
Understanding Hierarchical Methods for Differentially
Private Histograms

Wahbeh Qardaji, Weining Yang, Ninghui Li
Purdue University

305 N. University Street,
West Lafayette, IN 47907, USA

{wqardaji, yang469, ninghui}@cs.purdue.edu

ABSTRACT

In recent years, many approaches to differentially privately
publish histograms have been proposed. Several approach-
es rely on constructing tree structures in order to decrease
the error when answer large range queries. In this paper, we
examine the factors affecting the accuracy of hierarchical ap-
proaches by studying the mean squared error (MSE) when
answering range queries. We start with one-dimensional his-
tograms, and analyze how the MSE changes with differen-
t branching factors, after employing constrained inference,
and with different methods to allocate the privacy budget
among hierarchy levels. Our analysis and experimental re-
sults show that combining the choice of a good branching
factor with constrained inference outperform the current s-
tate of the art. Finally, we extend our analysis to multi-
dimensional histograms. We show that the benefits from
employing hierarchical methods beyond a single dimension
are significantly diminished, and when there are 3 or more
dimensions, it is almost always better to use the Flat method
instead of a hierarchy.

1. INTRODUCTION
A histogram is an important tool for summarizing data.

In recent years, significant improvements have been made
in the problem of publishing histograms while satisfying d-
ifferentially privacy. The utility goal is to ensure that range
queries over the private histogram can be answered as accu-
rately as possible. The naive approach, which we call the flat
method, is to issue a count query for each unit bin in the his-
togram, and answer these queries using the Laplacian mech-
anism introduced by Dwork et al. [8]. Because each such
query has sensitivity 1, the magnitude of the added noise is
small. While this works well with histograms that have a
small number of unit bins, the error due to this method in-
creases substantially as the number of the bins increases. In
particular, when answering range queries using the private
histogram, the mean squared error increases linearly in the
size of the query range.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th ­ 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14

Copyright 2013 VLDB Endowment 2150­8097/13/14... $ 10.00.

Hay et al. [14] introduced the hierarchical method for op-
timizing differentially private histograms. In this approach,
in addition to asking for counts of unit-length intervals, one
also asks for counts of larger intervals. Conceptually, one
can arrange all queried intervals into a tree, where the unit-
length intervals are the leaves. The benefit of this method is
that a range query which includes many unit bins can be an-
swered using a small number of sub-intervals which exactly
cover the query range. The tradeoff over the flat method is
that when queries are issued at multiple levels, each query
must satisfy differential privacy for a smaller ǫ. We refer
to this as the privacy budget allocated to (or consumed by)
the query. Hay et al. [14] also introduced novel constrained
inference techniques to improve over the basic hierarchical
method, which exploits the observation that query result-
s at different levels should satisfy certain consistency re-
lationships to obtain improved estimates. This hierarchical
method with constrained inference has been adopted by oth-
er researchers [5, 4].

A number of other methods have also been developed and
applied to the histogram program. For example, Xiao et
al. [21] introduced the Privlet method, which decomposes
the original histogram using the Haar wavelet, then adds
noise to the decomposed coefficients, and finally reconstruct-
s the histogram using the noisy coefficients. The benefit of
this method is that, when answering range queries, noise
added to the coefficients can be partially cancelled because
of the nature of Haar wavelet processing. Li et al. [15] in-
troduced the matrix mechanism, which tries to optimize an-
swers for a fixed set of counting queries. As solving the
optimization problem is computationally infeasible, several
approximation techniques have been developed, such as the
eigen-select algorithm [16] and the low-rank approximation
algorithm [24].

We observe that hierarchical methods can be parameter-
ized in several different ways, and different parameter values
may significantly affect the accuracy of the results. Such pa-
rameters include the branching factor for the hierarchy, as
well as the division of privacy budget among its levels. Fur-
thermore, several other parameters also affect the relative
strength of each method, including the total number of his-
togram bins, the number of dimensions, and the distribution
of the queries. To thoroughly understand the strengths and
weaknesses of these methods, we need to understand how
these parameters affect the accuracy.

In this paper, we combine combinatorial analysis of how
the different parameters affect the accuracy of each method,
with experimental evaluation that validates the theoretical

1954

analysis. We believe this two-pronged approach will pro-
mote a deeper understanding of the effectiveness of the hier-
archical methods. For utility, we consider the Mean Squared
Error (MSE) of answering all range queries over the data do-
main, with every query considered equally likely.

We make the following contributions. First, we perfor-
m a thorough analysis of hierarchical methods in one di-
mension. We analyze how different branching factors affect
the MSE, and show that choosing a larger branching fac-
tor (e.g., 16) instead of 2, one can reduce MSE by a factor
of more than 4. We also analyze the benefits due to using
constrained inference, the effect of which depends on the
branching factor. We also compare several privacy budget
allocation schemes, and experimentally show that, when one
uses optimal branching factor with constrained inference, e-
qual privacy budget allocation suffices to give excellent re-
sult.

We then compare our method of combining a larger
branching factor with constraint inference to other state of
the art methods, including the Wavelet method and two
instantiations of the Matrix Mechanism. We provide com-
parison results both from analytical computations and from
experiments with real-world datasets. We show that our
method outperforms other state of art methods.

Finally, we extend our analysis to multiple dimensions.
We show that for higher-dimensional datasets, the benefit
of using hierarchies is significantly limited. In particular,
when the number of dimensions is 3 or higher, for all but
the largest datasets, one would be better of with using the
naive flat method.

The rest of the paper is organized as follows. We giv-
en the problem definition in Section 2, and analyze one-
dimensional histogram in Section 3. We then compare our
proposed method with the current state of the art in Sec-
tion 4, and extend our analysis to multiple dimensions in
Section 5. Finally, we discuss related work in Section 6, and
conclude in Section 7.

2. PROBLEM DEFINITION
We begin by formally stating the privacy definition we

employ, as well as our problem definition.

2.1 Differential Privacy
Differential privacy, which was developed in a series of pa-

pers [7, 10, 2, 9, 8], has been widely accepted in the research
community as the notion of choice for private data analysis.

Definition 1 (ǫ-Differential Privacy [8, 9]). A

randomized mechanism A gives ǫ-differential privacy if

for any pair of neighboring datasets D and D′, and any

S ∈ Range(A),

Pr [A(D) = S] ≤ eǫ · Pr
[

A(D′) = S
]

.

In this paper we consider two datasets D and D′ to be
neighbors if one dataset equals the other dataset with one
additional tuple added. We use D ≃ D′ to denote this.

Differential privacy is composable in the sense that com-
bining multiple mechanisms that satisfy differential priva-
cy for ǫ1, · · · , ǫm results in a mechanism that satisfies ǫ-
differential privacy for ǫ =

∑

i ǫi. Because of this, we refer
to ǫ as the privacy budget of a privacy-preserving data anal-
ysis task. When a task involves multiple steps, the budget
is divided for different steps to use.

One approach to evaluate a function g on a dataset D
while satisfying ǫ-differential privacy is to add to the out-
put random noise whose magnitude is proportional to GSg,
where GSg is the global sensitivity or the L1 sensitivity of g.
We use Ag to denote this mechanism:

Ag(D) = g(D) + Lap
(

GSg
ǫ

)

where GSg = maxD≃D′ |g(D)− g(D′)|,
and Pr [Lap (β) = x] = 1

2β
e−|x|/β

In the above, Lap (β) represents a random variable sampled
from the Laplace distribution with scale parameter β. This
is generally referred to as the Laplacian mechanism for sat-
isfying differential privacy.

2.2 Problem Definition
We consider a dataset being a set of points in a d-

dimensional domain. For simplicity, we assume that each
dimension has been quantized into n consecutive and non-
overlapping bins; thus the overall domain has N = nd bins.
We consider a hierarchy over a d-dimensional dataset that
partitions the data domain into sets of bd hypercubes. Hence
we call b branching factor. Each node in the hierarchy counts
the number of tuples that fall in the hypercube the node rep-
resents. The leaf nodes in this hierarchy correspond to the
actual histogram bins, while the root node corresponds to
the entire data domain.

In order to measure utility, we examine the accuracy of
answering range queries over the dataset using the differ-
entially private histogram. We assume that a range query,
r, represents a hyperrectangle in the d-dimensional domain
specified by the dataset, and asks for the number of tu-
ples that fall within the bins that are completely included
in the area covered by the hyperrectangle. We consider the
behaviors of different histogram publishing methods over a
dataset D. In the descriptions below, we leave the dataset
D implicit.

For a query r, we use A(r) to denote the correct answer
to r. For a method M and a query r, we use QM(r) to
denote the answer to the query r when using the histogram
constructed by methodM to answer the query r, and EM(r)
to denote the absolute error for query r under M. That is

EM(r) = |QM(r)− A(r)|.

Because the method M is often randomized, EM(r) is a
random variable. We use the variance of EM(r) as a mea-
surement of the error. We note that this is also the mean
squared error (MSE) when viewing QM(r) as an estimator
for A(r). We assume that the user is interested in any set
of range query, and that all the queries are equally likely to
be chosen. Hence, we consider the average MSE (which we,
with a slight abuse of terminology, still call the MSE), over
all possible range queries. As this is also the average error
variance, we use VAvg[M] to denote this. Let Q be the set
of all queries over some histogram, then

VAvg[M] =

∑

r∈Q(EM(r))2

|Q|

We study the efficacy of various hierarchical approaches
that publish a histogram while satisfying ǫ-DP. More specif-
ically, we study various factors which affect the MSE when
answering all range queries:

1955

1. The histogram size N , which is the number of bins in
the histogram.

2. The branching factor, b. In most existing work, a bina-
ry hierarchy is used. This results in a deep tree, and
thus requires substantial division of privacy budget.
We want to analyze how the branching factor affect-
s the MSE and how to choose the optimal branching
factor for a particular histogram.

3. The use of constrained inference [14], which is the pro-
cess of utilizing the inherent redundancy in hierarchi-
cal queries in order to boost accuracy and ensure inter-
level consistency. We aim to analyze its effect in order
to estimate its benefit for various hierarchies.

4. The way privacy budget is allocated across multiple
levels in the hierarchy. Two methods have been pro-
posed in the literature. One is to divide the privacy
budget equally among all levels. In [5], geometric bud-
get allocation has been proposed. We also consider an
approach that search for an optimal allocation.

5. Histogram dimension. While most datasets in prac-
tice are multi-dimensional, differentially private multi-
dimensional histograms has received little attention in
the literature. We aim to understand how the accuracy
of hierarchical methods is affected by dimensionality.

3. THE ONE DIMENSIONAL CASE
In this section, we focus on histograms over one-

dimensional datasets.

3.1 The Flat Method: F

In the flat method, which we denote by F, one issues a
count query for each unit-length interval. This is answered
by adding noise following the Laplace distribution Lap

(

1
ǫ

)

.

The variance at each bin is therefore Vu = 2
ǫ2
. Let |r| denote

the number of unit-length intervals in a range r. Then the
MSE is Var(EM(r)) = |r| · Vu.

We note that the average length of all queries over N unit

intervals is
∑N

j=1 j(N−j+1)

N(N+1)/2
= (N+2)

3
. Hence the average-case

MSE is (N+2)
3

Vu. This is linear in the number of bins.

3.2 Hierarchical Methods: H2 and Hb

In the hierarchical method Hb, one arranges intervals into
a tree with branching factor b, where the unit-length inter-
vals are the leaves, and each node in the tree corresponds to
an interval that is the union of the intervals of its children.
We use H2 to denote the case of a binary tree.

Let h = ⌈logb N⌉. Then the tree has h+ 1 levels. We say
that the leaf nodes are at level 1, and the root node are thus
at level h + 1. A query is issued at each node in the tree
except for the root; thus queries are issued at levels from
1 to h. Each level is allocated privacy budget ǫ

h
. When a

range query comes, one finds the least number of nodes that
correspond to the query range and sum up the noisy counts
in the leaves.

The branching factor b affects the accuracy in two ways.
Increasing b reduces the height of the tree, thereby increas-
ing the privacy budget available to each query, and improv-
ing the accuracy. At the same time, increasing b requires
more nodes to be used to answer a query on average. To

choose the optimal branching factor b, one needs to balance
these two effects. The following proposition gives the for-
mula for the MSE.

Proposition 1. The method Hb has the following

average-case MSE:

VAvg [Hb] =
N

N+1

(

(b− 1)h3− 2(b+ 1)h2

3
+O

(

bh

N

))

Vu (1)

Proof. Let left(v)/right(v) be the index of the left-
most/rightmost leaf node in the subtree rooted at node v,
and p(v) be the parent node of v. Then the number of
queries that use the node v is

left(v) · (N − right(v)+1)− left(p(v)) · (N − right(p(v))+1)

To answer all possible range queries, the total number of
times nodes at level ℓ are used is:

M(ℓ) =

N/bℓ
∑

j=1

b
∑

k=1
(

(j − 1)bℓ + (k − 1)bℓ−1 + 1
)(

N − (j − 1)bℓ − kb
ℓ−1 + 1

)

−

(

(j − 1)bℓ + 1
)(

N − jb
ℓ + 1

)

where j denotes the index of the parent nodes, and k
iterates over node j’s children. Expanding the above nested
summations, we have

M(ℓ) = (b− 1)

(

N2

2
− N(b+ 1)bℓ−1

3
+N

)

(2)

To answer all possible range queries, the number of nodes
in a complete tree that are used is:

h
∑

ℓ=1

M(ℓ) =

(

(b − 1)hN2

2
−

(b + 1)N2

3
+ (b − 1)Nh +

(b + 1)N

3

)

Each node has variance h2VU, and there are N(N +
1)/2 queries in total. Therefore, we have VAvg[Hb] =
∑h

ℓ=1 M(ℓ)

N(N+1)/2
h2VU, proving the proposition.

Note that as the MSE is poly-logarithmical in N instead
of linear in N , when N is large, the hierarchical method
results in better accuracy than the flat method.

By dropping the N
N+1

factor and the O(1
N
) term in Equa-

tion (1), we obtain the following approximation of VAvg[Hb],
which we use V∗

Avg[Hb] to denote:

V
∗
Avg [Hb] =

(

(b− 1)h3 − 2(b + 1)h2

3

)

· Vu (3)

We now give a high-level argument for the above approxi-
mation. On each level, the left end of the query may include
0, 1, · · · , b − 1 nodes, which averages to (b − 1)/2; similarly
the right end of the query includes on average (b − 1)/2.
Thus on average a query needs to be answered by (b − 1)h
nodes, where each node is answered with privacy budget ǫ

h
,

and hence error variance of h2Vu. This explains the first and
most significant term in Equation (3). The second term is
due to the fact that some queries may not need all levels to
answer it. For the binary case, we have

V
∗
Avg [H2] =

(

h3 − 2h2) · Vu (4)

Optimal Branching Factor. The optimal branching fac-
tor b should minimize Equation (3). Because h = ⌈logb N⌉

1956

is not a continuous function, we cannot find a closed form
solution for the value b. However, given any N , it is straight-
forward to computationally find the b value that minimizes
Equation (3) by trying different b values.

Another use of Proposition 1 is to get a sense of what is
the optimal branching factor for very large N values. When
N is very large, we can use logb N to approximate ⌈logb N⌉.
Trying to minimizing (b− 1) (logb N)3 − 2

3
(b+ 1) (logb N)2,

however, results in b dependent on N . When N is very large,
the first term (b − 1) (logb N)3 dominates the second term,
and we can choose b such that the first term’s derivative,
−3b+b log b+3

b log3 b
log3 N , is 0. This results in b ≈ 16.8. When

setting b = 16, this results in MSE reduction from H2 by a

factor of approximately (log2 16)3

(16−1)
≈ 4.27.

3.3 Constrained Inference ­ Hc
b

Hay et al. [14] introduced constrained inference techniques
to improve H2. This technique also applies to arbitrary
branching factors. We thus present the general version of
the technique. We dissect constrained inference into two
steps: Weighted Averaging, and Mean Consistency.

Weighted averaging. The weighted averaging step is
based on the following fact:

fact 2. Given two random variables X1 and X2, consid-

er X = αX1 + (1 − α)X2, the variance of X is minimized

when α = Var(X2)
Var(X1)+Var(X2)

and the minimal variance of X is
Var(X1)Var(X2)
Var(X1)+Var(X2)

.

Let n[v] be the noisy count for the node v which is at level
i in the tree. We use the weighted average of its original
noisy count and the sum of its children’s count to update
the node’s noisy count. We use zi[v] to denote the updated
count.

zi[v] =

{

n[v], if i = 1, i.e., v is a leaf node
bi−bi−1

bi−1
n[v] + bi−1−1

bi−1

∑

u∈child(v) zi−1[u], ow.

Mean consistency. The mean consistency step aims at
ensuring that for each node, its children values sum up to
be the same as the parent. This is done by calculating the
difference in the sum of the values of the children, and the
value of the parent. This difference is divided equally among
the children, as follows, where u is the parent of v.

n̄i[v] =

{

zi[v], if i = h

zi[v] +
1
b

(

n̄i+1[u]−
∑

v∈child(u) zi[v]
)

, ow.

After constrained inference, each node’s value is a weight-
ed sum of the original noisy counts of all nodes in the hi-
erarchy. With all nodes along the path from the leaf to its
highest ancestor that has a noisy count has positive weight-
s, and all other nodes under that ancestor have negative
weights. Figure 1 gives an example showing the effect of
constrained inference.

Effect of constrained inference. In the following, we try
to quantify the error reduction effect of constrained infer-
ence, and to develop a way to choose the optimal branching
factor when constrained inference is used. In addition to VU,
which is the variance of each unit bin in the flat method, we
use the following notations:

Figure 1: Effect of constrained inference. This figure demon-
strates a hierarchical tree for N = 8, b = 2. We use ni to
denote the original noisy count for node i, and n′

i to denote
the count after constrained inference. Then we have
n′
7 = 13

21
n7 +

5
21
n3 +

1
7
n1 − 2

21
n4 − 1

21
(n9 + n10)− 8

21
n8,

n′
8 = 13

21
n8 +

5
21
n3 +

1
7
n1 − 2

21
n4 − 1

21
(n9 + n10)− 8

21
n7,

n′
9 = 13

21
n9 +

5
21
n4 +

1
7
n1 − 2

21
n3 − 1

21
(n7 + n8)− 8

21
n10,

q = 3
7
n1 +

8
21
n3 ++ 1

21
n4 +

4
21
(n7 + n8) +

11
21
n9 − 10

21
n10,

where q = n′
7 +n′

8 + n′
9 is the answer to the range query in-

cludes the first 3 leaf nodes; we have Var[q] = 399
441

VO, which
is significantly than the 2VO needed before constrained in-
ference (using n3+n9), where VO is the variance of the ni’s.

• VO is the variance of each node in the hierarchy with-
out constrained inference. Thus VO = h2VU, where h
is the height of the hierarchy.

• V ↓
ℓ is the variance of the best estimate of a node at

level ℓ “from below”; that is, the best estimate using
only information from the node and its descendants.
This is also the variance of the node after the weighted
averaging step.

• V ↑
ℓ is the variance of the best estimate of a node at

level ℓ “from above”; that is, the best estimate using
information from the hierarchy excluding its descen-
dants.

The following Proposition shows the effect of the weighted
averaging step.

Proposition 3. The weighted averaging step reduces the

error variance of level ℓ to be V ↓
ℓ = bℓ−1

∑ℓ−1
i=0 bi

VO. We also

have V ↓
ℓ > b−1

b
VO for all levels, and when ℓ > 1, we have

V ↓
ℓ ≤ b

b+1
VO.

Proof. We prove by induction. The leaf level (i.e., ℓ = 1)
obtains no benefit from the weighted averaging step, and

their error variance equals VO = b0
∑

0
i=0 bi

VO. Assume that

V ↓
ℓ = bℓ−1

∑ℓ−1
i=0

bi
VO, consider V ↓

ℓ+1. Summing up its children

results in an estimate with variance b·bℓ−1

∑ℓ−1
i=0 bi

VO, combining

this with the original noisy count of variance VO, the result-
ing variance is

V ↓
ℓ+1 =

VO · bℓVO
∑ℓ−1

i=0
bi

VO + bℓVO
∑ℓ−1

i=0 bi

=
bℓ

∑ℓ
i=0 b

i
VO.

Note that forall ℓ ≥ 1, we have bℓ−1

∑ℓ−1
i=0 bi

= bℓ−1(b−1)

bℓ−1
>

bℓ−1(b−1)

bℓ
= (b−1)

b
. Also when ℓ > 1, we have bℓ−1

∑ℓ−1
i=0 bi

≤
bℓ−1

bℓ−1+bℓ−2 = b
b+1

.

1957

When applied to H2, this means that the variances of the
nodes are reduced from 1 to (starting from leaf level going
up) 1, 2

3
, 4
7
, 8
15
, · · · . For larger b values, this reduction effect

is small, as b−1
b

is close to 1.
After the Mean Consistency step, the error variances for

all non-root nodes are further reduced, including those of the
leaf nodes, which do not benefit from weighted averaging.
The following proposition gives a bound of this effect.

Proposition 4. After constrained inference, the error

variance of each node is at least b−1
b+1

VO.

Proof. For each node v at level ℓ, we can partition the
hierarchy into two disjoint parts. One part consists of all
the descendants of v, and the other consists of the rest of
the hierarchy, including v. The value of v after constrained
inference can be viewed as the average of the best estimates
of its count obtained from the two parts.

The best estimate obtained from the descendants is the
sum of the values of all of v’s children after weighted aver-
aging step, and has variance bV ↓

ℓ−1. From Proposition 3, we

have bV ↓
ℓ−1 > b b−1

b
VO = (b− 1)VO.

The best estimate from the rest has variance V ↑
ℓ . We

now show that V ↑
ℓ > b−1

b
VO for all ℓ’s. This estimate is

the weighted average of the noisy count at the node, which
has variance VO, and the noisy count obtained by subtract-
ing the sum of its siblings from the the best estimate of
its parent without using any information from its descen-
dants, which has variance V ↑

ℓ+1 + (b − 1)V ↓
ℓ . We thus have

V ↑
ℓ =

VO(V
↑

ℓ+1
+(b−1)V

↓

ℓ
)

VO+V
↑
ℓ+1

+(b−1)V
↓
ℓ

. We use induction to show that

V ↑
ℓ > b−1

b
VO. When ℓ = h, we have V ↑

h = VO > b−1
b

VO.

Assume that V ↑
ℓ+1 > b−1

b
VO, we have

V
↑

ℓ =
VO(V

↑

ℓ+1 + (b − 1)V ↓

ℓ)

VO + V
↑

ℓ+1 + (b − 1)V ↓

ℓ

>

b−1
b +

(b−1)2

b

1 + b−1
b + (b−1)2

b

VO =
b − 1

b
VO.

The variance of a node at level j after constrained infer-

ence is thus
bV

↓
j−1V

↑
j

bV
↓
j−1

+V
↑
j

> (b−1)2/b

b−1+ b−1
b

VO = b−1
b+1

VO.

We have observed in experiments that in a deep hierarchy,
nodes in levels around the middle have variances approach-
ing the b−1

b+1
VO lower bound established in Proposition 4.

Nodes at the lowest and highest levels have variances closer
to b−1

b
VO.

From Proposition 4, one can observe that when b is large,
each individual node’s variance is reduced only slightly, as
b−1
b+1

is close to 1. However, as constrained inference makes
the noise at different nodes correlated, there is further reduc-
tion effect when a query includes multiple nodes. For exam-
ple, when a query includes substantially more than half of a
node’s children, then the query’s variance can be significant-
ly reduced by using a weighted average of two answers: one
obtained by summing up nodes included in the query, and
the other obtained by subtracting from the parent node’s
value the sum of the sibling nodes that are not included in
the query. Mean consistency achieves this effect. In fact, for
large b values, this is the main source of error reduction from
constrained inference. Below we analyze the effect when we
consider only the interactions among two levels.

Consider b nodes at level ℓ under the same parent, it
is equally likely 0, 1, · · · , b − 1 of them are included in a

query. We consider the best answer from below, using n-
odes included in the query, and the best answer from above.
When k nodes are included, the estimate from below has
variance kV ↓

ℓ , and the estimate from above has variance

V ↑
ℓ+1 + (b − k)V ↓

ℓ , and their minimal variance combination
has variance

Var(Z) =
kV ↓

ℓ

(

V ↑
ℓ+1 + (b− k)V ↓

ℓ

)

V ↑
ℓ+1 + bV ↓

ℓ

Thus on average level ℓ’s contribution to the variance of a
query

1
b−1

∑b−1
k=1 Var(Z) =

b(b−1)(b+1)V
↓
ℓ

2
+3b(b−1)V

↑
ℓ+1

V
↓
ℓ

6(V
↑
ℓ+1

+bV
↓
ℓ
)

Without constrained inference, the average variance is
1

b−1

∑b−1
k=1 kVO = b

2
VO. Diving the above by b

2
VO, and using

b−1
b

VO as an approximate value for V ↓
ℓ and V ↑

ℓ , and we get
that the average variance is reduced by

(b2 + 4b)(b− 1)

6(b+ 1)b
=

(b− 1)(b+ 4)

3b(b+ 1)

The above analysis can be applied to any two adjacent
levels in a hierarchy to estimate how much noise reduction
one obtains in the lower level. It gives an estimate of the
benefit of constrained inference to be approximately 3 when
b is large. This value overestimates the error reduction ben-
efit for two reasons. First, it uses b−1

b
VO for V ↓

ℓ and V ↑
ℓ ,

which is a lower-bound, especially for V ↓
1 and V ↑

h , both e-
quals VO. Second, the top level does not benefit from the
reduction effect. At the same time, this value also underes-
timates the benefit from constrained inference because the
analysis does not consider cross-level error reduction effect.
For example, when a query includes b2 − 1 grandchildren of
a level 3 node, one could obtain a lower-variance answer by
subtracting from the level-3 node one leaf node. This effect
is quite pronounced when b = 2. However, when b is large,
this effect is small since only a small portion of the queries
benefit from this cross-level error reduction.

Input: N, b, ǫ vector
Output: V ↑ vector, V ↓ vector,

1 h = ⌈logb N⌉;
2 for i = 1 to h do

3 VOi =
2
ǫ2i
;

4 end

5 V ↓
1 = VO1;

6 for i = 2 to h do

7 V ↓
i =

bVOiV
↓
i−1

VOi+bV
↓
i−1

;

8 end

9 V ↑
h = VOh;

10 for i = h− 1 downto 1 do

11 V ↑
i =

VOi(V
↑
i+1+(b−1)V

↓
i)

VOi+V
↑
i+1+(b−1)V

↓
i

;

12 end

13 return V ↑, V ↓,;

Algorithm 1: Computing V ↑, V ↓

1958

H2 Hb Hc
2 Hc

b

N V∗
Avg [H2] Vex

Avg[H2] b h V∗
Avg[Hb] Vex

Avg[Hb]
Vex
Avg[H2]

Vex
Avg

[Hb]
Vex

Avg [H
c
2]

Vex
Avg [H2]

Vex
Avg

[Hc
2
]

Vex
Avg[H

c
b]

Vex
Avg [Hb]

Vex
Avg

[Hc
b
]

24 64.00 79.53 16 1 7.33 12.00 6.76 34.46 2.31 12.00 1
25 150.00 163.83 32 1 18.00 22.67 7.27 61.34 2.67 22.67 1
26 288.00 299.15 64 1 39.33 44.00 6.81 99.92 2.99 44.00 1

27 490.00 498.38 128 1 82.00 86.67 5.75 152.18 3.27 86.67 1
28 768.00 773.98 16 2 149.33 150.98 5.13 220.06 3.52 79.23 1.91
29 1134.00 1138.11 23 2 224.00 221.57 5.14 305.54 3.73 114.02 1.94

210 1600.00 1602.73 32 32 2 320.00 320.83 5.00 410.58s 3.90 164.30s 1.95
211 2178.00 2179.77 46 2 469.33 463.83 4.70 535.63s 4.07 233.66s 1.99
212 2880.00 2881.12 16 3 606.00 606.30 4.75

213 3718.00 3718.70 21 3 816.00 795.53 4.67
214 4704.00 4704.43 26 3 1026.00 1011.33 4.65
215 5850.00 5850.26 32 3 1278.00 1278.08 4.58

216 7168.00 7168.16 16 4 1557.33 1557.37 4.60
217 8670.00 8670.09 20 4 1984.00 1932.04 4.49
218 10368.00 10368.05 23 4 2304.00 2278.98 4.55

219 12274.00 12274.03 27 4 2730.67 2719.40 4.51
220 14400.00 14400.02 16 5 3183.33 3183.34 4.52

Table 1: Comparing H2, Hb, H
c
2, and Hc

b. V
∗
Avg denotes the estimated average error variance by Equation (3). Vex

Avg denotes
the actual average error variance by experience. ǫ = 1.0, so Vu = 2.0

Input: N, b, ǫ vector, V ↑ vector, V ↓ vector
Output: V∗

Avg[H
c
b]

1 h = ⌈logb N⌉;
2 for i = 1 to h− 1 do

3 Zi =
b(b−1)(b+1)V

↓
i

2
+3b(b−1)V

↑
i+1

V
↓
i

6(V
↑
i+1+bV

↓
i)

;

4 end

5 Zh = V ↓
h / 2

ǫ2
h
;

6 for i = 1 to h do

7 Mi = (b− 1)
(

N2

2
− N(b+1)bi−1

3
+N

)

;

8 end

9 sum = 0;
10 for i = 1 to h do

11 sum+ = MiZiVOi;
12 end

13 return sum;
Algorithm 2: Computing V∗

Avg[H
c
b]

In Algorithm 1, we present pseudocode for computing V ↑
ℓ

and V ↓
ℓ . In Algorithm 2, we present an algorithm for esti-

mating the error variance when N and b are given. It cor-
rects for the two sources of over-estimation biases, but does
not account for the cross-level error reduction. Thus it may
slightly underestimate the MSE for hierarchies of height 3
or more. Even with the inexactness, we believe that using
3 as the benefit factor for constrained inference provides a
reasonable approximation when b and h are large.

3.4 Checking Analysis with Experiments
We now use experiments to verify that our analysis is cor-

rect and to provide the actual numbers of error reduction.
Table 1 shows the result for H2, Hb, H

c
2, and Hc

b, for d-
ifferent N values. The table includes two kinds of average
error variance numbers. V∗

Avg[·] means estimated values com-
puted using Equation (3). Vex

Avg[·] means numbers obtained

from numerical computations. Vex
Avg [H2] and Vex

Avg[Hb] are
computed by summing up the nodes needed to answer all
queries; the calculation is exact and takes into account that
the tree may not be fully balanced.

For constrained inference, Vex
Avg [H

c
2] and Vex

Avg[H
c
b] are com-

puted as follows. We build the hierarchy such that each n-
ode’s noise is represented as a linear combination of the raw
noises added to all nodes in the tree, and then apply con-
strained inference. That is, for a tree with M nodes, in each
node we maintain a size-M vector of coefficients, and update
these coefficients via weighted averaging and mean consis-
tency. This requires O(N2) space, and thus we were able to
compute this only up to N = 211. For N between 24 and 29,
we iterate over all queries. For each query, we sum up the
leaf nodes included in the query to obtain the coefficients of
final result noise, and then we compute the variance by sum-
ming up the square of the coefficients. We then average the
variance over all queries. This way we obtain the exact error
variance. For N = 210 and N = 211, enumerating through
all N(N + 1)/2 queries takes too long; we thus randomly
sampled 100, 000 queries and compute their exact variance,
and then take their average. We add a superscript of s to
denote that the numbers are obtained via sampled queries.
These results are very close to the exact values, because we
are computing exact variance for each query and have sam-
pled 100, 000 queries from the same distribution that queries
are drawn.

Column b shows the best branching factor for Hb. We
compute these b values using two methods. One is to find
the b values between 2 and 1024 that minimizes V∗

Avg[Hb].
The other is to do exact counting for each b between 2 and
1024 and choose the optimal ones. For all N values in the
table, these two methods result in exactly the same optimal
b values.

From Table 1, we make the following observations. First,
V∗

Avg[·] and Vex
Avg[·] are very close for larger N ’s. Second,

for N values up to 128, setting b = N , i.e., using the flat
method is the best method. (We found via experiments that

1959

N b h V∗
Avg[H

c
b] Vex

Avg[H
c
b] Vex

Avg[Hb]
Vex
Avg [Hb]

Vex
Avg

[Hc
b
]

24 16 1 12.00 12.00 12.00 1
25 32 1 22.67 22.67 22.67 1
26 8 2 36.79 37.07 67.23 1.81

27 12 2 54.33 54.17 103.14 1.90
28 16 2 78.86 79.23 150.98 1.91
29 23 2 114.12 114.02 221.57 1.94

210 32 2 163.88 156.64s 373.09 2.05
211 13 3 215.13 201.88s 472.24 2.34

Table 2: Effect of constrained inference. b is the best branch-
ing factor by our estimation. ǫ = 1.0, so Vu = 2.0

for up to N = 187, the flat method outperforms Hb for any
b values.) Third, and the optimal branching factor is oscil-
lating between 16 and a increasingly tighter upper-bound as
N increases. Fourth, choosing the optimal branching factor
reduces the error variance over H2 by a factor that stabi-
lizes around 4.5 as N increases. Fifth, adding constrained
inference reduces the error variance by a factor of between 2
and 4 when b = 2; and the reduction effect is less when b is
large. Finally, Hc

b with optimal branching factor performs
the best.

Table 2 is used to check our analysis for constrained in-
ference. V∗

Avg[H
c
b] is computed using Algorithm 2. The

branching factor b in the table is computed by finding the
b value that minimizes V∗

Avg[H
c
b]. We observe that our es-

timated V∗
Avg [H

c
b] is very accurate for hierarchies of levels 1

and2, but overestimate the error of Hc
b for 3-levels. As ex-

plained earlier, this is because our method does not account
for cross-level error reductions.

We also compute the best branching factor by minimizing
Vex

Avg [H
c
b]. It turns out that this results in exactly the same

b values, except for the case of N = 210. Below we show the
values for the two branching factor values, with b∗ chosen
using estimated error.

N b∗ V∗
Avg [H

c
b∗] Vex

Avg [H
c
b∗] b V∗

Avg [H
c
b] Vex

Avg [H
c
b]

210 32 163.88 163.81s 11 169.01 156.64s

We point out that the fact our method can choose the true
optimal branching factor for N = 211 suggests that while
Algorithm 2 underestimates the error variance, the bias has
minimal impact when one compares different branching fac-
tors that result in the same number of levels.

3.5 Effect of Privacy Budget Allocation
Another optimization that affects the error of hierarchical

methods is the division of privacy budget. So far we have
assumed that the privacy budget is divided equally among h
levels. In [5], a geometric privacy budget allocation scheme
has been proposed, where each level has privacy budget that
is 3

√
b of its parent level, because each level has b times the

number of nodes as the parent level. Intuitively, an optimal
privacy budget allocation should consider how much each
level contributes to the total error variances for all queries,
and then allocate privacy budget accordingly. In general,
the average error variance can be written as

EM =
a1

ǫ21
+ . . .+

ah

ǫ2h
(5)

where ǫi is the privacy budget allocated to level i, and the ai

is level i’s weight. Using Lagrange multipliers, Equation (5)

is minimized by

ǫ1 =
ǫ

∑h
i=1

(

ai
a1

) 1
3

; ǫi =

(

ai

a1

) 1
3

· ǫ1

For Hb, ai equals M(i) in Equation (2), which gives the
total number of nodes at level i used to answer be the num-
ber of nodes needed in level i. For Hc

b, however, it is difficult
to come up with an analytical formula for a(i), in part be-
cause the a(i)’s are also determined by the ǫi’s.

To understand the effect of privacy budget allocation, we
propose an iterative process to compute a locally optimal
privacy budget allocation for Hc

b, when N and b are giv-
en. Starting from equal privacy budget allocation, we com-
pute the a(i)’s, by summing this up for all queries using
the method of maintaining noise coefficients described in
Section 3.4. We then allocate privacy budget to minimize
Equation (5), and iterate. We stop until the privacy bud-
get allocation changes very little. In our experiments, this
search always terminates after a few rounds.

In Figure 2, we plot the average error variance against the
branching factor for four algorithms Hb,o,H

c
b,H

c
b,o,H

c
b,g.

Hb,o does not use constrained inference, but allocate privacy
budget optimally. Hc

b uses equal privacy budget allocation,
Hc

b,g uses geometric privacy budget allocation, and Hc
b,o

uses locally optimal budget allocation obtained through it-
eration. Again, our computations are exact.

From Figure 2, we observe that using constrained infer-
ence is more important than choosing optimal privacy bud-
get allocation. We also observe that constrained inference
with optimal privacy budget allocation performs the best
across all branching factors; however, Hc

b with equal priva-
cy budget allocation, can match the performance of Hc

b,o

when b is close to the optimal, e.g., when b is between 8 and
16. At the same time, the curve for Hc

b,o is quite flat, show-
ing that if one applies constrained inference and optimal
privacy budget allocation, then a wider range of branching
factors would provide similarly good results.

3.6 Recommendation: Hc
b

In summary, our analysis and experimental results sug-
gest that using Hc

b with branching factor between 8 and
16 provides excellent results, and it is unnecessary to fur-
ther optimize privacy budget allocation. We now consider
the computational complexity of Hc

b. The space complexity
is linear in the number of nodes in the hierarchy, which is
∑h

i=1
N
bi

< b
b−1

N ≤ 2N . The time complexity is linear in

max(M,N), which M is the number of data points, and N
is the number of unit bins. The algorithm has the following
step. Step 1, scan all data points to compute the true count
of each leaf node, which takes time linear in M . Step 2,
generate noises for each leaf node, and then visit all nodes
in the hierarchy from bottom up to compute the true count,
raw noisy count, and count after weighted averaging. The
cost for the leaf level is linear in N , as the cost for each leaf
node is constant. The cost for the level up is b times the
number of nodes at that level, and is thus also linear in N .
The next level up costs N

b
, and the next level up costs N

b2
,

and so on. Thus the total cost is linear in N . Step 3, up-
dates each internal node via the mean consistency step and
then publish all leaf counts. This also has complexity linear
in N .

1960

 0
 20
 40
 60
 80

 100
 120
 140

 5 10 15 20 25 30 35 40

Hc
b

Hb,o

Hc
b,o

Hc
b,g

(a) N = 26

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

Hc
b

Hb,o

Hc
b,o

Hc
b,g

(b) N = 27

 0
 50

 100
 150
 200
 250
 300
 350
 400

 5 10 15 20 25 30 35 40

Hc
b

Hb,o

Hc
b,o

Hc
b,g

(c) N = 28

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35 40

Hc
b

Hb,o

Hc
b,o

Hc
b,g

(d) N = 29

Figure 2: Effect of private budget division. Hb,g and Hc
b,g use geometric allocation of privacy budget. Hb,o and Hc

b,o use
optimized allocation of privacy budget. ǫ = 1.0, so Vu = 2.0. X-axis indicates branching factor b. Y-axis indicates Vex

Avg

4. COMPARING Hc
b WITH EXISTING

METHODS
In this section, we compare our suggested Hc

b method
with other state of the art methods in the literature. We
chosen two b values, 12 and 16.

4.1 Existing Methods

Haar Wavelet Transformation - WH Xiao et al. [21]
introduced the Privlet method for histogram publishing.The
method works by performing a discrete Harr wavelet trans-
formation of the data, and then adding noise to the Haar
coefficients. Intuitively, one can think of a Harr wavelet
transform as a binary tree with N leaves corresponding to
histogram bins. Each non-leaf node stores the Harr coeffi-
cient with value (aℓ − ar)/2, where aℓ is the average of all
leaves in the left subtree, and ar is the average of all leaves
in the right subtree. When a range query r is answered, one
sums up all leaf nodes, which becomes a weighted sum of the
noisy Harr coefficients. For any coefficient, each leaf from
its left subtree causes that coefficient to be added once, and
each leaf from its right subtree causes it to be subtracted
once. This results in a desirable noise “cancellation” effect
when the number of leaves from either subtree are equal.
This effect is most prominent for large queries.

Structure First Method - SF Xu et al. [23] propose an
alternative non-hierarchical mechanism for publishing his-
tograms that can improve upon the Flat method. The ba-
sic premise behind their approach is that the accuracy of
a differentially-private histogram relies heavily on its struc-
ture. In order to generate the optimal histogram structure,
[23] proposes using dynamic programming techniques. A
target number of bins, k, is chosen, and the optimization is
performed to find the best k-bin histogram structure that
approximates the original histogram. To make this compli-
ant with differential privacy, the resulting histogram bins
are then perturbed. After the structure of the histogram is
determined, noise is injected to the bins using the remain-
ing privacy budget (that is, the flat method is applied on
the resulting bins). This method is referred to as Structure
First (SF). The running time of this method is O(kN2)
and k = O(N). This large running time greatly limits the
applicability of this method for histograms with more than
a few thousand bins.

Matrix Mechanisms - MM Proposed by Li et al.
[15], the matrix mechanism is a method of answering a
workload of predicate counting queries. Given some work-
load W, the method finds an alternative set of queries
A, called a query strategy. Standard Laplace noise is
then added to the strategy queries, the answers to which

are used to give accurate answers to the original work-
load. The total error of the estimates of workload W us-
ing A is (2

ǫ2
)∆2

Atrace((AtA)−1WtW). In the formula,
∆A = maxj

∑n
i=1 |aij | is called the sensitivity of matrix

A. A natural way to adapt the matrix mechanism to our
problem is to assume that the workload consists of all range
queries. The problem is thus finding the best query strategy
in order to answer the given workload queries. In [15], this
problem is expressed as a semi-definite optimization prob-
lem. Unfortunately, given a query workload on a histogram
of size N , solving the optimization problem requires time
complexity O(N6). Both the low Rank Mechanism in [24]
and the Eigen Select Mechanism in [16] give approximation-
s to the best solution with time complexity O(N3). For all
practical purposes, running the original optimization prob-
lem is unfeasible. The running time of the approximations
also bars the applicably of the methods to datasets with
more than a few hundred bins.

4.2 Exact Comparison
Table 3 shows the exact average error variances of multiple

methods. These numbers are exact, except for the numbers
with s, which use sampled queries. We do not include num-
bers for SF, because the method is data-dependent, and all
numbers in Table 3 are dataset-independent.

For Hb and Hc
b, we use the techniques we describe in

Section 3. For the wavelet method, we get the Haar co-
efficient nodes that are used to answer the query and we
compute the variances, and the numbers are exact. For the
Matrix Mechanisms, we calculate the error variance of the
strategy matrix using the formulas in [15, 16]. Since the
Matrix Mechanism does not scale for large histograms, we
only present results up to N = 29.

For the Matrix Mechanism, we observe that the eigen-
select algorithm performs poorly, probably because the ap-
proximation made in [16] is too inaccurate. The low-rank
algorithm performs reasonably well. Up to N ≤ 28, it is bet-
ter than all other methods except for Flat and H16. For the
Wavelet Method, we observe that it perform very similarly
to Hc

2, but perform worse than Hc
16. The quadtree method

proposed in [5], when applied to 1-dimensional, is essential-
ly Hc

2, but with geometric privacy budget allocation. This
method performs slightly better than Hc

2 for small N ’s, but
performs increasingly worse as N increases. Perhaps this
is because when the number of level increases, the privacy
budget higher-level nodes receives become too small to be
useful. We see that Hc

12 and Hc
16 are the best-performing

algorithm in the table, only outperformed by F for small
N ’s.

1961

24 25 26 27 28 29 210 211

VAvg[F] 12.00 22.67 44.00 86.67 172.00 342.67 684.00 1366.67
Vex

Avg[H12] 42.47 65.02 82.85 103.14 301.80 349.41 398.22 801.97
Vex

Avg[H
c
12] 20.82 29.60 39.31 54.17 116.61 134.51 160.58s 288.96s

Vex
Avg[H16] 12.00 82.94 105.62 125.16 150.98 439.72 498.87 546.48

Vex
Avg[H

c
16] 12.00 35.64 45.43 57.91 79.23 163.48 185.94s 213.87s

Vex
Avg[H

c
2] 34.46 61.34 99.92 152.18 220.06 305.54 409.48s 535.63s

Quad= Hc
2,g 28.52 49.65 82.60 133.96 214.39 340.92 538.75s 853.49s

Wavelet 37.80 64.84 102.92 154.49 221.62 306.31 410.29 536.32
MM, eigen-select 104.74 301.12 857.96 2465.75 7129.72 20389.12
MM, low-rank 20.21 30.85 60.34 119.42 118.92 453.10

Table 3: A comparison of the exact average expected error for all range queries under different mechanisms. Empty cells are
cases where it is computationally infeasible to compute error variance. ǫ = 1.0, so Vu = 2.0

4.3 Experimental Comparison
We next provide an experimental comparison using Hc

b

and the current state of the art methods. We do not provide
an experimental comparison with the Matrix Mechanisms
since they do not scale to the size of the datasets we consider.

Datasets We perform our evaluation using four different
datasets. We use two datasets taken from the Integrated
Public Use Microdata Series for the USA (IPUMS-USA)
[20]. This contains federal census data collected in the US
between 2000-2009, and contains around 19.5 million rows.
We generate two histograms to run our experiments; one on
the age attribute which has 96 distinct values, and one on
the income attribute discretized to bins of size 100, for a
total of 10,000 bins. The third is the Arxiv HEP-TH (high
energy physics theory) [12] citation graph, where each bin,
x, in the histogram, is the number of papers that have been
cited x times. The result is a sparse histogram with 2414
bins. The fourth is derived from the checkin dataset from
the Gowalla location-based social networking website, where
users share their locations by checking-in. We projected the
coordinates onto the x-axis and discretized to a histogram
of 216 bins.

Evaluation Metric. We set ǫ = 1.0. For each dataset,
we choose between 10 and 20 evenly spaced query sizes,
and for each size, issue 100 queries with randomly generated
locations. For each query, we measure the absolute error
between the accurate answer and the noisy one.

In order to provide a clearer picture of an algorithm’s be-
havior, we provide two types of graphs. For the line graphs,
we compute the average error of the 100 queries that are
generated for each size, and report the average. We repeat
this 5 times for each method, plotting both the average of 5
runs, and the standard deviation.

For the second type of graph, we use candlesticks to plot
the profile of errors for all query sizes. Each candlestick pro-
vides 5 pieces of information: the 25 percentile (the bottom
of candlestick), the median (the bottom of the box), the 75
percentile (the top of the box), the 95 percentile (the top of
the candlestick), and the arithmetic mean (the red bar).

For Hc
b, we use the theoretical analysis in Section 3 to

choose the best branching factor and the optimal division of
privacy budget.

Results We show the results from the comparison in Fig-
ure 3. For the Structure First method, we show the results
for using the best setting of parameters. Since this method
does not scale for histograms with more than a few thou-
sand bins, we only show its results for the age and citation

datasets. The results match our previous analysis. The flat
method, F, results the largest error. This error is more
prominent in larger histograms and larger range sizes (Fig-
ure 3d). For smaller histograms, such as Age in Figure 3f,
the error of the flat method is small and comparable to the
others. WH generally outperforms Hc

2, performs especial-
ly well when query range sizes are large. due to the noise
cancelation effect. SF performed better than Flat for the
citation dataset (Figures 3b and 3a); however, it was still
worse than all other hierarchical methods. In almost all cas-
es, Hc

b outperformed all the other methods. This matches
our analytical prediction.

5. THE EFFECT OF DIMENSIONALITY
We have seen that hierarchical methods provide great

accuracy improvement over the flat method for one-
dimensional dataset when the number of bins is large. How-
ever, many datasets in practice have more than one dimen-
sions. It is thus important to understand whether hierarchi-
cal methods can also prove effective for constructing multi-
dimensional histograms.

Hierarchies have been applied to 2-dimensional dataset [5],
and to more general multi-dimensional dataset [18, 22, 21,
17]. However, it has been recently shown in [19] that for
2-dimensional datasets, the simple flat method, called the
Uniform Grid method in [19], with carefully selected grid
size can perform as well as sophisticated hierarchical meth-
ods with constrained inference and optimized privacy budget
allocation. It is also pointed out in [19] that, the benefit of
binary hierarchies for the 2-dimensional case is quite limited,
and the benefit can only decrease with increasing dimension-
ality. The observation is that in a hierarchical method, one
needs to spend privacy budgets on higher levels, and thus
has less privacy budget to use for the leaf nodes. Any query
can be viewed as consisting of two regions: the interior re-
gion, which can be answered by higher-level nodes, and the
border region of certain constant “thickness”, which has to
be answered using leaf nodes. When using a hierarchy, one
is trading off inaccuracy for the border region with improved
accuracy for the interior region. This tradeoff is beneficial
only when the ratio of the volume of border region to the
volume of the whole query region is small. With a constant-
thickness border, the higher the dimensionality, the larger
the portion of the border region takes. When the dimension-
ality is high, almost all volume of a query are in the border
region.

Here we investigate the effectiveness of hierarchical meth-
ods on higher-dimensional datasets by analyzing the aver-

1962

 0

 20

 40

 60

 80

 100

 120

 140

Hc
b

Hc
2

F W
H

SF

(a) Citation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500
 1000

 1500
 2000

 2500

Hc
b

Hc
2

F
WH

SF

(b) Citation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Hc
b

Hc
2

F W
H

(c) Income

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

Hc
b

Hc
2

F
WH

(d) Income

 0

 5

 10

 15

 20

 25

 30

Hc
b

Hc
2

F W
H

SF

(e) Age

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

Hc
b

Hc
2

F
WH

SF

(f) Age

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Hc
b

Hc
2

F W
H

(g) Gowalla Checkin

 0

 5

 10

 15

 20

 25

 30

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000

Hc
b

Hc
2

F
WH

(h) Gowalla Checkin
Figure 3: Experimental comparison for all dataset

age error variance. We also estimate the number of unit bins
needed for one to benefit from using the hierarchical method
at all for high-dimensional datasets.

We consider a d-dimensional histogram with N = n ×
n × . . . n = nd unit bins. The objective is to publish the
histogram in a way that both satisfies differential privacy,
and is able to answer range queries with high accuracy. For
simplicity, we consider the case of a hierarchy with branching
factor bd. That is, each dimension has branching factor b.
We use Hb to denote this method. We use h = ⌈logb n⌉ =
⌈logbd N⌉ to denote the height of the resulting tree.

5.1 The 2­Dimensional Case

Proposition 5. For 2-dimensional datasets with n × n
bins and a hierarchy with branching factor b× b, on average

a random rectangular range query has noise variance

Vavg(Hb) = Θ
(

b(n− 1)⌈logb n⌉2
)

Vu (6)

Where we define Vu = 2
ǫ2
.

Proof. We consider on average how many nodes at each
level are needed to answer a randomly selected query. Let j
denote the depth of nodes in a tree such that the root is at
depth 0, the next level at depth 1, and the leaves are at depth
h. At depth j, we have a bj × bj grid. A rectangular query
has 4 border edges. Consider, wlog, the left border edge. For
the j’th level, the edge includes between 0 and b−1 columns,
with each being equally likely; thus on average it includes
(b − 1)/2 columns. Each full column includes bj nodes at
the j’th level; and on average a query’s edge is of length

(bj + 2)/3 ≈ bj/3. (Recall that
∑N

j=1 j(N−j+1)

N(N+1)/2
= (N+2)

3
.)

Therefore, a query includes on average about 4× (b−1)/2×
bj/3 = 2

3
(b − 1)bj nodes at level j. The total number of

nodes from all levels is thus

h
∑

j=1

2

3
(b− 1)bj =

2

3
b(bh − 1) =

2

3
b(n− 1)

Each node contributes variances of the scale h2 = ⌈logb n⌉2;
the total variance is thus b(n− 1)⌈logb n⌉2.

From the above proposition, we can see that the benefit of
adopting hierarchical methods relative to the flat method is
significantly less than that of the one-dimensional case. For
the one dimensional case, one is able to reduce average noise
variance to 2(b−1)⌈logb N⌉3. For the two-dimensional case,

the reduction is to b(
√
N − 1)⌈logb2 N⌉2, which includes a√

N term. Note that roughly we are exchanging a logN
factor with a

√
N factor. Intuitively, this is because in 1-

dimensional case, a “border” of constant width has a volume
that is Θ(1

N
) of the total domain, whereas in 2-dimensional

case, a “border” of constant width occupies a volume that
is Θ(1√

N
) of the total domain.

5.2 The d­dimensional case
We can apply similar analysis to the d-dimensional case.

Proposition 6. For d-dimensional datasets with N =
nd unit bins and a hierarchy with branching factor bd, where
d ≥ 2, we have

Vavg(Hb) = Θ

(

d× bd−1

bd−2 + · · ·+ 1

(

1

3

)d−1
(

N (d−1)/d − 1
)

)

Vu

(7)

Proof. At each level j, we have a bj×bj×· · ·×bj grid of
bjd nodes. A d-dimensional hyper-rectangular query’s bor-
der consists of 2d sides. One side consists of on average
(b − 1)/2 hyperplanes of d − 1 dimension. Each whole hy-

perplane contains bj(d−1) nodes, and a query’s side contains
on average ≈ (1/3)d−1 portion of it. The total number of
nodes for all levels is thus

∑h
j=1 2d ∗ (b− 1)/2 ∗ bj(d−1)(1/3)d−1

= d(b− 1)(1/3)d−1∑h−1
j=0 (b

d−1)j

= d(b− 1)(1/3)d−1 (bd−1)h−1

bd−1−1

= d bd−1

bd−2+bd−3+···+1
(1/3)d−1

(

N (d−1)/d − 1
)

1963

We note that the second step above applies only when
d ≥ 2.

Asymptotically, the average squared error is Θ(N (d−1)/d),
a number that is increasingly close to N as d increases.

5.3 When Flat is Best.
In Section 3, we have shown that in the one-dimensional

case for a smaller value of N . We enumerated through all
N values and found that up until N = 45, the Flat method
outperforms all Hierarchical methods. From Proposition 6,
we can estimate how large N needs to be for different di-
mensions in order for us to see benefit of using hierarchical
methods. Note that from the proof of Proposition 6 that
the formula in Equation (7) actually keeps all relevant con-
stants. We can thus compare the formula to that of the flat
method, to analyze what values of N would we start seeing
an improvement. For the flat method, on average a query
would need to be answered by N

3d
nodes. For the hierar-

chical method, we need to estimate the error reduction due
to the constrained inference step. Note that we are only
considering whether a 2-level hierarchy improves upon flat.
The leaf level benefits from mean consistency to reduce av-
erage variance to slightly more than 1

3
of the original, from

analysis similar to that in Section 3.3. The next level up
benefits only from weighted averaging, which reduces error

to bd

bd+1
, which is close to 1. However, since the leaf level

will dominate the overall variance, we estimate constrained
inference can reduce variance by a factor of 3. The follow-
ing table gives the condition under which a hierarchy with
constrained inference will result in a improvement.

d = 2 2
3
b(
√
N − 1)⌈logb2 N⌉2 × 1

3
< N/9

approx cond: 2b⌈logb n⌉2 ≤ n
solution: b = 8, n ≥ 64, N ≥ 84 = 4096

d = 3 3b2

9(b+1)
(N2/3 − 1)⌈logb3 N⌉2 × 1

3
< N/27

approx cond: 3 b2

b+1
⌈logb n⌉2 ≤ n

solution: b = 11, n ≥ 112 = 121, N ≥ 116 = 1.7E6

d = 4 4
27

b3

2(b2+b+1)
(N3/4 − 1)⌈logb4 N⌉2 × 1

3
< N/81

approx cond: 4 b2

b+1
⌈logb n⌉2 ≤ n

solution: b = 6, n ≥ b3 = 216, N ≥ 612 = 2.18E9

To solve the approximate condition above, we try different
values for h = ⌈logb n⌉, e.g., 2, 3, 4, and then compute the
smallest b that satisfies the condition, this yields a value n.
We then choose the n that is the smallest among all choices
of h.

This suggests that for 2-dimensional datasets, one could
benefit from using a hierarchy roughly when N ≥ 4096,
which likely apply for most 2-dimensional datasets of inter-
est. For 3-dimensional datasets, however, only very large
ones (i.e., those with N more than 1 million unit bins), one
could benefit from hierarchy. For 4 dimensional datasets,
we would need billions of unit bins to benefit from using a
hierarchy.

In Figure 4, we experimentally verify the above analy-
sis. For each setting, we uniformly randomly sample 10,000
queries and compute their the average error variance under
different methods. From Figure 4(a), we can see that for
N = 210, no hierarchical method beats F. In Figure 4(b),
where N = 212, we can see that a branching factor of 8× 8
performs the best and it is slightly better than F. For

N = 214, we have b ≈
√
n = 27 performs the best because it

results in a 2-level hierarchy. Figure 4(d) shows the result
for 3-dimensional data with N = 212. We see that no hier-
archical method beats F. We are unable to run Hc

b on large
enough N values to show a benefit of hierarchical methods.

6. RELATED WORK
Differential privacy was presented in a series of papers [7,

10, 2, 9, 8]. Recent literature has focused on using differen-
tial privacy for data publishing scenarios [3, 11].

Our paper is inspired by Hay et al.’s work [14], which
proposed the hierarchical method for answering histogram
queries. They also introduced the notion of constrained in-
ference to improve query accuracy. Their work, however, use
only binary hierarchies. They analyzed the benefit provid-
ed by constrained inferencing, and showed that there exist
queries that can benefit significantly from constrained in-
ference. They, however, did not conduct an average case
analysis. In [21], Xiao et al. proposed the wavelet methods
for answering histogram queries.

In [23], Xu et al. explore methods of constructing an op-
timal histogram using ǫ-DP. The histogram counts are then
returned using the flat method. In this paper, we experi-
mentally compare them to our proposed Hc

b method.
Barak et al. [1] considered the problem of publishing

marginals over high-dimensional datasets with many binary
attributes. This is orthogonal to the problem we consider,
which publishes full contingency table for low-dimensional
datasets where each attribute has many values. Ding et l. [6]
performed consistency and noise optimization for marginal
publishing. When applied to the setting of publishing the
full histogram, this is equivalent to the flat method.

Other techniques for analyzing general query workloads
under ǫ-DP have been discussed in [13], but no optimiza-
tions are offered. In [15], Li et al. discuss methods of opti-
mizing linear count queries. They consider that the queries
one wishes to answer are known beforehand, and then pro-
vide a theoretical method of optimizing differentially private
solutions to such queries. Practical approximations of these
methods have been developed in [24, 16]. When applied to
our setting of optimizing for all possible range queries, these
methods do not scale, and they underperform Hc

b. In [15],
it is also shown that for any query, Hc

2 and the Wavelet
method result in expected errors that are within a factor of
2 of one another. The techniques in [15] can also be used to
compute the error variance of Hc

b for smaller N values.
In [3], Blum et al. propose a method that can be used

to answer histogram queries. Their method is closest to the
flat method, and offers minimal improvement to that. Hay
et al. [14] analyzed the method in [3], and show its error

is O(N2/3), which is worse than the hierarchical methods
considered in this paper.

7. CONCLUSION
In this paper, we analyzed the effectiveness of using hier-

archical methods for differentially private histogram publi-
cation. We consider the utility of the published histogram
in terms of its ability to range queries over the data domain
accurately. First, we perform a thorough analysis of hier-
archical methods in one dimension. We show how to select
the optimal branching factor with or without constrained
inference. We show that combining an optimal branching

1964

 0

 500

 1000

 1500

 2000

 5 10 15 20 25 30
Hb
Hc

b
H2

Hc
2F

(a) d = 2, N = 210/n = 25

 0

 2000

 4000

 6000

 5 10 15 20 25 30
Hb
Hc

b
H2

Hc
2F

(b) d = 2, N = 212/n = 26

 0

 4000

 8000

 12000

 16000

 5 10 15 20 25 30
Hb
Hc

b
H2

Hc
2F

(c) d = 2, N = 214/n = 27

 0

 1000

 2000

 3000

 2 4 6 8 10 12 14 16
Hb
Hc

b
H2

Hc
2F

(d) d = 3, N = 212/n = 24

Figure 4: A comparison of the average error for larger dimensions. ǫ = 1.0, so Vu = 2.0. X-axis indicates branching factor b.
Y-axis indicates Vex

Avg

factor with constrained inference suffices to provide excel-
lent results, and it is unnecessary to optimize privacy bud-
get allocation. We then compare our proposed method with
the current state of the art methods, and show that our op-
timizations advance the current state of the art. Finally, we
extend our analysis to multiple dimensions. We show how
to use analysis to find the minimal domain size in order for
the hierarchical method to outperform the flat method.

Acknowledgement

This paper is based upon work supported by the U-
nited States National Science Foundation under Grant
No. 1116991, and by the United States AFOSR under grant
titled “A Framework for Managing the Assured Information
Sharing Lifecycle”.

We would like to thank the reviewers for their helpful
comments, which helped improve the paper.

8. REFERENCES
[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,

F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency
table release. In PODS’07, pages 273–282, 2007.

[2] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: the SuLQ framework. In PODS,
pages 128–138, 2005.

[3] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
STOC, pages 609–618, 2008.

[4] T.-H. H. Chan, E. Shi, and D. Song. Private and
continual release of statistics. ACM Trans. Inf. Syst.

Secur., 14(3):26:1–26:24, Nov. 2011.

[5] G. Cormode, M. Procopiuc, E. Shen, D. Srivastava,
and T. Yu. Differentially private spatial
decompositions. In ICDE, pages 20–31, 2012.

[6] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially
private data cubes: optimizing noise sources and
consistency. In SIGMOD, pages 217–228, 2011.

[7] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[8] C. Dwork. Differential privacy. In ICALP, pages 1–12,
2006.

[9] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284. Springer, 2006.

[10] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases. In In

CRYPTO, pages 528–544. Springer, 2004.

[11] A. Friedman and A. Schuster. Data mining with
differential privacy. In KDD ’10, pages 493–502, New
York, NY, USA, 2010. ACM.

[12] J. Gehrke, P. Ginsparg, and J. M. Kleinberg.
Overview of the 2003 kdd cup, 2003.

[13] M. Hardt and K. Talwar. On the geometry of
differential privacy. STOC ’10, pages 705–714, New
York, NY, USA, 2010. ACM.

[14] M. Hay, V. Rastogi, G. Miklau, and D. Suciu.
Boosting the accuracy of differentially private
histograms through consistency. PVLDB, 3:1021–1032,
September 2010.

[15] C. Li, M. Hay, V. Rastogi, G. Miklau, and
A. McGregor. Optimizing linear counting queries
under differential privacy. PODS ’10, pages 123–134.
ACM, 2010.

[16] C. Li and G. Miklau. An adaptive mechanism for
accurate query answering under differential privacy.
Proc. VLDB Endow., 5(6):514–525, Feb. 2012.

[17] N. Mohammed, R. Chen, B. Fung, and P. S. Yu.
Differentially private data release for data mining. In
Proceedings of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining,
pages 493–501. ACM, 2011.

[18] W. Qardaji and N. Li. Recursive partitioning and
summarization: A practical framework for differential
private data publishing. In ASIACCS, 2012.

[19] W. Qardaji, W. Yang, and N. Li. Differentially private
grids for geospatial data, 2012. arXiv:1209.1322
[cs.CR] To appear in ICDE 2013.

[20] S. Ruggles, J. T. Alexander, K. Genadek, R. Goeken,
M. B. Schroeder, and M. Sobek. Integrated public use
microdata series: Version 5.0 [machine-readable
database], 2010.

[21] X. Xiao, G. Wang, and J. Gehrke. Differential privacy
via wavelet transforms. IEEE Transactions on

Knowledge and Data Engineering, 23:1200–1214, 2011.

[22] Y. Xiao, L. Xiong, and C. Yuan. Differentially private
data release through multidimensional partitioning. In
Secure Data Management, pages 150–168, 2010.

[23] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yi.
Differentially private histogram publication. In ICDE

’12: Proceedings of the 2012 IEEE 28th International

Conference on Data Engineering. IEEE Computer
Society, 2012.

[24] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang,
and Z. Hao. Low-rank mechanism: optimizing batch
queries under differential privacy. Proc. VLDB

Endow., 5(11):1352–1363, July 2012.

1965

