
Random chooses from among five alternatives while Rule-Based
makes a single deterministic choice), which in turn also affected
its running time performance due to the additional edits. The edit
cost of MaxBenefit was close to optimal, its inaccuracy growing
with increasing errors but at a very slow rate; at the same time, its
running time was 1-2 orders of magnitude faster than that of DP.
MinCost, on the other hand, was no faster but much less accurate
than MaxBenefit. Hybrid, which integrates both heuristics, is s-
lightly less accurate than MaxBenefit but slightly faster.

Figure 8 demonstrates the scalability with respect to string
length, with the number of errors fixed at around 12 on BGP and 8
on Tree Bank. Due to well-formed substring pruning, the average

string length was reduced to around 60 on BGP and 150 on Tree

Bank from all the initial string lengths. Hybrid and MaxBenefit
follow DP closely in accuracy and outperform the latter in running
time, as much as 1-2 orders of magnitude. As proved in Sect. 3.1,
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Figure 9: Well-formed Substring (TagsOnly)

well-formed substring pruning, does not affect the edit distance of
DP. However, it does affect running time. We ran a set of exper-
iments on Tree Bank with average string length of 1, 000 and 8
errors on average. The bars in Figure 9 show the difference in run-
ning time and edit distance with and without such pre-processing.
The edit distance for DP and Rule-Based stays the same, but there
is a slight difference in other methods, which can be explained by
randomization. For DP the running difference is quite noticeable
(from 1066ms to 50510ms) while, for others, the increase in run-
ning time is small; such increase is largely brought by the cost in
building the global suffix stack.

5.4 TagsOnly, Multiple Repairs
We compared various branch-and-bound methods: Exhaustive,

Conservative, Moderate, Liberal, MinCost++ and MaxBenefit++.
The key difference between these methods is the number of alter-
natives tried at each branch, where there is an inherent trade-off
between accuracy and running time.
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Figure 10: Multi-Repairs, Error Number (TagsOnly)

Single-Repair Performance We begin by showing the results
for single repair, i.e.,K = 1, using DP as a baseline.

Figure 10 shows performance versus error number ranging from
6 to 20 on BGP and 2 to 16 on Tree Bank. As expected, Exhaustive
gives optimal edit distance while MinCost++ is the least accurate
one. In Figure 10(a) to (d), all methods except MinCost++ and
Exhaustive are almost as accurate as DP but much faster. MaxBen-
efit++ beats all other methods in running time, but is less accurate.

Figure 11 shows performance versus string length ranging from
10, 000 to 80, 000 (with roughly 12 errors) on BGP, and 1, 000 to
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Figure 11: Multi-Repair, String Length (TagsOnly)

8, 000 (with roughly 8 errors) on Tree Bank. After pre-processing,
the string sizes were greatly reduced to 60 on BGP and 130 on Tree

Bank. When a string is short with many errors, DP wins; other-
wise, Exhaustive is faster. In general, the branch-and-bound meth-
ods were not greatly affected by string length and perform well
when the number of errors is small.
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Figure 12: top-5 Repairs (TagsOnly)

Multi-Repairs Performance Figure 12(a) and (b) illustrates
the performance for finding 5 repairs when the number of errors
increases from 2 to 16 on Tree Bank (with string length fixed at
4,000); the results on BGP showed similar trends and are omitted
for lack of space. Figure 12(c) and (d) illustrates the performance
when string length grows from 1,000 to 8,000 on Tree Bank. With
the well-formed substring removed, the string length decreases sig-
nificantly to 130 on Tree Bank.

Exhaustive, Conservative and MinCost++ are 10 times slower
than Moderate, Liberal and MaxBenefit++ since the former meth-
ods return more repairs than the latter do. MinCost++ is less ac-
curate than Exhaustive and Conservative, but is faster on BGP; on
Tree BankMinCost++ is less accurate and comparable to Exhaus-
tive in running time.

K-Repairs Performance We evaluated the performance of
finding up to K repairs, for K ∈ {1, 5, 10, 15, 20}, with string
length 40,000 for BGP and 4,000 for Tree Bank. Note that not al-
l methods were able to obtain K repairs. Moderate, Liberal and
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Figure 13: top-k, Scalability (TagsOnly)

MaxBenefit++ run faster by aggressively pruning; therefore, they
result in fewer total repairs. Figure 13 shows that these three meth-
ods were unable to return more than 5 repairs. Only Exhaustive,
Conservative and MinCost++ obtained up to 20 repairs. With more
nodes visited, Exhaustive returned repairs lower in average edit
distance but requires running time. On Tree Bank, MinCost++ is
worse in both average edit distance and running time, which means
MinCost prunes off some nodes low in edit distance, leading to a
longer edit path and larger search space. For methods where there
are enough repairs, the running time grows linearly in K.

5.5 Tags with Text, Single Repair
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Figure 14: Single-Repair (TagsWithText)

We ran experiments using the dynamic program for repairing
documents with text (satisfying GT,W rather than GT ) as well as
the following analogues of tags-only methods: MaxBenefit, Min-
Cost and Hybrid. Figure 14 presents performance as a function of
number of errors, ranging from 2 to 16 (with fixed string length
4,000) on Tree Bank. (The trends with BGP are very similar and
omitted for lack of space.) DP again was the slowest while Min-
Cost is the least accurate. MaxBenefit was again both more ac-
curate and faster than MinCost and Hybrid was slightly faster but
less accurate than MaxBenefit. With the well-formed substring re-
moved, the average string size from 4,000 to 60 ∼ 500 on Tree

Bank. The running time for DP grew quickly, due to the increase
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in string length, while other methods are less affected by errors.
MaxBenefit approximated DP well in edit distance and was faster
by up to two orders of magnitude.

5.6 Tags with Text, Multiple Repairs

Single-Repair Performance We looked at the performance
versus number of errors, ranging from 6 to 20 on BGP (string length
40,000) and from 2 to 16 on Tree Bank (string length 4,000); the
trends were very similar to that of the Tags-only case so we omit
the graphs for lack of space. The edit costs were close to optimal
for all methods except MinCost++, especially on BGP. MaxBene-
fit++ was the fastest and DP was the slowest with one exception:
when error number is 20 on BGP (where the string length is very
small after pruning). On Tree Bank, when the error number is 16
and the string length is 500, Exhaustive still beats DP by an or-
der of magnitude. In general, the advantages of branch-and-bound
methods are seen with strings of large sizes and few errors. We
also looked at the scalability versus string length with roughly 12
errors for BGP and 8 errors for Tree Bank. Not surprisingly, Con-
servative was the second best after Exhaustive. MaxBenefit++ was
superior to MinCost++ on Tree Bank but not on BGP, which shows
that the heuristics they’re based on are complementary. After prun-
ing, the string length remains around 150 for BGP and 300 for Tree

Bank, which explains the stability in running time for DP on both
datasets. Nonetheless, DP is slower than Exhaustive by two orders
of magnitude on Tree Bank.

Multi-Repair Performance We looked at the performance
and scalability of branching methods to get 5 repairs. On Tree

Bank, Conservative beats MinCost++ on both accuracy and speed,
which shows the MinCost heuristic does not work well in some cas-
es as few of its branches led to low-cost repairs. The constancy in
string length after pruning is the main reason why the running time
for both datasets are fairly constant with increasing string size. The
average edit distance of Moderate, Liberal and MaxBenefit++ seem
smaller than even Exhaustive when string length equals to 8,000;
however, this is partly due to them finding no more than 3 repairs.
Since these trends were similar to that of Tags-only multi-repairs,
we omit the graphs for brevity.

K-Repair Performance We issued queries to find K repairs
for K between 1 to 20; the trends were similar to Tags-only K-
repair performance so we omit the graphs for lack of space. The
methods that prune more aggressively failed to return as many as K
repairs in some instances. Only MinCost++, Conservative and Ex-
haustive were capable of returning K repairs. Exhaustive gave the
smallest average edit distance but at a much higher running time;
Conservative was comparable to MinCost++ but retrieved repairs
with smaller average edit distance, especially on Tree Bank. With
increasing K, the average edit distance grew slowly while the run-
ning time grew linearly, which indicates some degree of scalability.

6. CONCLUSIONS
Future work includes considering more complicated edit dis-

tances, including approximate string matching for tag labels as well
as more general sequence alignment operations and allowing addi-
tional operations such as swaps and moves. In addition, there are
other cues in a document, even when the grammar is unknown, that
can be leveraged for a more judicious repair including attributes,
text correlations, etc.
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