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ABSTRACT
Schema matching is a central challenge for data integration sys-
tems. Automated tools are often uncertain about schema matchings
they suggest, and this uncertainty is inherent since it arises from the
inability of the schema to fully capture the semantics of the repre-
sented data. Human common sense can often help. Inspired by
the popularity and the success of easily accessible crowdsourcing
platforms, we explore the use of crowdsourcing to reduce the un-
certainty of schema matching.

Since it is typical to ask simple questions on crowdsourcing plat-
forms, we assume that each question, namely Correspondence Cor-
rectness Question (CCQ), is to ask the crowd to decide whether a
given correspondence should exist in the correct matching. We pro-
pose frameworks and efficient algorithms to dynamically manage
the CCQs, in order to maximize the uncertainty reduction within
a limited budget of questions. We develop two novel approaches,
namely “Single CCQ” and “Multiple CCQ”, which adaptively se-
lect, publish and manage the questions. We verified the value of
our solutions with simulation and real implementation.

1. INTRODUCTION
Schema matching refers to finding correspondences between el-

ements of the two given schemata, which is a critical issue for
many database applications such as data integration, data ware-
housing, and electronic commerce [20]. Figure 1 illustrates a run-
ning example of the schema matching problem: given two rela-
tional schemataA andB describing faculty information, we aim to
determine the correspondences (indicated by dotted lines), which
identify attributes representing the same concepts in the two. There
has been significant work in developing automated algorithms for
schema matching (please refer to [20] for a comprehensive sur-
vey). The majority combines linguistic, structural and instance-
based information. In general, it is still very difficult to tackle
schema matching completely with an algorithmic approach: some
ambiguity remains. This ambiguity is unlikely to be removed be-
cause it is believed that typically “the syntactic representation of
schemata and data do not completely convey the semantics of dif-
ferent databases” [14].
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Figure 1: Example of Schema Matching Problem

Table 1: UNCERTAIN SCHEMA MATCHING
Possible Matchings probability

m1={ <(Professor)Name,Prof.name>, <Position, Position>,
<Gender,Sex>, <(Department) Name, Department>} .45

m2={ <(Professor)Name,Prof.name>,
<Gender, Sex>, <(Department) Name, Department>} .3

m3={ ((Department)Name,Prof.name), (Position, Position)
(Gender,Sex) } .25

Correspondence probability
c1=<(Professor)Name,Prof.name> .75

c2=<Position, Position> .7
c3=<Gender,Sex > 1

c4=<(Department) Name, Department> .75
c5=<(Department)Name,Prof.name> .25

Given this inherent ambiguity, many schema matching tools will
produce not just one matching, but rather a whole set of possible
matchings. In fact, there is even a stream of work dealing with
models of possible matchings, beginning with [3]. The matching
tool can produce a result similar to the upper part of Table 1, with
one matching per row, associated with a probability that it is the
correct matching.

Given a set of possible matchings, one can create an integrated
database that has uncertain data, and work with this using any of
several systems that support probabilistic query processing over
uncertain data, such as [9][1]. However, preserving the uncertainty
complicates the query processing and increases storage cost. So
we would prefer to make choices earlier, if possible, and eliminate
(or reduce) the uncertainty to be propagated. It has been suggested
[18] that human insights are extremely conducive for reducing
the uncertainty of schema matching, so the correct matching can
be manually chosen by the user from among the possible matchings
offered by the system. In a traditional back-end database environ-
ment, where the human ‘user’ is a DBA, setting up a new integrated
database, such a system can work well.

However, in today’s world, with end-users performing increas-
ingly sophisticated data accesses, we have to support users who are
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interested, say, in combining data from two different web sources,
and hence require an ‘ad hoc’ schema matching. Such users may
not be experts, and will typically have little knowledge of either
source schema. They are also likely to have little patience with a
system that asks them to make difficult choices, rather than just giv-
ing them the desired answer. In other words, users may not them-
selves be a suitable source of human insight to resolve uncertainty
in schema matching.

Fortunately, we have crowdsourcing technology as a promising
option today. There exist platforms, such as Amazon Mechani-
cal Turk, which can serve as sources of human perceptions. The
data concerning an explicit problem can be queried via publishing
questions, named Human Intelligent Tasks (a.k.a HITs). The work-
flow of publishing HITs can be automated with available APIs (e.g.
REST APIs) [4]. To the extent that our end-user is not an expert,
the opinion of a crowd of other non-experts is likely to be better
than that of our end-user.

It is well-known that crowdsourcing works best when tasks can
be broken down into very simple pieces. An entire schema match-
ing may be too large a grain for a crowd – each individual may
have small quibbles with a proposed matching, so that a simple bi-
nary question on the correctness of matchings may get mostly neg-
ative answers, with each user declaring it less than perfect. On the
other hand, asking open-ended questions is not recommended for a
crowd, because it may be difficult to pull together a schema match-
ing from multiple suggestions. We address this challenge by pos-
ing to the crowd questions regarding individual correspondences
for pairs of attributes, one from each schema being matched. This
much simpler question, in most circumstances, can be answered
with a simple yes or no. Of course, this requires that we build
the machinery to translate between individual attribute correspon-
dences and possible matchings. Fortunately, this has been done
before, in [3], and is quite simple: since schema match options are
all mutually exclusive, we can determine the probability of each
correspondence by simply adding up the probabilities of matchings
in which the correspondence holds. For example, in Table 1, the
correspondence c1 holds in m1 and m2, but not m3. Therefore, its
probability is obtained as 0.45 + 0.3 = 0.75.

Our problem then is to choose wisely the correspondences to ask
the crowd to obtain the highest certainty of correct schema match-
ing at the lowest cost. For schema matching certainty, we choose
entropy as our measure – we are building our system on top of a
basic schema-matching tool, which is estimating probabilities for
schema matches it produces. When the tool obtains a good match,
it can associate a high probability. When there is ambiguity or con-
fusion, this translates into multiple lower probability matches, with
associated uncertainty and hence higher entropy.

Our first algorithm, called Single CCQ, determines the single
most valuable correspondence query to ask the crowd, given a set
of possible schema matchings and associated correspondences, all
with probabilities.

Intuitively, one may try a simple greedy approach, choosing the
query that reduces entropy the most. However, there are three is-
sues to consider. First, the correspondences are not all independent,
since they are related through candidate matchings. So it is not ob-
vious that a greedy solution is optimal. Second, even finding the
query that decreases entropy the most can be computationally ex-
pensive. Third, we cannot assume that every person in the crowd
answers every question correctly – we have to allow for wrong an-
swers too. We address all three challenges below.

Usually, we are willing to ask the crowd about more than one
correspondence, even if not all of them. We could simply run Sin-
gle CCQ multiple times, each time greedily resolving uncertainty

in the most valuable correspondence. However, we can do better.
For this purpose, we develop Multiple CCQ, an extension of Sin-
gle CCQ, that maintains kmost contributive questions in the crowd,
and dynamically updates questions according to newly received an-
swers.

To summarize, we have made the following contributions,
1. In Section 3.1 and Section 4.1, we propose an entropy-based

model to formulate the uncertainty reduction caused by a single
CCQ and multiple CCQs, respectively.

2. In Section 4.3, we prove that the uncertainty reduction is
equivalent to the joint entropy of CCQs, by considering each CCQ
as a binary variable. We further show that greedy is indeed optimal.

3. For the Single CCQ approach, we propose an explicit frame-
work, and derive an efficient algorithm for the “Single CCQ” in
Section 3. We introduce an index structure and pruning technique
for efficiently finding the Single CCQ. We also develop the math-
ematical machinery to deal with possibly erroneous answers from
the crowd.

4. For the Multiple CCQ approach, we prove the NP-hardness of
Multiple CCQ Problem in Section 4, and propose an efficient (1+ε)
approximation algorithm, with effective pruning techniques.

In addition, Section 5 reports and discusses the experimental
study on both simulation and real implementation. We review and
compare our solutions with related work in Section 6. In Section 7,
we conclude the paper, and discuss several future works.

2. PROBLEM STATEMENT
In this section, we give the definitions related to the problem that

we are working on in this paper.

DEFINITION 1 (CORRESPONDENCE). Let S and T be two
given schemata. A correspondence c is a pair (As, At), where As

and At are sets of attributes from S and T respectively.

DEFINITION 2 (POSSIBLE MATCHING). Let S and T be two
given schemata. Every possible matching mi is a set of correspon-
dences between S and T, i.e. mi = {c1, c2, . . . , c|mi|}

For example, in Table 1, m1,m2 and m3 are three possible match-
ings. Note that not every set of correspondences is a possible match-
ing. In particular, we require that no attribute participate in more
than one correspondence in a possible matching.

DEFINITION 3 (RESULT SET). For two given schemata S and
T, let the result set RS be the set of possible matchings generated
by some semi-automatic tool of schema matching, together with a
probability assignment function Pr : RS → (0, 1). Each match-
ing mi ∈ RS has the probability Pr(mi) to be correct, and we
have

∑
mi∈RS Pr(mi) = 1

In the example of Table 1, the set RS = {m1,m2,m3} is the
result set. We have Pr(m1) + Pr(m2) + Pr(m3) = 1. In prac-
tice, schema matching tools may use some thresholding to elimi-
nate possible matchings with very low probability, and return only
a few higher probability candidates. If such thresholding is per-
formed, we ignore the low probability matchings that are already
pruned, and set their probability to zero.

DEFINITION 4 (CORRESPONDENCE SET). Let RS be the re-
sult set for two given schemata S and T, the correspondence setCS
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is the set of all correspondences contained by possible matchings
in RS, i.e.

CS =
⋃

mi∈RS

mi (1)

Note that a correspondence can appear in more than one possi-
ble matching, so for any correspondence c ∈ CS, let Pr(c) be the
probability of c being in the correct matching, then

Pr(c) =
∑

mi∈RS∧c∈mi

Pr(mi) (2)

As a simple extension, for a set of correspondences S ⊆ CS, let
Pr(S) be the probability that all correspondences of S are in the
correct matching, then

Pr(S) =
∑

mi∈RS∧S⊆mi

Pr(mi) (3)

For example, in Table 1, we have Correspondence Set CS =
{c1, c2, c3, c4, c5}. Since c1 is in m1 and m2, we have Pr(c1) =
Pr(m1) + Pr(m2) = 0.75. In addition, let S = {c1, c2}, then
S ⊆ m1, S * m2, S * m3. Therefore we have Pr(S) = 0.45.

DEFINITION 5 (UNCERTAINTY OF SCHEMA MATCHING).
For two given schemata S and T, given result set RS and probability
assignment function Pr(), we measure the uncertainty of RS with
Shannon entropy -

H(RS) = −
∑

mi∈RS

Pr(mi) logPr(mi)

In the example of Table 1, we have the uncertainty of Result Set
H(RS) = −0.45 log 0.45 − 0.3 log 0.3 − 0.25 log 0.25 = 1.54
(base=2).

Remark: A major reason for utilizing Shannon entropy as the
measurement of uncertainty is its non-parametric nature. The prob-
ability distribution of possible matchings is very dynamic, depend-
ing not only on the given schemata, but also on the schema match-
ing tools. Entropy does not require any assumptions about the dis-
tribution of variables. Besides, entropy permits non-linear models,
which is important for categorical variables [12], such as the possi-
ble matchings.

If we know a particular correspondence to be true (or false), this
will automatically disqualify any matching in which this correspon-
dence is absent (respectively, present). The probability for any such
matching is then set to zero. Since the probabilities of all possible
matchings must sum to one, the probabilities of the remaining (not
invalidated) matchings are increased proportionately. Once match-
ing probabilities are updated, correspondence probabilities have to
be recomputed as well, to reflect the new matching probabilities.

For example, given Table 1, we issue an HIT (sending c2) to the
crowd and get the confirmation that c2 is correct, that is Pr(c2) =
1. Then we have Pr(m1|c2) = Pr(m1)Pr(c2|m1)/Pr(c2) =
0.45/0.7 = 0.643. Similarly, Pr(m2|c2) = 0 and Pr(m3|c2) =
0.357. Once the confidences of possible matchings RS are up-
dated, the entropy, H(RS), now becomes 0.94, smaller than 1.54,
which reflects the reduction of the uncertainty.

After the probabilities of the possible matchings are adjusted, the
probabilities of correspondences are updated, to continue to reflect
the sums of probabilities of the appropriate matchings, as follows:
Pr(c1) = 0.643, Pr(c2) = 1, Pr(c3) = 1, Pr(c4) = 0.643,
Pr(c5) = 0.357.

DEFINITION 6 (CORRESPONDENCE CORRECTNESS QUESTION).
A Correspondence Correctness Question (CCQ) asks whether a

Table 2: MEANINGS OF SYMBOLS USED
Notation Description
c or ci a correspondence
Pr(ci) the probability of ci being in the correct matching
Qci the Correspondence Correctness Question (CCQ) w.r.t ci
mi a possible matching

Pr(mi) the probability that mi is the correct matching
Pr(mi|A) the probability that mi is the correct

matching given answer A from the crowd
E(∆Hci ) expected uncertainty reduction by publishing Qci

SQ a set of CCQs
DA the domain of the answers of some CCQs
pA the probability for each element of DA

E(∆HSQ
) expected uncertainty reduction by all the CCQs in SQ

correspondence is correct. The CCQ w.r.t a correspondence c is
denoted as Qc, where c ∈ CS.

Again, in the example of Table 1, the CCQ w.r.t c1, denoted
as Qc1 , is a question “Do you think the correspondence (Name,
Prof.Name) is correct?”

DEFINITION 7 (PROBLEM STATEMENT).
For two given schemata S and T, given result set RS and probability
assignment function Pr generated by some schema matching tools.
Let B be the budget of the number of CCQs to be asked to the crowd.
Our goal is to maximize the reduction ofH(RS) without exceeding
the budget.

3. SINGLE CCQ APPROACH
In this section, we study how to choose a single CCQ well. To

be able to do this, we first address the formalization of two core
functions: (1) Expected Uncertainty Reduction - the expectation
of reduction contributed by a single CCQ; (2) Distribution Adjust-
ment - modifying the probability distribution of RS after receiving
an answer. We then put these together to develop the Single CCQ
Approach, a framework to address the uncertainty reduction prob-
lem using a sequence of Single CCQ. Finally, we propose efficient
algorithms to implement the computations in this approach.

3.1 Formulation
In order to design an effective strategy for manipulating CCQs,

it is essential to define a measurement to estimate the importance
of CCQs before they are answered. Since the final objective is to
reduce uncertainty, we use the expectation of uncertainty reduction
caused by individual CCQs as the measurement. In the following,
we provide the formulation of the expected uncertainty reduction
in the context of the Single CCQ Approach.

3.1.1 Expected Uncertainty Reduction of Single CCQ
LetQc be a CCQ w.r.t an arbitrary correspondence c. SinceQc is

a Yes/No question, we consider Qc as a random variable following
a Bernoulli distribution. Then Pr(c) indicates the probability that
Qc is correct, and 1 − Pr(c) that it is incorrect. Equivalently, we
have

DA = {yes, no}; pA = (Pr(c), 1− Pr(c)) (4)

Let ∆Hc be the amount of uncertainty reduced in result set RS
by Qc, we have

∆Hc = H(RS)−H(RS|Qc)

= H(RS)−

− ∑
mi∈RS

Pr(mi|Qc) logPr(mi|Qc)
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Then, we can compute the expected uncertainty reduction caused
by Qc, denoted by E(∆Hc), as

E(∆Hc) = Pr(c){H(RS) +
∑

mi∈RS

Pr(mi|yes) logPr(mi|yes)}

+ (1− Pr(c)){H(RS) +
∑

mi∈RS

Pr(mi|no) logPr(mi|no)}

= Pr(c){H(RS) +
∑

mi∈RS

(
Pr(mi)Pr(yes|mi)

Pr(c)
log

Pr(mi)

Pr(c)
)}

+ (1− Pr(c))

{H(RS) +
∑

mi∈RS

(
Pr(mi)Pr(no|mi)

1− Pr(c)
log

Pr(mi)

1− Pr(c)
)}

(5)
The uncertainty reduction w.r.t a given Qc can be computed by

Eq 5 provided that we know the values for three parameters: Pr(c),
Pr(yes|mi) and Pr(no|mi). We see next how to obtain these
values.

Computation of Pr(c):By Eq 2, we can compute Pr(c) by
summing up the probabilities of possible matchings in which c is
included, i.e.

Pr(c) =
∑

mi∈RS∧c∈mi

Pr(mi) (6)

Computation of Pr(yes|mi) and Pr(no|mi): Please note that
Pr(yes|mi) (Pr(no|mi)) represents the probability that c is cor-
rect (incorrect) given that mi is a correct matching. As a result,
Pr(yes|mi) and Pr(no|mi) are either 0 or 1, depending on if c is
a correspondence included in mi.

Pr(yes|mi) =

{
1 c ∈ mi

0 c /∈ mi
;Pr(no|mi) =

{
0 c ∈ mi

1 c /∈ mi
(7)

Finally, equipped with Eq 6 and Eq 7, the uncertainty reduction
w.r.t a given Qc can be computed by Eq 5.

3.1.2 Adjustment with Crowdsourced Answers
In a crowdsourcing environment, workers may make mistakes.

To handle this issue, we must allow for the possibility that any
crowdsourced answer could be wrong. The probability of this hap-
pening can be estimated by the error rate of the worker.

Running Example: Continuing with the example of Table 1,
suppose c2 is identified as correct by a worker W with confidence
0.8, then we have

Pr(m1|e : c2 is answered fromW ) =
Pr(m1)Pr(e|m1)

Pr(e)

=
Pr(m1)Pr(W is correct)

Pr(c2)Pr(W is correct) + (1− Pr(c2))Pr(W is incorrect)

=
.45 ∗ .8

.7 ∗ .8 + .3 ∗ .2
= .58

Similarly, we have Pr(m2|e) = 0.10 and Pr(m3|e) = 0.32.
The uncertainty of the adjusted possible matchings, the confidence
difference between m1 and m2 (or m3), is reduced, and the confi-
dence of selectingm1 = 0.58 > 0.5 is still improved. The entropy
is also decreased, to 1.31. This decrease is somewhat less than if
the answers were obtained with no error. In short, even imperfect
answers can be useful for reducing the uncertainty.

For a given Qc, answer ans (yes or no), with error rate Pe ∈
(0, 1), we need to compute Pr(mi|ans), and replace Pr(mi) with

Framework 1 Single CCQ
1: CONS ← 1 // consumption of the budget
2: Find and publish Qci that maximize E(∆Hc) //(See 3.1.1)
3: while there exists a CCQ in the crowd, we constantly monitor the CCQ

do
4: for answer ai of Qci , error rate Pei do
5: ∀mi ∈ RS Adjust the Pr(mi) //(See 3.1.2)
6: if CONS < B then
7: Finding Qcj maximizing E(∆Hc) //(See 3.1.1)
8: publish Qcj ,
9: CONS = CONS + 1

10: else
11: terminate (no more budget)
12: end if
13: end for
14: end while

Pr(mi|ans) for all possible matchings. We assume crowdsourc-
ing workers provide answers independently, so Pe and Pr(c) are
independent. Then, we have the functions:

Pr(mi|ans = yes) = Pr(mi)Pr(ans = yes|mi)/Pr(ans = yes)

=
Pr(mi)Pr(ans = yes|mi)

(1− Pe)Pr(c) + Pe(1− Pr(c))

Pr(mi|ans = no) = Pr(mi)Pr(ans = no|mi)/Pr(ans = no)

=
Pr(mi)Pr(ans = no|mi)

(1− Pe)(1− Pr(c)) + PePr(c)
(8)

where Pr(c) is given in Eq 6, Pr(mi) is defined in Def 3, and
Pr(ans = yes|mi) and Pr(ans = no|mi) are computed as fol-
lows:

Pr(ans = yes|mi) =

{
1− Pe c ∈ mi

Pe c /∈ mi
;

Pr(ans = no|mi) =

{
Pe c ∈ mi

1− Pe c /∈ mi

(9)

Eq 8 is applied recursively as multiple answers are received, to
take all of them into account. If multiple answers all agree, each
iteration will make the truth of c more certain, whereas disagree-
ing answers will pull the probability closer to the middle. In other
words, disagreements between workers are gracefully handled. It
is easy to perform the algebraic manipulations to show that, for any
two answers ans1 and ans2, we have

Pr(mi|ans1, ans2) = Pr(mi|ans2, ans1) (10)

Eq 10 indicates that the final result of adjustment is independent
of the sequence of the answers. In other words, when we have a
deterministic set of questions (CCQs), it does not matter in what
sequence the answers are used for adjustment. In contrast, what
matters is to determine the set of CCQs to be asked, which is the
core challenge addressed in this paper.

3.2 Framework of Single CCQ
Having developed a technique to find the best Single CCQ, we

can place this at the heart of an approach to solve the schema
matching problem, as shown in Framework 1. The idea is to greed-
ily select the single CCQ in each iteration that will result in the
greatest reduction of uncertainty. We publish this CCQ; when it is
answered (line 4), we adjust Pr(mi) based on the answer and cor-
responding error rate (line 5), and then generate a new CCQ (line
7&8).

In the framework of Single CCQ, one can see that an important
task is to find the CCQ with the highest expectation of uncertainty
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reduction as soon as the probability distribution of RS is adjusted
(line 7). We can formally pose this as a query as follows, and focus
on efficiently processing such a query in the rest of this section.

DEFINITION 8 (SINGLE CCQ SELECTION (SCCQS)).
Given result set RS, probability assignment function Pr(), the Sin-
gle CCQ Selection Query retrieves a CCQ maximizing the expected
uncertainty reduction, ∆Hc.

3.3 Query Processing of SCCQS
Based on the formulation in Section 3.1, we are able to com-

pute the expected uncertainty reduction of each CCQ. So a naive
approach of selection is to traverse all the CCQs. Such traversal
results in an algorithm with time complexity O(|RS|2|CS|), i.e.
the square of the number of possible matchings multiplied by the
number of correspondences. This can be a very large number for
complex schema.

In this subsection, we first provide a lossless simplification, by
proving the expectation of uncertainty reduction is mathematically
equivalent to the entropy of the answer of a CCQ. Then, in order to
further improve the efficiency, we propose an index structure based
on binary coding, together with a pruning technique.

3.3.1 Simplification of Single CCQ Selection
When we need to determine a strategy of selecting CCQs, a very

intuitive idea is to prioritize the ones that we are more uncertain.
In case of Single CCQ, this idea indicates to select the CCQ with
probability closest to 0.5. This idea is trivially correct when all the
correspondences are independent. However, with the model of pos-
sible matchings, there are correlations among the correspondences.
Then, a non-trivial question is: should we still pick the CCQ with
probability closest to 0.5 with the presence of correlation?

Interestingly, we discover that the answer postive. By Theo-
rem 3.1, we prove that the expected uncertainty reductionE(∆Hc)
of a correspondence c is equivalent to the entropy of the answer of
Qc. In other words, E(∆Hc) is only determined by Pr(c). As a
result, searching for the CCQ that maximizeE(∆Hc) has the com-
plexity decreased to O(|RS|.|CS|), by computing Pr(c) for each
c ∈ CS. In addition, Corollary 3.2 states that we only need to find
the correspondence that has probability closest to 0.5, based on the
fact that E(∆Hc) is a symmetric function of Pr(c), with symme-
try axis Pr(c) = 0.5 and achieves maximum when Pr(c) = 0.5.

THEOREM 3.1. For correspondence c ∈ CS, c has probability
Pr(c) to be correct. Then we have

E(∆Hc) = −Pr(c) logPr(c)− (1− Pr(c)) log (1− Pr(c))

PROOF. Please see appendix.

COROLLARY 3.2. For any two correspondence c, c′ ∈ CS, if
|0.5− Pr(c)| ≥ |0.5− Pr(c′)| then E(∆Hc) ≥ E(∆Hc′) ≥ 0.
In addition, E(∆Hc) = 1 if and only if Pr(c) = 0.5

PROOF. Please see appendix.

Running Example (Selecting First Two CCQs): Now we il-
lustrate the process of selecting the first two CCQs in Framework 1
with the example of Table 1. In line 2, the first correspondence to be
asked is c2, since its probability is closest to 0.5 among {c1, c2, c3,
c4, c5}. Explicitly,E(∆Hc2) = −0.7∗log(0.7)−0.3∗log(0.3) =
0.88. Now we assume an answer “a = yes” is received from a
crowdsourcing worker, whose personal error rate is Pe = 0.2 (line
4). Then we conduct the adjustment according to Eq 8, and have

Pr(m1|a) = 0.58, Pr(m2|a) = 0.10 and Pr(m3|a) = 0.32.
This adjustment is referring to the first-time execution of line 5.
Then, in line 7, the next CCQ is to be selected. Note that, since
the probabilities of possible matchings are adjusted, probabilities
of correspondences should be recomputed by Eq 6: Pr(c1) =
0.68,Pr(c2) = 0.9,Pr(c3) = 1,Pr(c4) = 0.68,Pr(c5) = 0.32.
Therefore, in line 7, we select the CCQ based on the updated prob-
abilities of correspondences, i.e. c1 would be selected. (There is a
tie among c1,c4 and c5, and we break the tie sequentially.)

3.3.2 Binary Coding and Pruning Techniques
One can see that a basic computation of our algorithm is to check

whether a given correspondence c is in a given possible matching
mi. Since the correspondences included in each possible matching
do not change with the value of overall uncertainty, we propose to
index RS with a binary matrix MRS , where element eij = 1(0)
representing cj ∈ mi(cj /∈ mi), as shown in follows.

MRS =



c1 c2 . . . c|CS|

m1 1 0 . . . 0

...
...

...
. . .

...
mi ei1 ei2 . . . 1

...
...

...
. . .

...
m|RS| 0 0 . . . 1


(11)

Equipped with this index, we apply a pruning technique derived
from Corollary 3.2.

Now we illustrate the procedure of generating the correspon-
dence with probability closest to 0.5. For each cj , we traverse mi

and accumulate Pr(mi) if eij = 1. Let cbest so far be the best cor-
respondence so far, with probability Pr(cbest so far). Then, let cj
be the current correspondence, and Pacc be its accumulated prob-
ability after reading some P (mi), then cj can be safely pruned if
we have

Pacc − 0.5 ≥ |Pr(cbest so far)− 0.5|

4. MULTIPLE CCQ APPROACH
A drawback of single CCQ is that only one correspondence is

resolved at a time. Each resolution, even if quick, requires human
time scales, and comes with some overhead to publish the corre-
sponding HIT and tear it down. Gaining confidence in a single
schema matching may require addressing many CCQs. The time
required to do this in sequence may be prohibitive.

An alternative we consider in this section is to issue multiple (k)
CCQs simultaneously. Different workers can then pick up these
tasks and solve them in parallel, cutting down wall-clock time.
However, we pay for this by having some questions answered that
are not at the top of the list – we are issuing k good questions rather
than only the very best one.

Note that there are three possible states for a published CCQ:
(1) waiting - no one has accepted the question yet; (2) accepted
- someone in the crowd has accepted the question and is working
on it; (3) answered - the answer of the CCQ is available. What’s
more important, one can withdraw published CCQs that are still
at state waiting (e.g. forceExpireHIT in Mechanical Turk APIs)[4].
In other words, publishing a CCQ does not necessarily consume the
budget. It is possible that a CCQ is published, and then withdrawn
before anyone in the crowd answers it. In such case, the budget
is not consumed. Because of the dependence of correspondences,
we can withdraw or replace some of the published CCQs that are at
“waiting” state. Equipped with this power, we propose the Multiple
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CCQ approach to dynamically keep k best CCQs published at all
times.

In the rest of this section, we first provide the formulation and
framework of Multiple CCQs, by extending our results of Single
CCQ. Then, we present a complete proof that the expected un-
certainty reduction of a set of CCQs is equivalent to the joint
entropy of the CCQs. Finally, we prove the NP-hardness of the
multiple CCQs selection problem, and propose an efficient approx-
imation algorithm with a bounded error.

4.1 Formulating Expected Uncertainty Reduc-
tion of Multiple CCQ Approach

For a given set of CCQs of size k - SQ = {Qc1 , Qc2 , ..., Qck},
we want to derive the expected uncertainty reduction caused by the
aggregation of the answers of these k CCQs. Let DA and pA being
the domain and probability distribution of the answer respectively.
Each possible answer, i.e. an element of DA, can be seen as an
event that some of the k CCQs are correct, while others are incor-
rect. Then first we have

DA = {ai|ai ⊆ 2{Qc1
,Qc2

,...,Qck
} and

∀Qcj ∈ ai , cj is correct; and ∀Qcj /∈ ai , cj is incorrect}
pA = (Pr(a1), P r(a2), ..., P r(a2k ))

(12)

Similar to Eq 5, we are able to to compute the expected uncertainty
reduction caused by the SQ, denoted by E(∆HSQ), then

E(∆HSQ
) =

∑
ai∈DA

Pr(ai)
∑

mi∈RS

{−Pr(mi) logPr(mi)+

Pr(mi)Pr(ai|mi)

Pr(ai)
log

Pr(mi)Pr(ai|mi)

Pr(ai)
}

(13)

Computation of Pr(ai): Pr(ai) is equivalent to the possibil-
ity that all the correspondences queried by CCQs of ai are in the
correct matching. Then by Eq 3, we have

Pr(ai) =
∑

mi∈RS∧(∀cj∈mi,Qcj
∈ai)

Pr(mi) (14)

Computation of Pr(ai|mi): Similar to Single CCQ, Pr(ai|mi)
is either 1 or 0 depending on whether the correspondences queried
by ai (i.e. Qcj ∈ ai in Eq 12) are all in the possible matching mi.
Formally,

Pr(ai|mi) =

{
1 ∀Qc ∈ ai, c ∈ mi

0 ∃Qc ∈ ai, c /∈ mi
(15)

4.2 Framework of Multiple CCQ
As shown in Framework 2, the best size-k set of CCQs are ini-

tially selected and published, and then we constantly monitor their
states. Whenever one or more answers are available, three oper-
ations are conducted. First, all CCQs at state “waiting” are with-
drawn. Second, the probability distribution is adjusted with the new
answers (line 8&9). Last, we regenerate and publish a set of CCQs
that are currently most contributive (lines 12&15). In general, we
keep the best k CCQs in the crowd, by interactively changing CCQs
based on newly received answers. Note that the number of CCQs
may be less than k when the budget is insufficient (line 14-16).
The whole procedure terminates when the budget runs out and all
the CCQs are answered (line 3).

In contrast with Single CCQ, the essential query of Multiple
CCQ is to find a group of k CCQs, which maximize the expected
uncertainty reduction. Formally, we have following definition:

Framework 2 Multiple CCQ
1: CONS ← k // consumption of the budget
2: find and publish a set of CCQs - SQ = {Qc1 , Qc2 , ..., Qck} that

maximize E(∆HSQ
)//(See 4.1)

3: while there exists CCQs in the crowd, we constantly monitor the CCQs
do

4: if receive the one or more answers a1, a2, .. with error rate
Pe1 , Pe2 , ... then

5: withdraw all the CCQs at waiting state
6: k′ ← the number of CCQs withdrawn
7: k′′ ← the number of answers received
8: for each ai,Pei do //Adjustment
9: ∀mi ∈ RS Adjust the Pr(mi) //(See 3.1.2)

10: end for
11: if CONS + k′′ <= B then
12: find a set of CCQs - S′Q of size (k′ + k′′) that currently

maximize E(∆HS′
Q

) //(See 4.1)

13: CONS = CONS + k′′

14: else // no sufficient budget for maintaining k CCQs
15: find a set of CCQs - S′Q of size (B − CONS) that cur-

rently maximize E(∆HS′
Q

) //(See 4.1)

16: CONS = B − k′

17: end if
18: ∀Q′ci ∈ S′Q publish Q′ci
19: end if
20: end while

DEFINITION 9 (MULTIPLE CCQ SELECTION (MCCQS)).
Given result set RS, probability assignment function Pr, and an in-
teger k, the multiple CCQ selection problem is to retrieve a set of
k CCQs, denoted by SQ, such that the expected uncertainty reduc-
tion, ∆HSQ , is maximized.

One can see that, if we set k = B (recall B is the budget of
CCQs), the problem of MCCQS selects the optimal set of corre-
spondences at which to ask CCQs in order to maximize the ex-
pected uncertainty reduction. Similar to [17] and [25], MCCQS
itself is an interesting and valuable optimization problem to inves-
tigate.

4.3 Simplification of Multiple CCQ Selection
In case of Single CCQ, considering each CCQ as a random vari-

able, we proved that the expected uncertainty reduction of a CCQ
is equivalent to its entropy. In Multiple CCQ, analogously, we are
interested to find a relation between uncertainty reduction and en-
tropy for a size-k set of CCQs. This is complex since the corre-
spondences are correlated.

As shown in Theorem 4.1, we prove that the expectation of un-
certainty reduction by a set of CCQs is equivalent to their joint
entropy (denoted by H(DA)), i.e.

E(∆HSQ) = H(DA) = −
∑

ai∈DA

Pr(ai) logPr(ai)

Facilitated with this theorem, we reduce MCCQS to a special
case of joint entropy maximization problem.

THEOREM 4.1. Given a set of CCQs SQ = {Qc1 , Qc2 , ..., Qck},
the answer has domain

DA = {ai|ai ⊆ 2SQ and ∀Qcj ∈ ai , cj is correct;

and ∀Qcjai , cj is incorrect}

and distribution pA = (Pr(a1), P r(a2), ..., P r(a2k )), then we have
E(∆HSQ

) = −
∑

ai∈DA
Pr(ai) logPr(ai)

PROOF. Please see appendix.
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4.4 NP-hardness of Multiple CCQ Selection
By Theorem 4.1, searching a group of k CCQs with maximal ex-

pected uncertainty reduction is equivalent to finding k CCQs with
maximal joint entropy. It is known the joint entropy of a set of
random variables is a monotone sub-modular function. In gen-
eral, maximizing sub-modular functions is NP-hard. Concerning
the computation of the value of information, [11] shows that, for
a general reward function Rj (in our problem, Rj = ∆HSQ ), it
is NPPP − hard to select the optimal subset of variables even
for discrete distributions that can be represented by polytree graph-
ical models. NPPP − hard problems are believed to be much
harder than NPC or #PC problems. In the problem of multiple
CCQ selection, every variable is binary and their marginal distribu-
tion is represented by a binary matrix. As a result, a naive traversal
would lead to an algorithm ofO(|RS||CS|k) complexity, since the
searching space (i.e. the number of subsets to select) is always of
size Ck

|CS|.
With the Theorem 4.2, we prove that Multiple CCQ Selection

is NP-hard. Encountering this NP-hardness, we propose a efficient
approximation algorithm based on the sub-modularity of joint en-
tropy.

THEOREM 4.2. The Multiple CCQ Selection is NP-hard.

PROOF. To reach the proof of Theorem 4.2, it is sufficient to
prove the NP-completeness of its decision version, Decision MC-
CQS (DMCCQS), i.e. given result set RS, probability assignment
function Pr, an integer k, and a value ∆H , decide whether one can
find a set SQ of k CCQs such that ∆HSQ >= ∆H .

To reach the NP-completeness of DMCCQS, it is sufficient to
prove a special case of DMCCQS is NPC. Now we state the special
case of DMCCQS by adding the following constraint on RS: for
each way of partitioning RS into two subsets S1 and S2, there
exists a correspondence c such that

(∀mi ∈ S1, c ∈ mi) ∧ (∀mj ∈ S2, c /∈ mi)

Equipped with this constraint, we this reduce special case of DM-
CCQS to the set partition problem.

The partition problem is the task of deciding whether a given
multiset of positive integers can be partitioned into two subsets S1

and S2 such that the sum of the numbers in S1 equals the sum of
the numbers in S2.

Transformation: Given a set partition problem with input mul-
tiset S, let Sum =

∑
x∈S x. We create a possible matching

mi for each positive integer xi ∈ S, and assign its possibility
Pr(mi) = xi/Sum. Let the correspondences satisfy the con-
straint, and we set k = 1,∆H = − log(0.5) = 1 for DMCCQS.

(=⇒) If there is a yes-certificate for the set partition problem,
then the RS can be partitioned into two subsets, each with ag-
gregate probability 0.5. According to the constraint, the exists
a correspondence c with Pr(c) = 0.5. Then, selecting SQ =
{Qc} would achieve uncertainty reductionHSQ = −0.5 log 0.5−
0.5 log 0.5 = 1. Therefore,{Qc} serves as yes-certificate for the
special case of DMCCQS.

(⇐=) Assume there is yes-certificate for the special case of DM-
CCQS when k = 1,∆H = − log(0.5) = 1. Since k = 1, HSQ is
actually equivalent to Hc (see Eq 5). Then by Corollary 3.2, there
exists a correspondence c such that Pr(c) = 0.5. Therefore, by
the constraint, there is a way to partition RS into two subsets, each
with aggregate probability 0.5. Since the mapping from the posi-
tive integers to the possible matchings is one-to-one, we obtain an
yes-certificate for the special case of DMCCQS.

4.5 Approximation Algorithm

Figure 2: Illustration of RS Partitioning

It is known that the joint entropy of a set of random variables is a
monotone sub-modular function [11]. And the problem of selecting
a k-element subset maximizing a monotone sub-modular function
can be approximated with a performance guarantee of (1 − 1/e),
by iteratively selecting the most uncertain variable given the ones
selected so far [10]. Formally, we have the optimization function at
the kth iteration:

X := arg max
QcX

E(∆H
Sk−1
Q
∪{QcX

}) (16)

Considering Sk−1
Q and QcX as two variables, their joint entropy

H(Sk−1
Q , QcX ) = H(Sk−1

Q ) + H(QcX |S
k−1
Q ), so we only need

to maximize the conditional entropy at each iteration, i.e. X :=
arg maxQcX

H(QcX |S
k−1
Q ) and

H(QcX |S
k−1
Q ) = −

∑
ai∈D

S
k−1
Q

Pr(ai){Pr(yes|ai) logPr(yes|ai)

+ Pr(no|ai) logPr(no|ai)}
(17)

Eq 17 indicates that, at each iteration, we are searching the most
uncertain correspondence, given the correspondences selected in
previous iterations. In particular, after the (k − 1)th iteration, the
possible matchings are at most split into 2k−1 partitions, each of
which corresponds to an element ai ∈ DSk−1

Q
. We aim to find the

kth correspondence, in order to further split them to at most 2k par-
titions, such that then entropy of resulting partitions is maximized.
Figure 2 illustrates a partitioning of the first two iterations. Moti-
vated with this interpretation, we propose to apply an in-memory
index to maintain the list of partitions for each iteration. One can
see that each partition corresponding to ai is essentially a set of
possible matchings. In addition, also index P (ai) associated with
each partition.

As a result, the computation of H(QcX |S
k−1
Q ) for each candi-

date correspondence is simply traversing the list of partitions. Note
the number of partitions is at most |RS| (i.e. each partition has only
one possible matching), so the overall complexity is upper bounded
by O(k|RS||CS|). However, there is still room for the further
pruning of the search space. In the follows, we derive four prun-
ing techniques to avoid traversing all the partitions. Each pruning
indicates a condition that guarantees certain partitions are unnec-
essary to be considered, hence speed up the overall computation.
For simplicity, we just use the notation ai to represent the parti-
tion corresponding to ai. Then, for the iteration, we have parti-
tions a1, a2, ..., an with probabilities Pr(a1), P r(a2), ..., P r(an)
respectively. As follows, we present four pruning rules.

763



PRUNING RULE 4.3. If a partition ai has only one matching,
ai can be safely pruned, i.e. we can remove ai from the list of
partitions.

Pruning rule 4.3 utilizes the intuition that the correctness of a possi-
ble matching m can be fully determined by the selected correspon-
dences, when m is the only one in its partition. In other words, the
remaining correspondences of m would not contribute any more
information, hence should not be selected.

PRUNING RULE 4.4. Let c be a candidate correspondence, then
c can be safely pruned (for the rest of the iterations), if all ai, one
of the following conditions are met for :

(1)∀mi ∈ ai, c ∈ mi (2)∀mi ∈ ai, c /∈ mi

Similar to Pruning rule 4.3, Pruning rule 4.4 indicates the condi-
tion that the correctness of c can be determined by selected corre-
spondences.

Next, we introduce Pruning Rule 4.5 and 4.6, which derives two
non-trivial upper bounds, which enable effective pruning.

PRUNING RULE 4.5. Let best so far be the best value of
Eq 17 so far for the current iteration, then for the correspondence
c, let a1, a2, ..., am be the partitions c already traversed, then let

H0 = −
m∑
i=1

Pr(ai){Pr(yes|ai) logPr(yes|ai)

+Pr(no|ai) logPr(no|ai)}

Then c can be pruned for the current iteration, if we have

best so far −H0 ≤
n∑

j=m+1

Pr(aj) log
Pr(aj)

2

PROOF. For the rest of partitions am+1, am+2, ..., an, the opti-
mal situation is they are all perfectly bisected, that it ∀i ∈ [m +
1, n], P r(yes|ai) = Pr(no|ai) = 0.5.

Therefore, their contribution to the optimization function has a

upper bound
n∑

j=m+1

Pr(aj) log
Pr(aj)

2

PRUNING RULE 4.6. Let best so far be the best value of
Eq 17 so far for the current iteration. For a correspondence c, let
H(Qc|Sk−2

Q ) be the conditional entropy computed from a previous
iteration. Then, c can be pruned for the current iteration if

H(Qc|Sk−2
Q ) ≤ best so far

PROOF. This pruning rule reflects the sub-modularity of the joint
entropy. Sk−2

Q is the set of CCQs selected in the previous iteration,
so Sk−2

Q ⊂ Sk−1
Q , where Sk−1

Q is the CCQs selected for the current
iteration. Then by sub-modularity, we have

H(Sk−2
Q , Qc)−H(Sk−2

Q ) ≥ H(Sk−1
Q , Qc)−H(Sk−1

Q )

and equivalently, H(QcX |S
k−2
Q ) ≥ H(QcX |S

k−1
Q ), which com-

pletes the proof.

5. EXPERIMENTAL RESULTS
We conducted extensive experiments to evaluate our approaches,

based on both simulation and real implementation. We focus on
evaluating two issues. First, we examine the effectiveness of our
two frameworks in reducing the uncertainty for possible matchings.
Second, we verify the correctness of our approaches, by evaluating
the precision and recall of the best matchings.
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Figure 3: Single CCQ v.s. Random - Simulation

5.1 Experimental Setup
We adopt the schema matching tool OntoBuilder [7, 5], which

is one of the leading tools for schema matching. In particular, we
conduct our experiments on four datasets, each of which includes
five schemata. The schemata are extracted from web forms from
different domains. We describe the characteristics of each dataset
in Table 3. By OntoBuilder, the schemata are parsed into xml
schemata, and the attributes refer to nodes with semantic informa-
tion. We conduct pairwise schema matching within each domain,
so there are totally 40 pairs of schemata (10 for each domain). In
OntoBuilder, four schema matching algorithms are implemented,
namely Term, Value, Composition and Precedence. For each pair
of schemata, we generate 400 unique possible matchings (100 for
each algorithm). In addition, each possible matching is associated
with a global score, which indicates the goodness of the matching.
We obtain the probabilities of matchings by normalizing the global
scores. The details of these algorithms can be found in [5].

5.2 Simulation
To evaluate the effectiveness of our two approaches, we first con-

duct a simulation of the crowd’s behaviour, based on our formula-
tion in Section 3.1. First, we manually select the best matching
from the 400 possible matchings, and treat the selected matching
as the correct matching (i.e. ground truth). So for any corre-
spondence, its correctness depends on whether it is in the selected
matching. Second, for each published CCQ, we randomly gener-
ate an error rate Pe ∈ (0, 0.5) following an uniform distribution.
Third, given a CCQ, we generate the correct yes-no answer with
probability (1 − Pe) (i.e. generate the wrong answer with prob-
ability Pe), and then return the answer and Pe as the inputs for
adjustment (Section 3.1.2).

First, we present the effectiveness of Single CCQ approach (
Framework 1), by comparing its performance with randomly se-
lecting CCQs. We set the budget B = 50, and each CCQ is gen-
erated after receiving the answer of the previous one. Figure 3
illustrates the average change of uncertainty (vertical axis) with
the number of answers of CCQs received (horizontal axis). With
the increase of number of CCQs, the uncertainty converges to zero
rapidly. From the experimental results, our proposed Single CCQ
approach (SCCQ) outperforms the random approach (Random) sig-
nificantly. Please note that all the results plotted in Section 5.2 and
5.3 are averages over 10 runs. The distribution is quite dense within
each domain, but diverse for different domains.
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Table 3: DATASETS
Notation Source No.of attributes

Hotel hotel searching websites 14-20
Aviation homepages of airline companies 12-18

BookStore the webpages of advanced
search in online book stores 13-21

ComplaintForm the complaint forms of
government websites 27-34
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Figure 4: Multiple CCQ with different k - Simulation

Next, we examine the performance of Multiple CCQ (Frame-
work 2). Recall that we need to constantly monitor the CCQs, and
update the CCQs whenever new answers are received. In the sim-
ulation, we check the states of published CCQs every time unit.
Each published CCQ is initially at state “waiting”. For each time
unit, each CCQ in state “waiting” may change to “accepted” with
probability P0 (remain unchanged with probability 1− P0), where
P0 is a random number generated from (0, 0.5); and each CCQ
at state “accepted” may change to “answered” with probability P1

(remain unchanged with probability 1 − P1), where P1 follows a
Poisson distribution. Figure 4 illustrates the performance of Multi-
ple CCQ by varying k, where we set the budgetB = 50. Recall that
k, a parameter of Framework 2, represents the number of CCQ in
the crowd. Whenever a CCQ is answered, we dynamically updated
the k CCQs, to make sure the k CCQs are the best according to
the all received answers. In particular, when k=1, Framework 2 be-
comes the Single CCQ approach. One can observe that the curves
with smaller k tend to have better performance in terms of reducing
uncertainty. In fact, the larger k is, the less advantage MCCQ has
comparing to a random selection. Recall each time we select k out
of |CS| correspondences, and when k = |CS|, MCCQ is the same
as random selection, i.e. select all of the correspondences we have.

As discussed in Section 4, the increase of k leads to less uncer-
tainty reduction (which is consistent with the result in Figure 4),
but improves the overall time efficiency. Since there are multiple
uncontrollable factors affecting the completion time of workers, the
time cost of the proposed approaches are hard to be simulated. Nev-
ertheless, we analyse the relation between k and the time cost in the
real-world implementation in Section 5.3.

5.3 Testing on Amazon Mechanical Turk
We implement our two approaches on Amazon Mechanical Turk

(AMT), which is a widely used crowdsourcing marketplace. Em-
powered with the Amazon Mechanical Turk SDK, we are able to
interactively publish and manage the CCQs. Each HIT of AMT in-
cludes all the attributes of two schemata, one CCQ, and the URLs
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Figure 5: Single CCQ v.s. Random - on Amazon Mechanical Turk
of the source web-pages. Each HIT is priced US$0.05. One can
see that each HIT is essentially a CCQ. For the rest of this section,
the terms “HIT” and “CCQ” are exchangeable.

In analogy to the simulation, Figure 5 and Figure 6 illustrate
the performances of Single CCQ and Multiple CCQ respectively,
where we set the budget B = 50. In terms of uncertainty re-
duction, one can see that the performance is basically consistent
with the simulation. A very important finding is that, in contrast
with the simulation, the uncertainty is likely to increase when the
first several CCQs are answered. The increase can happen when
a surprising answer is obtained, i.e. a yes answer is returned for
low-probability correspondence, or vice versa. This phenomenon
indicates that, the budget should be large enough to achieve satis-
factory reduction of uncertainty.

Another important finding is that, the uncertainty convergence to
zero in real implementation is much slower than that in the simu-
lation. A possible reason is that, we use a Bernoulli distribution to
model the error rate of workers. But in reality, the error rate follows
a much complex distribution, which may be related to the dataset.

Lastly, we present the overall time cost of Single CCQ and Mul-
tiple CCQ approaches in the real implementations, where totally
50 CCQs are published and answered. As shown in Figure 7, the
curves with larger k tend to have less time cost. Please note that, the
case of Single CCQ is indicated with k = 1. When k is increased,
we get faster initial reduction on uncertainty, but the overall reduc-
tion tend to be limited. Actually, there are many uncontrollable
factors would affect the completion time, such as the difficulty of
the CCQs, the time of publication etc.

5.4 Data Quality
In this subsection, we verify the correctness of our approaches,

by evaluating the precision and recall of the best matching, i.e. the
possible matching with the highest possibility after the uncertainty
reduction. Precision is computed as the ratio of correct correspon-
dences out of the total number of correspondences in the correct
matching (ground truth). Recall is computed as the ratio of correct
correspondences out of the total number of correspondences in the
correct matching. Since the performances are very similar on dif-
ferent datasets, we merge the four datasets into one, and present the
precision and recall averaged from 40 runs.

Figure 8 illustrates the quality of the best matching after uncer-
tainty reduction with budget B = 50. The suffixes “ S” and “ R”
represent the data obtained from the simulation and the real-world
implementation on AMT, respectively. In the simulation, the preci-
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Figure 6: Multiple CCQ with different k on Amazon Mechanical Turk
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Figure 7: Time Cost with different k on Amazon Mechanical Turk
sion and recall are almost 100%. In the real-world implementation,
the performance is less perfect, but still significantly better than that
of the “machine-only” methods when k is small. However, in the
real implementation, we find that when k is increased, the preci-
sion and recall tend to be decreased dramatically. In particular, for
cases k = 8 and k = 16, the MCCQ is only slightly better than
the Composition. The reason is twofold: first, comparing to SCCQ,
there is averagely less information for selecting CCQs in MCCQ;
second, due to the NP-hardness, we are only able to select CCQs
that are near-optimal.

Recall that the motivation of MCCQ is to improve the time effi-
ciency. Therefore, we conducted another set of experiments where
time is the constraint, in order to investigate the relation between
k and data quality. Explicitly, we preform SCCQ and MCCQ for
50 minutes, without any limit on the budget. The precision and
recall are demonstrated in Fig 9. From the experimental results,
we conclude that the MCCQ with large k has outstanding perfor-
mance for time-constrained situations. Therefore, we conclude that
k should be set to a small value when the budget is the main con-
straint; whereas a large value is suggested for k if time-efficiency
is the primary constraint.

6. RELATED WORK

6.1 Uncertainty in Schema Matching
The model of possible matching, namely “probabilistic schema

mappings”, was first introduced in [3]. In their work, algorith-
mic approaches generate a set of matchings between two schemata,
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Figure 8: Data Quality with Budget Constraint- Precision & Recall
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Figure 9: Data Quality with Time Constraint - Precision & Recall

with a probability attached to each matching. After the collection
of possible matchings is determined, the probability of each cor-
respondence can be computed by summing up the probabilities of
possible matchings in which the correspondence is included. Later,
Sarma et al. [21] used well-known schema matching tools (COMA,
AMC, CLIO, Rondo, etc.) to generate a set of correspondences as-
sociated with confidence values between two schemata. Then, the
possible matchings are constructed from these correspondences and
data instances. A more intuitive method of constructing possible
matchings is proposed in [6]. In detail, [6] generates top-k schema
matchings by combining the matching results generated by various
matchers, and each of the k matchings is associated with a global
score. Then possible matchings are constructed by normalizing the
global scores. Additionally, the model of possible matchings has
been adopted in [8] as a core foundation for answering queries in
a data integration system with uncertainty. Gal [5] used the top-
K schema mappings from a semi-automatic matchers to improve
the quality of the top mapping. [3] [8] and [19] were devoted to
the parallel use of uncertain schema matchings, and proposed new
semantics of queries.

The uncertainty in schema matching has been intensively stud-
ied, primarily focusing on the query processing in the presence of
uncertainty. X.Dong et al. [3] concentrated on the semantics and
properties of probabilistic schema mappings. We assume that a set
of probabilistic schema matchings is provided by an existing algo-
rithm, such as one of those mentioned above. How to efficiently
process uncertain data is an orthogonal issue, which has been well
addressed, such as [23, 24, 9].

6.2 Crowdsourcing and Data Integration
Such as schema matching, some queries cannot be answered by

machines only. The recent booming up of crowdsourcing brings
us a new opportunity to engage human intelligence into the pro-
cess of answering such queries (see [2] as a survey). In general, [4]
proposed a query processing system using microtask-based crowd-
sourcing to answer queries. In [16], a declarative query model is
proposed to cooperate with standard relational database operators.
As a typical application related to data integration, [25] utilized a
hybrid human-machine approach on the problem of entity resolu-
tion.
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To our best knowledge, [13] is only previous work engaging
crowdsourcing into schema matching. In particular, [13] proposed
to enlist the multitude of users in the community to help match the
schemata in a Web 2.0 fashion. The difference between our work
and [13] is threefold: (1) From the conceptual level, “crowd” in
[13] refers to an on-line community (e.g. a social network group);
while we explicitly consider the crowd as crowdsourcing platforms
(e.g. Mechanical Turk). (2) The essential output of [13] is deter-
mined by the “system builders”, which means the end users still
have to get involved in the process of schema matching. (3) We
focus on the optimization between the cost (the number of CCQs)
and performance (uncertainty reduction).

6.3 Active Learning
Active learning is a form of supervised machine learning, in

which a learning algorithm is able to interact with the workers (or
some other information source) to obtain the desired outputs at new
data points. A widely used technical report is [22]. In particular,
[15, 26] proposed active learning methods specially designed for
crowd-sourced databases. Our work is essentially different from
active learning in two perspectives: (1) the role of workers in active
learning is to improve the learning algorithm (e.g. a classifier); in
this paper, the involvement of workers is to reduce the uncertainty
of given matchings. (2) The uncertainty of answers are usually as-
sumed to be given before generating any questions; in this paper,
the uncertainty of answers has to be considered after the answers
are received, since we cannot anticipate which workers would an-
swer our questions. To our best knowledge, there is no algorithm in
the field of active learning can be trivially applied to our problem.

7. DISCUSSION AND FUTURE WORK
In this paper, we propose two novel approaches, namely Single

CCQ and Multiple CCQ, to apply crowdsourcing to reduce the un-
certainty of schema matching generated by semi-automatic schema
matching tools. These two approaches adaptively select and pub-
lish the optimal set of questions based on new received answers.
Technically, we significantly reduce the complexity of CCQ selec-
tion by proving that the expectation of uncertainty reduction caused
by a set of CCQs are mathematically equivalent to the join entropy
of the CCQs. In addition, we prove the NP-hardness of the problem
of Multiple CCQ Selection, and design an (1 + ε) approximation
algorithm, based on its sub-modular nature.

Uncertainty is inherited in many components in modern data in-
tegration systems, such as entity resolution, schema matching, truth
discovery, name disambiguation etc. We believe that embracing
crowdsourcing as a component of a data integration system would
be extremely conductive for the reduction of uncertainty, hence ef-
fectively improve the overall performance. Our work represents an
initial solution towards automating uncertainty reduction of schema
matching with crowdsourcing.

One challenge with schema matching is that while many parts of
a schema matching are obvious to any human, often the meaning
of some portions of the data is not clear to a non-domain expert.
Therefore, investigating the difficulties of CCQs and the trustwor-
thiness of crowd-sourced answers may further help reducing the
matching uncertainty. In future work, we will try to fold this into
a more realistic and more complete model of worker error rates.
We have also ignored more complex worker incentives, including
boredom and thoughtless answer selection, as being standard across
crowdsourcing platforms. While this orthogonality assumption is a
good approximation for now, in future work we will incorporate it
into the main algorithm.
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APPENDIX
Proof of Theorem 3.1

PROOF. First, we simplify Eq 5

E(∆Hc) = H(RS)+

Pr(c)
∑

mi∈RS

(
Pr(mi)Pr(yes|mi)

Pr(c)
log

Pr(mi)

Pr(c)
)+

(1− Pr(c))
∑

mi∈RS

(
Pr(mi)Pr(no|mi)

1− Pr(c)
log

Pr(mi)

1− Pr(c)
)

= H(RS) +
∑

mi∈RS

(Pr(mi)Pr(yes|mi) log
Pr(mi)

Pr(c)
)

+
∑

mi∈RS

(Pr(mi)Pr(no|mi) log
Pr(mi)

1− Pr(c)
)

(18)

Now we substitute Eq 7 into Eq 18, then

E(∆Hc) = H(RS) +
∑

mi∈RS∧c∈mi

(
Pr(mi) log

Pr(mi)

Pr(c)

)

+
∑

mj∈RS∧c/∈mj

(
Pr(mj) log

Pr(mj)

1− Pr(c)

)
= H(RS)+∑
mi∈RS∧c∈mi

(Pr(mi) logPr(mi)− Pr(mi) logPr(c)) +

∑
mj∈RS∧c/∈mj

(Pr(mj) logPr(mj)− Pr(mj) log (1− Pr(c)))

= H(RS) +
∑

mi∈RS∧c∈mi

Pr(mi) logPr(mi)

−
∑

mi∈RS
∧c∈mi

Pr(mi) logPr(c) +
∑

mj∈RS

∧c/∈mj

Pr(mj) logPr(mj)

−
∑

mj∈RS∧c/∈mj

Pr(mj) log (1− Pr(c))

Note that, H(RS) is the uncertainty of entire result set, that is
H(RS) = −

∑
mi∈RS∧ c∈mi

Pr(mi)−
∑

mj∈RS∧ c/∈mj
Pr(mj)

so, we have
− E(∆Hc)

=
∑

mi∈RS
∧c∈mi

(Pr(mi) logPr(c)) +
∑

mi∈RS
∧c/∈mi

(Pr(mj) log (1− Pr(c))

= logPr(c)
∑

mi∈RS
∧c∈mi

Pr(mi) + log (1− Pr(c))
∑

mi∈RS
∧c/∈mi

Pr(mj)

Finally, by Eq 2, we haveE(∆Hc) = −Pr(c) logPr(c)−(1−
Pr(c)) log (1− Pr(c))

Proof of Corollary 3.2
PROOF. let dE(∆Hc)

dPr(c)
= 0, then we have

− logPr(c)/(1− Pr(c)) = 0⇔ Pr(c) = 0.5

E(∆Hc) is a symmetric function of Pr(c), with symmetry axis
Pr(c) = 0.5. Besides, the function achieves maximumE(∆Hc) =
1 when Pr(c) = 0.5, and is monotonic on [0, 0.5] (increasing) and
[0.5, 1] (decreasing).

Proof of Theorem 4.1
PROOF. First,we rewrite Eq 13, and H(RS) =

−
∑

mi∈RS Pr(mi) logPr(mi)

E(∆HSQ
) =

∑
ai∈DA

{−
∑

mi∈RS

Pr(ai)Pr(mi) logPr(mi)+

∑
mi∈RS

Pr(mi)Pr(ai|mi) log
Pr(mi)Pr(ai|mi)

Pr(ai)
}

=
∑

ai∈DA

{Pr(ai)∆H(RS)+

∑
mi∈RS

Pr(mi)Pr(ai|mi) log [Pr(mi)Pr(ai|mi)]−

∑
mi∈RS

Pr(mi)Pr(ai|mi) logPr(ai)}

Then, we substitute Eq 15,

E(∆HSQ
) =

∑
ai∈DA

{Pr(ai)∆H(RS)+

∑
mi∈RS∧(∀Qc∈ai,c∈mi)

Pr(mi) logPr(mi)−

∑
mi∈RS∧(∀Qc∈ai,c∈mi)

Pr(mi) logPr(ai)}

=

 ∑
ai∈DA

Pr(ai)

∆H(RS)+

∑
ai∈DA

∑
mi∈RS∧(∀Qc∈ai,c∈mi)

Pr(mi) logPr(mi)−

∑
ai∈DA

 ∑
mi∈RS∧(∀Qc∈ai,c∈mi)

Pr(mi)

 logPr(ai)

= ∆H(RS) +
∑

mi∈RS

Pr(mi) logPr(mi)−

∑
ai∈DA

 ∑
mi∈RS∧(∀Qc∈ai,c∈mi)

Pr(mi)

 logPr(ai)

= −
∑

ai∈DA

 ∑
mi∈RS∧(∀Qc∈ai,c∈mi)

Pr(mi)

 logPr(ai)

Finally by Eq 14, E(∆HSQ) = −
∑

ai∈DA
Pr(ai) logPr(ai),

which completes the proof.
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