
Simple, Fast, and Scalable Reachability Oracle

Ruoming Jin
Department of Computer Science

Kent State University

jin@cs.kent.edu

Guan Wang
Department of Computer Science

Kent State University

gwang@cs.kent.edu

ABSTRACT

A reachability oracle (or hop labeling) assigns each vertex v two
sets of vertices: Lout(v) and Lin(v), such that u reaches v iff
Lout(u) ∩ Lin(v) 6= ∅. Despite their simplicity and elegance,
reachability oracles have failed to achieve efficiency in more than
ten years since their introduction: The main problem is high con-
struction cost, which stems from a set-cover framework and the
need to materialize transitive closure. In this paper, we present two
simple and efficient labeling algorithms, Hierarchical-Labeling and
Distribution-Labeling, which can work on massive real-world graphs:
Their construction time is an order of magnitude faster than the
set-cover based labeling approach, and transitive closure material-
ization is not needed. On large graphs, their index sizes and their
query performance can now beat the state-of-the-art transitive clo-
sure compression and online search approaches.

1. INTRODUCTION
As one of the most fundamental graph operators, reachability

has drawn much research interest in recent years [7, 37, 11, 35, 23,
12, 8, 22, 40, 38, 6, 36, 21, 9] and seems to continue fascinating
researchers with new focuses [20, 39, 24] and new variants [16,
13, 32]. The basic reachability query answers whether a vertex u
can reach another vertex v using a simple path (?u → v) in a di-
rected graph. The majority of the existing reachability computation
approaches belong to either transitive closure materialization (com-
pression) [2, 27, 37, 23, 36] or online search [7, 35, 38]. The transi-
tive closure compression approaches tend to be faster but generally
have difficulty scaling to massive graphs due to the precomputation
and/or memory cost. Online search is slower (often by one or two
orders of magnitude) but can work on large graphs [38, 20]. The
latest research [20] introduces a unified SCARAB method based
on a “reachability backbone” (similar to the highway in the trans-
portation network) to deal with their limitations: it can both help
scale the transitive closure approaches and speed up online search.
However, the query performance of transitive closure approaches
tends to be slowed down and they may still not work if the size of
the reachability backbone remains too large [20].

The reachability oracle, more commonly known as hop labeling,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14

Copyright 2013 VLDB Endowment 21508097/13/14... $ 10.00.

[14, 34] is an interesting third category of approaches which lie
between transitive closure materialization and online search. Each
vertex v is labeled with two sets: Lout(v), which contains hops
(vertices) v can reach, and Lin(v), which contains hops that can
reach v. Given Lout(u) and Lin(v), but nothing else, we can com-
pute if u reaches v by determining whether there is at least a com-
mon hop, Lout(u) ∩ Lin(v) 6= ∅. The idea is simple, elegant, and
seems very promising: Hop labeling can be considered as a factor-
ization of the binary matrix of transitive closure; thus, it should be
able to deliver more compact indices than the transitive closure and
also offer fast query performance.

Unfortunately, after more than ten years since its first proposal
[14] and a list of worthy attempts [30, 11, 12, 22, 6], hop labeling
(or reachability oracle), still eludes us and fails to meet its expecta-
tions. Despite its appealing theoretical nature, recent studies [20,
36, 13, 38] all seem to confirm its inability to handle real-world
large graphs: hop labeling is expensive to construct, taking much
longer time than other approaches, and can barely work on large
graphs, due to prohibitive memory cost of the construction algo-
rithm. Many studies [20, 36, 13, 38] also demonstrate up to an
order of magnitude slower query performance compared with the
fastest transitive closure compression approaches (though we dis-
cover the underlying reason is mainly due to the implementation of
hop labeling Lout and Lin; employing a sorted vector/array instead
of a set can significantly eliminate the query performance gap).

The high construction cost of the reachability oracle is inherent
to the existing labeling algorithms and directly results in the scal-
ability bottleneck. In order to minimize the labeling size, many
algorithms [14, 30, 11, 22, 6] rely on a greedy set-cover procedure,
which involves two costly operators: 1) repetitively finding densest
subgraphs from a large number of bipartite graphs; and 2) materi-
alization of the entire transitive closure. The latter is needed since
each reachability pair needs to be explicitly covered by a selected
hop. Even with concise transitive closure representation, such as
using geometric format [11], or reducing the covered pairs using
3-hop [22, 6], the overall construction complexity is still close to
or greater than O(n3), which is still too expensive for large graphs.
Alternative labeling algorithms [34, 12] try to use graph separators,
but only special graph classes consisting of small graph separators,
such as planar graphs, can adopt such techniques well [34].

Can the reachability oracle be practical? Is it a purely theoret-
ical concept which can only work on small toy graphs, or it is a
powerful tool which can shape reality and work on real-world large
graphs with millions of vertices and edges? Arguably, this is one
of the most important unsolved puzzles in reachability computa-
tion. This work resolves these questions by presenting two sim-
ple and efficient labeling algorithms, Hierarchical-Labeling and
Distribution-Labeling, which can work on massive real-world graphs.

1978

Their construction speeds are as fast as the state-of-the-art transi-
tive closure compression approaches, there is no expensive transi-
tive closure materialization, dense subgraph detection, or greedy
set-cover procedure, there is no need for graph separators, and on
large graphs, their index sizes and their query performance beat
the state-of-the-art transitive closure compression and online search
approaches [23, 36, 20, 36, 13, 38].

2. RELATED WORK
To compute the reachability, the directed graph is typically trans-

formed into a DAG (directed acyclic graph) by coalescing strongly
connected components into vertices, avoiding the trivial case where
vertices reach each other in a strongly connected component. The
size of the DAG is often much smaller than that of the original
graph and is more convenient for reachability indexing. Let G =
(V,E) be the DAG for a reachability query, with number of ver-
tices n = |V | and number of edges m = |E|.

2.1 Transitive Closure and Online Search
There are two extremes in computing reachability. At one end,

the entire transitive closure (TC) is precomputed and fully mate-
rialized (often in a binary matrix). Since the reachability between
any pair is recorded, reachability can be answered in constant time,
though O(n2) storage is prohibitive for large graphs. At the other
end, DFS/BFS can be employed. Though it does not need an addi-
tional index, its query answering time is too slow for large graphs.
As mentioned before, the majority of the reachability computation
approaches aim to either compress the transitive closure [2, 19, 27,
37, 23, 9, 36, 21] or speed up the online search [7, 35, 38].
Transitive Closure Compression: This family of approaches aims
to compress the transitive closure – each vertex u records a com-
pact representation of TC(u), i.e., all the vertices it reaches. The
reachability from vertex u to v is computed by checking vertex v
against TC(u). Representative approaches include chain compres-
sion [19, 8], interval or tree compression [2, 27], dual-labeling [37],
path-tree [23], and bit-vector compression [36]. Using interval-
compress as an example, any contiguous vertex segment in the orig-
inal TC(u) is represented by an interval. For instance, if TC(u)
is {1, 2, 3, 4, 8, 9, 10}, it can be represented as two intervals: [1, 4]
and [8, 10]. Existing studies [36, 38, 20] have shown these ap-
proaches are the fastest in terms of query answering since checking
against transitive closure TC(u) is typically quite simple (linear
scan or binary search suffices); in particular, the interval and path-
tree approaches seem to be the best in terms of query answering
performance. However, the transitive closure materialization, de-
spite compression, is still costly. The index size is often the reason
these approaches are not scalable on large graphs [38, 20].
Fast Online Search: Instead of materializing the transitive clo-
sure, this set of approaches [7, 35, 38] aims to speed up the online
search. To achieve this, auxiliary labeling information per vertex is
precomputed and utilized for pruning the search space. Using the
state-of-the-art GRAIL [38] as an example, each vertex is assigned
multiple interval labels where each interval is computed by a ran-
dom depth-first traversal. The interval can help determine whether
a vertex in the search space can be immediately pruned because it
never reaches the destination vertex v.

The pre-computation of the auxiliary labeling information in these
approaches is generally quite light; the index size is also small.
Thus, these approaches can be applicable to very large graphs.
However, the query performance is not appealing; even the state-
of-the-art GRAIL can be easily one or two orders of magnitude
slower than the transitive closure compression approaches [38, 20].

2.2 Reachability Oracle
The reachability oracle [14, 34], also referred to as hop labeling,

was pioneered by Cohen et al. [14]. Though it also encodes tran-
sitive closure, it does not explicitly compress the transitive closure
of each individual vertex independently (unlike the transitive clo-
sure compression approaches). Here, each vertex v is labeled with
two sets: Lout(v), which contains hops (vertices) v can reach; and
Lin(v), which contain hops that can reach v. Given only Lout(u)
and Lin(v), but nothing else, we can compute if u reaches v by
determining whether there is a common hop, Lout(u)∩Lin(v). In
fact, a reachability oracle can be considered as a factorization of the
binary matrix of transitive closure [22]; thus more compact indices
are expected from such a scheme.

The seminal 2-hop labeling [14] aims to minimize the reach-
ability oracle size, which is the total label size

∑
(|Lout(u)| +

|Lin(u)|). It employs an approximate (greedy) algorithm based
on set-covering which can produce a reachability oracle with size
no larger than the optimal one by a logarithmic factor. The optimal
2-hop index size is conjectured to be Õ(nm1/2). The major prob-
lem of the 2-hop indexing approach is its high construction costs:
It needs to iteratively find dense subgraphs from a large number
of bipartite graphs (representing the covering of transitive closure).
Its computational cost is O(n3|TC|), where |TC| is the total size
of transitive closure. A number of approaches have sought to re-
duce construction costs through speeding up the set cover proce-
dure [30], using concise transitive closure representation [11], or
reducing the covered pairs using 3-hop [22, 6]. However, they still
need to repetitively find the densest subgraphs and materialize the
transitive closure.

2.3 Reachability Backbone and SCARAB
In the latest study [20], the authors introduce a general frame-

work, referred to as SCARAB (SCAling ReachABility), for scaling
the existing reachability indices (including both transitive closure
compression and hop labeling approaches) and for speeding up the
online search approaches. The central idea is to leverage a “reacha-
bility backbone”, which carries the major “reachability flow” infor-
mation. The reachability backbone is similar in spirit to the high-
way structure used in several state-of-the-art shortest path distance
computation methods on road networks [4, 28, 29]. However, the
SCARAB work [20] is one of the first studies to construct and uti-
lize such structure in the reachability computation. The reachabil-
ity backbone definition and its discovery are quite different from
the highway structures in [4, 28, 29].

Formally, the reachability backbone G⋆ = (V ⋆, E⋆) of graph
G is defined as a subgraph of the transitive closure of G (E⋆ ⊆
TC(G)), such that for any reachable (u, v) pair, there must exist

local neighbors u⋆ ∈ V ⋆, v⋆ ∈ V ⋆ with respect to locality thresh-

old ǫ, i.e., d(u, u⋆) ≤ ǫ and d(v⋆, v) ≤ ǫ, and u⋆ → v⋆. Here
d(u, u⋆) is the shortest path distance from u to u⋆ where the weight
of each edge is unit. Two algorithms are developed to approximate
the minimal backbone, one based on set-cover and the other based
on BFS. The latter, referred to as FastCover, is particularly efficient
and effective, with time complexity O(

∑
v∈V |Nǫ(v)|log|Nǫ(v)|+

|Eǫ(v)|), where Nǫ(v) (Eǫ(v)) is the set of vertices (edges) v can
reach in ǫ steps. Experiments show that even with ǫ = 2, the size of
the reachability backbone is significantly smaller than the original
graph (about 1/10 the number of vertices of the original graph).

Though the scaling approach is quite effective for helping deal
with large graphs, it is still constrained by the power of the original
index approaches. For many large graphs, the reachability back-
bone can still be too large for them to process as shown in the ex-
periment study in [20].

1979

We also note that in [13], a new variant of reachability queries,
k-hop reachability, is introduced and studied. It asks whether ver-
tex u can reach v within k steps. This problem can be consid-
ered a generalization of the basic reachability, where k = ∞. A
k-reach indexing approach is developed and the study shows that
approach can handle basic reachability quite effectively (with com-
parable query performance to the fastest transitive closure compres-
sion approaches on small graphs). The k-reach indexing approach
is based on vertex cover (a set of vertices covers all the edges in the
graph), and it actually produces a reachability backbone with ǫ = 1
as defined in [20]. But this study directly materializes the transi-
tive closure between any pair of vertices in the vertex cover, where
in [20], the existing reachability indices are used. Thus, for very
large graphs where the vertex cover is often large, the pair-wise
reachability materialization is not feasible.

2.4 Other Related Works
Distance 2-HOP Labeling: The 2-hop labeling method proposed
by Cohen et al. [14] can also handle the exact distance labeling.
Here, each vertex u records a list of intermediate vertices OUT (u),
which it can reach along with their (shortest) distances, and a list
of intermediate vertices IN(u), which can reach it along with their
distances. To answer the point-to-point shortest distance query
from u to v, we simply need to check all the common interme-
diate vertices between OUT (u) and IN(v) and choose the ver-
tex p, such that dist(u, p) + dist(p, v) is minimized for all p ∈
OUT (u)∩ IN(v). However, its computational cost (similar to the
reachability 2-hop labeling) is too expensive even for graphs with
hundreds of thousands of vertices.

Recently, Abraham et al. [1] have developed a fast and practical
algorithm to heuristically construct the distance labeling on large
road networks. In particular, they utilize contraction hierarchies

(CH) [18], which transform the original graph into a level-wise
structure, and then assign the maximum-rank vertex on the shortest
path between s and t as the hop for s and t. However, the core
of CH needs to iteratively remove vertices and then add shortcuts

for fast shortest path computation. Due to the power-law property,
such operation easily becomes very expensive for general graphs.
For example, to remove a vertex with thousands of neighbors may
require checking millions of potential shortcuts.
Relationship to the latest reachability labeling [10] and dis-

tance labeling [3] papers:

We have recently become aware that Cheng et al. [10] have de-
veloped a reachability labeling approach, referred to as TF-label.
Their approach is similar to the Hierarchical Labeling (HL) ap-
proach being introduced in this work. In particular, it can be con-
sidered a special case of HL where ǫ = 1 (Section 4). The hi-
erarchy being constructed in [10] is based on iteratively extract-
ing a reachability backbone with ǫ = 1, inspired by independent
sets. A similar approach has been used in their earlier work on
distance labeling, referred to as IS-Label [17]. In this paper, the
hierarchy structure is extracted based on the reachability backbone
approach [20], which has been shown to be effective and efficient
for scaling reachability computation. In another recent work [3],
Akiba et al. have proposed a distance labeling approach, referred
to as the Pruned Landmark. This approach is similar in spirit to
the Distribution Labeling (DL) approach. However, DL performs
BFS in both directions (forward and reverse) to handle reachability
labeling. The condition for assigning labels is also different. Fi-
nally, we would like to point out that both Hierarchical Labeling
(HL) and Distribution Labeling (DL) are proposed independently
of [10] and [3].

3. APPROACH OVERVIEW
In a reachability oracle of graph G, each vertex v is labeled with

two sets: Lout(v), which contains hops (vertices) v can reach; and
Lin(v), which contain hops that can reach v. A labeling is com-

plete if and only if for any vertex pair where u → v, Lout(u) ∩
Lin(v) 6= ∅. The goal is to minimize the total label size, i.e.,∑

(|Lout(u)| + |Lin(u)|). A smaller reachability oracle not only
helps to fit the index in main memory, but also speeds up the query
processing (with O(|Lout(u)|+ |Lin(v)|) time complexity).

As we mentioned before, though the existing set-cover based
approaches [14, 30, 11, 22, 6] can achieve approximate optimal
labeling size within a logarithmic factor, their computational and
memory costs are prohibitively expensive for large graphs. The la-
beling process not only needs to materialize the transitive closure,
but it also uses an iterative set-cover procedure which repetitively
invokes dense subgraph detection. The reason for such a compli-
cated algorithm is that the following two criteria need to be met:
1) a labeling must be complete, and 2) we wish the labeling to be
minimal. The existing approach [14, 22] essentially transforms the
labeling problem into a set cover problem with the cost of con-
structing the ground set (which is the entire transitive closure) and
dynamic generation and selection of good candidate sets (through
dense subgraph detection).

To achieve efficient labeling which can work on massive graphs,
the following issues require appropriate handling:
1. (Completeness without Transitive Closure): Can we guaran-
tee labeling completeness without materialization of the transitive
closure? Even compact [11] or reduced [22] materialization can
be expensive for large graphs. Thus, the key is whether a labeling
process can avoid the need to explicitly check whether a reachable
pair (against some form of transitive closure) is covered by the ex-
isting labeling.
2. (Compactness without Optimization): Without the set-cover,
it seems difficult to produce bounded approximate optimal labeling.
But this does not mean that a compact reachability oracle cannot be
produced. Clearly, each vertex should not record every valid hop
in the labeling. In the set-cover framework, a price is computed to
determine whether a vertex should be added to certain vertex labels.
What other criteria can help determine the importance of hops so
that each vertex can be more selective in what it records?

In this paper, we investigate how the hierarchical structure of a
DAG can help produce a complete and compact reachability oracle.
The basic idea is as follows: assuming a DAG can be represented
in a hierarchical (multi-level) structure, such that the lower-level
reachability needs to go through upper-level (but not vice versa),
then we can somehow recursively broadcast the upper-level labels
to lower-level labels. In other words, the labels of lower-level ver-
tices (Lin and Lout) can directly utilize the already computed la-
bels in the upper-level. Thus, on one side, by using the hierarchical
structure, the completeness of labeling can be automatically guar-
anteed. On the other side, it provides an importance score (the
level) of every hop, and each vertex only records those hops whose
levels are higher than or equal to its own level. We note that there
have been several studies [31, 28, 15, 26, 5, 1] using the hierar-
chical structure for shortest path distance computation on road net-
works; however, how to construct and utilize the hierarchical struc-
ture for reachability computation has not been fully addressed. To
the best of our knowledge, this is the first study to construct a fast
and scalable reachability oracle based on hierarchical DAG decom-
position.

Now, to turn such an idea into a fast labeling algorithm for reach-
ability oracle, the following two research questions need to be an-
swered: 1) What hierarchical structure representation of a DAG can

1980

be used? 2) How should Lout and Lin be computed efficiently us-
ing a given hierarchical structure? In this paper, we introduce two
algorithms based on different hierarchical structures of a DAG:
Hierarchical-Labeling (Section 4): In this approach, the hierar-
chical structure is produced by a recursive reachability backbone
approach, i.e., finding a reachability backbone G⋆ from the origi-
nal graph G and then applying the backbone extraction algorithm
on G⋆. Recall that the reachability backbone is introduced by the
latest SCARAB framework [20] which aims to scale the existing
reachability computation approaches. Here we apply it recursively
to provide a hierarchical DAG decomposition. Given this, a fast la-
beling algorithm is designed to quickly compute Lin and Lout one
vertex by one vertex in a level-wise fashion.
Distribution-Labeling (Section 5): In this approach, the sophisti-
cated reachability backbone hierarchy is replaced with the simplest
hierarchy – a total order, i.e., each vertex is assigned a unique level
in the hierarchy structure. Given this, instead of computing Lin and
Lout one vertex at a time, the labeling algorithm will distribute the
hop one by one (from higher order to lower order) to Lin and Lout

of other vertices. The worst case computation complexity of this
labeling algorithm is O(n(n+m)) (of the same order as transitive
closure computation), though in practice it is much faster than the
transitive closure computation.

4. HIERARCHICAL LABELING
Before we proceed to discuss the Hierarchical Labeling approach,

let us formally introduce the one-side reachability backbone (first
defined in [20] for scaling the existing reachability computation),
which serves as the basis for hierarchical DAG decomposition and
the labeling algorithm.

DEFINITION 1. (One-Side Reachability Backbone [20]) Given

DAG G, and local threshold ǫ, the one-side reachability backbone

G⋆ = (V ⋆, E⋆) is defined as follows: 1) V ⋆ ⊆ V , such that for

any vertex pair (u, v) in G with d(u, v) = ǫ, there is a vertex v⋆

with d(u, v⋆) ≤ ǫ and d(v⋆, v) ≤ ǫ; 2) E⋆ includes the edges

which link vertex pair (u⋆, v⋆) in V ⋆ with d(u⋆, v⋆) ≤ ǫ+ 1.

Note that E⋆ can be simplified as a transitive reduction [20] (the
minimal edge set preserving the reachability). Since computing
transitive reduction is as expensive as transitive closure, rules like
the following can be applied: (u⋆, v⋆) ∈ E⋆ can be removed if
there is another intermediate vertex x ∈ V ⋆ (not u⋆ and v⋆) with
d(u⋆, x) ≤ ǫ and d(x, v⋆) ≤ ǫ. Also, for any two vertices u and
v, if their distance is no higher than ǫ (local threshold), we refer to
them as being a local pair (or being local to one another).

EXAMPLE 4.1. As a simple example, let V ⋆ be a vertex cover

of G, i.e., at least one end of an edge in E is in V ⋆; and let E⋆

contain all edges (u⋆, v⋆) ∈ V ⋆ × V ⋆, such that d(u⋆, v⋆) ≤ 2.

Then, G⋆ = (V ⋆, E⋆) is one-side reachability backbone with ǫ =
1. In Figure 1(b), G1 is the reachability backbone of graph G0

(Figure 1(a)) for ǫ = 2.

The important property of the one-side reachability backbone is
that for any non-local pair (u, v): u → v and d(u, v) > ǫ, there

always exists u⋆ ∈ V ⋆ and v⋆ ∈ V ⋆, such that d(u, u⋆) ≤ ǫ,
d(v⋆, v) ≤ ǫ, and u⋆ → v⋆. This property will serve as the key
tool for recursively computing Lout and Lin. In [20], the authors
develop the FastCover algorithm employing ǫ-step BFS for each
vertex for discovering the one-side reachability backbone. They
also show that when ǫ = 2, the backbone can already be signifi-
cantly reduced. To simplify our discussion, in this paper, we will
focus on using the reachability backbone with ǫ = 2 though the
approach can be applied to other locality threshold values.

4.1 Hierarchical DAG Decomposition and La
beling Algorithm

Let us start with the hierarchical DAG decomposition which is
based on the reachability backbone.

DEFINITION 2. (Hierarchical DAG Decomposition) Given DAG

G = (V,E), a vertex hierarchy is defined as V0 = V ⊃ V1 ⊃
V2 ⊃ · · · ⊃ Vh, with corresponding edge sets E0, E1, E2 · · ·Eh,

such that Gi = (Vi, Ei) is the (one-side) reachability backbone

of Gi−1 = (Vi−1, Ei−1), where 0 < i ≤ h. The final graph

Gh = (Vh, Eh) is referred to as the core graph.

Intuitively, the vertex hierarchy shows the relative importance
of vertices in terms of reachability computation. The lower level
reachability computation can be resolved using the higher level ver-
tices, but not the other way around. In other words, the reachability
(backbone) property is preserved through the vertex hierarchy.

LEMMA 1. Assuming u ∈ Vi, v ∈ Vi, u reaches v in G (u
G
−→

v) iff u reaches v in Gi (u
Gi−→ v). Furthermore, for any non-

local vertex pairs (ui, vi) ∈ Vi, d(ui, vi|Gi) > ǫ (the distance in

Gi), there always exists ui+1 ∈ Vi+1 and vi+1 ∈ Vi+1, such that

d(ui, ui+1|Gi) ≤ ǫ, d(vi+1, vi|Gi) ≤ ǫ, and ui+1
Gi+1
−→ vi+1.

Proof Sketch:The first claim: assuming u ∈ Vi, v ∈ Vi, u reaches

v in G (u
G
−→ v) iff u reaches v in Gi (u

Gi−→ v), can be proved
by induction. The base case where i = 1 is clearly true based
on the reachability backbone definition (the reachability backbone
will preserve the reachability between vertices in the backbone as
they appear in the original graph). Assuming this is true for all
i < k, then it also holds to be true for i = k. This is because
for any u ∈ Vi, v ∈ Vi, we must have u ∈ Vi−1 and v ∈ Vi−1.

Based on the reachability backbone definition, we have u
Gi−1
−→ v

iff u
Gi−1
−→ v. Then based on the induction, we have G (u

G0=G
−→ v)

iff u reaches v in Gi (u
Gi−→ v). The second claim directly follows

the reachability definition. ✷

EXAMPLE 4.2. Figure 1 shows a vertex hierarchy for DAG G0

(a), where V1 = {5, 7, 9, · · · , 40} (b) and V2 = {7, 25, 35, 40}
(c). G1 is the (one-side) reachability backbone of G0 and G2 is the

corresponding (one-side) reachability backbone of G1.

To utilize the hierarchical decomposition for labeling, let us fur-
ther introduce a few notations related to the vertex hierarchy. Each
vertex v is assigned to a unique level: level(v) = i iff v ∈ Vi \
Vi+1, where 0 ≤ i ≤ h and Vh+1 = ∅. (Later, we will show
that each vertex is labeled at its corresponding level using Gi and
labels of vertices from higher levels). Assuming v is at level i, i.e.,

level(v) = i, let Nk
out(v|Gi) (Nk

in(v|Gi)) be the v’s k-degree out-
going (incoming) neighborhood, which includes all the vertices v
can reach (reaching v) within k steps in Gi. Finally, for any vertex
v at level i < h, its corresponding outgoing (incoming) backbone
vertex set Bǫ

out(v) (Bǫ
in(v)) is defined as:

B
ǫ
out(v) = {u ∈ Vi+1|d(v, u|Gi) ≤ ǫ and there is no other vertex

x ∈ Vi+1, where d(v, x|Gi) ≤ ǫ ∧ d(x, u|Gi) ≤ ǫ(v → x→ u)} (1)

B
ǫ
in(v) = {u ∈ Vi+1|d(u, v|G)i) ≤ ǫ and there is no other vertex

y ∈ Vi+1, where d(u, y|Gi) ≤ ǫ ∧ d(y, v|Gi) ≤ ǫ(u→ y → v)} (2)

Now, let us see how the labeling algorithm works given the hi-
erarchical decomposition. Contrary to the decomposition process
which proceeds from the lower level to higher level (like peel-
ing), the labeling performs from the higher level to the lower level.

1981

(a) Original Graph G0 (b) Level-1 Backbone G1 (c) Level-2 G2 (d) Hop Labeling for V0

Figure 1: Running Examples of Hierarchical-Labeling

Specifically, it first labels the core graph Gh and then iteratively
labels the vertex at level h− 1 to level 0.
Labeling Core Graph Gh: Theoretically, the diameter of the core
graph Gh is no more than ǫ (the pairwise distance between any
vertex pair in Gh is no more than ǫ), and thus no more reachability
backbone is needed (Vh+1 = ∅). In this case, for a vertex v ∈ Vh

(level(v) = h), the basic labeling can be as simple as follows:

Lout(v) = N
⌈ǫ/2⌉
out (v|Gh); Lin(v) = N

⌈ǫ/2⌉
in (v|Gh) (3)

The labeling is clearly complete for Gh as any reachable pair is
within distance ǫ. Alternatively, since the core graph is typically
rather small, we can also employ the existing 2-hop labeling algo-
rithm [14, 30] to perform the labeling for core graphs. Given this,
practically, the decomposition can be stopped when the vertex set
Vh is small enough (typically less than 10K) instead of making its
diameter less than or equal to ǫ.
Labeling Vertices with Lower Level i (0 ≤ i < h): After the core
graph is labeled, the remaining vertices will be labeled in a level-
wise fashion from higher level h − 1 to lower level (until level 0).
For each vertex v at level 0 ≤ i < h, assuming all vertices in
the higher level (> i) have been labeled (Lout and Lin), then the
following simple rule can be utilized for labeling v:

Lout(v) = N
⌈ǫ/2⌉
out (v|Gi) ∪ (

⋃

u∈Bǫ
out

(v|Gi)

Lout(u)) (4)

Lin(v) = N
⌈ǫ/2⌉
in (v|Gi) ∪ (

⋃

u∈Bǫ

in
(v|Gi)

Lin(u)) (5)

Basically, the label of Lout(v) (Lin(v)) at level i consists of two
parts: the outgoing (incoming) ⌈ǫ/2⌉-degree neighbors of v in Gi,
and the labels from its corresponding outgoing (incoming) back-
bone vertex set Bǫ

out(v|Gi) (Bǫ
in(v|Gi)). In particular, if ǫ = 2

(the typical locality threshold), then each vertex v basically records
its direct outgoing (incoming) neighbors in Gi and the labels from
its backbone vertex set.
Overall Algorithm: Algorithm 1 sketches the complete Hierarchical-
Labeling approach. Basically, we first perform the recursive hierar-
chical DAG decomposition (Line 1). Then, the vertices at the core
graph Gh will be labeled either by Formula 3 or using the existing
2-hop labeling approach (Line 2). Finally, the while-loop performs
the labeling from higher level h − 1 to lower level 0 iteratively
(Lines 4-10), where each vertex v in the level i (Lines 5 − 9) will
be labelled based on Formulas 4 and 5.

EXAMPLE 4.3. Figure 1 illustrates the Hierarchical-Labeling

process, where Figure 1(c) shows the labeling of core graphs. Note

that for simplicity, each vertex by default records itself in both Lin

and Lout, and ǫ = 2. Figure 1(b) shows the labeling for vertices in

V1; and Table 1(c) illustrates the labeling of a few vertices in V0.

Algorithm 1 Hierachical-Labeling(G = (V,E))

1: Perform Hierarchical Decomposition of G based on Definition 2;
2: Labeling core graph Gh;
3: i← h− 1;
4: while i ≥ 0 {Labeling Vi from higher level to lower} do
5: for each v ∈ Vi \ Vi+1 {labeling each vertex specific for Vi} do

6: Lout(v)← N
⌈ǫ/2⌉
out (v|Gi) ∪ (

⋃
u∈Bǫ

out
(v|Gi)

Lout(u))

7: Lin(v)← N
⌈ǫ/2⌉
in (v|Gi) ∪ (

⋃
u∈Bǫ

in
(v|Gi)

Lin(u))

8: end for
9: i← i− 1;

10: end while

4.2 Algorithm Correctness and Complexity
In the following, we first prove the correctness of the Hierarchical-

Labeling algorithm, that is, that it produces a complete labeling: for
any vertex pair (u, v), u → v iff Lout(u) ∩ Lin(v) 6= ∅. We then
discuss its time complexity.

THEOREM 1. The Hierarchical-Labeling approach (Algorithm 1)

produces a complete labeling for each vertex v in graph G, such

that for any vertex pair (u, v): u→ v iff Lout(u) ∩ Lin(v) 6= ∅.

Proof Sketch:We prove the correctness through induction: assum-
ing Algorithm 1 produces the correct labeling for Vi+1, then it pro-
duces the correct labeling for Vi. Basically if for any vertex pair u⋆

and v⋆ in Vi+1, u⋆ → v⋆ iff Lout(u
⋆) ∩ Lin(v

⋆) 6= ∅, then we
would like to show that for any vertex pair u and v in Vi, this also
holds. To prove this, we consider four different cases for any u and
v in Vi+1: 1) u ∈ Vi \ Vi+1 and v ∈ Vi \ Vi+1; 2) u ∈ Vi \ Vi+1

and v ∈ Vi+1; 3) u ∈ Vi+1 and v ∈ Vi \ Vi+1; and 4) u ∈ Vi+1

and v ∈ Vi+1. Since case 4 trivially holds based on the reduction
and cases 2 and 3 are symmetric, we will focus on proving cases 1
and 2.
Case 1 (u ∈ Vi \ Vi+1 and v ∈ Vi \ Vi+1): We observe: 1) u→ v
with d(u, v) ≤ ǫ (local pair) iff there is x ∈ Vi, such that d(u, x) ≤

⌈ ǫ
2
⌉ and d(x, v) ≤ ⌈ ǫ

2
⌉, i.e., N

⌈ǫ/2⌉
out (v|Gi) ∩N

⌈ǫ/2⌉
in (v|Gi) 6= ∅;

and 2) u→ v with d(u, v) > ǫ (non-local pair)
iff there are backbone vertices u⋆, v⋆ ∈ Vi+1, such that d(u, u⋆) ≤
ǫ, d(v⋆, v) ≤ ǫ and u⋆ → v⋆. That is, Lout(u

⋆) ∩ Lin(v
⋆) 6= ∅

iff there are x ∈ B
ǫ
out(u|Gi) and y ∈ B

ǫ
in(v|Gi), such that x →

y, i.e., Lout(x) ∩ Lin(y) 6= ∅ (if there is x ∈ Vi+1, such that
d(u, x) ≤ ǫ and d(x, u⋆) ≤ ǫ, then we can always use x to replace
u⋆ for the above claim; (u⋆ → v⋆ then x→ v⋆))
iff (

⋃
u∈Bǫ

out
(v|Gi)

Lout(u)) ∩ (
⋃

u∈Bǫ

in
(v|Gi)

Lout(u)) 6= ∅.

1982

Case 2 (u ∈ Vi \ Vi+1 and v ∈ Vi+1): We observe 1) u→ v with
d(u, v) ≤ ǫ (local pair) iff either v ∈ B

ǫ
out(u|Gi) (v ∈ Lout(u)

and v ∈ Lin(v)), or there is x ∈ B
ǫ
out(v|Gi), such that x → v,

i.e. Lout(x) ∩ Lin(v) 6= ∅
iff (

⋃
u∈Bǫ

out
(v|Gi)

Lout(u)) ∩ (
⋃

u∈Bǫ

in
(v|Gi)

Lout(u)) 6= ∅; and

2) u → v with d(u, v) > ǫ (non-local pair) iff there exists x such
that x ∈ B

ǫ
out(v|Gi) and x→ v, i.e. Lout(x) ∩ Lin(v) 6= ∅

iff (
⋃

u∈Bǫ

out
(v|Gi)

Lout(u)) ∩ (
⋃

u∈Bǫ

in
(v|Gi)

Lout(u)) 6= ∅.

Thus, in all cases, we have the correct labeling for any vertex pair
u and v in Vi+1. Now, the core labeling is correct either based on
the basic case where the graph diameter is no more than ǫ or based
on the existing 2-hop labeling approaches [14, 30]. Together with
the above induction rule, we have for any vertex pair in V = V0,
the label is complete and we thus prove the claim. ✷
Complexity Analysis: The computational complexity of Algo-
rithm 1 comes from three components: 1) the hierarchical DAG
decomposition, 2) the core graph labeling, and 3) the remaining
vertex labeling for levels from h − 1 to 0. For the first compo-
nent, as we mentioned earlier, we can employ the FastCover algo-
rithm [20] iteratively to extract the reachability backbone vertices
Vi and their corresponding graph Gi. The FastCover algorithm is
very efficient and to extract Gi+1 from Gi, it just needs to traverse
the ǫ neighbors of each vertex in Gi+1. Its complexity is O(

∑
v∈V

|N ǫ
out(v|Gi)|log|N

ǫ
out(v|Gi)| + |E

ǫ
out(v|Gi)|), where Eǫ

out(v|Gi)
is the set of edges v can reach in ǫ steps. Also, we note that in
practice, the vertex set Vi shrinks very quickly and after a few
iterations (5 or 6 typically for ǫ = 2), the number of backbone
vertices is on the order of thousands (Section 6). We can also
limit the total number of iterations, such as bounding h to be 10
and/or stop the decomposition when the Vi is smaller than some
limit such as 10K. For the second component, if the diameter
is smaller than ǫ and Formula 3 is employed, it also has a linear
cost: O(

∑
v∈V (|N ǫ

out(v|Gh)| + |E
ǫ
out(v|Gh)| + |N

ǫ
in(v|Gh)| +

|Eǫ
in(v|Gh)|)). If we employ the existing 2-hop labeling

approach [14, 30], the cost can be O(|Vh|
4). However, since |Vh|

is rather small, the cost can be acceptable and in practice (Sec-
tion 6), it is also quite efficient. Finally, the cost to assign labels
for all the remaining vertices is linear to their neighborhood car-
dinality and the labeling size of each vertex. It can be written as
O(

∑
v∈Vi\Vi+1

(|N ǫ
out(v|Gh)|+ |E

ǫ
out(v|Gh)|+ |N

ǫ
in(v|Gh)|+

|Eǫ
in(v|Gh)|) +ML, where M is the maximal number of vertices

in the backbone vertex set and L is the maximal number of vertices
in any Lin or Lout.

We note that for large graphs, the last component typically domi-
nates the total computational cost as we need to perform list merge
(set-union) operations to generate Lout and Lin for each vertex.
However, compared with the existing hop labeling approach,
Hierarchical-Labeling is significantly cheaper as there is no need
for materializing transitive closure and the set-cover algorithm. The
experimental study (Section 6) finds that the labeling size produced
by the Hierarchical-Labeling approach is comparable to that pro-
duced by the expensive set-cover based optimization.

5. DISTRIBUTION LABELING
The Hierarchical-Labeling approach provides a fast alternative

to produce a complete reachability oracle. Its labeling is dependent
on a reachability-based hierarchical decomposition and follows a
process similar to the classical transitive closure computation [33],
where the transitive closure of all incoming neighbors are merged
to produce the new transitive closure. However, the potential is-
sue is that when merging Lout and Lin of higher level vertices for
the lower level vertices, this approach does not (and cannot) check

whether any hop is redundant, i.e., their removal can still produce a
complete labeling. Given the current framework, it is hard to eval-
uate the importance of each individual hop as they being cascaded
into lower level vertices. Recall that for a vertex v, when comput-
ing its Lout(v) and Lin(v), its corresponding backbone vertex sets
(Bǫ

out(v) and B
ǫ
in(v)) only eliminate those redundant backbones

if they can be linked through a local vertex (Formulas 1 and 2).
Thus even if u ∈ B

ǫ
out(v), it may still be redundant as there is

another vertex u′ ∈ B
ǫ
out(v) such that u′ → u (but d(u′, u) is

large). However, this issue is related to the difficulty of computing
transitive reduction as mentioned earlier.

In light of these issues, we ponder the following: Can we per-
form labeling without the recursive hierarchical decomposition?
Can we explicitly confirm the “power” or “importance” of an in-
dividual hop as it is being added into Lout and Lin? In this work,
we provide positive answers to these questions and along the way,
we discover a simple, fast, and elegant labeling algorithm, referred
to as Distribution-Labeling: 1) the recursive hierarchical decompo-
sition is replaced with a simple total order of vertices (the order cri-
terion can be as simple as a basic function of vertex degree); 2) each
hop is explicitly verified to be added into Lout and Lin only when it
can cover some additional reachable pairs, i.e., it is non-redundant.
Surprisingly, the labeling size produced by this approach is even
smaller than the set-cover approach on the benchmarking graphs
used in the recent reachability studies (Section 6).

5.1 Hop Coverage and Labeling Basis
We first formally define the “covering power” of a hop and then

study the relationship of two vertices in terms of their “covering
power”.

DEFINITION 3. (Hop Coverage) For vertex v, its coverage Cov(v)
is defined as TC−1(v)×TC(v) = {(u,w) : u→ v and v → w}.
Note that TC−1(v) is the reverse transitive closure of v which

includes all the vertices reaching v. If for any pair in (u,w) ∈
Cov(v), Lout(u) ∩ Lin(w) 6= ∅, then we say Cov(v) is covered

by the labeling. We also say Cov(v) can be covered by v if each

vertex u reaching v (u ∈ TC−1(v)) has v ∈ Lout(u) and each

vertex w being reached by v has v ∈ Lin(w) (w ∈ TC(v)).

Given this, the labeling Lout and Lin is complete if it covers
Cov(V) = ∪v∈V Cov(v), i.e., for any (u,w) ∈ Cov(V),
To achieve a complete labeling, let us start with Cov(v, v′) =
Cov(v) ∪ Cov(v′). We study how to use only v and v′ to cover
Cov(v, v′). Specifically, we consider the following question: as-

suming v has been recorded by Lout(u) for every u ∈ TC−1(v)
and by Lin(w) for every w ∈ TC(v), then in order to cover the

reachability pairs in Cov(v, v′) and only v′ can serve as the hop,

what vertices should record v′ in their Lout and Lin?

To answer this question, we consider three cases: 1) v and v′

are incomparable, i.e., v 9 v′ and v 8 v′; 2)v′ → v; and 3)
v → v′. For the first case, the labeling is straightforward: each u ∈
TC−1(v′) needs to record v′ ∈ Lout(u) and each w ∈ TC(v′)
needs to record v′ ∈ Lin(u). Note that in the worst case, this is
needed in order to recover pairs as TC−1(v′) × {v′} and {v′} ×
TC(v′). For Cases 2 and 3, Lemma 2 provides the answer.

LEMMA 2. Let Lout(u) = {v} for every u ∈ TC−1(v) and

Lin(w) = {v} for every w ∈ TC(v). If v′ → v, then with

Lout(u) = {v, v′} for u ∈ TC−1(v′) and Lin(w) = {v′} for

w ∈ TC(v′)\TC(v) (other labels remain the same), Cov({v, v′})
is covered (using only hops v and v′). If v → v′, then with Lout(u) =
{v′} for u ∈ TC−1(v′) \ TC−1(v) and Lin(w) = {v, v′} for

w ∈ TC(v′) (other labels remain the same), Cov({v, v′}) is cov-

ered (using only hops v and v′).

1983

(a) Labeling for Cov(13) (b) Labeling for Cov({13, 7}) (c) Labeling for Cov({13, 7, 25}) (d) Basic Labeling

Figure 2: Running Example of Distribution-Labeling

Proof Sketch:We will focus on proving the case where v′ → v as
the case v′ → v is symmetric. We first note that if v′ → v, then
TC−1(v′) ⊆ TC−1(v) and TC(v′) ⊇ TC(v). Since Cov(v) =
TC−1(v) × TC(v) is already covered by v, the uncovered pairs
in Cov({v, v′}) can be written as

Cov({v, v′}) \ Cov(v) = TC−1(v′)× (TC(v′) \ TC(v))

Given this, adding v′ to Lout(u) where u ∈ TC−1(v′) and to
Lin(w) where w ∈ TC(v′) \ TC(v) can thus cover all the pairs
in Cov({v, v′}). ✷

EXAMPLE 5.1. Figure 2(a) shows the labeling for Cov(13) and

Figure 2(b) shows that for Cov(13, 7) where 7 → 13. In partic-

ular, TC−1(13) = TC−1(7) ∪ {11} and TC(13) ⊂ TC(7).
For all u ∈ TC−1(7), we have Lout(u) = {7, 13} and for all

w ∈ Lin(7) \ Lin(13), we have Lin(w) = {7}.

Given Lemma 2, we consider the following general scenario: for
a subset of hops Vs ⊂ V , assume Lout and Lin are correctly la-
beled using only hops in Vs to cover Cov(Vs). Now how can we
cover Cov(Vs ∪ {v

′}) by adding the only additional hop v to Lin

and Lout? The following theorem provides the answer (Lemma 2
can be considered a special case):

THEOREM 2. (Basic Labeling) Given a subset of hops Vs ⊂
V , let Lout(u) ⊆ Vs and Lin(u) ⊆ Vs be complete for covering

Cov(Vs), i.e., for any (u, v) ∈ Cov(Vs), Lout(u) ∩ Lin(v) 6= ∅.
To cover Cov(Vs ∪ {v

′}) using additional hop v′, the following

labeling is complete:

Lout(u)← Lout(u) ∪ {v
′}, u ∈ TC−1(v′) \ TC−1(X) (6)

Lin(w)← Lin(w) ∪ {v′}, w ∈ TC(v′) \ TC(Y) (7)

where X = TC−1(v′) ∩ Vs including all the vertices in Vs reach-

ing v′ and Y = TC(v′) ∩ Vs including all the vertices in Vs

that can be reached by v′; TC−1(X) =
⋃

v∈X TC−1(v) and

TC(Y) =
⋃

v∈Y TC(v).

The theorem and its proof can be illustrated in Figure 2(d).
Proof Sketch:We first observe the following relationships be-

tween the (reverse) transitive closure of v′ and X , Y .

TC−1(v′) ⊇ TC−1(X); TC(v′) ⊆ TC(v), v ∈ X;

TC(v′) ⊇ TC(Y); TC−1(v′) ⊆ TC−1(v), v ∈ Y ;

Thus, following the similar proof of Lemma 2, we can see that

Cov(Vs ∪ {v
′}) = Cov(Vs) ∪ TC−1(v′)× TC(v′)

= Cov(Vs) ∪ (TC−1(v′) \ TC−1(X)) ∪ TC−1(X))

×((TC(v′) \ TC(Y)) ∪ TC(Y))

= Cov(Vs) ∪ (TC−1(v′) \ TC−1(X))× (TC(v′) \ TC(Y))

∪(TC−1(v′) \ TC−1(X))×
⋃

v∈Y

TC(v′)

∪TC−1(X)× (TC(v′) \ TC(Y))

∪TC−1(X)× TC(Y)

= Cov(Vs) ∪ (TC−1(v′) \ TC−1(X))× (TC(v′) \ TC(Y)),

since (TC−1(v′) \ TC−1(X))× TC(Y) ⊆ Cov(Vs);

TC−1(X)× (TC(v′) \ TC(Y)) ⊆ Cov(Vs);

TC−1(X)× TC(Y) ⊆ Cov(Vs)

Thus, by adding v′ to Lout(u), u ∈ TC−1(v′) \ TC−1(X) and
to Lin(w), w ∈ TC(v′) \ TC(Y), the labeling will be complete
to cover Cov(Vs ∪ {v

′}). ✷

EXAMPLE 5.2. Figure 2(c) shows an example of Cov({13, 7}∪
{25}), where X = {13, 7} (both can reach 25 and Y = ∅. Thus

25 is added to Lout(u), u ∈ TC−1(25) \ (TC(13)∪TC(7)) and

to Lin(w), w ∈ TC(25).

5.2 DistributionLabeling Algorithm
In the following, based on Lemma 2 and Theorem 2, we in-

troduce the Distribution-Labeling algorithm, which will iteratively
distribute each vertex v to Lout and Lin of other vertices to cover
Cov(Vs ∪{v}) (Vs includes processed vertices). Intuitively, it first
selects a vertex v1 and provides complete labeling for Cov(v1);
then it selects the next vertex v2, provides complete labeling for
Cov({v1, v2}) based on Lemma 2. It continues this process, at
each iteration i selecting a new vertex vi and producing the com-
plete labeling for Cov(Vs ∪ {vi}) based on Theorem 2 where Vs

includes all the i − 1 vertices which have been processed. The
complete labeling will be produced when Vs = V .

Given this, two issues need to be resolved for this labeling pro-
cess: 1) What should be the order in selecting vertices, and 2) How
can we quickly compute X (processed vertices which can reach
the current vertex vi) and Y (processed vertices vi can reach), and
identify u ∈ TC−1(vi) \ TC

−1(X) and w ∈ TC(vi) \ TC(Y).

1984

Vertex Order: The vertex order can be considered an extreme hi-
erarchical decomposition, where each level contains only one ver-
tex. Furthermore, the higher level the vertex, then the more im-
portant it is, the earlier it will be selected for covering, and the
more vertices that are likely to record it in their Lout and Lin lists.
There are many approaches for determining the vertex order. For
instance, if following the set-cover framework, the vertex can be
dynamically selected to be the cheapest in covering new pairs, i.e.,
|TC−1(vi)\TC−1(X)|+|TC(vi)\TC(Y)|

|Cov(Vs∪{vi})\Cov(Vs)|
. However, this is computa-

tionally expensive. We may also use |Cov(vi)|which measures the
covering power of vertex v, but this still needs to compute transi-
tive closure. In this study, we found the following rank function,
(|Nout(v)|+1)× (|Nin(v)|+1), which measures the vertex pairs
with distance no more than 2 being covered by v, is a good can-
didate and can provides compact labeling. Indeed, we have used
a similar criterion in [20] for selecting reachability backbone. In
the experimental evaluation (Section 6), we will also use this rank
function for computing the distribution labeling.
Labeling Lout and Lin: Given vertex vi, we need to find (1)
u ∈ TC−1(vi) \ TC

−1(X), i.e., the vertices reaching vi but not
reaching by v such that v → vi and it has a higher order (already
being processed); and (2) w ∈ TC(vi) \ TC(Y), i.e., the vertices
which can be reached by vi but cannot be reached by v such that
vi → v and it has a higher order. The straightforward way for
solving (1) is to perform a reversed traversal and visit (expand) the
vertices based on the reversed topological order; then once the vis-
ited vertex has a higher order then vi, all its descendents (including
itself) will be colored (flagged) to be be excluded from adding vi to
Lout; thus vi will be added to Lout for all uncolored vertices during
the reverse traversal process. A similar ordered traversal process
can be used for solving (2). However, the (reverse) ordered traver-
sal needs a priority queue which results in O(|V | log |V | + |E|)
complexity at each iteration. In this work, we utilize a more ef-
ficient approach that can effectively prune the traversal space and
avoid the priority queue, which is illustrated in Algorithm 2.

Algorithm 2 Distribution-Labeling(G=(V,E))

1: Rank vertices in G in certain order;
2: for each vi ∈ V {from higher order to lower} do
3: Perform Reverse BFS starting from vi, and for each vertex u being

visited:
4: if Lout(u) ∩ Lin(vi) 6= ∅ then
5: Do not add vi to Lout(u) nor expand u;
6: else

7: Add vi into Lout(u) and expand u in the reverse BFS;
8: end if
9: Perform BFS starting from vi, and for each vertex w being visited:

10: if Lin(w) ∩ Lout(vi) 6= ∅ then

11: Do not add vi to Lin(u) nor expand w;
12: else
13: Add vi into Lin(w) and expand w in the BFS;
14: end if
15: end for

In Algorithm 2, the iteration labeling process is sketched in the
foreach loop (Lines 2 to 15). The main procedure in comput-
ing u ∈ TC−1(vi) \ TC

−1(X) for labeling Lout is outlined in
Lines 3 − 8. The main idea is that when visiting a vertex u, once
Lout(u) ∩ Lin(vi) is no longer empty, we can simply exclude u
and its descendents from consideration, i.e., u ∈ TC−1(X) (Lines
4− 6). Intuitively, this is because there exists a vertex v, such that
u→ v → vi and has order higher than vi. Similarly, the procedure
that computes w ∈ TC(vi) \ TC(Y) for labeling Lin is outlined
in Lines 9 − 14. Here, the condition Lin(w) ∩ Lout(vi) 6= ∅ is
utilized to prune w and its descendents to determine Lin labeling.

Figure 2 illustrates the labeling process based on Algorithm 2 for
the first three vertices 13, 7, and 25.

5.3 Completeness and Compactness
In the following, we discuss the labeling completeness (correct-

ness), compactness (non-redundancy), and time complexity.

THEOREM 3. (Completenss) The Distribution-Labeling algo-

rithm (Algorithm 2) produces a complete Lout and Lin labeling,

i.e., for any vertex pair (u, v), u→ v iff Lout(u) ∩ Lin(v) 6= ∅.

Proof Sketch:1) u ∈ TC−1(vi)\TC
−1(X) and 2) w ∈ TC(vi)\

TC(Y). They are symmetric and we will focus on 1). Note for
u ∈ TC−1(vi) \ TC

−1(X), we need to exclude vertex u′ such
that u′ → v → vi, where v is already processed (has higher order
than vi). Assuming the labeling is complete for Cov(Vs), where
Vs = {v1, · · · , vi−1}, then Lout(u

′) ∩ Lin(vi) 6= ∅ (Line 4). If
u′ should be excluded, then its descendents from the BFS traversal
will also be true and should also be excluded. Furthermore, the re-
verse BFS can visit all vertices where this condition does not hold,
i.e., Lout(u)∩Lin(vi) = ∅, and thus u ∈ TC−1(vi)\TC

−1(X).
✷

Theorem 3 shows that the Distribution-Labeling algorithm is cor-
rect; but how compact is the labeling? The following theorem
shows an interesting non-redundant property of the produced label-
ing, i.e., no hop can be removed from Lin or Lout while preserving
completeness. We note that this property has not been investigated
before in the existing studies on reachability oracle and hop label-
ing [14, 30, 11, 12, 22, 6].

THEOREM 4. (Non-Redundancy) The Distribution-Labeling al-

gorithm (Algorithm 2) produces a non-redundant Lout and Lin la-

beling, i.e., if any hop h is removed from a Lout or Lin label set,

then the labeling becomes incomplete.

Proof Sketch:We will show that 1) for any u ∈ TC−1(vi) \
TC−1(X), vi cannot be removed from Lout; and 2) for any w ∈
TC(vi)\TC(Y), vi cannot be removed from Lin. Note that when
vi is being added to Lout(u) and Lin(w), it is non-redundant as the
new labeling at least covers (TC−1(vi) \ TC

−1(X)) × {vi} and
{vi} × TC(vi) \ TC(Y).

However, will any later processed vertex vj , such that i < j,
make vi redundant? The answer is no because in this case (still
focusing on the above covered pairs by vi), u → vj → vi (or
w ← vj ← vi), but the order of vi is higher than vj and vj will not
be added vi into its Lout or Lin. In other words, for any vertex pair
in (TC−1(vi)\TC

−1(X))×{vi} or {vi}×TC(vi)\TC(Y), vi
is the only hop linking these pairs, i.e., Lout(u) ∩ Lin(vi) = {vi}
and Lout(vi) ∩ Lout(u) = {vi}. Thus, vi is non-redundant for all
the vertices recording it as label, i.e., Lout(u), u ∈ TC−1(vi) \
TC−1(X) and Lin(w), w ∈ TC(vi) \ TC(Y). ✷

As we discussed earlier, Hierarchical-Labeling does not have this
property; we can see this through counter-examples. For instance,
in Figure 1(b), 17 is redundant for Lout(5). However, to remove
these cases, the transitive reduction would have to be performed,
which is expensive. Furthermore, whether the labels produced by
the existing set-cover based approach [14] are redundant or not re-
mains an open question.
Time Complexity: The worst case computational complexity of
Algorithm 2 can be written as O(|V |(|V |+ |E|)L), where L is the
maximal labeling size. However, the conditions in Line 4 and 10
can significantly prune the search space, and L is typically rather
small, the Distribution-Labeling can perform labeling very effi-
ciently. In the experimental study (Section 6), we will show Algo-
rithm 2 is on average more than an order of magnitude faster than

1985

Small Real Graph Large Real Graph

Dataset |V | |E| Dataset |V | |E|
agrocyc 12684 13408 citeseer 693,947 312,282

amaze 3710 3600 citeseerx 6,540,399 15,011,259

anthra 12499 13104 cit-Patents 3,774,768 16,518,947

arxiv 21608 116805 email 231,000 223,004

ecoo 12620 13350 go uniprot 6,967,956 34,770,235

hpycyc 4771 5859 lj 971,232 1,024,140

human 38811 39576 mapped 100K 2,658,702 2,660,628

kegg 3617 3908 mapped 1M 9,387,448 9,440,404

mtbrv 9602 10245 uniprotenc 100m 16,087,295 16,087,293

nasa 5605 7735 uniprotenc 150m 25,037,600 25,037,598

p2p 48438 55349 uniprotenc 22m 1,595,444 1,595,442

reactome 901 846 web 371,764 517,805

vchocyc 9491 10143 wiki 2,281,879 2,311,570

xmark 6080 7028

Table 1: Real datasets

the existing hop labeling and has comparable or faster labeling time
than the state-of-the-art reachability indexing approaches on large
graphs. Its labeling size is also small and surprisingly, even smaller
than the greedy set-cover based labeling approaches in most of the
cases. This may be an evidence that the labeling of the existing
set-cover based approach [14] is redundant.

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the Hierarchical-Labeling

and Distribution-Labeling labeling algorithms against the state-of-
the-art reachability computation approaches on a range of real graphs
which have been widely used for studying reachability [38, 36,
21, 20, 13]. Particularly, we are interested in the following ques-
tions (in terms of the query efficiency, construction cost, and index
size) : 1) How do the reachability oracle approaches perform com-
pared with the transitive closure compression and online search ap-
proaches? 2) How do these two approaches perform compared with
the existing 2-hop approaches assuming the latter one can complete
the labeling? 3) How do these two methods (Hierarchical-Labeling
and Distribution-Labeling) compare with one another?

6.1 Experimental Setup
To answer these questions, we evaluate the Hierarchical-Labeling

(HL) and Distribution-Labeling (DL) labeling algorithms against
the state-of-the-art reachability computation approaches:
1) PathTree (PT) [23], an improved version of Agrawal’s tree-
interval method [2]; 2) Nuutila’s Interval (INT) [27], a transi-
tive closure compression method, recently demonstrated to be one
of the fastest reachability computation methods [36]; 3) PAWH-8

(PW8) [36], the latest bit-vector compression method for transitive
closure compression) [36] and PWAH-8 is its best variant [36]. 4)

K-Reach (KR) [13], a latest vertex-cover based approach for gen-
eral reachability computation, i.e., determine whether two vertices
are within distance k. Here k is set to be the total number of ver-
tices in the graph for the basic reachability. 5) GRAIL (GL) [38],
a scalable reachability indexing approach using random DFS label-
ing (the number of intervals is set at 5, as suggested by authors). 6)

2HOP (2HOP) [14], Cohen et al.’s 2-hop labeling approach;
Here, Path-Tree (1), Interval (2), and PAWH-8(3) are the state-

of-the-art transitive closure compression approaches; K-Reach (4)
is the latest general reachability approach and has been shown to be
very capable in dealing with basic reachability [13] (it can also be
considered as transitive closure compression as it materializes the
transitive closure for the vertex-cover, a subset of vertices); GRAIL
(5) is the state-of-the-art online search approach; and 2HOP (6) is
the existing set-cover based hop labeling approach. In addition, we
also include the latest SCARAB method [20] for scaling PathTree
and speeding up GRAIL, referred to as PATH-TREE∗ (PT∗) and
GRAIL∗ (GL∗), respectively. The locality parameter ǫ is set at 2 for

SCARAB. We also add the comparison with the latest reachability
labeling TF-label (TF) [10], and the latest distance labeling method
Pruned Landmark (PL) [3].

All the methods (including source code) except 2HOP and PL are
either downloaded from authors’ websites or provided by the au-
thors directly. We have implemented 2HOP, Hierarchical-Labeling
(HL), Distribution-Labeling (DL), and PL; and 2HOP has been im-
proved with several fast heuristics [30, 22] to speed up its con-
struction time. All these algorithms are implemented in C++ based
on the Standard Template Library (STL). We also downloaded and
tested IS-Label (for distance computation) [17]. However, its query
performance is on average more than 3 orders of magnitude slower
than that of the reachability labeling and transitive closure com-
pression methods; we omit reporting its results here.

In the experiments, we focus on reporting the three key measures
for reachability computation: query time, construction time, and
index size. For the query time, both equal and random reachabil-
ity query workload are used. The equal query workload has about
50% positive (reachable pairs) and about 50% negative (unreach-
able pairs) queries. Positive queries are generated by sampling the
transitive closure. Also the query time is the running time of a total
of 100, 000 reachability queries.

All experiments are performed on multi-core machines with Intel
Xeon x5650 CPUs and 48GB RAM.

6.2 Experimental Results
In the following, we report the experimental results on small

graphs first and then on large graphs. These graphs have been
widely used for studying reachability computation [37, 11, 23, 22,
40, 38, 6, 36, 21, 13, 20]. In Table 1, the first three columns give the
names, number of vertices and number of edges for the coalesced
DAGs derived from each original graph. The last three columns
give similar information for large real graphs.
Small Graphs: For small graphs, due to space limitation, we only
report the query times of equal query load and construction times.
The complete experimental results consisting of random query load,
and index size can be found in the complete technical report [25].
(Their relative performance in terms of query times on the random
query load and index size are comparable to those of large graphs.)

Table 2 reports the query times of the reachability oracle ap-
proaches (2HOP, Hierarchical-Labeling, and Distribution-Labeling)
against the state-of-the-art transitive closure compression approaches
(PWAH-8, INTERVAL, PATH-TREE, K-REACH), and online search
(GRAIL), as well as some of their SCARAB counterparts, includ-
ing GRAIL∗ (GL∗) and PATH-TREE∗ (PT∗)using the equal query
load. We also compare them with the latest reachability labeling
TF-label (TF) [10], and the latest distance labeling method Pruned

Landmark (PL) [3].
We make the following important observations on the query time:

1) On small graphs, PATH-TREE outperforms other methods, though
K-REACH is fairly close (as it is quite similar to the transitive clo-
sure materialization). Interestingly, the reachability oracle methods
turn out to be quite comparable. In particular, the Distribution-
Labeling (DL) is consistently about 2 times slower than PATH-
TREE, and even faster than the other transitive closure compres-
sion approaches, INTERVAL and PWAH-8, on equal query load. 2)
Compared to the existing set-cover based labeling approach 2HOP,
Hierarchical-Labeling (HL) is quite comparable (slightly slower),
but the query time of Distribution-Labeling (DL) is only 2/3 of
that of 2HOP. 3) The reachability oracle approaches are slightly
slower on the random query load than on the equal query load.
This is because to determine vertex u cannot reach vertex v, the
query processing has to completely scan Lout(u) and Lin(v). 4)

1986

Dataset GL GL∗ PT PT∗ KR PW8 INT 2HOP PL TF HL DL
agrocyc 189.8 115.5 1.1 13.2 1.5 7.9 2.6 3.8 77.9 19.4 4.3 2.6
amaze 343.5 28.8 1.2 8.7 1.4 3.5 3.1 3.0 155.1 2.6 2.9 2.5
anthra 124.2 92.6 1.3 13.2 1.5 7.7 2.6 3.8 160.1 16.5 3.9 2.6
arxiv 282.5 214.2 2.8 15.2 — 11.4 3.7 7.0 194.2 17.3 11.8 3.4
ecoo 122.1 125.7 1.1 13.5 1.5 7.7 2.7 3.9 100.3 18.6 4.4 1.4
hpycyc 87.8 25.0 1.1 13.8 1.5 8.6 1.5 3.8 139.4 14.2 4.0 1.3
human 185.4 89.5 1.2 16.5 1.8 4.4 3.2 3.6 88.5 19.3 2.5 1.7
kegg 272.1 44.9 1.2 16.5 1.5 4.8 2.6 3.2 94.2 2.7 3.4 2.0
mtbrv 115.4 118.0 1.1 13.6 1.5 7.2 2.6 3.9 213.6 4.5 5.1 2.2
nasa 135.8 126.8 1.4 21.5 2.2 18.4 4.9 4.4 135.5 3.4 4.1 3.6
p2p 1117.8 308.4 1.2 6.5 — 3.3 1.7 2.0 118.1 3.2 3.6 2.1
reactome 111.8 22.8 1.1 11.6 1.8 12.1 3.0 3.1 125.5 2.0 2.9 2.1
vchocyc 107.6 97.0 1.0 13.6 1.5 7.9 2.6 3.7 102.8 16.9 3.8 2.5
xmark 134.7 255.9 1.4 21.6 1.9 35.8 4.9 5.9 152.8 5.8 6.5 4.4

Table 2: Query Time (ms) Based on Equal Query of Small Real Datasets

Dataset GL GL∗ PT PT∗ KR PW8 INT 2HOP PL TF HL DL
agrocyc 22.6 2.3 128.1 44.0 284.5 5.0 3.7 245.6 38.3 28.5 120.8 12.6
amaze 7.4 0.9 357.4 18.4 330.4 4.5 3.2 2672.2 14.4 3.9 43.2 4.1
anthra 14.1 2.3 88.2 41.4 246.3 4.1 2.9 241.0 40.8 44.9 89.4 12.4
arxiv 45.0 22.9 131873.0 8615.7 — 100.6 90.8 145332.0 814.5 759.5 618.6 38.2
ecoo 12.8 2.2 94.5 43.1 282.1 5.0 3.7 254.6 48.3 30.9 92.2 12.5
hpycyc 4.7 0.9 39.0 11.2 223.6 2.7 1.8 199.2 23.6 16.5 41.5 5.2
human 71.2 4.7 298.2 75.5 296.5 5.3 4.1 417.5 113.2 96.6 155.2 37.4
kegg 4.1 1.0 436.0 19.4 411.8 5.6 2.2 2878.0 16.3 4.3 48.3 2.4
mtbrv 9.4 1.7 71.7 30.9 249.3 2.2 3.0 208.3 41.5 14.6 115.3 9.8
nasa 10.2 2.2 49.4 21.1 1637.5 9.8 6.1 835.9 29.9 10.5 143.5 8.9
p2p 69.8 10.8 2942.6 432.6 — 14.8 25.6 21618.9 175.3 45.9 564.5 51.1
reactome 1.2 0.7 8.3 6.9 35.1 1.2 0.8 161.4 1.6 1.2 25.4 1.0
vchocyc 9.3 1.7 70.3 30.9 260.1 4.4 3.2 224.3 2.6 45.4 65.3 9.5
xmark 11.1 1.8 109.3 22.0 806.2 10.4 5.9 1557.0 41.6 19.5 53.2 8.7

Table 3: Construction Time (ms) of Small Real Datasets

Figure 3: Index Size on Large Real Graphs (in terms of the number of integers used in the indices)

Dataset GL GL∗ PT PT∗ KR PW8 INT 2HOP PL TF HL DL
citeseer 63.4 42.4 4.9 26.9 — 20.6 12.3 4.5 294.5 6.1 7.7 5.3
citeseerx 2012.3 20230.9 — — — 76.3 8.8 — 235.8 37.2 210.2 7.7
cit-Patents 403.9 711.1 — — — 2538.9 — — 148.2 56.7 — 53.2
email 575.9 30.2 — 10.2 — 13.8 5.7 — 99.5 3.0 2.2 3.0
go uniprot 77.6 80.4 — 29.3 — 41.9 17.0 16.0 113.2 1752.5 6.2 12.7
lj 11972.2 2137.6 — — — 10.4 4.9 — 150.2 4.2 4.7 4.5
mapped 100K 253.8 92.3 6.7 25.1 — 90.6 6.0 5.1 7.1 15.0 5.1 7.2
mapped 1M 762.2 99.0 8.4 26.4 — 46.6 6.3 5.6 - — 6.1 12.4
uniprotenc 100m 82.7 37.3 — 31.9 — 29.8 19.8 — 212.8 9.3 5.7 9.0
uniprotenc 150m 79.1 45.6 — 35.8 — 31.1 20.3 — 183.8 16.0 6.5 7.8
uniprotenc 22m 53.0 23.6 6.2 23.7 — 23.1 15.5 47598.4 104.6 6.2 4.4 5.9
web 2369.6 1041.9 — 11.6 — 13.1 5.5 3.0 87.1 4.2 3.5 3.9
wiki 100313.0 25655.5 — — — 8.6 6.0 — 396.5 4.5 3.6 4.9

Table 4: Query Time (ms) Based on Equal Query of Large Real Datasets

Due to additional distance comparison cost, the Pruned Landmark
(PL) is fairly slow; its query performance is close to the GRAIL.
5) Both Hierarchical Labeling (HL) and Distribution Labeling (DL)
are faster than the TF-labeling (TF) on the equal query load; though
their performance become closer on the random workload [25].

Further analysis shows that the TF-labeling (TF) tends to scan much
more labels than HL and DL to answer the positive queries. This is
reflected in the equal query load as the random query load is mainly
dominated by the negative queries. The number of labeling-scan
operations for negative queries are determined by the labeling size,

1987

Dataset GL GL∗ PT PT∗ KR PW8 INT 2HOP PL TF HL DL
citeseer 40.2 21.4 4.4 22.6 — 12.4 9.6 7.0 142.2 1.2 4.7 7.1
citeseerx 2585.6 719.1 — — — 39.8 13.4 — 109.6 55.4 23.7 11.9
cit-Patents 501.5 517.2 — — — 1766.3 — — 101.5 66.5 — 48.1
email 754.4 8.3 — 11.3 — 14.0 10.1 — 72.7 5.8 3.5 5.0
go uniprot 47.6 29.8 — 26.2 — 52.5 20.8 13.0 156.4 18.7 12.0 23.5
lj 829613.0 448.9 — — — 21.2 11.7 — 98.7 8.2 5.7 7.6
mapped 100K 52.4 23.6 5.9 20.8 — 4.9 5.0 6.5 123.0 7.2 6.7 9.4
mapped 1M 55.0 24.7 8.7 23.9 — 5.6 6.7 7.1 - — 9.8 9.9
uniprotenc 100m 53.0 33.6 — 29.7 — 28.3 20.1 — 167.0 14.2 7.5 10.8
uniprotenc 150m 56.6 33.0 — 31.9 — 29.1 23.1 — 332.2 16.0 10.7 11.3
uniprotenc 22m 40.5 25.6 9.1 24.8 — 21.9 15.2 4.4 112.6 7.7 5.9 8.7
web 61295.3 386.8 — 18.5 — 22.3 9.2 4.4 70.4 8.3 4.7 6.3
wiki 76336.7 28.2 — — — 6.2 8.8 — 373.2 8.1 5.9 9.3

Table 5: Query Time (ms) Based on Random Query of Large Real Datasets

Dataset GL GL∗ PT PT∗ KR PW8 INT 2HOP PL TF HL DL
citeseer 2.0 0.2 18.0 1.1 — 0.5 0.3 14.1 1.7 0.7 2.2 0.5
citeseerx 17.6 3.7 — — — 17.0 7.0 — 26.6 207.0 182.1 9.9
cit-Patents 15.7 7.7 — — — 935.5 — — 59.5 79.4 — 114.6
email 0.6 0.1 — 1.2 — 0.2 0.1 — 0.5 0.1 0.2 0.1
go uniprot 32.4 3.2 — 5038.4 — 34.4 20.7 252.5 65.6 57.8 279.1 16.7
lj 2.6 0.2 — — — 0.7 0.8 — 2.0 0.6 1.2 0.3
mapped 100K 6.2 0.7 26.7 5.1 — 0.4 0.4 9.8 7.0 2.0 10.1 1.9
mapped 1M 28.3 2.8 103.3 23.1 — 2.4 3.8 52.2 - — 45.5 6.9
uniprotenc 100m 66.3 5.1 — 8168.2 — 16.3 11.6 1029.0 33.9 49.4 67.3 13.9
uniprotenc 150m 101.6 8.7 — 18840.1 — 27.2 18.9 — 38.7 34.2 119.6 21.0
uniprotenc 22m 5.0 0.3 9801.7 41.2 — 1.4 1.1 102.7 3.2 2.0 5.2 1.0
web 1.0 0.1 — 46.2 — 0.6 1.8 32017.7 1.1 0.4 1.4 0.6
wiki 7.1 0.3 — — — 0.4 0.7 — 5.2 0.9 5.4 1.5

Table 6: Construction Time (Second) of Large Real Datasets

and DL typically has the smaller index size than TF while HL is
close to TF (see later discussion on index sizes). This suggests the
vertex order (hierarchy) defined in DL (HL) is more effective for
reachability answering than TF (especially for positive queries).

Table 3 shows the construction time of different reachability in-
dices on small graphs. We observe K-REACH and 2HOP are the
slowest. This is understandable as K-REACH needs to perform
vertex-cover discovery and materialize the transitive closure for the
vertex-cover; and 2HOP needs to perform the expensive greedy set-
cover and completely materialize the transitive closure. INTER-
VAL and PAWH-8 turn out be the fastest and even faster than the
online search GRAIL approach as the later still needs to perform
random DFS a few times (in this study, we choose the number
to be 5 as being used in [38]). Both Hierarchical-Labeling (HL)
and Distribution-Labeling (DL) are much more efficient in label-
ing: The Hierarchical-Labeling is on average 5 times faster than
2HOP whereas the Distribution-Labeling is consistently 20 times
faster (and in some case more than two order of magnitude faster)
than 2HOP. In fact, it has even faster construction time than GRAIL
and quite comparable to the INTERVAL and PWAH-8. The TF-
labeling (TF) and the Pruned Landmark (PL) are typically faster
than Hierarchical-Labeling (HL) but slower than
Distribution-Labeling (DL). This is understandable as TF is simpler
than Hierarchical-Labeling (HL) and PL needs additional compu-
tation cost with respect to Distribution-Labeling (DL).
Large Graphs: Large graphs provide the real challenge for the
reachability computation. We observe that only three methods,
GRAIL (GL), PWAH-8 (PW8), and Distribution-Labeling (DL) are
able to handle all these graphs (GRAIL∗ is the SCARAB variant
for speeding up query performance). Hierarchical-Labeling (HL),
Pruned Landmark (PL), INTERVAL (INT), and TF-Labeling (TF)
can work on 12, and PATH-TREE∗ (PT∗) can work on 9, out of
13 large graphs. K-REACH (KR), PATH-TREE (PT) and 2-HOP
(2HOP) fails on most of the large graphs. For K-REACH and
PATH-TREE, their labeling size are too large to be materialized

in the main memory; for 2-HOP, its running time for these graphs
often exceeds the 24-hour time limit.

Tables 4 and 5 report the query time using the equal and ran-

dom query load, respectively. We make the following observations:
1) On large graphs, the transitive closure compression approaches,
even on the graphs they can work, become significant slower. This
is expected as the compressed transitive closure TC(v) becomes
larger, its search (linear or binary) becomes more expensive. Now,
the advantage of the reachability oracle becomes clear as they be-
come the fastest in terms of query time (even faster than PATH-
TREE and INTERVAL, and consistently more than 5 times faster
than PWAH-8). 2) Compared with the original 2HOP labeling, both
Hierarchical-Labeling and Distribution-Labeling have comparable
query performance on the graphs which they all can run. 3) The
latest TF-labeling (TF) is slower than both Hierarchical-Labeling
(HL) and Distribution-Labeling (DL) on most of the large graphs
and for both equal and random query work load.

Tables 6 shows the construction time on large graphs for all
methods. We observe that PAWH-8 and INTERVAL are very fast
though as the graph becomes larger, they become slower or can-
not finish. Distribution-Labeling turns out to be quite comparable
(fastest on several graphs). Hierarchical-Labeling can work on 8
out of 9 graphs and it shows signifiant improvement on 2 out of 5
graphs which 2HOP can also process. Distribution-Labeling is on
average of one order of magnitude performance faster than 2HOP
on these five graphs. Also, on average, the construction time of TF-
labeling (TF) is comparable to that of Hierarchical-Labeling (HL),
and is slower than that of Distribution-Labeling (DL).

Figure 3 shows the index size of different approaches. The re-
sults are quite consistent with the results on the small graphs on
those graphs they can work. For most cases, PWAH-8 And INTER-
VAL have the smallest index size. 2HOP, Hierarchical-Labeling
and Distribution-Labeling also perform well (better than GRAIL
and K-Reach). The labeling sizes of 2HOP, Hierarchical-Labeling
and Distribution-Labeling are quite comparable; Distribution-Labeling

1988

has smaller labeling size than Hierarchical Labeling and very close
to (or better than) 2HOP on the graphs it can run. Finally, on aver-
age, the index size of TF-labeling is quite close to that of Hierarchical-
Labeling (HL), but slightly higher than Distribution-Labeling (DL).

7. CONCLUSION
In this paper, by introducing two simple, elegant, and effective

labeling approaches, Hierarchical Labeling and Distribution La-

beling, we are able to resolve an important open question in reach-
ability computation: the reachability oracle can be a powerful tool
(or even the most useful one) to handle real, very large graphs. Our
experimental results demonstrate that they can perform on graphs
with millions of vertices/edges (scalable), are quickest in answering
reachability queries on large graphs (fast), and have comparable or
better labeling size as the set-cover based optimization approaches
(compact). In the future, we will investigate the labeling on dy-
namic graphs and how to apply them on more general reachability
computation, such as the k-reach problem.

Acknowledgment: The work was mainly done while the authors worked

and/or visited at GraphSQL Inc. The work was also partially supported by

the National Science Foundation under CAREER grant no. IIS-0953950

and by the Ohio Supercomputer Center under Grant no. PGS0218.

8. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A

hub-based labeling algorithm for shortest paths in road networks. In
SEA’11, 2011.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient mgmt.
transitive relationships in large data and knowledge bases. In
SIGMOD, 1989.

[3] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In SIGMOD,
2013.

[4] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing in Road
Networks with Transit Nodes. Science, 316:566–, April 2007.

[5] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner. Combining hierarchical and goal-directed speed-up
techniques for dijkstra’s algorithm. J. Exp. Algorithmics, 15, March
2010.

[6] J. Cai and C. K. Poon. Path-hop: efficiently indexing large graphs for
reachability queries. In CIKM ’10, 2010.

[7] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for
pattern matching on dags. In VLDB ’05, pages 493–504, 2005.

[8] Y. Chen and Y. Chen. An efficient algorithm for answering graph
reachability queries. In ICDE, 2008.

[9] Y. Chen and Y. Chen. Decomposing dags into spanning trees: A new
way to compress transitive closures. In ICDE’11, 2011.

[10] J. Cheng, S. Huang, H. Wu, and A. Wai-Chee Fu. Tf-label: a
topological-folding labeling scheme for reachability querying in a
large graph. In SIGMOD, 2013.

[11] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computation
of reachability labeling for large graphs. In EDBT, 2006.

[12] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast computing
reachability labelings for large graphs with high compression rate. In
EDBT, 2008.

[13] James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, and
Jeffrey Xu Yu. K-reach: who is in your small world. Proc. VLDB

Endow., 5(11), July 2012.

[14] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. SIAM J. Comput.,
32(5):1338–1355, 2003.

[15] Daniel Delling, Martin Holzer, Kirill Mller, Frank Schulz, and
Dorothea Wagner. High-performance multi-level graphs. In 9th

DIMACS Implementation Challenge, pages 52–65, 2006.

[16] W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed
reachability queries. Proc. VLDB Endow., 5(11), July 2012.

[17] A. Fu, H. Wu, J. Cheng, S. Chu, and R. Wong. Is-label: an
independent-set based labeling scheme for point-to-point distance
querying on large graphs. PVLDB, 2013.

[18] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies: faster and simpler hierarchical routing in road networks.
In Proceedings of the 7th international conference on Experimental

algorithms, 2008.

[19] H. V. Jagadish. A compression technique to materialize transitive
closure. ACM Trans. Database Syst., 15(4):558–598, 1990.

[20] R. Jin, N. Ruan, S. Dey, and J. Y. Xu. Scarab: scaling reachability
computation on large graphs. In SIGMOD’12, 2012.

[21] R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An efficient
reachability indexing scheme for large directed graphs. TODS, 36(1),
2011.

[22] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression
indexing scheme for reachability query. In SIGMOD’09, 2009.

[23] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering
reachability queries on very large directed graphs. In SIGMOD’08,
2008.

[24] Ruoming Jin, Lin Liu, Bolin Ding, and Haixun Wang.
Distance-constraint reachability computation in uncertain graphs.
Proc. VLDB Endow., 4(9), June 2011.

[25] Ruoming Jin and Guan Wang. Simple, fast, and scalable reachability
oracle. CoRR, abs/1305.0502, 2013.

[26] H. Kriegel, P. Kröger, M. Renz, and T. Schmidt. Hierarchical graph
embedding for efficient query processing in very large traffic
networks. In SSDBM ’08, 2008.

[27] E. Nuutila. Efficient Transitive Closure Computation in Large

Digraphs. PhD thesis, Finnish Academy of Technology, 1995.

[28] P. Sanders and D. Schultes. Highway hierarchies hasten exact
shortest path queries. In 17th Eur. Symp. Algorithms (ESA), 2005.

[29] Peter Sanders and Dominik Schultes. Engineering highway
hierarchies. J. Exp. Algorithmics, 17:1.6:1.1–1.6:1.40, September
2012.

[30] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An efficient
connection index for complex XML document collections. In EDBT,
2004.

[31] S. Shekhar, A. Fetterer, and B. Goyal. Materialization trade-offs in
hierarchical shortest path algorithms. In SSD ’97, 1997.

[32] H. Shirani-Mehr, F. Banaei-Kashani, and C. Shahabi. Efficient
reachability query evaluation in large spatiotemporal contact
datasets. Proc. VLDB Endow., 5(9), May 2012.

[33] K. Simon. An improved algorithm for transitive closure on acyclic
digraphs. Theor. Comput. Sci., 58(1-3):325–346, 1988.

[34] Mikkel Thorup. Compact oracles for reachability and approximate
distances in planar digraphs. J. ACM, 51(6):993–1024, November
2004.

[35] S. Trißl and U. Leser. Fast and practical indexing and querying of
very large graphs. In SIGMOD ’07, 2007.

[36] S. J. van Schaik and O. de Moor. A memory efficient reachability
data structure through bit vector compression. In SIGMOD ’11,
pages 913–924, 2011.

[37] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual labeling:
Answering graph reachability queries in constant time. In ICDE ’06,
page 75, 2006.

[38] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: Scalable reachability
index for large graphs. PVLDB, pages 276–284, 2010.

[39] Zhiwei Zhang, Jeffrey Xu Yu, Lu Qin, Qing Zhu, and Xiaofang
Zhou. I/o cost minimization: reachability queries processing over
massive graphs. In EDBT ’12, 2012.

[40] L. Zhu, B. Choi, B. He, J. X. Yu, and W. K. Ng. A uniform
framework for ad-hoc indexes to answer reachability queries on large
graphs. In DASFAA ’09, 2009.

1989

