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ABSTRACT
The monitoring of a system can yield a set of measurements that
can be modeled as a collection of time series. These time series are
often sparse, due to missing measurements, and spatio-temporally
correlated, meaning that spatially close time series exhibit tempo-
ral correlation. The analysis of such time series offers insight into
the underlying system and enables prediction of system behavior.
While the techniques presented in the paper apply more generally,
we consider the case of transportation systems and aim to predict
travel cost from GPS tracking data from probe vehicles. Specifi-
cally, each road segment has an associated travel-cost time series,
which is derived from GPS data.

We use spatio-temporal hidden Markov models (STHMM) to
model correlations among different traffic time series. We pro-
vide algorithms that are able to learn the parameters of an STHMM
while contending with the sparsity, spatio-temporal correlation, and
heterogeneity of the time series. Using the resulting STHMM, near
future travel costs in the transportation network, e.g., travel time
or greenhouse gas emissions, can be inferred, enabling a variety of
routing services, e.g., eco-routing. Empirical studies with a sub-
stantial GPS data set offer insight into the design properties of the
proposed framework and algorithms, demonstrating the effective-
ness and efficiency of travel cost inferencing.

1. INTRODUCTION
When monitoring a complex system, the resulting measurements

can often be modeled as a collection of time series. These reflect
the internal dynamics of the systems and hold the potential for un-
derstanding and predicting aspects of the system’s behavior.

While this general scenario applies to a wide variety of settings,
we consider the setting of a road network. Figure 1 shows two
travel time series obtained from GPS records collected from two
adjacent road segments in a road network. Each time series records
the average cost associated with traversing its segment during dif-
ferent time intervals. The two time series are correlated: (i) the
peak on road 2 in the 28-th interval may result in the peak on road
1 in the 29-th interval; (ii) the peak on road 1 in the 35-th interval
may cause the peak on road 2’s time series in the 36-th interval.
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Figure 1: Spatio-Temporally Correlated Sparse Time Series

With a travel-cost time series available (e.g., derived from GPS
data) for each road in a road network, a mathematical model of
the network can be instantiated and then used for predicting the fu-
ture travel cost behavior associated with the road network. Thus,
it becomes possible to obtain effective routing services in the un-
derlying road network that minimize travel time (e.g., [4]) or GHG
emissions, termed eco-routing [5]. However, achieving this is non-
trivial, as it is necessary to contend with three challenging charac-
teristics of the time series.

Sparse: Travel-cost time series are built from GPS data obtained
from probe vehicles that cannot cover every time interval. As a re-
sult, the time series are sparse, meaning that during some intervals,
no cost measurements are available for some road segments. For
example, both time series in Figure 1 lack travel times in the 23-rd
and 24-th intervals, and road 2 also lacks travel times in intervals
31–33. Thus, the time series we consider are fundamentally sparse,
which is different from regular time series [2, 13], where each in-
terval has a value.

Dependent: The travel costs associated with a road segment are
temporally dependent. For example, congestion on a road segment
disappears only gradually (see intervals 28–30 of road 2 in Fig-
ure 1). Likewise, time series are spatially correlated. For example,
congestion on one road segment may correlate with congestion on
spatially adjacent road segments. This is illustrated by the 28-th
interval on road 2 and the 29-th interval on road 1. When modeling
the overall travel cost behavior of a road network, it is important
to capture the dependencies within time series and the correlations
among different time series.

Heterogenous: Different road segments may exhibit very differ-
ent behaviors. For example, some segments may have clear morn-
ing and afternoon peak hours, while others may not. We model an
individual time series as the output generated by a state transition
machine (e.g., a Hidden Markov Model, HMM [2,13]) that operates
on a set of states. For instance, the traffic on a road segment may
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change between two states, e.g., clear and congested, and each state
may output different travel costs. A prerequisite of using HMMs is
that the cardinality of the state set that the underlying process op-
erates on is given a priori. Due to the heterogeneity across time
series, it is not feasible to use the same number of states for every
time series. Rather, each time series must have its own state set.

We model multiple travel-cost time series using a Spatio-Tempo-
ral Hidden Markov Model (STHMM) while taking into account the
above three challenging characteristics. We compress a sparse time
series into a compact time series and identify a state set for each
compact time series. The dependencies within a time series and
the correlations among different time series are modeled by con-
necting pertinent states of the road segments while considering the
topology of the road network. Smoothing techniques are applied to
reduce the effects of data sparsity. Finally, future travel costs are
inferred based on the learned STHMM.

We believe that this is the first study to provide general tech-
niques, including state formulation and parameter learning, that
contend with sparse, heterogenous, and spatio-temporally corre-
lated time series in a combined manner. The paper makes four
contributions. First, it proposes a general framework that is capa-
ble of modeling the traffic behavior of a road network and thereby
enables routing services that optimize different travel-related costs.
Second, a spatio-temporal hidden Markov model is formalized to
model the traffic behavior of a road network. Third, learning algo-
rithms are proposed to obtain individual state sets for all road seg-
ments and to determine the parameters needed to configure an ST-
HMM. Fourth, comprehensive experiments are conducted to elicit
the design properties of the proposed framework and algorithms.

The remainder of this paper is organized as follows. Section 2
covers preliminaries. Section 3 defines an STHMM, and Section 4
describes the learning algorithms needed for determining an ST-
HMM. Section 5 reports on the empirical evaluation. Finally, re-
lated work is covered in Section 6, and conclusions and research
directions are offered in Section 7.

2. PRELIMINARIES

2.1 Road Network Model
A road network is modeled as a directed, labeled graph G =

(V,E,W ), where V and E ⊆ V × V is a vertex set and an edge
set, respectively, and W : E × T → R+ captures time dependent
edge weights. A vertex vi ∈ V models a road intersection or an
end of a road. An edge ek = (vi, vj) ∈ E models a directed road
segment, indicating that travel is possible from its source vi to its
destination vj . We use the notation ek.s and ek.t to denote the
source and destination of edge ek. Figure 2 shows a road network
with 5 vertices and 6 edges.

v1

v2 v3

v4

v5

e1 e2 e3

e5

e4e6

Figure 2: A Simple Road Network

2.2 TravelCost Time Series
We construct time series from GPS data obtained from probe

vehicles. We use GPS data instead of road side sensor data because

GPS data is becoming available in increasing volumes, is less costly
to obtain, and provides good coverage of a road network. However,
the proposed techniques also apply to time series constructed from
road-side sensor data, as they share the same characteristics.

A trajectory T = ⟨p1, p2, . . . , pX⟩ is a sequence of GPS records
pertaining to a particular trip, where each record pi specifies a
(location, time) pair of the vehicle. With the help of map match-
ing [10], a GPS record can typically be mapped to a specific loca-
tion in the underlying road network.

Map matching transforms a trajectory T into a sequence of cost
records ⟨l1, l2, . . . , lm⟩, where each cost record lj is of the form
(e, ts, cost), where e is an edge traversed by trajectory T , ts is the
time at which traversing edge e starts, and cost is the travel cost
of traversing edge e. Some travel costs, notably travel times, can
be obtained directly from the GPS records, while other travel costs,
e.g., GHG emissions, can be derived from the GPS records [5].

Next, we introduce a parameter α that specifies the finest interval
to be used in defining time series. Given a GPS data set collected
during Z days, we then have T = ⌈Z·24·60

α
⌉ intervals. For exam-

ple, we may use α = 15 minutes because this is typically the finest
time granularity used in the transportation area [16]. When Z = 30
days, we then have T = 2, 880 intervals.

We define the travel-cost time series on edge ei as

T Si = ⟨C(1)
i , C

(2)
i , . . . , C

(T )
i ⟩,

which is a sequence of T travel cost sets. Travel cost set C(t)
i =

{lj .cost |lj .e = ei ∧ lj .ts ∈ [(t−1) ·α, t ·α)}, contains the travel
costs observed in the t-th interval [(t − 1) · α, t · α). If no GPS
records are collected on ei during the t-th interval, C(t)

i is empty.
Figure 3 shows travel-time based and GHG-emissions based time

series for the same edge, where α is set to 15 minutes. Both time
series are sparse: for example, the 46-th interval contains no data.
Figure 3 also illustrates that an average value for an interval [13]
cannot capture the traffic behavior during the interval, which may
vary considerably throughout the interval. In the example, the travel
time in the 49-th interval varies considerably. In the proposed ST-
HMM, the travel cost distribution in the t-th interval is modeled
based on C

(t)
i .
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Figure 3: Examples of Travel-Cost Time Series

The distributions of travel time and GHG emissions may be quite
different (e.g., see the 49-th intervals in Figures 3(a) and (b)). A
general technique that is able to support different travel costs must
handle such variation. Section 5 shows that the proposed STHMM
is able to predict both travel time and GHG emissions.

2.3 Framework Overview
In short, we aim to update time-dependent edge weights in G

based on real-time travel cost information. Figure 4 gives an overview
of the system, which has three major components: offline learning,
online inference, and routing services.
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Figure 4: Framework Overview

In offline learning, a state formulation and parameter learning
module takes as input a collection of time series that are obtained
from historical GPS trajectories. It outputs an STHMM. As real-
time GPS records stream in, the online inference component infers
near-future travel costs by using the learned STHMM. The time-
dependent edge weights in road network G can be updated based
on the inferred travel costs. In the routing services, any routing
algorithms that support time-dependent edge weights [4, 6, 8] can
be applied to road network G to enable various kinds of routing
such as eco-routing or time-based routing.

3. TRAVEL COST MODELING
We employ HMMs to capture the temporal dynamics of the travel

costs on individual edges; then we define a Spatio-Temporal Hid-
den Markov Model (STHMM) to model the spatio-temporal corre-
lation of travel costs among all edges in a road network.

3.1 Modeling Temporal Dependence
Without loss of generality, we assume that the travel costs of an

edge are affected by the underlying traffic on the edge and vary as
the traffic changes over time.

Consider a particular edge ei. A state set Si = {s(x)i } models
all possible traffic conditions on edge ei. For example, states s(1)i

and s
(2)
i may model congestion and clear, respectively. We use a

state sequence Qi = ⟨q(1)i , q
(2)
i , . . . , q

(T )
i ⟩ to model the transition

of the traffic condition on ei from one state to another over the T
intervals. State q

(t)
i ∈ Si (1 6 t 6 T ) models the traffic condition

in the t-th interval, and it depends only on its previous state q(t−1)
i ,

i.e., the traffic condition in the (t − 1)-st interval. In Figure 5,
q
(t)
i = s

(1)
i indicates that edge ei is in state congestion in the t-th

interval, and it is dependent on the state in the (t − 1)-st interval
q
(t−1)
i = s

(1)
i , which is also in congestion.

We use a travel-cost time series T Si = ⟨C(1)
i , C

(2)
i , . . . , C

(T )
i ⟩

to model the variation of the travel costs on edge ei during the T

intervals. Here, C(t)
i contains the travel costs observed in the t-th

interval and is dependent on the corresponding traffic conditions,
i.e., state q(t)i . Figure 5 shows that the travel costs in C

(t)
i generally

exceed those in C
(t+1)
i . This corresponds to the traffic in the t-th

interval being congested, while the traffic is clear in the (t + 1)-st
interval.

Based on the above, we use a Hidden Markov Model (HMM) [11]
to model the relationship between traffic conditions and travel costs.
An HMM is a statistical model for modeling a time series, e.g., the
travel-cost time series T Si on edge ei, which is generated by a
Markov process.

A Markov process operates on a set of hidden states (e.g., a traffic
state set Si) to generate a state sequence (e.g., Qi). A state in
the state sequence depends only on its previous state, and a state
generates an output, thus resulting in the time series. In our setting,

qi
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=

si
(1)

Intervals:
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Figure 5: Traffic Conditions and Travel Costs on Edge ei

the traffic condition in the t-th interval only depends on the traffic
conditions in the (t − 1)-st interval, and travel costs in the t-th
interval depend on the traffic conditions in the t-th interval.

An HMM is defined in terms of three parameters PI , A, and B:

1. Initial probabilities PI = {π(x)}, 1 6 x 6 |Si|, where
π(x) = P(q

(1)
i = s

(x)
i ) is the probability that state sequence

Qi starts with state s
(x)
i .

2. Transition probabilities A = {a(x,y)}, 1 6 x, y 6 |Si|,
where a(x,y) = P(q

(t)
i = s

(y)
i |q

(t−1)
i = s

(x)
i ) is the proba-

bility that state s
(x)
i transits to state s

(y)
i in the next step.

3. Output probabilities B = {b(x)(c)}, 1 6 x 6 |Si|, where
b(x)(c) = P(c ∈ C

(t)
i |q

(t)
i = s

(x)
i ) is the probability that

cost value c is observed given the state is s(x)i .

Note that only the time series T Si is observable from the avail-
able GPS records, while the states are hidden and cannot be ob-
served directly. The formulation of state set Si is detailed in Sec-
tion 4.1. The state sequence Qi and the time series T Si are inter-
related. Given the travel costs C

(t)
i in the t-th interval, the corre-

sponding state q
(t)
i can be inferred using output probabilities. The

state in the next interval q(t+1)
i can then be predicted from q

(t)
i and

the transition probabilities. The travel costs at the next interval,
C

(t+1)
i , can in turn be inferred from q

(t+1)
i and output probabili-

ties. The derivation of these probabilities is detailed in Section 4.2.

3.2 Modeling SpatioTemporal Dependence
The state of an edge influences not only its own next state, but

also the next states of nearby edges. For example, an edge is more
likely to be congested if its neighboring edges are congested. To
model the spatio-temporal dependencies of travel costs over an en-
tire road network, we define an STHMM.

3.2.1 Nth Order Neighbors
To define an STHMM, we need the concept of the n-th order

neighbors of an edge ei, denoted as L(n)
i . Given an edge ei, its 1-st

order neighbors L(1)
i is defined in Equation 1.

L
(1)
i = {ei}

∪
{ej |(ej .t = ei.s ∨ ej .s = ei.t)∧
¬(ej .t = ei.s ∧ ej .s = ei.t)}

(1)
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Here, L(1)
i includes edge ei itself and the edges that share a source

or target vertex with ei, but excludes the oppositely directed edge
that corresponds to the same physical road segment as ei. Consid-
ering Figure 2, L(1)

2 = {e1, e2, e3}, since edges e2 and e1 share
v2, and edges e2 and e3 share v3. Edge e4 is not in L

(1)
2 as it is the

oppositely directed edge.
The n-th order (n > 1) neighbors of edge ei are defined recur-

sively as L(n)
i =

∪
ej∈L

(n−1)
i

L
(1)
j . For example, since L

(1)
1 ={e1,

e2, e5}, L(2)
1 =L(1)

1 ∪ L
(1)
2 ∪ L

(1)
5 = {e1, e2, e5} ∪ {e1, e2, e3} ∪

{e1, e4, e5} = {e1, e2, e3, e4, e5}.

3.2.2 SpatioTemporal Hidden Markov Model
To model the traffic evolution in an entire road network, we need

to consider the interactions among the traffic on all edges. A naive
model is to treat different edges’ traffic evolutions as independent:
the traffic on an edge evolves by itself and does not interact with
the traffic on other edges. This yields |E| individual HMMs, each
of which models the traffic on a single edge. This naive model fails
to capture any interactions among the traffic on different edges and
is unable to properly model global traffic changes.

We proceed to define an STHMM that couples the traffic of n-th
order neighbors to model the interactions among these edges. An
n-th order STHMM couples the HMM of an edge with the HMMs
of its n-th order neighbors. In an n-th order STHMM, edge ei’s
current state q(t)i is not only dependent on its previous state q(t−1)

i ,
but also on the previous state of each of its n-th order neighbors,
i.e., all the states q(t−1)

j where ej ∈ L
(n)
i .

The 1-st order STHMM of the road network in Figure 2 is shown
in Figure 6, where only states are shown and the time series are
omitted. Taking edge e1 as an example, since L

(1)
1 ={e1, e2, e5},

state q
(t)
1 is dependent on states q

(t−1)
1 , q(t−1)

2 , and q
(t−1)
5 . Thus,

states q(t−1)
1 , q(t−1)

2 , and q
(t−1)
5 are connected to q

(t)
1 in Figure 6.
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Figure 6: 1-st Order Spatio-Temporal Hidden Markov Model

3.2.3 Parameter Space
In an STHMM, edge ei’s transition probability is a conditional

probability conditioned on the previous states of its n-th order neigh-
bors eij ∈ L

(n)
i . Thus, we have P(q

(t)
i |q

(t−1)
i1

, . . . , q
(t−1)
ik

), where

q
(t−1)
ij

(1 6 j 6 k and k = |L(n)
i |) is the previous states of edge

eij . Considering the STHMM in Figure 6, the transition probabil-
ity factors of edges e1 and e6 are P(q

(t)
1 |q

(t−1)
1 , q(t−1)

2 , q(t−1)
5 )

and P(q
(t)
6 |q

(t−1)
4 , q(t−1)

6 ), respectively.
An STHMM is governed by parameters TAU , H , and D:

1. Initial probabilities: TAU = {τ (x)
i }, 1 6 i 6 |E|, 1 6 x

6 |Si|, where τ
(x)
i =P(q

(1)
i = s

(x)
i ) is the probability that

edge ei starts with state s
(x)
i .

2. Transition probabilities: H = {hxi,xi1
,...,xik

i,i1,...,ik
}, 1 6 i 6

|E|, 1 6 xi 6 |Si|, eij ∈ L
(n)
i , 1 6 xij 6 |Sij |, 1 6

j 6 k = |L(n)
i |. Further, h

xi,xi1
,...,xik

i,i1,...,ik
= P(q

(t)
i =

s
(xi)
i |q(t−1)

i1
= s

(xi1
)

i1
, . . . , q

(t−1)
ik

= s
(xik

)

ik
) is the proba-

bility that the current state of edge ei is s(xi)
i given the pre-

vious states of its n-th order neighbors ei1 , . . . , eik being

s
(xi1

)

i1
, . . . , s

(xik
)

ik
.

3. Output probabilities: D = {d(x)i (c)}, 1 6 i 6 |E|, 1 6 x

6 |Si|, where d
(x)
i (c) = P(c ∈ C

(t)
i |q

(t)
i = s

(x)
i ) is the

probability of observing output c from edge ei given that its
state is s(x)i .

4. LEARNING AN STHMM
To obtain an STHMM instance that appropriately models the dy-

namics of traffic in a road network, we must formulate hidden states
for all edges, and we must instantiate the parameters that govern the
STHMM. Figure 7 gives an overview of the whole process.

The process of learning an STHMM starts with the state formu-
lation phase (Section 4.1). For each edge ei ∈ E, its sparse time
series T Si is compressed into a compact time series T Si. The
state formulation module clusters the travel cost sets in compact
time series T Si into a set of clusters, where each cluster indicates
a state. Thus, state set Si for edge ei is obtained. In addition, the
output probabilities are determined.

Compression

Sparse Time Series

TS1, TS2, �, TS|E|

Compact Time Series

͞͞TS1, TS2, �, TS|E|

State Formulation

State Sets: S1, S2,�, S|E|

& Output Probabilities D

Sparse Time Series

State Estimation

Uncertain State Sequences

Parameter Learning

Transition Probabilities H

& Initial Probabilities TAU

State Formulation Phase Parameter Learning Phase

Figure 7: Overview of the STHMM Learning Process

The next phase is parameter learning (Section 4.2). For each
edge ei, based on the obtained state set Si, a state estimation mod-
ule estimates possible states for each interval in the sparse time
series T Si, thus obtaining an uncertain state sequence Qi. Cou-
pling the uncertain state sequences according to their n-th order
neighbors, the transition and initial probabilities of the STHMM
are determined. Finally, we describe how to use a learned STHMM
to infer travel costs (Section 4.3).
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4.1 State Formulation

4.1.1 Compact Time Series
The time series T Si = ⟨C(1)

i , . . . , C
(T )
i ⟩ on edge ei may be

sparse because many or some of the C
(t)
i may contain no or few

travel costs due to the lack of GPS records in the corresponding
intervals. To contend with this sparsity, we compress T Si into a
compact time series T Si in which each interval contains relatively
more travel costs, which renders subsequent analysis (detailed in
Sections 4.1.2 and 4.1.3) easier and more effective.

Recall that T Si records travel costs on ei during Z days or T =
⌈Z·24·60

α
⌉ intervals. Its compressed version T Si consolidates these

costs into a period of interest P that contains M = ⌈P
α
⌉ intervals.

In the example in Section 2.2, Z = 30 days, α = 15 minutes,
and T = 2, 880 intervals. With P being a 24-hour period, T Si

contains M = 96 intervals.
Next, we define a compact time series T Si as follows.

T Si = ⟨C
(1)
i , C

(2)
i , . . . , C

(M)
i ⟩, where C

(x)
i =

∪
k mod M=x

C
(k)
i

Intuitively, set C
(1)
i in T Si contains all travel costs observed on

edge ei in the interval [0:00, 0:15) during each of the Z days. Thus,
set C

(1)
i is the union of C(1)

i , C
(97)
i , C

(193)
i , . . . , C

(2785)
i in T Si.

Figure 8 shows four compact travel time series obtained from
four different edges. The travel times in Figure 8(a) exhibit clear
morning and afternoon peaks, while the times shown in Figure 8(b)
have only a clear morning peak. The travel times in Figure 8(c) do
not display a clear trend of variation, but vary significantly, from
16 seconds to 137 seconds. The travel times in Figure 8(d) remain
almost constant at around 8 seconds.
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Figure 8: Compact Travel Time Series

Figure 8 suggests that the traffic on different edges evolves quite
differently. In order to use an STHMM to model the traffic dy-
namics, it is thus important that each edge ei can be given its own
state set Si. To achieve this, we propose a Time Sensitive Gaussian
Mixture (TSGM) method to formulate each Si, where the obtained
states satisfy two properties: (i) in a state, the traffic on an edge
behaves similarly, thus making the travel cost follow a distribution;
(ii) a state is dependent on its previous state. As shown in Algo-
rithm 1, the TSMG method consists of two steps, cost clustering
and time-cost clustering, detailed below.

Algorithm 1: TSMG

Input : double: λ; CompTimeSeries: T S1 . . . T S|E|;
Output: State sets for all edges: S1, S2, . . . , S|E|;

1 for each edge ei in the road network do
2 GMM i ← CostClustering(T Si);
3 Si ← TimeCostClustering(T Si,GMM i, λ);

4.1.2 Cost Clustering
For each edge ei, the cost clustering step identifies a probability

density function (pdf) that describes the distribution of all travel
costs in T Si, regardless of the interval in which they are observed.
As a Gaussian Mixture Model (GMM) is able to approximate any
complex pdf [2], the cost clustering step identifies a GMM, denote
as GMM i, to describe the distribution of all travel costs observed
on ei (line 2 in Algorithm 1).

Specifically, GMM i is determined by grouping all the cost val-
ues in T Si into Ki clusters. Each cluster indicates a representative
group of travel costs, whose distribution is described by a single
Gaussian distribution, termed a Gaussian component. Equation 2
gives the formal definition.

GMM i(c) =

Ki∑
k=1

mi,k · N (c|µi,k, δ
2
i,k) (2)

Here, mi,k is the k-th mixing coefficients of the k-th Gaussian
components, and these satisfy

∑Ki
k=1 mi,k = 1; and the k-th Gaus-

sian componentN (c|µi,k, δ2i,k) has mean µi,k and variance δ2i,k.
If Ki is given in advance, basic clustering algorithms, e.g., K-

Means, can be applied directly. However, deciding an appropri-
ate Ki before the step starts is difficult, and the obtained clusters
may not be optimal. An overly small Ki may not fully capture all
the representative travel costs on the edge, thus resulting in under-
fitting; and an overly large Ki may capture the travel costs over-
specifically, yielding over-fitting [2].

We apply the procedure given in Algorithm 2 to select an ap-
propriate Ki. It starts with Ki = 1 and then increments Ki by 1
until the benefit (e.g., likelihood) of using Ki is smaller than that
of using Ki − 1.

Algorithm 2: CostClustering

Input : CompTimeSeries: T Si = ⟨C
(1)
i , . . . , C

(M)
i ⟩;

Output: GaussianMixtureModel: GMMi ;
1 GMM preGMM ← null , newGMM ← null ;
2 double preLH ← −∞, newLH ← −∞; int k ← 0;

3 CC ←
∪M

x=1 C
(x)
i ;

4 Split CC into f equal subsets cc[1], . . . , cc[f ];
5 repeat
6 preGMM ← newGMM ;
7 preLH ← newLH ; newLH ← 0;
8 k ← k + 1;

/* f-fold likelihood evaluation */
9 for j = 1 . . . f do

10 train ← CC \ cc[j]; test ← cc[j];
11 newGMM ← EstimateGMM (train, k);
12 newLH ← newLH + EvaLH (test ,newGMM );

13 until newLH 6 preLH ;;
14 GMM i ← preGMM ;
15 return GMM i;
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All the cost values in T Si are recorded in CC , and CC is split
into f equal subsets (lines 3–4). In the k-th iteration (lines 5–13),
a GMM newGMM with Ki = k Gaussian components and the
likelihood newLH of using newGMM are obtained.

The likelihood of using k Gaussian components is evaluated us-
ing f -fold cross validation (lines 9–12). Each of f subsets is used
as a testing set test once, and each of the remaining f−1 subsets is
used as a training set train (line 10). The parameters of a Gaussian
mixture model newGMM with k Gaussian components are esti-
mated based on the training set train using a classical Expectation-
Maximization algorithm [2] (EstimateGMM (train, k), line 11).
The likelihood that the test data test is generated by the GMM
newGMM is evaluated (EvaLH (test ,newGMM ) in line 12).

Consider the edge shown in Figure 8(c), where travel costs range
from 0 to 140. Figure 9(a) shows the percentage of traversals (on
the y-axis) of the edge with each cost value (on the x-axis). For
instance, the highest bar indicates that 6.7% of the traversals took
22 seconds. By applying cost clustering, it is found that a GMM
with Ki = 3 Gaussian components best describes the travel-time
distribution—see Figure 9(b).

By using 10-fold cross validation, the likelihoods of choosing
different numbers of Ki are reported in Figure 9(c), which indicates
that Ki = 3 is the optimal choice. This example also suggests
that although it is infeasible to model travel-cost distributions by
a single pdf (e.g., Gaussian, uniform or exponential distribution),
properly chosen GMMs can describe such distributions very well.
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Figure 9: State Formulation

4.1.3 TimeCost Clustering
For each edge ei, given the GMM GMM i with Ki Gaussian

components, time-cost clustering (line 3 in Algorithm 1) identifies
the state set Si on ei. First, each C

(x)
i in the compact time se-

ries T Si is transformed into a Ki + 1 dimensional point. Such a
point captures both travel-cost distribution in an interval and the
temporal dependency with its previous interval. Thus, T Si =

⟨C(1)
i , . . . , C

(M)
i ⟩ is transformed into M Ki+1 dimensional points

f
(1)
i , . . . , f

(M)
i . Second, these points are clustered, such that each

cluster refers to a state on edge ei.
Transforming Compact Time Series to Points: In cost cluster-

ing, we identified Ki Gaussian components describing Ki repre-
sentative travel-cost groups on edge ei. The travel costs in a partic-

ular interval on the edge should also follow the Ki representative
travel cost groups. Thus, the distribution of the travel costs in the x-
th interval C

(x)
i is estimated with a new GMM GMM

(x)
i with the

Ki Gaussian components determined in the cost clustering phase,
as defined by Equation 3.

GMM
(x)
i (c) =

Ki∑
k=1

m̂
(x)
i,k · N (c|µi,k, δ

2
i,k) (3)

Here, N (c|µi,k, δ
2
i,k) is the k-th Gaussian component, as in Equa-

tion 2. However, the m̂
(x)
i,k are new mixing coefficients that satisfy∑Ki

k=1 m̂
(x)
i,k = 1.

Although GMM
(x)
i and GMM i share the same Ki Gaussian

components, the mixing coefficients in the two GMMs are typi-
cally different because the travel costs observed in each interval
typically differ. For example, consider the edge in Figure 9(b).
GMM

(x)
i may have a larger coefficient for Gaussian component

N (21.5, 7.0) for an offpeak interval, but a smaller coefficient for a
peak interval.

Next, each C
(x)
i is transformed into a Ki +1 dimensional point:

f
(x)
i = (m̂

(x)
i,1 , . . . , m̂

(x)
i,Ki

,KL
(x)
i )

The first Ki coordinates are the new mixing coefficients, and the
last coordinate KL

(x)
i measures the differences between the distri-

bution of the costs in the x-th interval C
(x)
i and the distribution of

the costs in its previous interval C
(x−1)
i , which reflects the tempo-

ral dependency of the distributions of costs in two adjacent inter-
vals. In particular, KL

(x)
i is evaluated based on Kullback-Leibler

divergence [2], as defined in Equation 4.

KL
(x)
i =

∫ +∞

−∞
GMM

(x−1)
i (c) · ln GMM

(x−1)
i (c)

GMM
(x)
i (c)

dc (4)

Algorithm 3 transforms a compact time series to a set of points
by identifying a point for each C

(x)
i in T Si. First, new mixing co-

efficients in GMM
(x)
i are initialized as the coefficients in GMM i

that is obtained from cost clustering (lines 2–3).
If the x-th interval is sparse, i.e., C

(x)
i contains fewer than a

threshold of mCounts cost values, the procedure skips re-estimating
the new mixing coefficients. Rather than using a new GMM re-
estimated based on the few cost values in a sparse interval, it is
better to use the original GMM i, which captures the common be-
havior over the whole period of interest P , to describe the distribu-
tion of costs in the sparse interval. This avoids over-fitting to the
cost values in sparse intervals.

For example, the 3-rd interval of the edge shown in Figure 8(c)
contains only one cost value. Mixing coefficients estimated based
on this single value may be over-fitted to this value, which is not
optimal. Sparse intervals typically occur during periods with low
traffic, for which the value very much depends on the particular
driver and therefore can vary considerably.

New mixing coefficients are estimated for the remaining non-
sparse intervals (lines 4–16). In each iteration, the mixing coef-
ficients are updated based on normalized likelihood values of the
mixing coefficients obtained from the previous iteration.

Finally, Kullback-Leibler divergence is evaluated for each inter-
val, and the point for each interval is formulated (lines 17–20).
Function EvaKL(·, ·) returns a KL divergence value that is nor-
malized to the unit range [0, 1], e.g., by dividing by the largest KL
divergence value on edge ei.
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Algorithm 3: CompactTimeSeriesToPoints

Input : CompTimeSeries: T Si = ⟨C
(1)
i , . . . , C

(M)
i ⟩;

GMM: GMM i;
Output: Point Set: Fi;

1 for x = 1 . . .M do
2 for k = 1 . . .GMM i.Ki do
3 GMM

(x)
i .m̂

(x)
i,k ← GMM i.mi,k;

4 if |C(x)
i | > mCounts then

5 repeat
6 Initialize an array sum[GMM i.Ki];

7 for each cost value c ∈ C
(x)
i do

8 Initialize an array lh[GMM i.Ki];
9 for k = 1 . . .GMM i.Ki do

10 lh[k]← GMM
(x)
i .m̂

(x)
i,k · N (c|µi,k, δ

2
i,k);

11 for k = 1 . . .GMM i.Ki do
12 lh[k]← lh[k]∑Ki

k=1
lh[k]

;

13 sum[k]← sum[k] + lh[k];

14 for k = 1 . . .GMM i.Ki do
15 GMM

(x)
i .m̂

(x)
i,k ←

sum[k]

|C(x)
i |

;

16 until converged

17 for x = 2 . . .M do
18 KL

(x)
i ← EvaKL(GMM

(x−1)
i ,GMM

(x)
i );

19 f
(x)
i ← (m̂

(x)
i,1 , . . . , m̂

(x)
i,Ki

,KL
(x)
i );

20 Fi ← f
(1)
i ∪ . . . ∪ f

(M)
i ;

21 return Fi;

Clustering Points: In Section 3.1, we assumed that (i) the traffic
in the same hidden state behaves similarly, and (ii) the current state
depends on its previous state. Thus, we consider both travel cost
distance and temporal dependency distance when clustering points
f
(1)
i , . . . , f

(M)
i .

DisC and DisT measure the travel-cost distance and the tempo-
ral dependency distance between a point f (x)i and the center of a
cluster Un, respectively. Recall that the first Ki coordinates of a
point f (x)i refers to the travel-cost distribution in the x-th interval
and that the KL value (i.e., the last coordinate) captures the tem-
poral dependency of the travel cost distributions in the (x − 1)-st
and x-th intervals. Thus, DisC computes a distance using the first
Ki coordinates of f

(x)
i and of the center of Un, and it relates to

assumption (i); and DisT computes a distance using the KL value
of f (x)i and of the center of Un, and it relates to assumption (ii).
Specifically, we have:

DisC(f
(x)
i , Un) =

∑Ki
k=1 mi,k · (m̂(x)

i,k − ¯̂m
(n)
i,k )

2

DisT (f
(x)
i , Un) = (KL

(x)
i − K̄L

(n)
i )2

Here, ¯̂m
(n)
i,k and K̄L

(n)
i are the coordinates of the center of cluster

Un, which is equal to the average value of the k-th coordinates, and
the KL value of the points in cluster Un, respectively.

Based on the above, the distance between a point f (x)i and the
center of a cluster Un is defined in Equation 5 as a weighted (using
parameter λ), linear combination of DisC and DisT .

Dis(f
(x)
i , Un) = λ ·DisC(f

(x)
i , Un) + (1− λ) ·DisT (f

(x)
i , Un)

(5)

The time-cost clustering procedure is described in Algorithm 4.
K-Means clustering [2] that uses the distance function defined in
Equation 5 is applied. The algorithm calls K-Means with k = 1
and increments k until a termination criterion is satisfied.

Algorithm 4: TimeCostClustering

Input : CompTimeSeries: T Si; GMM: GMM i; double λ;
Output: A state set: Si;

1 Fi ←CompactTimeSeriesToPoints(T Si,GMM i);
2 int k ← 0;
3 repeat
4 k ← k + 1;
5 ClusterSet U ← K −Means(Fi, k, λ);
6 PreviousDis ← PreviousDis ∪Dis(U);
7 until TermHeur(PreviousDis);
8 StateSet Si ← U ;
9 return Si;

The algorithm chooses an appropriate number of clusters, each
corresponding to a hidden state. In one extreme, if a state is created
for each point, the states have the best quality because each state
has a unique travel cost distribution and time dependency. How-
ever, the parameter space (notably the transition probabilities) of
an STHMM increases exponentially with the number of states, thus
rendering parameter learning expensive or infeasible. Towards the
other extreme, if choosing only one or a small number of clusters,
the STHMM is unlikely to capture adequately the traffic dynamics,
thus decreasing the travel cost inference accuracy.

To choose the number k of clusters, a termination heuristic (line 7)
is applied. We track the overall distance value when having k clus-
ters U = U1, . . . , Uk, as defined in Equation 6.

Dis(U) =
k∑

n=1

∑
f
(x)
i ∈Un

Dis(f
(x)
i , Un) (6)

For most edges, as k increases, the overall distances initially drop
quickly, but then subsequently drop only slowly. If the distance de-
crease is low for several consecutive steps, the process terminates,
and the k obtained prior to the onset of the low distance decrease is
chosen.

Finally, each cluster is regarded as a state, and a state is repre-
sented by the coordinates of its center. For example, eight clusters
are identified for the edge shown in Figure 8(c). The coordinates of
the cluster centers are shown in Figure 9(d).

Discussion: In time-cost clustering, instead of estimating dis-
tinct GMMs with different Gaussian components for the travel costs
in different intervals, we use the Ki Gaussian components identi-
fied during cost clustering. This has two benefits. First, it provides
reliable travel cost distributions for sparse intervals, which reduces
the effects of the data sparsity. Second, it allows transformation of
the travel cost distribution in each interval into a Ki + 1 dimen-
sional point. Clustering of points using weighted Euclidean dis-
tance (based on Equation 5) is much more efficient than clustering
distributions. Measuring the similarity between two distributions
accurately and reliably typically requires expensive sampling and
the use of many sampling points.

4.2 Parameter Learning
Having obtained sets of states for all edges, the parameters that

specify an STHMM as defined in Section 3.2.3 need to be identi-
fied. We determine output, transition, and initial probabilities.
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4.2.1 Output Probabilities
Since a state s(x)i ∈ Si of edge ei is a cluster of points containing

mixing coefficients of GMMs, the output probability of the state is
also defined as a GMM. The output probability d

(x)
i (c) of state s(x)i

on edge ei is defined as follows.

d
(x)
i (c) =

Ki∑
k=1

m̄
(x)
i,k · N (c|µi,k, δ

2
i,k)

The Gaussian component N (c|µi,k, δ
2
i,k) is as defined in Equa-

tion 2. The k-th mixing coefficient is the average of all the k-th co-
ordinates of the points in state s(x)i : m̄

(x)
i,k =

∑
f
(y)
i ∈s

(x)
i

m̂
(y)
i,k/|s

(x)
i |.

4.2.2 Transition Probabilities
The original, sparse time series are used for learning transition

probabilities, as they provide more observations of state transitions
than do the compact time series and thus yield more accurate learn-
ing. Given a sparse time series, the possible states of each interval
are estimated based on the cost values in the interval. Thus, sparse
time series are transformed into uncertain state sequences, based
on which transition probabilities are determined using maximum
likelihood estimation.

State Estimation: Given a set of travel costs C(t)
i during the t-

th interval on edge ei, the probability that the corresponding state
is s

(x)
i ∈ Si, denoted as P(q

(t)
i = s

(x)
i |C

(t)
i ), is estimated using

Equation 7 according to the Bayes’ theorem.

P(q
(t)
i = s

(x)
i |C(t)

i ) =
P(C

(t)
i |q(t)i = s

(x)
i ) ·P(q

(t)
i = s

(x)
i )∑|Si|

x=1 P(C
(t)
i |q(t)i = s

(x)
i ) ·P(q

(t)
i = s

(x)
i )

(7)
Here P(C

(t)
i |q

(t)
i = s

(x)
i ) is the probability that costs in C

(t)
i are

observed in state s
(x)
i (i.e., output probabilities), and thus we have:

P(C
(t)
i |q

(t)
i = s

(x)
i ) =

∏
c∈C

(t)
i

P(c|q(t)i = s
(x)
i ) =

∏
c∈C

(t)
i

d
(x)
i (c)

If C(t)
i is empty due to data sparsity, P(C

(t)
i |q

(t)
i = s

(x)
i ) is omit-

ted from Equation 7, i.e., we set P(C
(t)
i |q

(t)
i = s

(x)
i ) to 1.

Further, the prior P(q
(t)
i = s

(x)
i ) is decided based on the tem-

poral context, i.e., the t-th interval. Assume that the t-th interval
of edge ei’s sparse time series corresponds to the t′-th interval of
its compact time series. If the corresponding point in the t′-th in-
terval f (t

′)
i is assigned to a state s

(γ)
i (i.e., f (t

′)
i ∈ s

(γ)
i ) in the state

formulation phase then s
(γ)
i is used as the default state.

Although the default state s
(γ)
i is treated as the most probable

state of ei during the t-th interval, this does not mean that the re-
maining states s(γ

′)
i (γ′ ̸= γ and s

(γ′)
i ∈ Si) are not possible at all.

Motivated by the notion of additive smoothing [9], we smooth the
probabilities among every possible state by assigning a small prob-
ability ϵ to each non-default state and assigning a big probability
1− ϵ · (|Si| − 1) to the default state. Formally, we have:

P(q
(t)
i = s

(x)
i ) =

{
1− ϵ · (|Si| − 1) s

(x)
i = s

(γ)
i

ϵ s
(x)
i ̸= s

(γ)
i

(8)

Having estimated the possible states for each interval in a sparse
time series T Si, an uncertain state sequence is formulated. The t-
th element in the uncertain state sequence contains the probabilities
for each state in Si, namely P(q

(t)
i = s

(x)
i |C

(t)
i ) for 1 6 x 6 |Si|.

Figure 10 shows uncertain state sequences for edges e1, e2, and
e5. The costs during the 1-st, 2-nd, and 3-rd intervals are only

observed on edges e1 and e5, edges e1 and e2, and edge e1, respec-
tively. Thus, possible states on q

(1)
1 , q(1)5 , q(2)1 , q(2)2 , and q

(3)
1 can be

obtained based on the corresponding cost values using Equation 7,
while all the remaining states are obtained using Equation 8 (where
ϵ = 0.01 as an example).
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Figure 10: Learning Transition Probabilities

Learning Transition Probabilities: Transition probabilities are
learned from the obtained uncertain state sequences using maxi-
mum likelihood estimation. The state transition probability of edge
ei, h

xi,xi1
,...,xik

i,i1,...,ik
, is defined as the probability of ei being in state

s
(xi)
i given that the previous states of ei’s n-th order neighbors be-

ing s
xi1
i1

. . . s
xik
ik

, respectively. It is estimated using Equation 9.

h
xi,xi1

,...,xik
i,i1,...,ik

= (9)∑T
t=2 P(q

(t)
i = s

(xi)
i ) ·

∏k
j=1 P(q

(t−1)
ij

= s
(xij

)

ij
)∑T−1

t=1

∏k
j=1 P(q

(t)
ij

= s
(xij

)

ij
)

An example of determining transition probabilities for edge e1
is shown in Figure 10. Using Equation 9, h(1,1,2,3)

1,1,2,5 , i.e., the proba-
bility of e1 being s

(1)
1 given that the previous states of its neighbors

e1, e2, and e5 are s
(1)
1 , s(2)2 , and s

(3)
5 , is estimated as h(1,1,2,3)

1,1,2,5 =
0.8·0.01·0.1·0.9+0.9·0.5·0.01·0.7

0.8·0.01·0.1+0.9·0.5·0.01 = 0.730

4.2.3 Initial Probabilities
The initial probability describes the first state of each edge’s traf-

fic evolution. As only one uncertain state sequence is identified for
each edge, only one training instance is available, which is insuffi-
cient to accurately estimate an edge’s initial probability.

To derive a meaningful initial probability for each edge, its un-
certain state sequence is split based on the period of interest P that
was used to obtain the compact time series. Thus, a group of un-
certain state sequences is obtained for each edge, which provides
more training instances for the estimation. Figure 11 shows an ex-
ample, where P is a day. The full uncertain state sequence is split
into short uncertain state sequences, each corresponding to a day.
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Figure 11: Learning Initial Probabilities
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Since initial probabilities are independent among different edges,
an edge’s initial probability can be learnt by only considering the
first states in the short uncertain state sequences of the edge. Given
edge ei, assume that the first states in all the short uncertain state
sequences are in set SS i. Then the initial probability of edge ei
is defined by Equation 10. For example, using the short uncertain
states sequences of edge e1 shown in Figure 11, the probability of
the initial state being s

(1)
1 is: τ (1)

1 = (0.8+0.99+0.9)/3 = 0.897.

τ
(x)
i =

∑
q
(1)
i ∈SSi

P(q
(1)
i = s

(x)
i )

|SS i|
(10)

4.3 Travel Cost Inference
An STHMM with learned parameters enables travel cost infer-

ence. Since the inference is similar to the inference on classical
HMMs [11], we omit the details and only briefly discuss two cases.

The first concerns the beginning of travel cost inference, where
no real-time GPS data is available. In this case, initial probabilities
are applied to infer the next states.

The second case occcurs when GPS data streams into the sys-
tem. Here, the current state is estimated using Equation 7 based on
the travel costs from the latest interval. Based on the learned tran-
sition probabilities, the next states are inferred. Using the inferred
next states and the learned output probabilities, the distributions of
travel costs in the next intervals are also available. For example, the
expected values of the estimated distribution can be used to assign
near-future edge weights to road network G.

5. EMPIRICAL STUDY
We report on a study that aims to elicit design properties of the

proposed framework and algorithms.

5.1 Experimental Setup
Data Set: We use 181 million GPS records collected at 1 Hz

(i.e., one GPS record per second) in North Jutland, Denmark during
week days from April 2007 to March 2008. The data is from an
experiment where young drivers start out with a rebate on their
car insurance and then are warned if they speed and are penalized
financially if they continue to speed.

The GPS data is map matched [10] to OpenStreetMap’s road net-
work for Denmark1, where 34%, 29%, 15%, 9%, and 13% of the
data occurs on tertiary, secondary, residential, motorway, and other
roads2, respectively. Most of the data is from urban and suburban
regions. The data set is divided into a training set (for learning
an STHMM), and a testing set (for testing the accuracy of inferred
travel costs). By default, we use the first half year (April to Septem-
ber) of data for training, and the remaining half year for testing.

Since the data only covers part of Denmark and some covered
edges have little data, we consider the subset of the road network
that is composed of edges that have at least 500 cost records, de-
noted as E. If an edge has less than 500 records in a year (i.e., less
than 2 records per day), the edge is either unlikely to have much
traffic and traffic variation, or the vehicles in the GPS data set do
not cover the edge. Such edges are not of interest to us. The re-
sulting, smaller road network contains |E| = 1, 916 edges. Thus,
the proposed STHMM learns 1, 916 correlated time series. We also
note that our study with 1, 916 correlated time series exceeds the
sizes of existing studies by two orders of magnitude [3, 7, 12, 17].
In fact, existing studies consider at most 10 correlated time series.
1http://www.openstreetmap.org
2According to OpenStreetMap road categories: http://wiki.
openstreetmap.org/wiki/Highway_tag_usage.

Period of Interest P : It is common to focus on “hot” periods
when studying traffic behavior [7] because such periods are most
interesting. In contrast, travel-time estimation during midnight is
of relatively little interest. Here, we consider P = [6:00, 20:00),
since the GPS data is collected primarily in P . Although we con-
sider a “hot” period and “hot” edges, the obtained time series re-
main quite sparse. Table 1 reports the percentage of intervals that
do not have any costs in the time series obtained using different α.

α (minutes) 15 30 60
Sparsity 89.2% 79.1% 60.2%

Table 1: Sparsity of Traffic Time Series

Travel Costs: We consider travel time (TT) and GHG emissions
(GE). Travel times are obtained as the difference between the cor-
responding time points of the last and first GPS records on an edge.
We use the VT-micro model [1] to estimate the GHG emissions
based on instantaneous velocities and accelerations, which are de-
rived from the available GPS records. A recent benchmark [5] in-
dicates that VT-micro is appropriate for this purpose.

Parameters: We vary the parameters α, λ, and n, which are
used in the state formulation and parameter learning steps, accord-
ing to Table 2, where default values are shown in bold. Default
values are used unless stated otherwise. Parameter f used in cost
clustering (in Algorithm 2) is set to 10, i.e., using 10-fold cross
validation. Threshold mCounts , used in Algorithm 3, is set to 5.
Smoothing parameter ϵ, used in Section 4.2.2, is set to 0.02.

Parameters Values
α 15, 30, 60 (minutes)
λ 0, 0.1, 0.2 , 0.3 (for TT), 0.4,

0.5 (for GE), 0.6, 0.7, 0.8, 0.9, 1
n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 2: Parameter Settings

Accuracy Measurements: When we infer travel costs for an
edge, the intervals that have been traversed at least once are of in-
terest to us because they have ground-truth travel costs, which en-
ables us to measure inference accuracy. We call these test intervals,
and we consider only these in the experiments.

We quantify the effectiveness of the estimated travel costs using
average sum of squared loss (ASSL). The ASSL value of edge ei
is defined as ASSL(ei) =

1
Mi
·
∑Mi

j=1(EST j−GT j)
2, where Mi

is the total number of test intervals of edge ei and EST j and GT j

are the estimated and the ground truth costs for the j-th test interval,
respectively. In the j-th test interval, the STHMM estimates a state
that describes the cost distribution during the interval, so we use the
expected cost as EST j . We compare the STHMM with a baseline
method, where the EST j is the average of the cost values observed
during the same interval from the training set. The average of all
cost values observed in the j-th test interval is used as the ground
truth GT j . The overall accuracy is the average ASSL value of
every edge, where ASSL = 1

|E| ·
∑

ei∈E ASSL(ei).
Implementation Detail: All algorithms are implemented in Java

using JDK 1.7. To ease the management of Gaussian mixture mod-
els, the jEMF package3 is applied. Some clustering algorithms are
implemented based on Weka4. A computer with Windows 7 Enter-
prise, a 3.40GHz Intel Core i7-2600 CPU, and 16 GB main memory
is used for all experiments.
3http://www.lix.polytechnique.fr/˜nielsen/MEF/
4http://www.cs.waikato.ac.nz/ml/weka/
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5.2 Effects of α and λ

To observe the effects of parameters α and λ, we plot the ASSL
loss ratio (i.e., ASSLSTHMM

ASSLBaseline
) while varying α and λ in Figure 12.

Recall that λ controls the relative importance of travel cost distance
and temporal dependency distance in time-cost clustering.

Given a fixed λ, the STHMM is always superior to the baseline
method for both TT and GE. For example, for TT and α = 15,
the best ratio is around 45%, meaning that the ASSL of the ST-
HMM is 45% of the baseline’s ASSL. This clearly demonstrates
the effectiveness of our STHMM approach.

The STHMMs with finer-grained intervals (i.e., smaller α) pro-
duce better ASSL loss ratios. It is expected that the traffic be-
tween two consecutive 15-minute intervals is more inter-dependent
than between two consecutive 60-minute intervals. Longer inter-
vals lower the traffic dependencies between consecutive intervals,
yielding a worse ASSL loss ratio.

We fix α and study the effect of varying λ. If we only consider
cost similarity (λ = 1) or only consider temporal similarity (λ =
0), the ASSL loss ratios on both TT and GE are higher than when
both similarities are considered, as seen in Figure 12. We also see
that the loss ratio is not very sensitive to λ, which makes it easy to
choose an appropriate λ value. We use λ = 0.3 and λ = 0.5 as
defaults for subsequent experiments on TT and GE, respectively, as
these values produce the best results.
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Figure 12: Effects of α and λ

Next, to observe the effectiveness of the STHMM across time,
we plot the ASSL values for the baseline and the STHMM with
α=15 at an hourly granularity in Figure 13. For both TT and GE,
the STHMM always has a lower ASSL for each hour. The results
suggest that the STHMM models traffic evolution during finer-grained
intervals much more effectively than the baseline method and is
able to provide much more accurate dynamic edge weights.
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Figure 13: Hourly Inference, α = 15

The total run time of learning an STHMM and the average run
time of performing TT inference per test interval on the learned
STHMM are shown in Figure 14 (results on GE are similar and
are thus omitted). Recall that both state formulation and parame-
ter learning are conducted off-line and are not time critical. The
figure shows that as α increases, the total run time of both phases

decreases. Given a training period, a smaller α yields more in-
tervals, thus creating more data to be considered in both phases.
For α = 15, more intervals with varying travel-cost distributions
need to be handled during time-cost clustering, yielding state sets
with higher cardinalities. Higher cardinalities increase the param-
eter spaces of the transition probabilities, which makes parameter
learning take longer than when α = 30 or 60. However, the longest
total run time of both phases is below 92 minutes, which is accept-
able for an off-line computation.
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It is also important to note that both state formulation and param-
eter learning are parallelizable. State formulation for an edge only
uses the compact time series from the edge, and parameter learning
for an edge only employs a group of uncertain state sequences from
the edge’s n-th order neighbors. By distributing the compact time
series and pertinent groups of uncertain state sequences to differ-
ent computer nodes, both state formulation and parameter learning
for different edges can be conducted in parallel. Frameworks such
as MapReduce are capable of distributing pertinent data to differ-
ent nodes and thus enable parallel state formulation and parameter
learning. This way, the total run time can be further reduced using
known techniques.

Travel cost inference is conducted on-line, meaning that as real-
time GPS data streams in, near-future travel costs are to be inferred
with little delay. Thus, travel cost inference is time critical. The
“Inference (per test interval)” columns in Figure 14 suggest that
travel cost inference is quite efficient and is capable of supporting
real-time inference.

5.3 Effects of Training Data
To observe the effect of the sizes of training sets, we use data

from the first i months for training, and the remaining data for test-
ing, where 1 6 i 6 11. For example, when i = 3, data from
April–June 2007 is used for training. The ASSL values using dif-
ferent training sets are reported in Figure 15. As more data is used
for training, the inference accuracy for both TT and GE also in-
creases (i.e., lower ASSL values).

Note that the STHMM always outperforms the baseline, espe-
cially when the training set is small. In particular, when i = 1, the
ASSL values of the STHMM is only 19% and 27% of those of the
baseline for TT and GE, respectively, indicating that the STHMM
works well when the training set is small and sparse.

It is of interest to incorporate recent data and learn an up-to-
date STHMM periodically. Assume that we learn a new STHMM
every month. We consider two strategies. When predicting travel
costs for a new month (e.g., September), Strategy 1 considers the
data collected from all previous months (e.g., April–August) to
learn a new STHMM, while Strategy 2 only considers the data col-
lected from the two most recent months (e.g., July–August). We
compare these with a static approach (that always uses an STHMM
learned from data collected from April–May).

The results on TT are shown in Figure 16. The periodically
learned STHMMs outperform the static one, especially when the
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test months are further away from the training months (e.g., from
October 2007 to March 2008). The two strategies are almost equally
effective (i.e., similar ASSL values), but have quite different effi-
ciencies. As time passes, Strategy 1 uses more and more train-
ing data and thus takes longer and longer time (up to around 2
hours). Strategy 2 always uses only two months of data for training
and takes from 25–35 minutes, depending on the numbers of GPS
records in the different months. Thus, Strategy 2 is preferable.
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As summer and winter may have different traffic conditions, it is
of interest to study the effect of the seasonality. We learn a sum-
mer STHMM with data from June and July and a winter STHMM
with data from December and January. The results on TT shown in
Figure 17 indicate that the summer STHMM achieves better accu-
racy for summer months (e.g., May and August), while the winter
STHMM is best for winter months (e.g., November, February, and
March). For the spring and fall months (e.g., April, September, Oc-
tober), both STHMMs perform similarly. The findings are consis-
tent with domain knowledge of summer/winter traffic in Denmark.
We also include Strategy 2 in Figure 17: it offers a reasonable all-
year accuracy.

We suggest that (i) if a region has different summer and winter
traffic, using separate summer and winter STHMMs yield the best
results; otherwise, (ii) using Strategy 2 is also effective. The effects
of incorporating recent data and the seasonality on GE are similar,
and thus are omitted.

5.4 Effects of nth Order Coupling
We proceed to consider the effects of different coupling levels,

i.e., using different n-th order STHMMs. When n = 0, the ST-
HMM degrades to the naive model that is composed of |E| inde-
pendent HMMs (refer to Section 3.2.2). The naive model can be re-
garded as an improved version of the state-of-the-art approach [14]
that applies a Markov model to predict future travel times. It for-
mulates states using travel time clusters. In contrast, in our naive
model, a state is a cluster represented by a Gaussian mixture model
describing a travel cost distribution, and a KL divergence value rep-
resenting its temporal dependency w.r.t. its previous state. Also, the
state-of-the-art approach is only tested on travel time, not on GHG
emissions.

We choose a subset of edges E′ ⊂ E with state set cardinalities
that exceed 1 to observe the effect of varying n. The reason for us-
ing E′ is twofold: if an edge’s state set cardinality is 1, (i) the edge
stays in its single state, regardless of the states of its n-th neigh-
bors, and (ii) the edge also cannot effect its neighbor edges’ traffic
because it is always in the single state. Thus, if the cardinality is 1,
the n-th (n > 1) order STHMM should yield the same results as
the naive model.

The chosen E′ contains 653 edges for TT and 723 edges for GE.
As the distributions of TT and GE can be quite different (cf. the 49-
th interval in Figure 3) even when both are derived from the same
GPS data, the state set cardinalities on the same edge are also quite

different for TT and GE. Thus, the E′ contains different edges for
TT and GE.

We plot the average and maximal cardinalities of n-th order neigh-
bors derived from E′ in Figure 18. When n is large (> 4), some
edges have many neighbor edges, causing an exponential increase
in the parameter spaces of transition probabilities in the STHMM.
For instance, when n = 5, an edge may have 28 neighbor edges. If
each edge has 4 states, the transition probability of the edge needs
to maintain 4 · 428 entries, which causes prohibitively high com-
putation and storage overheads. Fortunately, an approximation al-
gorithm (AA) [3, 17] is able to reduce the parameter space from
exponential to linear. We use AA to learn the transition probabili-
ties in the STHMM for n up to 10. The details of AA are omitted
for brevity.

When n 6 4, we use the proposed learning algorithms to study
the effectiveness of the n-th order STHMM based on 50 randomly
chosen edges from E′. We do not include all edges in E′ because
parameter learning on some edges is quite time consuming when
n = 3 or 4. The couple ratio = ASSLn-th order STHMM

ASSLNaive
is shown in

Figure 19.
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The n-th (n > 1) order STHMM outperforms the naive model.
In particular, the benefit of using the 1-st order STHMM is most
significant for inferring both TT and GE (see the two steep slopes
from n = 0 to n = 1). The 2-nd and 3-rd order STHMMs yield
the best results for TT and GE, respectively. When n > 1, the
benefit of using a higher-order STHMM is not prominent, and for
n = 4 the couple ratios even increase. The results suggest that the
traffic interactions among different edges are relatively localized
and that a fully coupled model [3, 7, 12, 17] is not well suited for
road network traffic modeling.

The average run time of parameter learning per edge and the av-
erage run time of inference per test interval are shown in Figure 20.
Figure 14 gives the run time of state formulation, which does not
change when varying n. As n increases, the parameter space of the
STHMM also increases, thus increasing the average run time of pa-
rameter learning. The 1-st order STHMM and the naive model have
similar run times, and the n-th order STHMM is expensive to learn
when n > 1. Considering the effectiveness shown in Figure 19, the
1-st order STHMM stands out as offering a high effectiveness gain
while limiting the additional run time cost.

Next, we apply AA to all edges in E′ to study the effectiveness
and efficiency of n-th order STHMMs for 1 6 n 6 10. The Appr
Ratio= ASSLn-th order STHMM AA

ASSL1-st order STHMM AA
is shown in Figure 21, and the av-

erage run time of AA is also shown in Figure 20. AA is much
more efficient, but also less effective. Higher order (n > 5) STH-
MMs almost keep the same effectiveness, suggesting that traffic on
further-away edges seldom affect the traffic of the edge of interest.

We recommend the use of a lower order (n < 3, especially
n = 1) STHMMs for travel cost inference in road networks. These
provide significant benefits at low training times.
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6. RELATED WORK
Time Series Analysis: Hidden Markov Models (HMMs) [2, 11]

and coupled HMMs [3, 7, 12, 17] are proposed to model individual
time series and to model the interactions among multiple time se-
ries, respectively. The proposed STHMM has several unique char-
acteristics. First, while the existing approaches consider regular,
non-sparse time series (i.e., one value per interval), the heteroge-
nous, sparse time series that we consider may have multiple or no
value(s) in an interval.

Second, HMMs and coupled HMMs assume the state set of an
individual time series is given a priori, e.g., using domain knowl-
edge. This assumption does not hold in our setting where identi-
fying a distinct state set for each traffic time series is an important
challenge. A recent approach, pHMM [13], segments a regular
time series into line segments and clusters these line segments to
obtain states. Although pHMM is capable of computing state sets
for regular time series without relying on prior knowledge, it is in-
applicable in our setting because linear transformation of regular
time series does not apply to our sparse and heterogenous time se-
ries. Rather, the STHMM identifies a distinguishable state set as a
set of Gaussian mixture models for each sparse time series.

Third, parameter learning for the STHMM differs from classi-
cal HMM parameter learning, e.g., using the Baum-Welch algo-
rithm [11], which needs to estimate output probabilities while esti-
mating initial and transition probabilities. In contrast, the STHMM
identifies the output probabilities in the state formulation phase,
which simplifies the estimation for initial and transition probabili-
ties in the parameter learning phase. Further, coupled HMMs cou-
ple each time series with all the other time series and thus have
huge parameter spaces. Existing studies [3, 17] focus on proposing
approximate models along with randomized learning algorithms to
avoid inaccurate or inefficient inferencing as much as possible. Our
STHMM considers the structure of the underlying road network to
couple only those time series that need coupling, thus reducing the
parameter space substantially.

Travel Cost Inference: Most existing work on travel cost es-
timation focuses on travel time estimation, and only few studies
consider GHG emissions. Further, most estimation approaches are
quite static in nature. Although a recent approach [15] learns time-
dependent travel times and GHG emissions based weights for roads
(even for the roads without any GPS data), the weights remain static
and do not consider real-time traffic data. The current state-of-the-
art proposal for travel time inference, which is also the most related
to ours, uses a Markov model to update the travel time on a road
based on real-time traffic data from the road. However, the real-
time support considers each road segment in isolation, does not
exploit the correlation of travel times among road segments, and
does not contend with sparsity and heterogeneity. Section 5.4 in-
cludes an empirical comparison with an improved version of this
approach. One study [7] uses coupled HMMs to model dynamic
travel times using loop detector data, which assumes that the state

set of each time series is given in advance. Further, since loop de-
tectors can constantly report travel time, sparsity is not considered.

7. CONCLUSION AND OUTLOOK
We study real-time travel cost inferencing from multiple corre-

lated, sparse time series based on GPS records from probe vehicles.
A spatio-temporal hidden Markov model is formalized to model
multiple correlated traffic time series, while considering sparsity,
dependency, and heterogeneity in an integrated manner. An empir-
ical study considering travel time and GHG emissions demonstrates
that the framework and algorithms are effective and efficient.

As the volumes of GPS data increase, it becomes possible to
study even larger numbers of correlated traffic time series. The
resulting STHMM parameter space increase renders the learning
more difficult. First, exact learning may not be feasible, calling
instead for approximate sampling based learning. Second, scalable
learning algorithms are of particular interest when we face large
numbers of correlated time series.
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