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ABSTRACT

In the maximizing range sum (MaxRS) problem, given (i) a set P
of 2D points each of which is associated with a positive weight,
and (ii) a rectangle r of specific extents, we need to decide where
to place r in order to maximize the covered weight of r – that
is, the total weight of the data points covered by r. Algorithms
solving the problem exactly entail expensive CPU or I/O cost. In
practice, exact answers are often not compulsory in a MaxRS ap-
plication, where slight imprecision can often be comfortably tol-
erated, provided that approximate answers can be computed con-
siderably faster. Motivated by this, the present paper studies the
(1 − ǫ)-approximate MaxRS problem, which admits the same in-
puts as MaxRS, but aims instead to return a rectangle whose cov-
ered weight is at least (1− ǫ)m⋆, wherem⋆ is the optimal covered
weight, and ǫ can be an arbitrarily small constant between 0 and
1. We present fast algorithms that settle this problem with strong
theoretical guarantees.

1. INTRODUCTION
Let P be a set of points in 2D space R2, where R represents the

real domain. Each point p ∈ P carries a positive value w(p) as its
weight. Given non-negative values a and b, the goal of the maxi-

mizing range sum (MaxRS) problem is to place an a× b rectangle
r in R2 to maximize the covered weight of r, defined as:

covered -weight(r) =
∑

p∈P ∩ r

w(p). (1)

In plain words, covered -weight(r) equals the total weight of the
points of P that are covered by r. As a special case, if every point
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Figure 1: The MaxRS problem

in P has weight 1, then covered -weight(r) simply indicates how
many points of P fall in r.1

Note that the position of r can be anywhere in the data space,
namely, there are infinitely many possible rectangles that could
have been chosen. To illustrate, consider that P is the set of black
points in Figure 1, and (for simplicity) that all points have weight
1. Given the lengths of a and b as shown on the figure’s left, an
optimal solution to the MaxRS problem is the rectangle r⋆, which
covers 5 points of P . One can easily verify that no rectangle of size
a× b can enclose at least 6 points.

The MaxRS problem has been studied in both situations where
P fits or does not fit in memory. Mentioning only the best re-
sults, in internal memory, Imai and Asano [6] solved the problem
in O(n log n) time where n = |P |. Nandy and Bhattacharya [10]
later gave another algorithm with the same cost. In external mem-
ory, Choi et al. [2] recently settled it in O(SORT (n)) I/Os, where
SORT (n) is the I/O cost of sorting n elements in the disk.

Motivation. All the solutions of [2, 6, 10] find an optimal rectangle,
i.e., one that has the greatest covered weight. The motivation of this
work is that, many applications of MaxRS can tolerate slight impre-
cision, if significant reduction in the computation time is possible.
For example, a representative MaxRS application, as mentioned in
[2], is to select a good location to open a new business, e.g., a pizza
delivery store. In this scenario, each point corresponds to a resi-
dential location, and its weight gives the population at that location.
The size of a rectangle r depends on the delivery range that the
store is able to cover (the delivery range is better represented as a
square, rather than a circle, because short distances on a road net-
work are well approximated by Manhattan distances; this approach
has been taken in [17]). The covered weight of r indicates the popu-
lation inside the shop’s delivery range. A manager would not mind
retrieving a rectangle that covers, say, 1% less weight than an opti-
mal one, especially if this will substantially reduce her/his waiting
time.

1Throughout the paper, given a rectangle r and a set P of points,
we use r ∩P to denote the set of points in P that are covered by
r. This is a natural notation if one thinks of r as an (infinite) set of
points.
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MaxRS is also the key to discovering the highest local data den-
sity, an operation that finds applications in data mining. Specifi-
cally, given a square r of a “unit area”, the local data density in
r equals the number of points in r. Hence, the output of MaxRS
corresponds to the square with the highest density. Once again, it
would be useful if we could derive a very accurate estimate (with
error less than 1%) of the highest density, by using significantly
less time than finding the exact value.

Main Results. We study the (1 − ǫ)-approximate version of the
MaxRS problem. Formally, given (i) a and b as defined before and
(ii) an ǫ satisfying 0 < ǫ < 1, the goal of the (1− ǫ)-approximate
MaxRS problem is to report an a × b rectangle r whose covered
weight is at least (1− ǫ)m⋆, where m⋆ is the covered weight of an
optimal rectangle r⋆. In other words, the error of r is at most ǫm⋆.
We call r a (1− ǫ)-approximate answer.

In Figure 1 (where all points have weight 1), for instance, the r
as shown is a 0.6-approximate answer because it covers 3 = (1 −
0.4) × 5 points. Recall that m⋆ = 5 is the number of points in an
optimal answer r⋆. Note that here ǫ = 0.4 is merely an example
for illustration, while a useful ǫ in practice should be much smaller.
To the best of our knowledge, (1−ǫ)-approximate MaxRS is a new
problem that has not been studied previously.

(1 − ǫ)-approximate MaxRS is useful only if it can be solved
significantly faster than (exact) MaxRS. In the present paper, we
prove that this is true. Specifically, we present an algorithm that
returns a (1− ǫ)-approximate answer with probability at least 1−
1/n in only O(n log 1

ǫ
+ n log log n) time, regardless of the data

distribution. Interestingly, when ǫ is fixed (i.e., ensuring the same
precision guarantee that does not depend on n), the running time
of our algorithm isO(n log log n). Note that the factor log2 log2 n
grows very slowly with n, and is less than 5.4 even for n = 240.
Our time complexity thus compares favorably with the O(n log n)
time needed to find the exact answer: log2 n = 40 for n = 240.

Technical Overview. Our algorithm is surprisingly simple, but is
fairly intuitively, and supported by solid theory. Let us start with a
natural idea: why not just take a random sample set S of P , find
the best rectangle on S, and then return this rectangle as an approx-
imate answer for the original problem on P ? A moment’s thought,
however, would reveal that this works only if m⋆ (i.e., the covered
weight of an optimal rectangle) is large. Unfortunately, m⋆ can
be arbitrarily small. In fact, when m⋆ drops below 1/ǫ, we must
return an optimal answer if every weight is at least 1, because the
permissible error is ǫm⋆ < 1, namely, no error is allowed!

Our eventual success is harvested by refining this idea. In a nut-
shell, we divide the data space into a grid of cells, and calculate
their densities (i.e., how much weight does a cell cover). Only cer-
tain “dense cells” are worth considering, whereas the other cells
can be discarded outright. For each remaining cell, we apply the
sampling approach as outlined earlier, and return the best rectangle
found from all those cells. It turns out that, by concentrating on
the dense cells, only a handful of samples are necessary to meet
the precision constraint, which in turn leads to an excellent speed
guarantee.

Implementing the above approach, however, gives rise to several
challenges. First, the data space R2 has infinite extents on both di-
mensions, such that the number of cells is infinite. It is apparently
unwise to enumerate all cells to obtain their densities. We over-
come this obstacle by showing how to obtain the densities of all
cells in O(n) expected time, i.e., independently of the data space
dimensions. Second, setting the density threshold to separate dense
from sparse cells is crucial but non-trivial, as is a main technical
contribution of this paper. The final challenge is to achieve a very

high success probability of at least 1 − 1/n. Somewhat unexpect-
edly, we prove that it suffices to repeat our algorithm only 4 times!

Experimentation Highlights. This paper contains an extensive ex-
perimental evaluation that demonstrates the excellent performance
of the proposed techniques in both internal and external memory.
Our algorithms always guaranteed results of extremely high quality
(in fact, in many cases, they returned optimal answers), and were
faster than the existing algorithms by a factor reaching an order

of magnitude. This fully confirms the motivation of this work that
we can significantly shorten the response time to users’ requests
with little sacrifice in quality. Furthermore, in our experiments, the
proposed algorithms exhibited excellent scalability with the dataset
size, particularly, at a much lower rate than the state of the art.

Paper Organization. In the next section, we clarify several funda-
mental properties of the MaxRS problem, and review the previous
work related to ours. Section 3 elaborates the proposed (1 − ǫ)-
approximate MaxRS algorithms, while Section 4 formally estab-
lishes their theoretical guarantees. Section 5 describes how to im-
plement these algorithms I/O-efficiently in external memory. Sec-
tion 6 presents our experimental results. Finally, Section 7 con-
cludes the paper with a summary of our contributions.

2. PRELIMINARY
Next, we pave the way for our algorithmic discussion by elaborat-

ing on an inherent reduction commonly used to attack the MaxRS
problem (Section 2.1), reviewing the existing algorithms for solv-
ing MaxRS exactly (Section 2.2), and clarifying the relevance and
differences between our work and previous research in other related
areas (Section 2.3).

To simplify discussion, let us assume (only in this section) that
all points have unit weight 1. This allows us to illustrate the central
ideas behind the algorithms without being distracted by the extra
details for handling arbitrary weights.

2.1 Reduction to EquiRectangle Stabbing
The MaxRS problem can be elegantly converted to an alternative

problem called equi-rectangle stabbing. To explain, as before, let
P , a and b be the inputs to the MaxRS problem, namely, P is a
set of n points, and a × b specifies the size of the rectangle to be
returned. Let us generate a setR of n rectangles, one from a distinct
point in P , as follows. For each point p ∈ P , define a rectangle
r(p) as the a× b rectangle centered at p, as illustrated in Figure 2a.
Then, R can be defined as:

R = {r(p) | p ∈ P}.
If we refer to r(p) as the vicinity rectangle of p, then R includes
the vicinity rectangles of all points p ∈ P . Figure 2b shows the
rectangles of R converted from the set P of points in Figure 1 (R
includes both the solid and dashed rectangles).

Given R, the goal of the equi-rectangle stabbing (ERS) problem
is to find a point o⋆ that is covered by the largest number of rectan-
gles in R, among all the possible points in the data space R2. The
cross in Figure 2b demonstrates an optimal o⋆, which is covered by
5 rectangles in R (the solid ones). It is easy to verify that no point
in the data space falls in 6 or more rectangles. Phrased differently,
one can imagine stabbing the rectangles ofRwith a point, in which
case the ERS problem aims at finding a point that can stab the most
rectangles.

What makes the reduction work is the following fact: r(p) covers
a point o ∈ R

2 if and only if p is covered by the a × b rectangle
centered at o. In Figure 2b, this means that if we place an a ×
b rectangle r⋆ centered at o⋆, then by the fact that o⋆ falls in 5

1547



a

b

vicinity rectangle r(p)

p

(a) Vicinity rectangle

o
⋆

(b) R generated from P

Figure 2: Reduction from MaxRS to ERS

rectangles of R, we know that r⋆ covers 5 points of P . The r⋆ has
to be an optimal answer to the MaxRS problem on P , judging from
the optimality of o⋆ for the ERS problem on R.

The usefulness of the above reduction is that, it provides us with
a new perspective to attack the MaxRS problem, by dealing with
the ERS problem instead. Interestingly, this was exactly the ap-
proach taken by the state-of-the-art algorithms in both internal and
external memory, as reviewed next.

2.2 Exact ERS Algorithms
This section will discuss the main ideas behind solving the ERS

(and hence, MaxRS, by the reduction explained before) problem
exactly. Not only does this shed light on the problem’s character-
istics, but also it will show that our techniques (presented in later
sections) are based on drastically different rationales.

The basic methodology is planesweep. Imagine moving a hori-
zontal line ℓ up from the initial position y = −∞. In this process,
ℓ starts intersecting a rectangle r ∈ R when ℓ passes the bottom
edge of r, and stops doing so when ℓ reaches the top edge of r. In
between, r intersects ℓ into an interval on ℓ. At any moment, the
intersection points between ℓ and the rectangles of R chop ℓ into
disjoint intervals. Figure 3 shows the situation when ℓ passes the
cross o⋆ in Figure 2b (omitting the rectangles that do not intersect
ℓ). Notice that ℓ is divided into 10 intervals: AB, BC, ..., JK
(ignoring the infinite intervals to the left and right of A and K, re-
spectively).

Conceptually, the planesweep algorithm maintains a count for
each interval on ℓ, which equals the number of rectangles inR cov-
ering the interval. In Figure 3, for instance, the count of AB is 1
because AB is covered by only 1 rectangle (i.e., the leftmost one).
As more examples, the count of EF equals 5, while that of IJ
equals 0. The algorithm keeps track of the interval with the highest
count on the present ℓ, i.e., EF . The planesweep finishes when ℓ
is above all the rectangles of R. Let v be the interval with the maxi-
mum count during the entire sweeping process. Then, any point of
v can be returned as an optimal answer to the ERS problem. In our
earlier example, one can verify that the count 5 of EF is the great-
est during the whole process (on the dataset of Figure 2). Hence,
the algorithm can return any point in EF as the final answer.

Implementation of the above idea is what distinguishes the inter-
nal memory algorithm [10] from the external memory ones [2, 4].
In memory, the intervals on ℓ can be maintained using a binary tree.
Overall, the algorithm performs 2n updates (i.e., 2 per rectangle in

ℓ
A

B C D

E F G H

I

J K

sweeping line moving up

Figure 3: Solving the ERS problem: planesweep

R) on the binary tree, each of which takes O(log n) time, thus ne-
cessitatingO(n log n) time overall [10]. As shown in [4], the same
strategy also works in external memory, but entails O(n logB n)
I/Os (B is the size of a disk block), which unfortunately is very
costly in practice. Choi et al. [2] remedied the problem with a dif-
ferent implementation which lowers the I/O cost substantially by a
factor of nearly Ω(B).

2.3 Other Related Work

Facility Location. The ERS (a.k.a. MaxRS) problem can be re-
garded as an instance of facility location optimization, which is a
broad class of problems that aim at finding an optimal location to
place a “facility” in order to minimize/maximize a certain objective
function. Specifically, in ERS, we want to find a point (i.e., facil-
ity) p to maximize the number (i.e., objective) of rectangles in R
covering p.

Many concrete problems have been proposed in this class to suit
the needs of various applications. A comprehensive survey is be-
yond the scope of this paper. At a high level, these problems can
be divided into two categories: monotonic and bichromatic. In the
former category, there is only one “type” of objects that can influ-
ence the choice of the best facility. The ERS problem belongs to
this category. Other classic examples include the smallest enclos-

ing circle problem [9], which returns the smallest circle that covers
a set P of 2D points, and the largest empty rectangle problem [1],
which returns the rectangle with the maximum area among all the
rectangles that do not contain any point in P .

The bichromatic category, on the other hand, includes two sets:
a set C of consumers and a set F of facilities. The goal is to find a
new facility whose introduction serves the customers best, together
with the existing facilities in F . Problems of this flavor [15, 16, 17,
18] have been investigated by the database community in the past
few years. As a representative example, in the min-dist optimal

location problem [17], C and F are sets of 2D points, such that
the goal is to find a new point f in the data space to minimize the
maximum distance between a customer c ∈ C and her/his nearest
facility in F ∪ {f}.

This paper essentially tackles a form of approximate facility lo-

cation, regarding which the closest previous work is due to Berg et
al. [3]. Given a set P of 2D points, a radius d and a value ǫ ∈ (0, 1),
they give an algorithm to return a circle with radius d that covers
at least (1− ǫ)m⋆ points of P , where m⋆ is the maximum number
of points that can be enclosed by a radius-d circle. Their algorithm
runs in O(n/ǫ3 + n log n) time. Unfortunately, the factor 1/ǫ3

is exceedingly large for reasonable value of ǫ in practice (e.g., at
the order of 0.01) such that n/ǫ3 overwhelms n log n for typical
values of n (≤ 240), and is prohibitively expensive for a real sys-
tem. Furthermore, the algorithm of [3], which is based on dynamic
programming, is difficult to implement in external memory to at-
tain even an I/O bound that comes close to SORT (N), which as
mentioned earlier is the cost of solving MaxRS exactly [2].

Range Aggregation. As nicely pointed out in [2], the MaxRS prob-
lem should not be confused with range aggregation problem [5, 8,
11, 12], where given a rectangle r and a set P of points in R

2, we
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want to return the number of points inP that are covered by r. Note
that in this context the position of r is known as a problem input,
as opposed to the need of searching for the best location to place
a rectangle as in MaxRS. A naive solution to deal with MaxRS by
way of range aggregation, is to collect all the possible rectangles in
the data space, do a range-aggregation query for each one of them,
and return the one covering most points. This solution is apparently
infeasible even if the data space is discrete, because the number of
possible rectangles is prohibitively large.

3. (1 − ǫ)APPROXIMATEMAXRS
Nowwe formally define the (1−ǫ)-approximate MaxRS problem.

The input includes:

• A set P of 2D points, where each point p ∈ P carries a
positive weight w(p).

• Non-negative real values a and b

• A real value ǫ such that 0 < ǫ < 1.

The objective is to return an a× b rectangle r in the data space R2

such that the covered weight of r – as defined in (1) – is at least
(1 − ǫ)m⋆, where m⋆ is the covered weight of an optimal a × b
rectangle r⋆ (i.e., m⋆ = covered -weight(r⋆)). Accordingly, we
say that an a× b rectangle r is a (1− ǫ)-approximate answer if

covered -weight(r) ≥ (1− ǫ)m⋆

where ǫm⋆ is the permissible error.
We will use (a, b, P )-MaxRS to represent the corresponding ex-

act MaxRS problem (that is, r⋆ is an optimal answer for (a, b, P )-
MaxRS). We will also use (a, b, P )-count-MaxRS to denote the ex-
act MaxRS problem where all points in P are forced to have weight

1. Clearly, every (a, b, P )-MaxRS problem has an (a, b, P )-count-
MaxRS counterpart.

Next, we present our algorithms for the situation where P fits in
memory. Our discussion will separate (deliberately) the algorith-
mic description from the theoretical analysis, which can be found
in the next section. Finally, our techniques will be extended to ex-
ternal memory in Section 5.

3.1 Pitfall of Random Sampling
Let us first consider an intuitive algorithm as our first attempt to

solve the (1− ǫ)-approximate MaxRS problem:

Algorithm 1: SIMPLESAMPLING (s)

Input: Sample size s
Output: An a× b rectangle r

S ← a random sample set of P with s points1

r ← an optimal answer to (a, b, S)-MaxRS (obtained by invoking the2

exact MaxRS algorithm of [10] on S)
return r3

The algorithm runs in O(s log s) time as is determined by Line
2. Its rationale is that, since a random sample set S preserves the
distribution of P , an optimal answer on S (i.e., rectangle r) might
serve as a good approximate answer on P . In the experiments,
we will see that this is the case when the permissible error ǫm⋆ is
large. When ǫm⋆ is small, however, SIMPLESAMPLING becomes
unreliable such that it is unable to achieve (1 − ǫ)-approximation
unless s is exceedingly large.

We first give a quick explanation that is somewhat informal, but
easy to understand. Consider that (i) all points have weight 1,

seed of the grid

(α, β)

2a

2b

a cell

Figure 4: An (α, β)-grid

and (ii) ǫ = 0.01 but m⋆ < 100 such that the permissible error
ǫm⋆ < 1. Therefore, a (1− ǫ)-approximate answer is not allowed
to have any error, and hence, will have to be an optimal answer.
But how does SIMPLESAMPLING compute its answer r? From a
random sample set S! In other words, the algorithm intends to find
an optimal answer without even looking at all the points in P . This
sounds too good to be true. Indeed, the consequence is that either
the algorithm will fail to achieve the purpose, or S is such a large
sample set that its size is already at the scale of P .

The next theorem establishes a strong negative result formalizing
the above pitfall of SIMPLESAMPLING:

THEOREM 1. Let δ be any arbitrarily small positive constant

satisfying 0 < δ < 1. For any positive ǫ ≤ 0.49, there is a dataset

on which, with probability at least 1− δ, SIMPLESAMPLING fails

to return a (1− ǫ)-approximate answer, unless s = Ω(n).

PROOF. See appendix.

Note that s = Ω(n) is not interesting because this means that the
running time of SIMPLESAMPLING is O(s log s) = O(n log n),
i.e., asymptotically the same as solving the MaxRS exactly. Also,
note that in reality a useful ǫ should be much lower than 0.49, im-
plying that SIMPLESAMPLING will perform even worse than pre-
dicted by the above theorem. This negative result, therefore, essen-
tially eliminates SIMPLESAMPLING as an adequate solution. Next,
we will design a new algorithm to overcome the defects of SIMPLE-
SAMPLING.

3.2 Grid Sampling
This section presents a new algorithm called GRIDSAMPLING

for the (1 − ǫ)-approximate MaxRS problem. The algorithm in-
corporates two fresh ideas. First, when m⋆ is excessively low (i.e.,
even an optimal a× b rectangle covers little weight), we will solve
the MaxRS problem precisely, i.e., obtaining an optimal answer di-
rectly. Second, opposite to the previous case, whenm⋆ is not small,
we will sample P only in some dense areas, as opposed to carrying
out the sampling globally (i.e., on the entire P ) as in SIMPLESAM-
PLING.

Grid and Cells. An obstacle in implementing the above strategy
is that m⋆ is unknown. Fortunately, we do not need to know the
exact value of m⋆, but instead, will be happy enough to derive an
estimate that can be off by a factor of at most 4. For this purpose,
we resort to a grid defined as:

DEFINITION 1 ((α, β)-GRID). Given real values α, β, the

(α,β)-grid is the set of vertical and horizontal lines defined re-

spectively by:

x = α+ i · (2a), y = β + i · (2b)
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2a

2b

dense cells

2a

2b

cell-sample optimal rectangles (a× b)

r

(a) Dense cells and samples (b) One optimal rectangle on the samples of each dense cell

Figure 5: GRIDSAMPLING algorithm (s = 4)

for all integers i = −∞, ...,−1, 0, 1, ...,∞, and a, b are parame-
ters of the current MaxRS problem. Point (α, β) is called the seed

of the grid.

Let G represent the (α, β)-grid as defined above. As shown in
Figure 4, G is determined by an infinite set of vertical and horizon-
tal lines, such that the distance between two consecutive vertical
(horizontal) lines is 2a (2b), namely, twice as large as the parame-
ter a (b) of the MaxRS problem at hand. We refer to the intersection
of a pair of vertical and horizontal lines as a junction. Then, point
(α, β) is one of the junctions.

We use the term cell to refer to a rectangle surrounded by two
consecutive horizontal lines and two consecutive vertical lines in
G (e.g., the gray area in Figure 4). Now, put P back to the data
space, and view it together with G. Many cells of G are empty

because they do not contain any point of P . Conversely, if a cell
covers at least one point of P , it is non-empty. Given a cell c, we
define its weight, denoted as weight(c), as the total weight of the
points in c∩P . An empty cell thus has weight 0.

Proposed Algorithm. We are ready to explain our first algo-
rithm, named GRIDSAMPLING, for solving the (1−ǫ)-approximate
MaxRS problem. First, we obtain an (α, β)-grid G by setting
α = 0 and β = 0. Then, we group the points of P by the cells
they fall in. Let C be the set of non-empty cells of G.

Now, let us obtain the maximum weight t of the cells in G.
Namely, t = maxc∈C weight(c). We use t to divide the non-empty
cells into two types: (i) a cell c ∈ C is dense if its weight is at least
t/4, and (ii) sparse, otherwise. Figure 5a shows an example where
P consists of all the points (black and white), and all points have
weight 1. Here, t = 12, as is the weight of the gray cell. Then, a
cell is dense if it encloses at least t/4 = 3 points. There are only 4
such cells as pointed out in the figure.

Let s = O( 1
ǫ2
(log 1

ǫ
+ log n)) be a parameter to GRIDSAM-

PLING. We proceed by ignoring all the sparse cells, i.e., the points
therein will be removed from further consideration. For every
dense cell c, define S(c) as follows:

• If c covers at most s points, S(c) includes all the points in c.

• Otherwise, S(c) is a multi-set of size s obtained by sam-
pling with replacement each point p ∈ c∩P with probability
w(p)/weight(c).

In any case, we refer to the points in S(c) as samples of c. Next,
for each dense cell c separately, we proceed as follows:

• If S(c) already has all the points in c, run the exact MaxRS
algorithm of [10] (reviewed in Section 2.2) to solve problem
(a, b, S(c))-MaxRS.

• Otherwise, run the exact MaxRS algorithm of [10] to solve
problem (a, b, S(c))-count-MaxRS, namely, pretending that

all points have weight 1.2

In either case, let r(c) be the rectangle returned by the algorithm of
[10] for c. We call r(c) a cell-sample optimal rectangle. Define:

DEFINITION 2 (QUALITY OF CELL-SAMPLE OPTIMAL).
If r(c) is a cell-sample optimal rectangle from cell c, its quality
equals the total weight of the points in c∩ r(c).

We return the cell-sample optimal rectangle with the highest quality
as our final answer.

Algorithm 2: GRIDSAMPLING (G, s)

Input: (i) A grid G of Definition 1, and (ii) an integer s
Output: An a× b rectangle r

group the points of P by the cells of G they fall in1

t← the maximum weight of all cells2

D← the set of cells with weights ≥ t/43

q ← −∞ /* quality of the best cell-sample optimal */4

for each cell c ∈ D do5

if S(c) = c ∩ P then6

r(c)← an optimal answer to (a, b, S(c))-MaxRS (by using7

the exact algorithm of [10])
else8

r(c)← an optimal answer to (a, b, S(c))-count-MaxRS (by9

the algorithm of [10])

if q < the quality of r(c) then10

r ← r(c) and q ← the quality of r(c)11

return r12

To illustrate, suppose that in Figure 5a the white points are the
samples from the dense cells (assuming s = 4). Then, the exact
algorithm is invoked four times in Figure 5a (because there are 4
dense cells), but each time on only the white points of one cell, as
opposed to all the points in the cell. The figure also demonstrates
the cell-sample optimal rectangles of the 4 dense cells. The quality
of r equals 3, and is the highest among the 4 cell-sample optimal
rectangles. We therefore return r as the answer. The pseudocode
of GRIDSAMPLING is presented in Algorithm 2.

Cell Densities in Linear Time. At first glance, it may appear that
obtaining the weights of all cells would be computationally expen-
sive. This is not true. A crucial observation is that there can be at

2The reason solve (a, b, S(c))-count-MaxRS, instead of
(a, b, S(c))-MaxRS, here is technically related to a concept
called ǫ-approximation, as will be clarified in the proof of
Lemma 5.
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Figure 6: Shifting the (α,β)-grid

most 4n non-empty cells, because each point p ∈ P can fall in at
most 4 cells (when p is at a junction of the grid).

This observation enables us to compute the counts of all non-
empty cells by applying hashing to implement Line 1 of Algo-
rithm 2. Note that, for all the points p = (x, y) in the same cell,
their values of ⌈x−α

2a
⌉ are all identical (the same is true for ⌈ y−β

2b
⌉)3.

If we treat the pair (⌈x−α
2a

⌉, ⌈ y−β
2b

⌉) as the ID of the cell contain-
ing p, Line 1 essentially groups the points of P by the IDs of their
containing cells, as can be done by hashing in O(n) expected time.

Weighted Sampling with Replacement. Line 6 requires a fast al-
gorithm to obtain s weighted random samples with replacement.
This problem has been well studied in the literature. In the ap-
pendix, we describe a method adopted in our implementation. The
method completes the sampling in O(nc + s log s) time, where
nc = |c∩P |, i.e., the number of points in a cell c.

3.3 Grid Shifting
GRIDSAMPLING cannot guarantee returning a correct answer

with a high probability. In this section, we show how to boost the
success probability all the way to 1− 1

n
(this is extremely close to

1 even for a moderately large n). In fact, all we need to do is to
run GRIDSAMPLING 4 times with some carefully chosen grids, as
explained below.

Recall that GRIDSAMPLING is invoked with the (0, 0)-grid G,
which we denote by G0 henceforth. Let us consider 3 more grids:

G1 : (a, 0)-grid

G2 : (a, b)-grid

G3 : (0, b)-grid

where a, b are the parameters to the MaxRS problem at hand. Fig-
ure 6 illustrates the idea by presenting G2 (solid grid), which is
obtained by shifting G0 (dashed grid) horizontally by distance a,
and then, vertically by distance b.

Algorithm 3 presents a new algorithm called 4GRIDSAMPLING.
All steps should be fairly clear except possibly Line 5. This step
can be done with a single scan of P in O(n) time.

This completes our description of the proposed algorithms for
the (1− ǫ)-approximate MaxRS problem. As analyzed in the next
section, 4GRIDSAMPLING runs in O(n log 1

ǫ
+ n log log n) time,

and returns a (1− ǫ)-approximate answer with probability at least
1− 1/n.

3This assumes that p is not on the boundary of the cell. Otherwise,
we assign p to at least two, but up to four, cells.

Algorithm 3: 4GRIDSAMPLING (s)

Input: An integer s
Output: An a× b rectangle r

r0 ← GRIDSAMPLING (G0, s)1

r1 ← GRIDSAMPLING (G1, s)2

r2 ← GRIDSAMPLING (G2, s)3

r3 ← GRIDSAMPLING (G3, s)4

return the rectangle among r0, r1, r2, r3 with the highest covered5

weight

4. THEORETICAL ANALYSIS
We now proceed to establish the theoretical guarantees of GRID-

SAMPLING and 4GRIDSAMPLING developed in the previous sec-
tion. Let us start with an easy lemma:

LEMMA 1. GRIDSAMPLING and 4GRIDSAMPLING finish in

O(n log s) expected time.

PROOF. We will focus on GRIDSAMPLING because the cost of
4GRIDSAMPLING is at most 4 times higher. Line 1 of Algorithm 2
can be implemented in O(n) expected time by hashing, as already
explained in Section 3.2. For each dense cell c, we apply the algo-
rithm of [10] on at most λc = min{nc, s} points, where nc is the
number of points in c∩P . Hence, we spend O(λc log λc + nc)
time per dense cell c (the time is dominated by the cost of sam-
pling). The total time from Lines 2 to 9 is therefore bounded by

O

(

∑

dense c

(λc log λc + nc)

)

= O(n log s)

where the equality used the facts that λc ≤ s, and
∑

dense c λc ≤
∑

dense c nc ≤ n.

Next, we focus on the quality of the answers returned by
our algorithms. Henceforth, let r⋆ be an optimal a × b rectan-
gle for the (a, b, P )-MaxRS problem at hand, namely, m⋆ =
covered -weight(r⋆). There is an interesting fact:

LEMMA 2. r⋆ must be fully contained by a cell in one of

G0, G1, ..., G3.

PROOF. Consider the cell of G0 that covers the top-left corner
of r⋆. LetABCD be the rectangle of the cell. Divide the rectangle
into four a×b sub-rectangles, as shown in Figure 7, where they are
labeled from 0 to 3.

A

2a

2b

BC

D

0 1

23

Figure 7: Proof of Lemma 2

It is easy to verify that if the top-left corner of r⋆ falls in rectangle
i ∈ [0, 3], then grid Gi has a cell that fully contains r

⋆.

Let G⋆ be the Gi (for some i ∈ [0, 3]) that has a cell c⋆ fully
enclosing r⋆. The previous lemma shows that such a Gi always
exists. The subsequent analysis focuses on the execution of GRID-
SAMPLING on G⋆. We observe:

LEMMA 3. When GRIDSAMPLING is executed on G⋆, it holds

that t ∈ [m⋆, 4m⋆], where t is the value obtained at Line 2.
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PROOF. Let c be the cell of G⋆ with the largest weight, i.e., t =
weight(c). The weight of c⋆ is at least m⋆ because c⋆ contains all
points covered by r⋆. Note that c may or may not be c⋆. In either
case, due to the definition of c, we know that t ≥ weight(c⋆) =
m⋆.

To prove t ≤ 4m⋆, notice that c can be divided into four a × b
rectangles, none of which can have a covered weight greater than
r⋆ (otherwise, we have found a rectangle with a higher covered
weight, contradicting the definition of r⋆).

COROLLARY 1. When GRIDSAMPLING is executed on G⋆, c⋆

must be dense.

PROOF. This cell must have weight at leastm⋆, which is at least
t/4 by Lemma 3.

The following analysis is divided into two parts, depending on
the comparison between nc⋆ and s, where nc⋆ is the number of
points in P ∩ c⋆.

Case 1: nc
⋆ ≤ s. We have:

LEMMA 4. When executed on G⋆ and nc⋆ ≤ s, GRIDSAM-
PLING returns an optimal (i.e., exact) answer.

PROOF. When nc⋆ ≤ s, Line 7 of Algorithm 2 will discover r⋆

when processing c⋆ (which must be dense by Corollary 1) because
S(c⋆) includes all the points of P ∩ c⋆.

Case 2: nc
⋆ > s. We say that a rectangle is bad if its covered

weight is less than (1 − ǫ)m⋆; otherwise, the rectangle is good.
No bad rectangle can be returned as a (1− ǫ)-approximate answer,
while conversely, any good rectangle is a (1 − ǫ)-approximate an-
swer. This observation is useful for proving the next imperative
lemma:

LEMMA 5. When executed on G⋆ and nc⋆ > s, GRIDSAM-
PLING returns a (1 − ǫ)-approximate answer with probability at

least 1− 1
n
.

PROOF. When processing c⋆ (which must be dense by Corol-
lary 1), Line 8 of GRIDSAMPLING finds a cell-sample optimal rect-
angle r(c⋆). We will prove that, with probability at least 1− 1

n
, the

following statements hold simultaneously:

• P1: r(c
⋆) is good.

• P2: the quality of r(c⋆) (see Definition 2) is at least (1 −
ǫ)m⋆.

Once this is done, we complete the proof of the lemma with the
following argument. Suppose that, for any dense cell c′, the cell-
sample optimal rectangle r(c′) is bad. Then, the quality of r(c′)
cannot be higher than the total weight of the points in P ∩ r(c′),
which in turn is less than (1 − ǫ)m⋆ by the definition of bad rect-
angle. Therefore, r(c′) cannot be returned by GRIDSAMPLING,
implying that GRIDSAMPLING can return only a good rectangle.

Next, we establish P1 and P2 using the concept of ǫ-
approximation [13]. LetP (c⋆) be the set of points inP ∩ c⋆. Given
a rectangle r, we denote by weight(r, c⋆) the total weight of the
points of P that fall in c⋆ ∩ r. Note that, for any bad rectangle rbad,
it holds that weight(rbad, c

⋆) ≤ weight(rbad) < (1 − ǫ)m⋆. On
the other hand, for r⋆, we know weight(r⋆, c⋆) = weight(r⋆) =
m⋆.

At Line 6, GRIDSAMPLING obtains a weighted random sample
S(c⋆) of P (c⋆). The size of S(c⋆) is s. As proved in [13], by

choosing s = ρ
(ǫ/8)2

(log 1
ǫ/8

+ log n) for a suitable constant ρ,

with probability at least 1− 1
n
, S(c⋆) is an (ǫ/8)-approximation of

P (c⋆). This means that for any rectangle r, it holds that
∣

∣

∣

∣

|S(c⋆)∩ r|
|S(c⋆)| − weight(r, c⋆)

weight(c⋆)

∣

∣

∣

∣

≤ ǫ/8. (2)

By setting r to r⋆ in the above, we obtain:

|S(c⋆)∩ r⋆|
|S(c⋆)| ≥ weight(r⋆, c⋆)

weight(c⋆)
− ǫ/8

=
m⋆

weight(c⋆)
− ǫ/8. (3)

On the other hand, by setting r to any bad rectangle rbad in Inequal-
ity 2, we have:

|S(c⋆)∩ rbad|
|S(c⋆)| ≤ weight(rbad, c

⋆)

weight(c⋆)
+ ǫ/8

<
(1− ǫ)m⋆

weight(c⋆)
+ ǫ/8. (4)

Lemma 3 tells us that weight(c⋆) ∈ [m⋆, 4m⋆]. Under this condi-
tion, it holds that

(1− ǫ)m⋆

weight(c⋆)
+ ǫ/8 ≤ m⋆

weight(c⋆)
− ǫ/8 (5)

To see this, note that the above is equivalent to:

(1− ǫ)m⋆

weight(c⋆)
+ ǫ/4 ≤ m⋆

weight(c⋆)
⇔

ǫ/4 ≤ ǫm⋆

weight(c⋆)
⇔

weight(c⋆) ≤ 4m⋆

which is true. Thus, by combining (3), (4), and (5), we obtain:

|S(c⋆)∩ r⋆|
|S(c⋆)| >

|S(c⋆)∩ rbad|
|S(c⋆)| ⇒

|S(c⋆)∩ r⋆| > |S(c⋆)∩ rbad|.
This means that the cell-sample optimal rectangle r(c⋆) chosen for
c⋆ by Line 9 of GRIDSAMPLING cannot be a bad rectangle, because
r⋆ covers more points in S(c⋆) than any bad rectangle4. It thus
follows that Statement P1 holds.

It remains to prove Statement P2. By definition of r(c⋆), we
know |S(c⋆)∩ r(c⋆)| ≥ |S(c⋆)∩ r⋆|. Setting r to r(c⋆) in (2)
gives:

|S(c⋆)∩ r(c⋆)|
|S(c⋆)| ≤ weight(r(c⋆), c⋆)

weight(c⋆)
+ ǫ/8 (6)

Combining the above with (3) and the fact |S(c⋆)∩ r(c⋆)| ≥
|S(c⋆)∩ r⋆| leads to:

m⋆

weight(c⋆)
− ǫ/8 ≤ weight(r(c⋆), c⋆)

weight(c⋆)
+ ǫ/8 ⇒

weight(r(c⋆), c⋆) ≥ m⋆ − (ǫ/4) · weight(c⋆)
≥ m⋆ − (ǫ/4) · 4m⋆

= (1− ǫ)m⋆.

Note thatweight(r(c⋆), c⋆) is exactly the quality of r(c⋆). We thus
have completed the whole proof.

4This is also why Line 9 of GRIDSAMPLING solves problem
(a, b, S(c))-count-MaxRS, instead of (a, b, S(c))-MaxRS.
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Putting everything together, we arrive at the main result of this
paper:

THEOREM 2. 4GRIDSAMPLING terminates in O(n log 1
ǫ
+

n log log n) expected time, and returns a (1 − ǫ)-approximate an-
swer with probability at least 1− 1

n
.

PROOF. The computation time follows directly from Lemma 1
and the fact that s = O( 1

ǫ2
(log 1

ǫ
+ log n)). As mentioned before,

Lemma 2 proves the existence of G⋆. Consider now the execution
of GRIDSAMPLING on G⋆. If nc⋆ ≤ s, Lemma 4 proves that
GRIDSAMPLING returns an optimal (i.e., precise) answer. Other-
wise, Lemma 5 proves that the algorithm returns a (1 − ǫ)-answer
with probability at least 1− 1

n
.

5. EXTENSION TO EXTERNALMEMORY
In this section, we adapt the proposed algorithms to the scenario

where P does not fit in memory, but needs to be stored in the disk.

SIMPLESAMPLING. The extension of this algorithm to external
memory is straightforward. One can implement Line 1 of Algo-
rithm 1 using any existing disk-based sampling method (see [7]).
Then, Line 2 can be carried out either in memory if the sample set
is small, or by the I/O-efficient MaxRS algorithm of [2] otherwise.

GRIDSAMPLING and 4GRIDSAMPLING. We will concentrate
on GRIDSAMPLING because 4GRIDSAMPLING is a simple exten-
sion. A major change in GRIDSAMPLING is the implementation of
Line 1 in Algorithm 2. Recall that, in internal memory, this was
taken care of by hashing in O(n) time. The same strategy, how-
ever, is not suitable for external memory where hashing requires
O(n) I/Os, which is exceedingly expensive as it amounts to scan-
ning the dataset Ω(B) times (B is the block size)! The deficiency
is due to the well-known fact that, in general, hashing benefits little
from blocking by necessitating highly random traffic that exhibits
little disk locality [14].

Let G be the grid that GRIDSAMPLING runs with. Remember
that Line 1 essentially performs a group-by of P (by the ids of the
cells in G the points fall in, as mentioned in Section 3.2). Group-
by is such a fundamental operator in database systems that it can
be expeditiously performed by sorting. This is exactly the solution
adopted in our implementation.

Once the points have been grouped by the cells, the remainder
of the algorithm breezes through with just another sequential scan
of P . Specifically, we process each group as follows. Let c be
the cell of G that the group corresponds to. We take a weighted
random sample set S(c) from the points in the group. S(c), which
contains at most s points, is small enough to fit in memory, which
enables us to find r(c) (at Line 7 or 9 of Algorithm 2) without any
I/O accesses.

In terms of I/O efficiency, the bottleneck of GRIDSAMPLING is
the group-by operation which as mentioned earlier requires sorting.
There are, however, scenarios where sorting is not required, such
that the group-by can be accomplished in O(n/B) I/Os. One such
scenario is when the number h of non-empty cells in G does not
exceed the number of blocks in memory minus one. In such a sce-
nario, we can allocate one block of memory as the input buffer to
read the input P , and meanwhile, use a memory block for each non-
empty cell c as the output buffer for writing to the disk the points
falling in c. In this way, the group-by finishes by reading and writ-
ing the dataset exactly once, respectively, so that GRIDSAMPLING

requires only linear I/Os overall.
Another, more effective, heuristic leverages the fact that, the sam-

ple size s of each cell c (recall that s is a parameter to GRIDSAM-
PLING) is small – at the order of log2 n in practice. When hs ≤ M

withM being how many points can fit in memory, we can keep the
sample sets of all non-empty cells memory-resident. In such a case,
GRIDSAMPLING terminates by reading P only once (without any
write I/Os) because, after group-by, GRIDSAMPLING works only
on the sample sets only.

6. EXPERIMENTS
In this section, we present an empirical evaluation of the pro-

posed techniques for solving the (1−ǫ)-approximate MaxRS prob-
lem. First, Section 6.1 clarifies the setup of our experiments. Then,
Section 6.2 (6.3) demonstrates the results in internal (external)
memory.

6.1 Setup

Datasets. Our experimentation was based on 5 real datasets named
CAR, RAIL, UAC, BLOCK, and NE, which contained 2.2m, 3.4m,
8.0m, 11.5m, and 20.0m points, respectively. The data space has
a length of 109 on each dimension. CAR and RAIL were gener-
ated from transportation networks. Specifically, each point in CAR
(RAIL) represents a junction in the road (railway) system of Califor-
nia (the entire US). On the other hand, the points of UAC, BLOCK,
and NE corresponded to actual geographic locations in urban areas,
city blocks, and the northeastern of the US, respectively. These
datasets are the product of the TIGER project at the US Census Bu-
reau, and have been frequently utilized in the experiments of previ-
ous work in spatial databases. For every data point, we generated
its weight uniformly in the range from 1 to 50.

Machine and OS. All the experiments were performed on a ma-
chine running an Intel 3GHz CPU with 8 GB of memory. The op-
erating system was Linux. For I/O-related experiments, the block
size was fixed to 4k bytes.

Competing Methods. In internal memory, we compared the pro-
posed algorithm 4GRIDSAMPLING (Algorithm 3) against SIMPLE-
SAMPLING (Algorithm 1), and the algorithm of [10], denoted as
OPTIMAL, for solving the MaxRS problem exactly. Similarly, in
external memory, the comparison was among 4GRIDSAMPLING,
SIMPLESAMPLING (implemented as described in Section 5), and
the exact algorithm of [2], also denoted as OPTIMAL when no am-
biguity can arise. We did not include GRIDSAMPLING because it is
merely an intermediate product in the development of 4GRIDSAM-
PLING.

Parameters. The (1 − ǫ)-approximate MaxRS problem is speci-
fied by parameters ǫ, a and b. We eliminated b by equating it to a,
namely, the requested rectangle was always a square. However, a
itself is hardly a characteristic factor determining the behavior of
approximation algorithms, because it is overly sensitive to the scal-
ing of the data space’s dimensions and the data distribution. What is
directly influential ism⋆, namely, the total weight of the points cov-
ered by an optimal rectangle. Intuitively, the approximation prob-
lem is difficult when m⋆ is low because the permissible error is
small.

We varied ǫ among 0.25%, 0.5%, 1%, 2%, 4%, and 8%, while
m⋆ was changed among 256, 512, 1024, 2048, 4096, 8192 and
16384, where the underlined were the default values. Oncem⋆ was
decided, so was a, which was set to the minimum value ensuring
that an optimal a× a square should enclose at least weight m⋆.

Workload and Measurement. 4GRIDSAMPLING and SIMPLE-
SAMPLING are randomized algorithms. Hence, their performance
is not necessarily the same each time. Because of this, each value
reported in our diagrams for either algorithm was obtained from a
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Figure 8: Effect of sample size on accuracy
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Figure 9: Running time vs. accuracy

workload, in which we ran the algorithm on the same problem 20
times. Its efficiency was measured as the average CPU or I/O time
of all its runs in a workload.

For 4GRIDSAMPLING, we required that it should output a cor-
rect (1 − ǫ)-approximate answer in all those runs, i.e., it never
failed. We were able to do so because, as proven in Theorem 2,
this algorithm succeeds with extremely high probability. SIMPLE-
SAMPLING, however, does not even come close to having such a
property, such that we relaxed the precision requirement by asking
it to achieve an error of ǫm⋆ only on average. In other words, it was
acceptable even if SIMPLESAMPLING failed to guarantee (1 − ǫ)-
approximation in some runs. In this way, we essentially applied a

double standard in favor of SIMPLESAMPLING.

6.2 Internal Memory and Result Quality

Pitfall of SIMPLESAMPLING. The first experiment aimed at re-
vealing how large a sample set is demanded by SIMPLESAMPLING

in order to return accurate answers. We pointed out in Section 3.1
the unreliability of SIMPLESAMPLING by explaining why its sam-
ple size s has to be exceedingly large to guarantee good approxima-
tion. Figure 8a shows that this is indeed true in reality. For each
dataset, we deployed SIMPLESAMPLING on the MaxRS problem
with m⋆ set to its default value 16384, by increasing s from 0.1n
all the way to 0.9n. In the meantime, we measured the ǫ that the
algorithm was able to achieve (in the average sense, as mentioned
in Section 6.1). Observe from Figure 8a that a descent amount of
samples is needed to strike good precision. In particular, to cater
for ǫ = 0.01, s needed to be at least 0.5n in all cases, i.e., half of
the dataset must be sampled!

Sample Size of 4GRIDSAMPLING. Remember that 4GRIDSAM-
PLING also admits a sample size s as a parameter. The proof of The-
orem 2 showed that a good theoretical value for s is O( 1

ǫ2
log n).

Next, we demonstrate good values for s in practice. For each

dataset, fixing m⋆ to its default, we changed s from 10 log2 n to
100 log2 n, while monitoring the ǫ guaranteed by the algorithm (in
the strict sense – remember that 4GRIDSAMPLING was never al-
lowed to fail). The results are illustrated in Figure 8b. Notice that
the error of 4GRIDSAMPLING decreased dramatically as soon as
s started to grow, such that by the time s reached 100 log2 n, its ǫ
had become 0, indicating that 4GRIDSAMPLING always found an
optimal answer. We recommend s = 1

100ǫ2
log2 n for practical use,

which worked very well in all our experiments.

Efficiency. We now proceed to assess the execution time of alter-
native algorithms. Fixing m⋆ to 16384, the next experiment de-
ployed 4GRIDSAMPLING and SIMPLESAMPLING to find (1 − ǫ)-
approximate answers (in the strict and average senses, respectively;
this is the same in all experiments below) for each dataset, when ǫ
increased from 0.25% to 8%. Figure 9 compares the running time
of the two algorithms against OPTIMAL. Evidently, 4GRIDSAM-
PLING was significantly faster than OPTIMAL by an order of mag-
nitude in all datasets. This confirms the very original motivation of
studying approximate MaxRS, i.e., boosting the efficiency consid-
erably by sacrificing little precision. SIMPLESAMPLING was also
much slower than 4GRIDSAMPLING, except when the permissible
error was large enough, so that SIMPLESAMPLING could be run on
a small sample set.

To investigate the influence of m⋆, we set ǫ to its default value
1%, varied m⋆ in its spectrum, and gauged the running time of
4GRIDSAMPLING, SIMPLESAMPLING and OPTIMAL. The result
is presented in Figure 10. 4GRIDSAMPLING consistently outper-
formed all its competitors by a comfortable margin in all cases.

Error Distribution. The next experiment was designed to answer
the following question: how good are the answers of SIMPLESAM-
PLING if it uses the same amount of time as 4GRIDSAMPLING?

Remember that the running time of SIMPLESAMPLING depends
solely on the number s of samples used. Therefore, it is possible
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to accurately adjust its running time by controlling s. Setting both
m⋆ and ǫ to their default values, we first executed 4GRIDSAM-
PLING on a dataset. Then, given an identical (query) rectangle size,
SIMPLESAMPLING was parameterized to run on the same dataset
for as long as 4GRIDSAMPLING did. This process was repeated 20
times.

For every dataset, Figure 11 gives the output quality of all the
20 runs of 4GRIDSAMPLING and SIMPLESAMPLING, respectively.
For each run, we show the covered weight of the rectangle returned
by each algorithm. In each diagram, the precise answer is given as
a horizontal line. In other words, the closer an approximate answer
is to the line, the better approximation it offers. As expected, all
the results of 4GRIDSAMPLINGwere extremely accurate – in most
cases, the algorithm actually found the optimal answers! In con-
trast, the results of SIMPLESAMPLING were much worse. In par-
ticular, whenm⋆ is fixed, SIMPLESAMPLING tends to incur higher
error in a larger dataset (observe that its errors were especially sig-
nificant in BLOCK and NE). These results thus further confirm the
superiority of 4GRIDSAMPLING over SIMPLESAMPLING.

Scalability. We also studied how the cost of 4GRIDSAMPLING

scales with the dataset cardinality n. For this purpose, we took the
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Figure 13: Running time vs. query rectangle size

largest dataset NE, and created its miniatures of various sizes by
random sampling (e.g., a miniature of 2m was obtained by sam-
pling 10% of NE). Using the defaults of ǫ and m⋆, Figure 12 plots
the running time of 4GRIDSAMPLING and OPTIMAL when they
were executed on each of the miniatures. It is clear that 4GRID-
SAMPLING scaled much better than OPTIMAL. This is expected
because 4GRIDSAMPLING has a complexity of O(n log log n) (ig-
noring the part of its complexity related to ǫ, which was fixed here),
as opposed to the O(n log n) time demanded by OPTIMAL.

Influence of Rectangle Size. Recall that, in all our experiments,
the target rectangle was an a× a square. As mentioned earlier, the
value of a is not a characteristic factor on query efficiency. Nev-
ertheless, in practice, it is natural for a user to specify a directly,
since the value of m⋆ is difficult to predict. Therefore, the last set
of experiments in this section aims to give the reader some sense
of how the algorithms behave as this parameter changes. Again
using dataset NE and fixing ǫ to 1%, we measured the running
time of 4GRIDSAMPLING, SIMPLESAMPLING, and OPTIMAL as
a increased from 103 to 106 (recall that the data space has an axis
length of 109). The results are demonstrated in Figure 13, where
the behavior of all methods is similar to that in Figure 10e.
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Figure 14: I/O cost vs. accuracy
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Figure 15: I/O cost vs. optimal answer
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Figure 16: I/O scalability with dataset size

6.3 External Memory
We now turn our attention to the scenario where the dataset does

not fit in memory, thus rendering the I/O overhead the dominant
cost. The amount of memory allocated to each algorithm was 10%
of the number of blocks occupied by the underlying dataset. Result
quality is no longer a concern of the subsequent experiments be-
cause each algorithm returned the same answers as in the internal-
memory cases, whose accuracy has already been examined before.

Fixingm⋆ to 16384, Figure 14 compares the I/O cost of 4GRID-
SAMPLING, SIMPLESAMPLING and OPTIMAL on each dataset,
when ǫ grows from 0.25% to 8%. Conversely, setting ǫ to 1%,
Figure 15 presents the comparison as a function of m⋆. The gen-
eral observations are analogous to those that we made earlier from
Figures 9 and 10. In particular, 4GRIDSAMPLING was faster than
OPTIMAL by a factor between 2 and 3, and also outperformed SIM-
PLESAMPLING significantly except when ǫ was large.
We evaluated the I/O scalability of 4GRIDSAMPLING by repeat-

ing the experiment of Figure 16 in external memory. Both 4GRID-
SAMPLING and OPTIMAL scaled gracefully with the dataset cardi-
nality, with 4GRIDSAMPLING being the clear winner. Finally, we
also repeated the experiment of Figure 13 in the I/O context, with
the results given in Figure 17.
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Figure 17: I/O cost vs. query rectangle size

7. CONCLUSIONS
MaxRS is an interesting problem in spatial databases that has

caught the attention of the database community only recently. Al-
though algorithms for solving the problem exactly are already avail-
able, they unfortunately incur significant CPU or I/O time, when
the input set P can or cannot be accommodated in memory, respec-
tively. As a result, those algorithms fall short in fulfilling the need
of a real system in providing the users with speedy answers.

This paper offers a remedy by trading away slight precision for
significant improvement in efficiency. We propose a new problem
called (1−ǫ)-approximate MaxRS that returns a solution that can be
worse than an optimal solution by a factor of at most ǫ, where ǫ can
be an arbitrarily small positive constant satisfying 0 < ǫ < 1. We
present algorithms for settling this problem with a fraction of the
cost of the state-of-the-art approaches. Our techniques are based
on innovative ideas that are drastically different from those of the
previous work, and hence, are of independent interest.
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Proof of Theorem 1

It suffices to consider the case where all points have weight 1. Set
ǫ = 0.49. We will construct an instance of the (1− ǫ)-approximate
MaxRS problem with m⋆ = 2 such that the permissible error is
ǫm⋆ = 0.49 × 2 < 1. In other words, a (1 − ǫ)-approximate
answer has to be an optimal answer.

Specifically, P is designed as shown in Figure 18. Among its
n points, n − 2 of them are placed evenly along a circle; they are
called border points. Two points are placed very close to each other
at the circle’s center; they are called center points, which can be
covered by an a×b rectangle. The radius of the circle is sufficiently

optimal rectangle r
⋆

Figure 18: Bad input for SIMPLESAMPLING

large so that, if an a × b rectangle covers a border point, it cannot
contain any other point.

Consider the execution of SIMPLESAMPLING on P . As men-
tioned earlier, for ǫ = 0.49, any algorithm must return an optimal
answer to fulfill (1 − ǫ)-approximation. However, if neither cen-
ter point appears in the sample set S (obtained by SIMPLESAM-
PLING), an optimal answer on S will always cover a border point,
in which case SIMPLESAMPLING fails to find an optimal answer
on P (which should be at the center of the circle, as shown in Fig-
ure 18).

By the random nature of S, the probability for S to miss both

center points is
(n−s)(n−s−1)

n(n−1)
. Therefore, SIMPLESAMPLING fails

with probability at least 1− δ when

(n− s)(n− s− 1)

n(n− 1)
≥ 1− δ

which holds as long as s ≤ (1 −
√
1− δ)n − 1. Therefore,

s will have to be at least (1 −
√
1− δ)n = Ω(n) so that

SIMPLESAMPLING can succeed with probability at least δ.

Weighted Sampling with Replacement

LetG be a ground set of n elements, such that each element e ∈ G
carries a positive weight w(e). Let W =

∑

e∈S w(e). A weighted

random sample refers to an element e′ such that Pr[e′ = e] =
w(e)/W for every e ∈ G. The goal of weighted sampling with

replacement is to obtain a multi-set S of s independent weighted
random samples.

Next we describe an algorithm for obtaining S in O(n+ s log s)
time. First, generate independently a set X of s random numbers
between 0 and 1. Then, sort these numbers in ascending order using
O(s log s) time. Let the sorted order be x1, ..., xs.

Let e1, ..., en be the elements in G (in an arbitrary order). Scan
G once to obtain W . Next, we generate a set I of intervals with
another scan of G as follows. In the outset, I = ∅, and initialize an
interval [y, z] with y = z = 0. Then, we process each element of
G in turn. Specifically, for ei (1 ≤ i ≤ n), update [y, z] by setting
y to z, and increasing z by w(ei)/W ; let I(ei) be the resulting
[y, z], and add I(ei) to I . Note that all the intervals of e1, ..., en are
disjoint, and their union equals [0, 1]. Furthermore, I(e1), ..., I(en)
are sorted in ascending order of left end points. The computation
of I takes O(n) time.

Finally, ei is added to the sample set S as many times as the num-
ber of values in X covered by I(ei) (if I(ei) contains no number
in S, ei /∈ S). We can obtain, for all I(ei), the number |X ∩ I(ei)|
in O(n + s) time, by “merging” sets I and X , utilizing the sorted
orders of both sets. This completes the description of the algorithm.
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