
Skyline Operator on Anti­correlated Distributions

Haichuan Shang† Masaru Kitsuregawa†‡

†Institute of Industrial Science, The University of Tokyo, Japan
‡National Institute of Informatics, Japan

{shang, kitsure}@tkl.iis.u­tokyo.ac.jp

ABSTRACT

Finding the skyline in a multi-dimensional space is relevant
to a wide range of applications. The skyline operator over
a set of d-dimensional points selects the points that are not
dominated by any other point on all dimensions. Therefore,
it provides a minimal set of candidates for the users to make
their personal trade-off among all optimal solutions.
The existing algorithms establish both the worst case com-

plexity by discarding distributions and the average case com-
plexity by assuming dimensional independence. However,
the data in the real world is more likely to be anti-correlated.
The cardinality and complexity analysis on dimensionally
independent data is meaningless when dealing with anti-
correlated data. Furthermore, the performance of the exist-
ing algorithms becomes impractical on anti-correlated data.
In this paper, we establish a cardinality model for anti-

correlated distributions. We propose an accurate polyno-
mial estimation for the expected value of the skyline cardi-
nality. Because the high skyline cardinality downgrades the
performance of most existing algorithms on anti-correlated
data, we further develop a determination and elimination
framework which extends the well-adopted elimination strat-
egy. It achieves remarkable effectiveness and efficiency. The
comprehensive experiments on both real datasets and bench-
mark synthetic datasets demonstrate that our approach sig-
nificantly outperforms the state-of-the-art algorithms under
a wide range of settings.

1. INTRODUCTION
In a d-dimensional space, a point x is dominated by an-

other point y if the coordinate of y is smaller than that of x
on one dimension, and smaller than or equal to that of x on
all other dimensions. Given a set of points p1, p2, ..., pn in
a d-dimensional space, the skyline operator returns all the
points pi such that pi is not dominated by any other point
pj . A classic example in literature is shown in Figure 1. This
example describes a database containing a set of hotels. For
each hotel the database stores its distance to the beach (x
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axis) and its price (y axis). According to the dominance def-
inition, a hotel dominates another if it is cheaper and closer
to the beach. In this example, the skyline consists of four
points a, b, c, and d.
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Figure 1: A skyline example

The existing studies explore the skyline problem by either
discarding data distributions or assuming dimensional inde-
pendence. Unfortunately, the data in real world applications
usually does not satisfy these two conditions. In common
experiences, the hotels with decent quality and attractive lo-
cation are always expensive. In statistics, this phenomenon
is named anti-correlation. For a point in a d-dimensional
space, the anti-correlation means a relationship in which the
value in one dimension increases as the values in the other
dimensions decrease. The anti-correlation significantly lim-
its the practical usage of the existing algorithms and yields
the demand of effective mathematical models and efficient
algorithms on anti-correlated data.

In order to develop the skyline operator on anti-correlated
data, the first major challenge is to model anti-correlated
distributions. Although there is much common sense about
anti-correlations, none of the existing work formally models
anti-correlated distributions. It is challenging to model an
anti-correlated distribution with respect to how serious the
anti-correlation happens. The second difficult yet important
issue is to compute and estimate the skyline cardinality. The
estimation should be accurate and efficient. Finally, it is
challenging to develop efficient algorithms on anti-correlated
distributions. Computing skyline on anti-correlated data
is much more time-consuming than that on dimensionally
independent data. The performance of the existing work is
usually impractical on anti-correlated distributions, because
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these algorithms are sensitive to skyline cardinalities which
are relatively large on anti-correlated data.
We address the above issues with focuses on comprehen-

sively modeling anti-correlation, effectively estimating sky-
line cardinality, and efficiently processing skyline queries.
Our contributions can be summarized as follows.
• We propose a general model for the anti-correlated dis-

tributions and analyze the lower and upper bounds of
the expected value of the skyline cardinality. Our study
shows that:

d
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for d ≥ 2 where Γ(n) =
∫∞
0

e−ttndt and Ŝd,n is the ex-
pected value of the skyline cardinality with n points and
d dimensions.

• We propose an effective polynomial estimation of the
lower bound of the expected value of the skyline cardi-
nality. That is:
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for d ≥ 2 where Γ(n) =
∫∞
0

e−ttndt and Ŝd,n is the ex-
pected value of the skyline cardinality with n points and
d dimensions. This estimation can be further abbreviated
as:

O(n
d−1

d ) ≤ O(Ŝd,n) ≤ O(n)

• We develop efficient algorithms to compute skyline on
anti-correlated distributions. In order to solve the high
skyline cardinality challenge, our proposed techniques not
only effectively eliminate non-promising points, but also
efficiently determine skyline points. Taking into account
the elimination strategy applied by the existing work, our
approach extends this strategy to build a determination
and elimination framework.

• Besides the theoretical results, we also conduct a compre-
hensive experimental evaluation demonstrating that our
algorithm outperforms the state-of-the-art algorithms un-
der a wide range of settings. The performance gap is up
to two orders of magnitude.
The rest of the paper is organized as follows. Section 2

summarizes the related work. Section 3 presents the pre-
liminaries and the problem definition. Section 4 analyzes
the skyline cardinality on anti-correlated distributions. Sec-
tion 5 introduces our proposed algorithms. Section 6 reports
the experimental results and analyses. The conclusion is
given in Section 7.

2. RELATED WORK
In this study, we focus on the skyline algorithms that can

be directly implemented on raw data without preprocessing.
We summarize the existing work into two categories: worst
case complexity category and elimination category. The al-
gorithms in the worst case complexity category study the
worst case complexity on arbitrary data distributions. In
contrast, most of the algorithms in the elimination category
assume the data is either independent (all dimensions are in-
dependent) or independent-and-uniform (all dimensions are
independent and the values follow a uniform distribution in

each dimension). Under such an assumption, the algorithms
explore the expected value of the complexity.

There are many other studies (e.g. [15, 18, 19]) which con-
cern preprocessing the data into specialized data structures
to facilitate the retrieval of the skyline.

2.1 Worst­case Complexity Category
In this category, the algorithms focus on the worst-case

complexity.
Kung et al. [16] prove the complexity lower bound as

Ω(⌈log n!⌉) for d ≥ 2 which is approximately Ω(n log n).
They also propose O(n log n) algorithm for d = 2, 3. To-
gether with the lower bound, they establish the complexity
Θ(n log n) which is optimal for d = 2, 3. For any d > 3, Kung
et al. [16] further propose a general divide-and-conquer al-
gorithm in O(n logd−2 n) complexity. Based on the similar
idea of divide-and-conquer, Bentley [3] develops alternative
algorithm achieving the same complexity. In a recent study,
Sheng et al. [21] present that the d = 2 solution of Kung
et al. [16] can be easily adapted as an external algorithm
which is still optimal in Θ((N/B) logM/B(N/B)) I/Os.

Borzsonyi et al. [7] propose an external version of divide-
and-conquer. Their method divides the points intom-partitions
such that the skyline of each partition can be computed
in memory. The final answer is produced by merging the
skylines pairwise. However the performance bound of this
method remains unknown.

Sheng et al. [21] discover an external algorithm terminat-
ing in O((N/B) logd−2

M/B(N/B)) I/Os. The algorithm solves

the obstacle of computing the skyline using an external divide-
and-conquer approach. That is a distribution-sweep algo-
rithm for solving the skyline merge problem.

2.2 Elimination Category
However, the algorithms in the worst-case complexity cat-

egory only deal with the worst-case complexity. It is of-
ten more interesting and practical to consider the average-
case complexity. In the elimination category, the points are
drawn from a probability distribution. For most algorithms,
it is a distribution with dimensional independence.

Bentley et al. [4] divide the points by a virtual point which

is ranked as n(lnn/n)1/d (i.e. n(1− (lnn/n)1/d) in maxima
problem) in each dimension. The probability that no point
dominates the virtual point is bounded by 1/n. If this event
occurs, they adopt the worst-case algorithm [16] by Kung
et al. Otherwise, the points which are dominated by the
virtual point can be safely eliminated. The expected num-
ber of the remaining points is bounded by 1+dn(lnn/n)1/d

or 1 + d(n1−1/d ln1/d n) and can be partitioned into d hy-
perrectangles with NP property of Bentley et al. [6]. This
subproblem can be computed in linear expected time by
the algorithm in [6]. As a result, the algorithm achieves
linear expected time under the dimensionally independent
assumption.

Borzsonyi et al. [7] present block-nested-loop (BNL). This
algorithm keeps a window of incomparable tuples in main
memory. The input file is scanned. Each point in the input
file is compared with points in the window. If it is dominated
by any of them, it is eliminated. If it dominates any window
points, the algorithm eliminates these window points and in-
serts the scanned point into the window. If neither of the
above two situations happen, the scanned point is incompa-
rable with all the window points. If there is enough room in
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the window, the scanned point is inserted into the window.
Otherwise, the algorithm stores it in a temporary file. After
the first iteration, the window points are incomparable with
the points in the temporary file and can be output as the
result. Then, the next iteration is conducted on the tem-
porary file. This algorithm uses heuristic elimination and
works well if the skyline is small and the window points can
eliminate most points.
Chomicki et al. [9] develop sort filter skyline (SFS). It

sorts the points descendingly by the volume which are dom-
inated by the points. The advantage is that the points in
the beginning of the sorted list have a higher chance to dom-
inate many other points than the points in the end of the
sorted list.
Godfrey et al. [12] describe linear elimination sort for

skyline (LESS) which integrates the advantages of BNL and
SFS. Instead of using a standard external sorting on the
data, LESS maintains an elimination-filter window (similar
to BNL) in the external sorting procedure. The elimination-
filter window keeps the copies of the points with best volume
scores (similar to SFS) and eliminates the points which are
dominated by the window points. After the sorting proce-
dure, only the points which are not dominated by the win-
dow points remain. The rest of the algorithm is the same
as SFS. This algorithm avoids the high complexity external
sorting of SFS. It achieves linear expected-time when the
dimensions are independent and the values follow a uniform
distribution in each dimension.
Bartolini et al. [1] exploit the idea of sorting points ac-

cording to their minimum coordinate value among all dimen-
sions to effectively limit the number of tuples to be read and
compared. Similar to SFS, the proposed algorithm SaLSa
supports the systems on which skyline queries are executed
as a client system.
Zhang et al. [22] tackle the problem of CPU-intensive

skyline computing in high dimensional spaces. The pro-
posed indexing method aims to improve the performance of
sort-based skyline algorithms. Instead of maintaining the
skyline points in an array, This approach partitions the sky-
line points into 2d hypercubes based on a given skyline point
and maintains 2d − 2 of the partitions as the children of the
given point in tree structure. Recursively using this schema,
this approach organizes the current skyline points in a search
tree. Therefore some of the comparisons are avoided by us-
ing the search tree. However, the cost analysis of this ap-
proach is under uniform-and-independence assumption and
this approach still falls into the linear expected-time cate-
gory as the others.
Lee et al. [17] propose an alternative implementation of

[22]. Both approaches rely on quadtrees in which each tree
node uses a data item to split the underlying space. The
algorithm in [17] exploits the idea of selecting the optimal
skyline point to partition the data space. This idea is alter-
native to the OSPSOnSortingFirst algorithm in [22] which
adopts the state-of-the-art sorting function [9] to find the
partitioning point.
Sarma et al. [20] propose a skyline cardinality sensitive

algorithm, RAND. The algorithm uses multiple iterations to
eliminate the points and output the skyline. Each iteration
consists of three scans. The first scan takes a sample from
the points. The second scan replaces some of the points to
increase the pruning power. The third scan eliminates the
points and outputs the sample. This algorithm terminates

in O(dnm) comparisons, where m is the skyline cardinality.
Although this method does not directly use a probability
distribution model, the skyline cardinality is strongly related
to the probability distribution.

The algorithms in this category rely on heuristic elim-
ination and therefore the performance is sensitive to the
skyline cardinality. Under dimensional independence as-
sumption, the skyline cardinality is usually very small as
discussed in [5, 8, 11] and these algorithms work well. The
anti-correlated distributions considered in this paper usu-
ally result in extremely large skyline cardinality and these
existing algorithms cannot terminate in their expected-time
and likely fall back to the worst-case complexity O(dn2).
The existing anti-correlated skyline algorithm [14] supports
at most three dimensions, and therefore cannot satisify the
requirement of applications.

2.3 Skyline cardinality
Under the sparseness and independence assumptions, the

authors of [11] first propose that the skyline cardinality Ŝd,n

is equal to the two-parameter harmonic number Hd−1,n.
Alternatively, the authors of [8] evaluate skyline cardinal-
ity with a probabilistic model under the same assumptions
as [11]. The probabilistic model in [8] is closely related
to our proposed cardinality model. However, the model in
[8] requires that the data should be dimensionally indepen-
dent. Clearly, this requirement cannot be satisfied on anti-
correlated data. In order to conquer this challenge, we in-
troduce a new probabilistic skyline cardinality model in this
paper. A recent work [23] proposes a kernel-based approach
to approximate the skyline cardinality. This is a robust ap-
proach with nonparametric methods. However, it cannot fit
our probabilistic model.

3. PRELIMINIARIES
Given a data space D defined by a set of d dimensions

and a dataset P on D with cardinality n, a point x̄ ∈ P can
be represented as x̄ = {x1, x2, ...xd} where xi is x̄’s value on
dimension i.

Definition 1. (Skyline and skyline cardinality) A point
x̄ dominates another point ȳ, denoted as x̄ ≺ ȳ, if (1) on
every dimension i ∈ D, xi ≤ yi; and (2) on at least one
dimension j ∈ D xj < yj . The skyline SKYP ⊆ P is defined
as a set of points in P which are not dominated by any other
point in P . The points in a skyline are called skyline points
and the skyline cardinality (i.e. output cardinality) is defined
as the number of the skyline points.

Let us consider a skyline operation over a set of n points
with d dimensions. Let Sd,n be the random variable which

measures the skyline cardinality, and Ŝd,n denote the ex-
pected value of Sd,n.

Godfrey et al. [11, 12] propose a uniform independence
model (UI) under which it is possible to analytically estab-
lish the skyline cardinality. This model applies the following
assumptions on the input set.

Definition 2. UI model of the input dataset:
• Independence: the dimensions are statistically indepen-

dent.
• Sparseness: for each dimension, there are not many du-

plicate values.
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• Uniformity: the values on each dimension follow a uni-
form distribution.

Additionaly, this model assumes under uniformity, with-
out loss of generality, that any value is on the interval (0, 1).
The normalized method is also described in [11, 12].
We define an anti-correlated distribution by extending the

UI model as follows.

Definition 3. Given a set of d-dimensional points un-
der the UI model on the interval (0, 1), an anti-correlated
distribution with anti-correlation ratio c is obtained by re-
moving the points x̄ satisfying either

∑d
i=1 xi < d − 1 or

∑d
i=1 xi > d− 1 + c where 0 ≤ c ≤ 1.

x2

x1
0 10.5

1

0.5

x1 + x2 ≤ 1 + c

x1 + x2 ≥ 1

Figure 2: Anti-correlated distribution

An example in a 2D space is shown in Figure 2. All the
points fall into the shaded area which is bound by the in-
equality 1 ≤ x1 + x2 ≤ 1 + c. In general, the points under
an anti-correlated distribution are close to the hyperplane
∑d

i=1 xi = d − 1 and the anti-correlation ratio c defines
the L1 norm distance to the hyperplane. The smaller the
anti-correlation ratio c, the more serious the anti-correlation
happens.
We further consider Sd,n,c as a random variable which

measures the skyline cardinality of the skyline operator on
the anti-correlated distribution with anti-correlation ratio c.
Ŝd,n,c denotes the expected value of Sd,n,c.

4. SKYLINE CARDINALITY ANALYSIS
We analyze the skyline cardinality in a step-by-step man-

ner. We first explain the skyline cardinality with detailed
examples in 2D and 3D spaces. Then we extend the obtained
inequalities and estimations to a general d-dimensional space.

4.1 2D Case

Theorem 1. In a 2D space, the expected value Ŝ2,n,c of
the skyline cardinality satisfies:

Ŝ2,n,1 ≤Ŝ2,n,c ≤ Ŝ2,n,0 (1)

Ŝ2,n,0 =n (2)

Ŝ2,n,1 =
n
√
πΓ(n)

Γ(n+ 1
2
)
− 1 ≈ √

nπ − 1 (3)

where Γ(n) =
∫∞
0

e−ttndt.

Proof. The equations (1) and (2) are straightforward.
We prove the equation (3) as follows. As shown in Figure 3,

dt

dz

x2

x1
0 10.5

1

0.5 x̄

Figure 3: Skyline cardinality, 2D

a point is a skyline point if and only if all the other n − 1
points appear in the shaded area, and the probability f(x̄)
that a point appears in the shaded area is equal to the size of
the area divided by the size of the whole area. Based on the
similar idea of [8], the integral on the whole area provides
the expected value of the skyline cardinality. That is:

Ŝ2,n,1 = n · 2
∫∫

D

f(x̄)n−1 dx̄

The above equation is solved by the integral on the (z, t)
axis in Figure 3. That is:

Ŝ2,n,1 =n · 2
∫

√
2/2

0

∫

√
2−2t

0

(
1/2− t2

1/2
)n−1dzdt

=n · 2
∫

√
2/2

0

√
2(

1/2− t2

1/2
)n−1dt− 1

Replace t by t =
√
2x
2

then:

Ŝ2,n,1 =n ·
∫ 1

0

(1− x)n−1x−1/2dx− 1

From Euler’s Beta Integral:

∫ 1

0

(1− t)b−1ta−1dt =
Γ(a)Γ(b)

Γ(a+ b)

we have:

Ŝ2,n,1 =n · Γ(
1
2
)Γ(n)

Γ(n+ 1
2
)
− 1 =

n
√
πΓ(n)

Γ(n+ 1
2
)
− 1

When n is sufficient large, together with the property of
Γ(n):

lim
n→∞

√
nΓ(n)

Γ(n+ 1
2
)
= 1

we have:

Ŝ2,n,1 ≈ √
nπ − 1
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4.2 3D Case

Theorem 2. In a 3D space, the expected value Ŝ3,n,c of
the skyline cardinality satisfies:

Ŝ3,n,1 ≤Ŝ3,n,c ≤ Ŝ3,n,0 (4)

Ŝ3,n,0 =n (5)

Ŝ3,n,1 =
nΓ( 1

3
)Γ(n)

Γ(n+ 1
3
)

− 2nΓ( 2
3
)Γ(n)

Γ(n+ 2
3
)

+ 1 (6)

≈Γ(
1

3
)n

2

3 − 2Γ(
2

3
)n

1

3 + 1 (7)

where Γ(n) =
∫∞
0

e−ttndt.

Additionally, the numerical approximation is:

Ŝ3,n,1 ≈ 2.679n
2

3 − 2.708n
1

3 + 1

Proof. The equations (4) and (5) are straightforward.
We provide the proof-sketch of the equations (6) and (7) as
follows. Similar to Theorem 1, if f(x̄) refers to the probabil-
ity that a point does not dominate x̄. The following integral
provides the expected value of the skyline cardinality:

Ŝ3,n,1 = n · 6
∫∫∫

D

f(x̄)n−1 dx̄

Let us imagine that there is a t-axis parallel to the vector
{1, 1, 1}. A point is a skyline point if and only if none of
the other n − 1 points appear in the rectangular pyramid
subspace which dominates this point. That is:

f(x̄) =
1/6−

√
3/2 · t3

1/6

When the integral is on the t-axis, the size of the triangle

on the plane which is vertical to the t-axis equals 3
√
3

2
(
√
3
3

−
t)2. Then, we have:

Ŝ3,n,1 =n · 6
∫

√
3/3

0

(
1/6−

√
3/2 · t3

1/6
)n−1 3

√
3

2
(

√
3

3
− t)2dt

=n · 6
∫

√
3/3

0

(1− 3
√
3 · t3)n−1

√
3

2
dt

−n · 6
∫

√
3/3

0

(1− 3
√
3 · t3)n−13tdt

+n · 6
∫

√
3/3

0

(1− 3
√
3 · t3)n−1 3

√
3

2
t2dt

=
nΓ( 1

3
)Γ(n)

Γ(n+ 1
3
)

− 2nΓ( 2
3
)Γ(n)

Γ(n+ 2
3
)

+ 1

When n is sufficient large, together with the property of
Γ(n):

lim
n→∞

nαΓ(n)

Γ(n+ α)
= 1

we have:

Ŝ3,n,1 ≈ Γ(
1

3
)n

2

3 − 2Γ(
2

3
)n

1

3 + 1

4.3 General Case

Theorem 3. The expected value Ŝd,n,c of the skyline car-
dinality in a d-dimensional space satisfies:

Ŝd,n,1 ≤Ŝd,n,c ≤ Ŝd,n,0 (8)

Ŝd,n,0 =n (9)

Ŝd,n,1 =
d
∑

k=1

(−1)k−1

(

d− 1

k − 1

)

n
Γ( k

d
)Γ(n)

Γ(n+ k
d
)

(10)

≈
d
∑

k=1

(−1)k−1

(

d− 1

k − 1

)

Γ(
k

d
)n1− k

d (11)

where Γ(n) =
∫∞
0

e−ttndt for any constant natural number
d ≥ 2 .

Proof. The proof-sketch of the equations (10) and (11)
is nearly the same as that of the equations (6) and (7) in
Theorem 2. The difference is replacing the rectangular pyra-
mid subspace by a subspace in the d-dimensional space and
replacing the triangle on the plane by a subspace on the
(d−1)-dimensional hyperplane. Then, the proof of this the-
orem is immediate from the proof of Theorem 2.

Theorem 3 describes the skyline cardinality on d-dimensional
anti-correlated data. The lower bound of the skyline cardi-
nality can be estimated by the polynomial in Equation (11).

We observe that the degree of the polynomial is n
d−1

d . It
means that the degree of the polynomial grows when the
dimensionality increases. The lower bound of the degree of

the polynomial is n
1

2 when d = 2.

Theorem 4. The expected value Ŝd,n,c of the skyline car-
dinality in d-dimensional space satisfies:

O(n
d−1

d ) ≤ O(Ŝd,n,c) ≤ O(n)

for any constant natural number d ≥ 2.

Proof. For a constant natural number d ≥ 2, this theo-
rem is immediate from Theorem 3.

In summary, the skyline operator on anti-correlated data
is an operator with high output cardinality and this cardinal-
ity increases with the dimensionality. The lower and upper
bounds of the skyline cardinality is proposed by equation (9)
and (10) in Theorem 3 respectively. The lower bound can
be estimated by the polynomial in equation (11).

Cost Analysis of Elimination Framework.
Theorem 3 establishes the lower and upper bounds of the

skyline cardinality on anti-correlated distributions. It is
well-known that the skyline cardinality in a d-dimensional
space is O(logd−1 n) [5, 11], when the dimensions are in-
dependent. The high skyline cardinality on anti-correlated
data results in significant performance downgrade of the ex-
isting algorithms.

The running time of the algorithms in the elimination
category is sensitive to the skyline cardinality. Sarma et al.
[20] claims that the algorithms [7, 12, 20] falls in O(dmn)
complexity wherem is the skyline cardinality. Together with
Theorem 3, the elimination algorithms answer skyline query

in O(dn
3

2 ) and O(dn2) when the data is anti-correlated with
c = 1 and c = 0 even in a 2D space, respectively. These two
cost estimations clearly show that the performance of these
algorithms decrease with the increasing of anti-correlation.
As a result, these algorithms become impractical on anti-
correlated data, even in low dimensional spaces.
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5. ALGORITHMS
Before introducing our algorithms, we briefly summarize

the elimination strategy. The algorithm first sorts the points
x̄ by a monotonic scoring function F (x̄). Then the algo-
rithm reads the points in sequence. For the k-th point, the
algorithm conducts dominance check between this point and
the temporary skyline points among the first k − 1 points.
If at least one of the temporary skyline points dominates
the k-th point, the k-th point is eliminated. Otherwise, this
point is inserted into the temporary skyline.
This framework achieves remarkable efficiency on dimen-

sionally independent data. Since the skyline points with low
scores on F (x̄) can prune a majority of other points, most
of the other points are pruned in a few dominance checks.
As discussed in the previous section, anti-correlations result
in a high skyline cardinality. This result causes two reasons
which drastically downgrade the performance of the existing
algorithms: (1) a huge number of temporary skyline points
and (2) a low probability that a point can be eliminated. As
a result, most of the points cannot be eliminated and have
to be compared with a huge number of temporary skyline
points.

5.1 Baseline Algorithms
We first propose a baseline algorithm to introduce our

framework. The baseline algorithm is described in Algo-
rithm 1. The function F (x̄) must be a monotonic function.
That is F (x̄) < F (ȳ) ⇒ ȳ 6≺ x̄.

Algorithm 1: SkylineAC-Baseline(P )

Input : P is the dataset;
Output: S is the skyline set;
Sort P ascendingly by x1;1

S = ∅;2

for read x̄ from P in sequence do3

if exists ȳ ∈ S ∧ F (ȳ) ≤ F (x̄) then4

for each ȳ ∈ S satisfying F (ȳ) ≤ F (x̄) do5

if ȳ dominates x̄ then6

goto Line 3;7

end if8

end for9

S = S ∪ {x̄};10

else11

S = S ∪ {x̄};12

end if13

end for14

This algorithm first sorts the points by the values in the
first dimension. Then, the algorithm answers a skyline query
in two steps: determination (line 4) and elimination
(line 5−9). In the determination step, the algorithm quickly
determines if a point is in the skyline and directly inserts the
positive point into the skyline set S. Otherwise, the point
is still possible to be either a skyline point or a non-skyline
point. The algorithm tries to eliminate the point in the
elimination step.
The implementation of the determination step is straight-

forward. Let us consider the L1 distance function F (x̄) =
∑d

i=2 xi as an example. We maintain the minimal value

min
∑d

i=2 yi for all the points ȳ in S. By comparing min
∑d

i=2 yi
with

∑d
i=2 xi, the algorithm quickly determines whether the

point can be directly inserted into the skyline set.

In the elimination step, we maintain S as a priority queue
on
∑d

i=2 yi. For each point x̄, we scan S for any ȳ satisfying
∑d

i=2 yi ≤ ∑d
i=2 xi and conduct dominance check between

these points and x̄. Since the points are sorted by the values
in the first dimension beforehand, the points which are com-
pared with x̄ are bounded by two inequalities y1 ≤ x1 and
∑d

i=2 yi ≤ ∑d
i=2 xi. Compared with the traditional elimi-

nation framework with L1 distance
∑d

i=1 xi as the scoring
function, all the points satisfying the above two inequality
must satisfy the inequality

∑d
i=1 yi ≤

∑d
i=1 xi. Clearly, our

proposed framework has a smaller search space than the
traditional one. As a trade-off, we pay additional O(log n)
cost per each skyline point to insert the skyline points into
a priority queue. When the data is highly anti-correlated
to a hyperplane

∑d
i=1 xi = K where K is a constant value,

there is no doubt that y1 < x1 ⇔ ∑d
i=2 yi >

∑d
i=2 xi and

all the points can be determined. It guarantees the com-
plexity O(n log n), O(dn), O(n log n) for sort, determination
and elimination respectively, when the data is highly anti-
correlated to a (d − 1)-dimensional hyperplane. Therefore,
this algorithm is named as AC-G-FD (Anti-correlated
skyline with guarantee and sorting the points by the first
dimension) .

Name F (x̄)

AC-G-FD
∑d

i=2 xi

AC-E-FD
∑d

i=2 ln(xi + 1)

AC-P-FD −∑d
i=2 ln(1− xi)

Table 1: the scoring functions for the baseline algo-
rithms

As a case study, we integrate the traditional scoring func-
tions into our framework. The most famous one is the en-
tropy function which is firstly adopted in SFS by Chomicki
et al. [9]. The intuitive idea is sorting by the first dimension

and applying entropy function F (x̄) =
∑d

i=2 ln(xi + 1) on
the other dimensions. This approach is shown as AC-E-FD
(Anti-correlated skyline with entropy function and sorting
the points by the first dimension) in Table 1.

Another alternative scoring function is the probability
function. When c = 1, a point x̄ dominates the hypercube
with the volume

∏d
i=1(1−xi). Since this volume represents

the probability that another point appears in the area which
are dominated by the current point, we consider the volume
as the pruning power of each point. Thus, the method AC-
P-FD (Anti-correlated skyline with probablity function
and sorting the points by the first dimension) in Table 1 sorts
the points by the first dimension and organizes the priority
queue by the probability function F (x̄) = −∑d

i=2 ln(1−xi)
on the other dimensions. This probability function repre-
sents the descending order of volumes.

5.2 Scoring Functions on Two Clusters
We further optimize the determination and elimination

framework by applying the scoring function on two clus-
ters of dimensions. If we replace x1 and F (x̄) by the scor-
ing functions F1(x̄) and F2(x̄) respectively, Algorithm 1 is
directly generalized as the determination and elimination
framework on two clusters. As shown in Algorithm 2, that
is replacing x1 by F1(x̄) in Algorithm 1 line 1 and replacing
F (ȳ) ≤ F (x̄) by F2(ȳ) ≤ F2(x̄) in Algorithm 1 line 4 and
5. The two functions F1(x̄) and F2(x̄) must be monotonic.
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That is F1(x̄) < F1(ȳ) ⇒ ȳ 6≺ x̄ and F2(x̄) < F2(ȳ) ⇒ ȳ 6≺ x̄.
The implementation of this framework is the same as that
of the baseline algorithms.

Algorithm 2: SkylineAC-TwoClusters(P )

Sort P ascendingly by F1(x̄);1

if exists ȳ ∈ S ∧ F2(ȳ) ≤ F2(x̄) then4

for each ȳ ∈ S satisfying F2(ȳ) ≤ F2(x̄) do5

end for9

end if13

Compared with the baseline algorithms, we observe that
it is more efficient if we sort the points by the L1 distance on

half dimensions F1(x̄) =
∑⌊ d

2
⌋

i=1 xi and eliminate the points

by the L1 distance of the other half F2(x̄) =
∑d

i=⌊ d

2
⌋+1

xi.

This algorithm is named as AC-G-HD (Anti-correlated
skyline with guarantee and sorting the points half dimensions)
in Table 2. When the data is highly anti-correlated to
a (d − 1)-dimensional hyperplane, this algorithm ensures
F1(x̄) < F1(ȳ) ⇔ F2(x̄) > F2(ȳ) for c = 0, and all the
points can be determined. This property guarantees the
complexity O(n log n), O(dn), O(n log n) for sort, determi-
nation and elimination respectively, when the data is highly
anti-correlated to a hyperplane

∑d
i=1 xi = K where K is a

constant value.

Name F1(x̄) F2(x̄)

AC-G-HD
∑⌊ d

2
⌋

i=1 xi

∑d
i=⌊ d

2
⌋+1

xi

AC-E-HD
∑⌊ d

2
⌋

i=1 ln(xi + 1)
∑d

i=⌊ d

2
⌋+1

ln(xi + 1)

AC-P-HD −∑⌊ d

2
⌋

i=1 ln(1− xi) −∑d
i=⌊ d

2
⌋+1

ln(1− xi)

Table 2: the scoring functions on two clusters

Similar to the baseline algorithms, we extend this frame-
work to integrate the traditional scoring functions. The al-
gorithm AC-E-HD (Anti-correlated skyline with entropy
function and sorting the points by half dimensions) adopts
the entropy function in SFS by Chomicki et al. [9]. As
shown in Table 2, the algorithm AC-E-HD sorts the points

by F1(x̄) =
∑⌊ d

2
⌋

i=1 ln(xi + 1) and eliminates the points by

F2(x̄) =
∑d

i=⌊ d

2
⌋+1

ln(xi + 1).

Another alternative algorithmAC-P-HD (Anti-correlated
skyline with probability function and sorting the points by
half dimensions) sorts the points by the probability function

F1(x̄) = −∑⌊ d

2
⌋

i=1 ln(1−xi) on half dimensions and eliminates

the points by the same function F2(x̄) = −∑d
i=⌊ d

2
⌋+1

ln(1−
xi) on the other half dimensions.

5.3 Indexing Techniques
In this subsection, we propose indexing techniques to im-

prove the pruning power of the determination and elimi-
nation framework. The key idea is to increase the num-
ber of clusters and reduce the number of dimensions which
are covered by each scoring function. The indexed frame-
work is shown in Algorithm 3. This framework further re-
places F2(ȳ) ≤ F2(x̄) by satisfying Condition(ȳ, x̄) in Al-
gorithm 2 line 4 and 5. The Condition(ȳ, x̄) is defined as

F2(ȳ) ≤ F2(x̄) ∧ F3(ȳ) ≤ F3(x̄) ∧ ... ∧ Fk(ȳ) ≤ Fk(x̄) where
k is the number of clusters. The framework in the previous
subsection can be considered as a special case when k = 2.

We first consider k = 3 as a representative case. The
scoring functions on three clusters of dimensions are de-
scribed in Table 3. In such case, the Condition(ȳ, x̄) is
equivalent to F2(ȳ) ≤ F2(x̄) ∧ F3(ȳ) ≤ F3(x̄). Similar to
the two-clusters framework, we implement two steps in the
query processing: determination (line 4) and elimination
(line 5 − 9) in Algorithm 3. In the determination step, the
problem is similar to the 3D skyline problem. If we consider
F1(x̄), F2(x̄) and F3(x̄) as three virtual dimensions, we mod-
ify the algorithm by Kung et al. [16] to implement this step.
Since the data has already been sorted by F1(x̄), we read
the data in sequence and maintain the pairs {F2(x̄), F3(x̄)}
in an AVL tree with F2(x̄) as the key. For each tuple
{F2(x̄), F3(x̄)}, we retrieve the highest lower bound F2(ȳ)
of F2(x̄) from the AVL tree. If such lower bound F2(ȳ)
does not exist or F3(x̄) < F3(ȳ), x̄ is determined as a sky-
line point; the current tuple {F2(x̄), F3(x̄)} is inserted into
the AVL tree and the other tuples {F2(z̄), F3(z̄)} satisfying
F2(x̄) ≤ F2(z̄)∧F3(x̄) ≤ F3(z̄) are removed. This algorithm
terminates in O(n log n) complexity. The elimination step is
equivalent to the range query in a 2D space. We straightfor-
wardly deploy QuadTree [10] to retrieve the tuples ȳ which
satisfy Condition(ȳ, x̄).

When the number of clusters increases to four and more,
the algorithm requires high dimensional spatial indexes. We
use Octree [13] for k = 4 and kd-tree [2] for k > 4. Clearly,
both the pruning power and the indexing cost overhead in-
crease with the number of clusters. The indexing techniques
with more clusters are suitable for the data with more anti-
correlated dimensions.

Algorithm 3: SkylineAC-Index(P )

Sort P ascendingly by F1(x̄);1

if exists ȳ ∈ S∧ ȳ satisfying Condition(ȳ, x̄) then4

for each ȳ ∈ S satisfying Condition(ȳ, x̄) do5

end for9

end if13

5.4 Automatically Clustering Dimensions
The anti-correlation is well-known in many applications.

For instance, the real estate price and the land tax are
anti-correlated to the land size (prefer larger to smaller),
the building size (prefer larger to smaller) and the distance
to the city. Expert users can manually partition the anti-
correlated dimensions into different clusters. However, non-
expert users may not be able to discover the underlying anti-
correlation of data. We propose an efficient algorithm to
help the users to detect anti-correlation and effectively par-
tition the anti-correlated dimensions into several clusters.

In the first step, we conduct a quick anti-correlation de-
tection in O(dn) time. For each dimension i = 1, 2, ..., d,
we calculate the maximum value Ui and the minimum value
Li. Similar to the idea proposed by Bentley et al. [4], we as-
sume that there is a virtual point x̄ = {x1, x2, ..., xd} where

xi = (lnn/n)1/d(Ui−Li)+Li. If there exists a point ȳ in the
dataset P which dominates the virtual point x̄, we adopt the
traditional algorithms in the elimination category. In this
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Name F1(x̄) F2(x̄) F3(x̄)

AC-G-3D
∑⌊ d

3
⌋

i=1 xi

∑⌊ 2d

3
⌋

i=⌊ d

3
⌋+1

xi

∑d
i=⌊ 2d

3
⌋+1

xi

AC-E-3D
∑⌊ d

3
⌋

i=1 ln(xi + 1)
∑⌊ 2d

3
⌋

i=⌊ d

3
⌋+1

ln(xi + 1)
∑d

i=⌊ 2d

3
⌋+1

ln(xi + 1)

AC-P-3D −∑⌊ d

3
⌋

i=1 ln(1− xi) −∑⌊ 2d

3
⌋

i=⌊ d

3
⌋+1

ln(1− xi) −∑d
i=⌊ 2d

3
⌋+1

ln(1− xi)

Table 3: the scoring functions on three clusters

case, the algorithm terminates in total O(dn) time [4], if the
data is not anti-correlated.
If none of the points dominates the virtual point, we con-

vert the values into ranks in each dimension . This step is
implemented by sorting the points by each dimension and
replacing the value by its rank.
We define rank(xi) as the rank of x̄ on the i-th dimension.

The dimension clustering algorithm is based on the minimal
sum minrank(D1, D2, ..., Dm) of the ranks on a set of di-
mensions.

Definition 4. Given a set {D1, D2, ..., Dm} of m dimen-
sions, the minrank(D1, D2, ..., Dm) function is defined as:

minrank(D1, D2, ..., Dm) = min{
m
∑

i=1

rank(xDi
)|x̄ ∈ P}

Computing the rank of each dimension takes O(dn log n)
time. Since the data has already been known to be anti-
correlated in this step, the skyline cardinality Ŝd,n,c falls

into O(n
d−1

d ) ≤ O(Ŝd,n,c) ≤ O(n) by Theorem 4. Hence,
the ranking cost is much less than the elimination cost which

is inbetween O(dn1+ d−1

d ) and O(dn2).
We describe the dimension clustering algorithm by expla-

nation. We first predefine a set {θ2, θ3, ..., θd} of thresholds
for the minrank function to determine the number of in-
dexed dimensions, where θm = n(m−1)

2
for m = 2, 3, ..., d

from Definition 3.
Initially, we calculate the minrank(1, 2, ..., d) on all the

dimensions. If minrank(1, 2, ..., d) > θd, we consider that
all the dimensions are anti-correlated, and thus, we begin to
build the index with d dimensions. Otherwise, we remove
a dimension from the original d dimensions and calculate
the minrank(D1, D2, ..., Dd−1) on the rest d−1 dimensions.
Clearly, there exist d − 1 possible removals and we choose
the one with the highest minrank(D1, D2, ..., Dd−1). If the
minrank(D1, D2, ..., Dd−1) > θd−1, we start to build the in-
dex on these d−1 dimensions. Otherwise, the algorithm re-
cursively removes another dimension from {D1, D2, ..., Dd−1}
and chooses the highest minrank(D1, D2, ..., Dd−2) until ei-
ther minrank(D1, D2, ..., Dm) > θm or m = 1.
There are two possible cases when the above algorithm

terminates: (1) the algorithm finds a set of dimensions sat-
isfying minrank(D1, D2, ..., Dm) > θm or (2) m = 1. When
m = 1, we consider the data is not anti-correlated and de-
ploy existing algorithms (e.g. SFS [9], OSP [22] and etc) to
solve the problem. In the follows, we discuss the case when
minrank(D1, D2, ..., Dm) > θm for m ≥ 2.
When we have m anti-correlated dimensions and we have

to partition the m dimensions into k clusters with nearly the
same size, the i-th cluster owns si dimensions which satis-
fies

∑k
i=1 si = m and max(si)−min(si) ≤ 1. For example,

when m = 11 and k = 3, there exists a possible partition

that s1 = 3, s2 = 4 and s3 = 4. Among the m dimensions
{D1, D2, ..., Dm}, we remove a dimension and calculate the
minrank(D1, D2, ..., Dm−1) on the rest m − 1 dimension.
There are m possible removals D1, D2, ..., Dm and we choose
the one with the highest minrank(D1, D2, ..., Dm−1). As-
suming that Di is the removed dimension with the highest
minrank(D1, D2, ..., Dm−1), we put Di into the cluster j
which has the highest capacity sj . If there exists more than
one cluster which have the same sj , we randomly choose
one of them. Then, we set sj = sj − 1. Recursively, we
remove another dimension from {D1, D2, ..., Dm−1} and re-
peat this procedure until all the dimensions are clustered.
In summary, this algorithm removes the dimensions one-by-
one, heuristically chooses the most anti-correlated m − 1
dimensions from each m dimensions and distributes them
into different clusters. If the data is anti-correlated, this
algorithm takes O(dn log n) time to convert the values into
ranks and O(d3n) time to partition the dimensions. Oth-
erwise, it terminates in the anti-correlation detection step
which takes O(dn) time.

6. EXPERIMENTS
We study the performance of our framework in this sec-

tion. The experiments are performed on an Intel Xeon
2.4GHz processor running Linux operating system.

The benchmark synthetic anti-correlated datasets vary
the size from 1k points to 100k data points with respect
to 2 − 8 dimensions. The dataset in default settings con-
tains 10k points, All the datasets obey the criteria in Defi-
nition 3. The anti-correlation ratio c varies from 0.01 to 1.
We consider the datasets with c = 0.01, c = 0.1 and c = 1
as strong anti-correlated datasets, medium anti-correlated
datasets and weak anti-correlated datasets, respectively.

The NBA dataset contains 17k 13-dimensional data points,
each of which corresponds to the statistics of an NBA player’s
performance in 13 aspects (such as points scored, rebounds,
assists, field goals made, etc). However, we only consider
5-7 dimensions among 13 statistics in our evaluation since
others may be missing in some records.

6.1 Skyline Cardinality
Figure 4 (a) illustrates the skyline cardinalities which are

obtained from Experiment (average value of 16 runs), Ex-
pected value (equation (10) in Theorem 3) and polynomial
Estimated value (equation (11) in Theorem 3)). The result
evidences the correctness of Theorem 3.

Figure 4 (b) reports the accuracy of the polynomial esti-
mation equation (10) in Theorem 3 against the number of
dimensions. We report the accuracy by the relative error
Estimated−Expected

Estimated
. When n = 1000, the relative errors of

the estimation are 1.3× 10−4 and 9.2× 10−6 for d = 2 and
d = 8, respectively. We observe an increase of the accuracy
when increasing the number of dimensions.
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Figure 4: Evaluation of the estimation in Theorem 3

Figure 4 (c) describes the accuracy against the number
of points. The accuracy is represented by relative errors
Estimated−Expected

Estimated
. The result clearly indicates that the rel-

ative error synchronously decreases with the increasing of
the number of points. The relative errors are about 10−4,
10−5 and 10−6 for n = 1000, n = 10000 and n = 100000,
respectively.
Figure 5 presents the experimental skyline cardinalities

for different anti-correlation ratio c. The smaller the c value
is, the more serious the anti-correlation will be. We reports
the cardinality as per two different sets of c value, varying c
linearly for c = 0.2, 0.4, 0.6, 0.8 and 1.0 and varying c log-
arithmically for c = 0.01, 0.05, 0.1, 0.5 and 1.0. Figures 5
(a) and (c) indicate that the skyline cardinality is close to
the estimated lower bound when c ≥ 0.4. In contrast, Fig-
ures 5 (b) and (d) illustrate that the skyline cardinality is
approaching to the upper bound n when c ≤ 0.1 and d ≥ 5.
Therefore, we evaluate the efficiency of the algorithms by
logarithmically varying c values to explore the effect of anti-
correlations.

6.2 Analysis on the Scoring Functions
We first evaluate the scoring functions and the dimen-

sional clustering methods on anti-correlated data. For this
purpose, we consider six algorithms which combine three
scoring functions and two dimensional clustering methods.
The three scoring functions are described as follows.
• AC-G-*: L1 distance function.
• AC-E-*: Entropy function.
• AC-P-*: Probability function.
The two dimensional clustering methods includes:
• AC-*-FD: Baseline method with two clusters and sorting

the points by the first dimensions.
• AC-*-HD: Our proposed dimensional clustering method

with two clusters and sorting the points by the scoring
function on half dimensions.

The Effect of Anti-Correlation Ratio c. We report
the effect of the anti-correlation ratio c by logarithmically
varying c from 0.01 to 1. The performance is evaluated
by the total response time on 100k points. In Figure 6,
the result illustrates the effect of anti-correlation ratio c on
different dimensionalities.
In 3D and 4D spaces as shown in Figures 6 (a) and (b), the

L1 distance algorithms, AC-G-FD and AC-G-HD, outper-
form the entropy function algorithms, AC-E-FD and AC-E-

HD while these two categories significantly outperform the
probability function algorithms, AC-P-FD and AC-P-HD. If
we rank the algorithm categories by their performance, this
rank will be AC-G, AC-E and AC-P from the best to the
worst.

We report the performance evaluation of the algorithms in
5D and 6D spaces in Figures 6 (c) and (d), respectively. AC-
G-HD is a clear winner under all the parameters. However,
the second place depends on the anti-correlation ratio c.
When c = 0.01 where the data is highly anti-correlated,
AC-G-FD is in the second place since it is an algorithm
with performance guarantee on highly anti-correlated data.
AC-E-HD achieves the best performance among the others
except AC-G-HD for c ≥ 0.1. This result indicates that
the functions with clustering on half dimensions (algorithms
with suffix HD) are more effective than simply sorting the
points by the first dimension.

The Effect of Dimensionality. We describe the effect of
the number of dimensions in Figure 7. There is no doubt
that AC-G-HD outperforms the others under all the settings.
Hence, we focus on analyzing how the dimensionality affects
the performance.

All the algorithms show a performance drop with the in-
crease of dimensionality. However, as shown in Figures 7 (a),
this performance drop slows down at d = 3 on the strong
anti-correlated dataset where c = 0.01. It indicates that the
performance is stable to the dimensionality on highly anti-
correlated data. This result coincides with the cardinality
upper bound O(n) which is constant to the number of di-
mensions when c = 0. In contrast, the total response time
continuously increases on the weak anti-correlated dataset
where c = 1 in Figures 7 (c). Since the performance of
skyline algorithms is affected by the skyline cardinality, this

result coincides with the cardinality lower bound O(n
d−1

d )
when c = 1. The experimental result in Figures 7 (b)
illustrates a compromising situation on the medium anti-
correlated dataset. The total response time increases with
the dimensionality up to five dimensions, and thereafter the
performance is stable.

6.3 Algorithm Efficiency
In the algorithm efficiency evaluation, we focus on generic

skyline algorithms in which preprocessing is not required.
Since the L1 distance function outperforms all the other
scoring functions in the previous experimental study, we
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Figure 6: Effect of anti-correlation ratio c

consider the L1 distance function as our choice among all
the scoring functions. The L1 distance function is inte-
grated with our proposed indexing techniques and automati-
cally clustering algorithm. The proposed algorithm is named
SOAD (Skyline Operator on Anti-correlated Distributions).
The proposed algorithms and the state-of-the-art algorithms
for case study are described as follows:
• SOAD: Our proposed algorithm in this paper.
• SFS/LESS: Skyline with presorting (SFS) algorithm is

proposed by Chomicki et al. [9]. We consider SFS as
a baseline algorithm. There is an optimized verison of
SFS, namely LESS (linear elimination sort for skyline)
[12] which improves the sorting efficiency of SFS. We will
soon demonstrate that the filtering cost is the dominating
cost of the skyline algorithms on anti-correlated data. In
such case, SFS and LESS become the same algorithm.

• OSP: The object-based space partitioning approach (OSP)
is proposed by Zhang et al. [22]. The index is based on
the leftchild/ right-sibling tree. We implement the OS-
PSOnPartitioningFirst version of this algorithm. This
algorithm can be faster than the alternatives such as OS-
PSOnSortingFirst in [22] and BSkyTree in [17], because it
avoids the cost of selecting the point for partitioning and
attempts to prune other points as soon as skyline points
are found in their dominating partitions. This method
also beats LESS [12] and SaLSa [1] under a wide range
of settings.

Sorting Cost vs. Filtering Cost. The existing study
[12] shows that the sorting cost is usually the major cost of
the skyline algorithms when the dimensions are statistically
independent. We explore the sorting cost and the filtering
cost on anti-correlated data and report some interesting ob-
servations.
In Figures 8 (a) and (b), we evaluate the sorting cost

and the filtering cost of SFS on the anti-correlated data by
varying the anti-correlation ratio c among 0.01, 0.1 and 1.
Clearly, the sorting cost is determined by the number of
points. This cost is not affected by the number of dimensions
or the anti-correlation ratio. In contrast, the filtering cost
increases with the number of dimensions and decreases with
the anti-correlation ratio c. It is worth noting that a small
anti-correlation ratio c means that the data is highly anti-
correlated. The result indicates that the filtering cost is
much higher than the sorting cost even when the points are
in a 2D space. In a 4D space, the filtering cost dominates at
least 90% of the total cost for n ≥ 100k with arbitrary anti-
correlation ratio c. Additionally, this result also suggests
that the optimized version, LESS [12], which improves the
sorting algorithm of SFS can be discarded in our experiment.

In Figures 8 (c) and (d), we compare the sorting cost to
the filtering cost of our proposed algorithm. In a 2D space,
the filtering cost is slightly lower than the sorting cost. As
the filtering cost increases with the number of dimensions,
the filtering cost becomes the major cost when the number
of dimensions increases to four and more.

Comparison on Synthetic Datasets. As shown in Fig-
ure 9, the algorithms are evaluated by the total response
time on the synthetic datasets. We consider the datasets
with three to six dimensions in each figure respectively. The
anti-correlation ratio c varies from 0.01 to 1. SOAD clearly
outperforms the other two algorithms. The maximum per-
formance gap always appears at c = 0.01 for all the numbers
of dimensions. We observe a clear increasing performance
gap between SOAD and the other two algorithms when the
anti-correlation becomes strong (i.e. the anti-correlation ra-
tio c decreases). The result demonstrates the effectiveness
of the proposed techniques on anti-correlated data.
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Figure 7: Effect of the number of dimensions
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(a) SFS/LESS, dim=2
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(b) SFS/LESS, dim=4
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(c) SOAD, dim=2
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(d) SOAD, dim=4

Figure 8: Sorting cost vs. filtering cost
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(c) dim=5
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Figure 9: Comparison with the state-of-the-art methods
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(a) Weak anti-correlated,
dim = 3
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(b) Strong anti-correlated,
dim = 3
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(c) Weak anti-correlated,
dim = 5
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Figure 10: Scalability regarding the number of points

Scalability. The scalability is studied in Figure 10. We
choose the 3D and 5D datasets as the representative datasets.
The anti-correlation ratio c varies among 0.01, 0.1 and 1.
The results indicate that SOAD is the best choice. SFS/LESS
is worst on the scalability, while OSP achieves comparable
scalability on the weak anti-correlated datasets. The perfor-

mance gap in between SOAD and the other two algorithms
grows up with the dataset size on the strong anti-correlated
datasets. When the number of points increases to 100k,
SOAD is more than an order and two orders of magnitude
faster than OSP and SFS/LESS respectively.
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Experiments on Real Datasets. We also conduct exper-
iments on NBA datasets. As shown in Table 4, the skyline
cardinalities are 817, 2061 and 3135 forDim = 5, 6 and 7, re-
spectively. Altough the anti-correlation on NBA datasets is
weak, our proposed algorithm SOAD still significantly out-
performs the existing algorithms SFS/LESS and OSP.

Dim=5 Dim=6 Dim=7
SOAD 0.0063 0.0238 0.0450
OSP 0.0166 0.0328 0.0554

SFS/LESS 0.0146 0.0638 0.1257
Skyline cardinality 817 2061 3135

Table 4: RESPONSE TIME (SEC) ON NBA DATA

7. CONCLUSION
In this paper, we have studied the skyline operator on

anti-correlated distributions. To tackle this problem, we
establish a probabilistic model for anti-correlated distribu-
tions. Following the existing work, the d-dimensional points
are close to a hyperplane in an anti-correlated distribution.
We introduce the anti-correlation ratio c to define the max-
imum distance from the points to the hyperplane. Based on
the proposed model, we prove the lower bound and upper
bound of the expected skyline cardinality together with the
effective polynomial estimation. Since the performance of
the existing work is impractical on anti-correlated distribu-
tions, we also develop efficient algorithms to compute skyline
on anti-correlated distributions. In contrast to the existing
work which rely on heuristic elimination, our proposed tech-
niques not only effectively eliminate non-promising points
but also efficiently determine skyline points. As a result,
our approach achieves significantly performance improve-
ment over the existing work. The comprehensive experimen-
tal evaluation shows our algorithm outperforms the state-
of-the-art algorithms on both the real NBA player datasets
and the benchmark synthetic datasets under a wide range
of settings. The performance gap is up to two orders of
magnitude.
There are clearly many directions for future work. Our

analysis is based on the anti-correlation to a hyperplane. It
is meaningful to analyze and model other distributions of
real world applications. It is also an interesting direction to
develop efficient algorithms for these applications.
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