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ABSTRACT
In this paper, we solve the following data summarization prob-
lem: given a multi-dimensional data set augmented with a binary
attribute, how can we construct an interpretable and informative
summary of the factors affecting the binary attribute in terms of
the combinations of values of the dimension attributes? We re-
fer to such summaries as explanation tables. We show the hard-
ness of constructing optimally-informative explanation tables from
data, and we propose effective and efficient heuristics. The pro-
posed heuristics are based on sampling and include optimizations
related to computing the information content of a summary from a
sample of the data. Using real data sets, we demonstrate the advan-
tages of explanation tables compared to related approaches that can
be adapted to solve our problem, and we show significant perfor-
mance benefits of our optimizations.

1. INTRODUCTION
Many analytics make use of data augmented with binary

attributes, corresponding to, e.g., the satisfaction of a predicate
or the outcome of a hypothesis being tested on individual data
records. Applications include identifying target groups for
STEM intervention (e.g., age=teen AND gender=female)
and identifying risk factors in epidemiology (e.g.,
weight=obese AND habit=smoking). Before performing
complex statistical analysis and decision support, users often wish
to explore and summarize the data. In this paper, we introduce
the concept of Explanation Tables, which are concise summaries
of multi-dimensional relations with a binary outcome attribute.
The goal of an explanation table is to provide an interpretable
and informative summary of the factors affecting the outcome
attribute. We propose an information-theoretic framework for
computing informative explanation tables, and we present novel
algorithms that significantly improve the efficiency of explanation
table construction compared to straightforward approaches.

To motivate explanation tables, consider Table 1, which shows an
athlete’s exercise log, with each row containing an id, the time and
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Table 1: An Exercise relation
id day time meal goal met?
1 Fri Dawn Banana Yes
2 Fri Night Green salad Yes
3 Sun Dusk Oatmeal Yes
4 Sun Morning Banana Yes
5 Mon Afternoon Oatmeal Yes
6 Mon Midday Banana Yes
7 Tue Morning Green salad No
8 Wed Night Burgers No
9 Thu Dawn Oatmeal Yes
10 Sat Afternoon Nuts No
11 Sat Dawn Banana No
12 Sat Dawn Oatmeal No
13 Sat Dusk Rice No
14 Sat Midday Toast No

Table 2: An explanation table over the Exercise relation
day time meal goal met=Yes? count
* * * .5 14

Sat * * 0 5
* * Banana .75 4
* * Oatmeal .75 4

day of the week of the exercise, the meal eaten before the exercise,
and a binary attribute indicating the outcome of the exercise, i.e.,
whether a target goal was met. Table 2 illustrates a corresponding
explanation table. It contains a list of patterns that specify subsets
of tuples; patterns consist of attribute values or the wildcard sym-
bol “*” denoting all possible values. Each pattern is associated with
the number of tuples it covers (count) and a fraction indicating how
many of these tuples have the binary outcome attribute equal to Yes
(or 1 or True). The first pattern in Table 2 matches all the tuples in
Table 1 and indicates that, on average, half the workouts were suc-
cessful. The second pattern reveals that all Saturday workouts were
unsuccessful, while the last two patterns state that eating bananas
or oatmeal led to successful workouts 75 percent of the time.

In order to be useful in practice, we argue that explanation tables
must satisfy three conditions. First, they must be interpretable, i.e.,
able to reveal macro-level trends. In real data, trends often over-
lap, such as the Saturday and Banana patterns in Table 2. Thus, we
must allow overlapping patterns to make it easy to piece together
the salient factors affecting the outcome attribute. The second con-
dition is that explanation tables must be informative, i.e., given
the dimension attribute values, the explanation table should enable
micro-level reconstruction of the binary attribute with measurable
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accuracy. The third condition is that explanation tables must be
efficient to construct, even on large data sets.

1.1 Challenges and Contributions
It may appear that existing approaches can be applied to gen-

erate explanation tables. However, existing work addresses either
interpretability or informativeness, but not both. For example, clas-
sification algorithms such as decision trees are informative, but the
rules they encode do not overlap (otherwise, it would not be obvi-
ous which rule to use when making a prediction), and therefore they
are not interpretable according to our criteria. On the other hand,
there are various database summarization techniques that generate
overlapping patterns and are interpretable [5, 6, 9]. However, these
techniques optimize for different objectives than informativeness
(e.g., minimum cardinality: covering all the tuples with outcome 1
using the fewest possible patterns).

In this paper, we show how to efficiently generate explanation ta-
bles that are both interpretable and informative. We employ a clas-
sical information-theoretic approach to select patterns that provide
the most information gain about the distribution of the outcome at-
tribute. A similar approach was used in prior work on data cube
exploration, but overlapping patterns were not supported [11]. This
restriction helped make the problem much more tractable because
it allows for optimizations based on partitioning. How to lift this
restriction is a key technical contribution of this paper.

In particular, the challenge lies in the size of the search space of
overlapping patterns. As we will show, even greedily selecting the
most informative patterns is infeasible for even moderately-sized
data sets. We show that straightforward sampling is not effective
and we propose two solutions for making better use of samples in
explanation table construction. One of the proposed algorithms,
Flashlight, finds an efficient way to analyze the candidate patterns
pertaining to a given sample, and the other, Laserlight, is more
efficient on a given sample but needs to use larger samples to be
effective.

The specific contributions of this paper are as follows.

1. We formalize the notion of explanation tables for summa-
rizing multi-dimensional data sets associated with a binary
outcome attribute.

2. We prove that constructing optimally-informative explana-
tion tables from data is NP-hard in the number of input data
tuples.

3. We present greedy heuristics for explanation table construc-
tion based on random sampling, and we show how to imple-
ment them in a database system using a sequence of views.

4. Using real data sets, we show that explanation tables are
more informative than existing approaches that can be
adapted to solve our problem, and we demonstrate significant
performance gains of the proposed algorithms and benefits of
a DBMS-based implementation, as compared to straightfor-
ward sampling techniques.

1.2 Roadmap
The remainder of this paper is organized as follows. Section 2

formally defines explanation tables and proves that constructing
them is NP-hard; Section 3 discusses related work; Section 4
presents our algorithms for constructing explanation tables; Sec-
tion 5 contains an experimental evaluation of the proposed algo-
rithms as well as a comparison of explanation tables with related
summarization approaches; and Section 6 concludes the paper with
directions for future work.

Table 3: Symbols used in this paper
Symbol Explanation
R Relational schema
D Relation instance
t A tuple
v Binary outcome attribute
d Number of attributes not including the outcome attribute
P Set of all possible patterns
p A pattern

SD(p) Support set of p over D
fD,v(p) Fraction of tuples in D matching p that have v = 1

T An explanation table
u∗(t) A maximum-entropy estimate of v(t) given by T

gD,u∗ (p) Estimated fraction of tuples in D matching p that have
v = 1 based on u∗

τ Desired KL-Divergence threshold
s A uniform sample of tuples from D

2. PRELIMINARIES
In this section, we present the necessary background and we for-

mally define the problem we want to solve. Table 3 lists the sym-
bols used in this paper.

2.1 Definitions
Consider a relation instance D over a schema R with attributes

A1, A2, ..., Ad and a binary outcome attribute v. Let v : D →
{0, 1} be a function that maps each tuple t ∈ D to its outcome. We
assume that the semantics of v have some structure to them with
respect to the attribute value combinations of A1 through Ad, and
we want to summarize the outcomes using these combinations.

Let P(R) = (dom(A1) ∪ {∗}) × · · · × (dom(Ad) ∪ {∗}). A
pattern p ∈ P(R) is a tuple of symbols, where each symbol is
either a value in the corresponding attribute’s domain or a wildcard
symbol ‘*’.

Definition 1. A tuple t matches a pattern p if, for each Aj in
R, either p[Aj ] = ‘*’ or t[Aj ] = p[Aj ]. We denote this match
using the operator “�” as t � p. A tuple can match many patterns
and a pattern can match many tuples. For example, the pattern
(Sat,*,*) from Table 2 matches all tuples with day=Sat regardless
of the values of the other attributes, i.e., tuples 10-14 from Table 1.

Definition 2. The support set of a pattern p over a relation in-
stance D, SD(p), is the set of tuples in D matching p, that is,
{t ∈ D : t � p}. The support of p is |SD(p)|.

Let P(D) = {p ∈ P(R) : SD(p) 6= ∅} (i.e., the datacube of
D) and let the function fD,v : P(D) → [0, 1] give the fraction of
matching tuples with outcome 1 for each pattern; that is, fD,v(p) =

1
|SD(p)|

∑
t�p v(t).

Definition 3. An explanation table (ET) is a summary of out-
comes given as a collection of patterns (denoted T ), each pattern p
in T having the associated fraction, fD,v(p), denoting the fraction
of matching tuples where the outcome v evaluates to 1, along with
its support |SD(p)|. We have seen an example of an explanation
table in Table 2.

We now discuss how to quantify the information content of an
explanation table. The key observation is that the fractions fD,v(p)
reported for each pattern can be used to estimate the distribution
of the outcome attribute v with respect to the value combinations
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of the Aj’s. To compute this estimate, we apply the maximum en-
tropy principle, stating that the probability distribution which best
represents the current state of knowledge, subject to known con-
straints, is the one with highest entropy: a distribution with lower
entropy would assume information we do not possess and one with
higher entropy would violate the constraints we do possess. Given
an explanation table T , the maximum-entropy approximation u∗ of
v, over all t ∈ D, is selected from the u which maximizes∑

t∈D

−u(t) · log(u(t)) (1)

subject to

∀t∈D 0 ≤ u(t) ≤ 1

∀p∈T
∑
t�p u(t) = |SD(p)| · fD,v(p).

That is, for each tuple t in D, the estimated value of its outcome
attribute must be between zero and one, and the estimates must
be consistent with the fractions fD,v (of tuples having outcome 1)
associated with the patterns in T .

For example, recall the Exercise relation from Table 1 and sup-
pose we are given an explanation table T with only the first two
patterns from Table 2, (*,*,*) and (Sat,*,*), call them p1 and p2,
respectively. Using T to estimate v, we require that

∑
t�p1 u(t) =

14 · 0.5 = 7 and
∑
t�p2 u(t) = 5 · 0 = 0. The latter implies that

all the Saturday tuples must have u∗(t) = 0, which means that the
sum of the u(t) values of all non-Saturday tuples must be seven.
The maximum-entropy solution is to assign the same u(t) to all
nine non-Saturday tuples, therefore for all t ∈ SD(p1) \ SD(p2)
we set u∗(t) = 7

9
.

Solving Equation 1 was straightforward in the above example,
but it may require complex optimization for large explanation ta-
bles. Fortunately, we can apply the classical iterative scaling tech-
nique. Extended to our problem, a key result from [1] states that
the distribution of u∗ has the following form:

u∗(t) =
e
∑

p∈T :t�p λ(p)

1 + e
∑

p∈T :t�p λ(p)
(2)

where the λ(p)’s are multipliers associated with each pattern. The
idea behind iterative scaling is to refine the λ values until Equa-
tion 2 gives u∗(t)’s that match (or converge to within a small frac-
tion, say 0.01, of) the constraints implied by the explanation ta-
ble, namely

∑
t�p u(t) = |SD(p)|fD,v(p) (see [1] for technical

details). Returning to the above example, for p1 = (*,*,*) itera-
tive scaling gives λ(p1) = 1.122 and for p2 = (Sat,*,*) we get
λ(p2) = −9. Thus, for non-Saturday tuples, which only match p1,
we get u∗(t) = e1.1822

1+e1.1822
= 0.77 and for Saturday tuples, which

match both patterns, we get u∗(t) = e1.1822−9

1+e1.1822−9 = 0.00004.
To quantify the goodness of an explanation table, we compute

the Kullback-Leibler (KL) divergence, abbreviated DKL(v‖u∗),
between the true distribution of v over the different value combi-
nations of the Aj’s and the maximum-entropy estimate u∗ implied
by the explanation table. For a given tuple t, this KL-divergence is
defined as

DKL(v(t)‖u∗(t)) = v(t) log

(
v(t)

u∗(t)

)
+ (1− v(t)) log

(
1− v(t)
1− u∗(t)

)
.

Since the outcome attribute v is binary, DKL(v‖u∗), which is∑
t∈DDKL(v(t)‖u

∗(t)), works out to∑
t∈D|v(t)=1

log

(
1

u∗(t)

)
+

∑
t∈D|v(t)=0

log

(
1

1− u∗(t)

)
.

2.2 Problem Statement and Complexity
Given a relation instance D with a binary outcome attribute v

and a maximum KL-divergence threshold τ , the Explanation Table
Discovery Problem is to find an explanation table T ⊆ P(D) of
smallest size, with u∗(t)’s determined by maximum entropy as per
Equation 1, such that DKL(v‖u∗) ≤ τ . Note that there always
exists a feasible solution with DKL(v‖u∗) = 0 if we include all
the possible patterns in T . However, since we want T of small size
to help ensure interpretability, we need to carefully choose patterns
whose fD,v fractions can be used to construct a good estimate of v.

We also consider a dual version of this problem, which is to find
T minimizing DKL(v‖u∗) subject to a constraint on the number
of patterns in T .

CLAIM 1. Explanation Table Discovery is NP-hard.

PROOF. We give a polynomial-time reduction from VERTEX
COVER IN TRIPARTITE GRAPHS. Let G be a tripartite graph with
a vertex partition (A,B,C) having m edges. Denote the vertices
of A, B and C as ai, bj and ck, respectively. Given edges e ∈ G,
we populate a relation instance as follows:

• if e = {ai, bj} then add a tuple (ai, bj , zij);

• if e = {ai, ck} then add a tuple (ai, yik, ck); and

• if e = {bj , ck} then add a tuple (xjk, bj , ck);

where each of the zij’s, yik’s and xjk’s are unique. As for the out-
come attribute v, assign it to be one for all these tuples. In addition,
for each tuple (ai, bj , zij), add a tuple (αi, βj , zij) where αi 6= ai′
for all i and i′ and βj 6= bj′ for all j and j′. Also αi 6= αi′ for all
i 6= i′ and βj 6= βj′ for all j 6= j′. Assign v = 0 to all of these ad-
ditional tuples. Furthermore, by symmetry, a tuple (αi, yik, γk) is
added for each tuple (ai, yik, ck) and a tuple (xjk, βj , γk) is added
for each tuple (xjk, bj , ck), all with v = 0. The relation instance
now contains 2m tuples, m of which have v = 1 and m of which
have v = 0. Clearly, this reduction can be done in polynomial time.

Now consider the different possibilities for the smallest expla-
nation table T having DKL(v‖u∗) = 0. Let us start with the all-
wildcards pattern (*,*,*), whose fD,v value is 0.5 since exactly half
the tuples have v = 0 and half have v = 1. To get DKL(v‖u∗)
down to zero, we need to find patterns that cover all and only those
tuples with v = 0 or v = 1; these patterns will be associated with
fD,v fractions that will allow us to infer u∗’s which correspond ex-
actly to v(t). If we want to add patterns for tuples with v = 0, we
need m of them because of the way we constructed our relation in-
stance: each tuple with v = 0 requires a separate pattern. Clearly,
this cannot be any more efficient than adding patterns that cover tu-
ples with v = 1, so we choose to find patterns that identify subsets
of tuples with v = 1.

Consider a pattern p and assume by symmetry that its first com-
ponent is ai. Now replace p by p′ = (ai, ∗, ∗). The new pattern
covers at least as many tuples as p, all of which have v = 1. Fur-
thermore, each such pattern corresponds to a vertex in a natural
way. By symmetry, similar statements apply for edges {ai, ck}
and {bj , ck}. Thus, the size of the smallest vertex cover is at most
the number of patterns needed to cover all the tuples with v = 1.
As a result, an optimal answer can be obtained by choosing the all-
wildcards pattern (∗, ∗, ∗) with fD,v = 0.5, plus the patterns cor-
responding to the vertex cover (all of which will have fD,v = 1).
It follows that the minimum size of an explanation table equals the
minimum size of a vertex cover plus 1.
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Table 4: The first four patterns output by the SURPRISE op-
erator over the Exercise relation

day time meal goal met=Yes? count
* * * .5 14
* * Oatmeal .75 4
* * Banana .75 4
* * Nuts 1 1

3. RELATED WORK
Existing approaches that could potentially be used to construct

explanation tables are either informative or interpretable, but not
both. For example, rule-based classifiers and decision trees are in-
formative since the rules are meant to be used for prediction, but
they are not interpretable according to our criteria because they
generally do not allow overlapping patterns (so it is obvious which
rule to use for making predictions). It is well-known that express-
ing overlapping rules using non-overlapping techniques such as de-
cision trees can lead to a blow-up in the number of required rules
that is exponential in the number of attributes [12]. In Section 5,
we will experimentally show that explanation tables are more in-
formative than various types of decision trees of comparable size.

Similarly, the SURPRISE operator proposed in [11] for entropy-
driven data exploration does not allow overlapping patterns unless
one is fully contained in another. This technique allows a user to
explore informative regions of a datacube compared to what the
user has already seen. Patterns are chosen based on the reduction
in the KL-divergence between the actual aggregate values and the
maximum-entropy-estimates based on the already-seen subsets of
the cube. Table 4 shows the first four patterns output by the SUR-
PRISE operator over the Exercise relation from Table 1, formatted
as an explanation table. These four patterns are less informative
than those shown in Table 2 and they do not reveal the interesting
information about Saturday workouts being ineffective. We will
experimentally show the advantages of explanation tables over the
SURPRISE operator in Section 5.

In addition to [11], there has been other work on pattern mining
that uses the maximum-entropy principle. For example, [10] solves
the problem of finding informative item sets that summarize a set
of transactions and focuses on optimizing the iterative scaling step
for their specific problem. We are not aware of any previous work
on optimizing this process in the context of overlapping patterns
over multi-dimensional data that we consider in this paper.

There are numerous database summarization techniques that
generate overlapping patterns and are interpretable; see, e.g., [3,
4, 5, 6, 8, 9, 14]. However, these techniques optimize for different
objectives such as minimum cardinality, e.g., attempting to cover
most or all tuples with outcome 1 using the fewest possible pat-
terns. In Section 5, we will experimentally demonstrate the advan-
tages of explanation tables versus a representative algorithm from
this class of approaches in terms of informativeness.

Explanation tables are also related to outlier detection. For ex-
ample, the pattern (Sat,*,*) in Table 2 represents a subset of tuples
with an unusually low fraction of tuples having outcome 1. There
has been recent work on explaining outliers using predicates that
are conceptually similar to our patterns [13]. However, it addressed
a different problem using different techniques: given a subset of the
results of an aggregation query that were marked by a user as out-
liers, identify subsets of tuples in the underlying table that most
influenced these query results.

Algorithm 1 Greedy Explanation Table Construction (Baseline)

Input: D, τ
1: T ← {(∗, . . . , ∗)}
2: u∗ ← fD,v(∗, . . . , ∗)
3: while DKL(v ‖ u∗) > τ do
4: pmax ← argmaxp ∈ P(D) gain(p)
5: T ← T ∪ {pmax}
6: update u∗ based on T via iterative scaling
7: end while

4. ALGORITHMS
Since computing optimal explanation tables is NP-hard, we now

propose heuristic solutions. We present the overall greedy frame-
work in Section 4.1. We describe a straightforward sampling ap-
proach in Section 4.2 and propose two improvements, Flashlight
and Laserlight, in Sections 4.3 and 4.4 respectively. We summarize
the differences among the proposed algorithms in Section 4.5.

4.1 Baseline: A Basic Greedy Framework
Algorithm 1 shows the greedy approach to constructing expla-

nation tables, which will serve as a template for all the algorithms
presented in this section. Line 1 selects the all-wildcards pattern
that matches the entire relation instance D and line 2 assigns a u∗

estimate to every tuple equal to the fraction of 1-outcomes in all
of D. The loop in lines 3-7 adds one pattern at a time into T un-
til DKL(v‖u∗) drops below the given threshold. Line 4 examines
the space of all possible patterns occurring in D (i.e., the datacube
P(D)) and selects the one with the highest information gain. A
straightforward implementation of this step is as follows: for each
possible pattern, we compute the new u∗(t) via iterative scaling as-
suming the pattern has been added to T and we calculate the new
DKL(v‖u∗); line 5 then adds to T the pattern that gives the great-
est improvement in DKL. Line 6 updates u∗(t) based on the pat-
tern that ended up being added to T in this iteration of the loop, i.e.,
it runs iterative scaling to compute new λ(t) values for the existing
patterns and the new pattern, as described in Section 2.1, and com-
putes a new u∗(t) for each tuple in D as per Equation 2. Note that
rather than adding patterns to T until the KL-divergence threshold
is satisfied, the algorithm can be easily modified to terminate after
adding a specified number of patterns to T .

A more efficient but inexact implementation of line 4 is to es-
timate the information gain of a pattern p only based on the dif-
ference between the old and new u∗ estimates for tuples in p’s
support set (as was also done in [10, 11]), not the difference
between the old and new estimates for all of D (as we did by
comparing DKL(v‖u∗) with and without p). Rather than run-
ning iterative scaling for each candidate pattern to compute a new
DKL(v‖u∗), we compute an estimated information gain as fol-
lows. Let gD,u∗(p) = 1

|SD(p)|
∑
t�p u

∗(t). This is the estimated
fraction of tuples with outcome 1 in p’s support set based on the
maximum-entropy estimate implied by the patterns currently in T .
We compare this with the actual fraction of tuples with outcome
1 in p’s support set, which is fD,v(p). The larger the difference,
weighted by the size of p’s support set, the more beneficial it is to
add p to the explanation table so that the outcomes of tuples in p’s
support set can be estimated more precisely. Formally, we define
gain(p) as follows, dropping the subscripts of f(p) and g(p) when
it is clear what they are defined over.
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Query 1 Generating all candidate patterns and their gain estimates
SELECT (D.A1,..., D.Ad) AS p,

gain(count(*), AVG(D.v),AVG(D.u∗))
FROM D
CUBE BY D.A1,..., D.Ad
ORDER BY gain DESC
LIMIT 1

|SD(p)| ·
(
f(p) log

(
f(p)

g(p)

)
+ (1− f(p)) log

(
1− f(p)
1− g(p)

))
(3)

Query 1 shows an SQL implementation of line 4, assuming
a user-defined function gain to compute the gain formula from
Equation 3, and assuming that the u∗’s are maintained in an addi-
tional column of D. For each pattern p, the gain function requires
count(*), which is |SD(p)|, the average value of v, which is f(p),
and the average value of u∗, which is g(p). Note the use of the
CUBE BY operator to compute the gain of every pattern in P(D),
and the ORDER BY and LIMIT clauses to select one pattern with
the highest gain.

Unfortunately, despite using Equation 3 to approximate gain
instead of running iterative scaling and computing a new
DKL(v‖u∗) for every candidate pattern, Query 1 can still be pro-
hibitively expensive. This is because the number of possible pat-
terns can be very large: as many as 2d×|D|. In particular, it ran for
over three hours on one of the data sets that we will use in Section 5,
which has 1.5 million tuples, 9 columns and 78 million patterns.
Furthermore, the gain formula from Equation 3 is not amenable to
existing optimizations for computing aggregates over data cubes
(e.g., [2, 15]). Another source of complexity is that greedy ex-
planation table construction is not anti-monotonic, meaning that a
pattern that has low gain in one iteration of the while loop in Algo-
rithm 1 cannot be pruned from consideration because its gain might
become higher in subsequent iterations as more patterns are added
to T . For example, consider the following patterns from an Exer-
cise relation similar to that in Table 1: p1=(*,*,*), p2=(Sat,*,*) and
p3=(Sat, Afternoon,*). Note that p1 contains p2 which contains
p3. Suppose p1 and p3 both contain exactly the same fraction of
tuples with v = 1, but the fraction of tuples with v = 1 covered
by p2 is very different. If p1 happens to be added to the explana-
tion table first, then the information gain from p3 is zero. However,
if p2 is added next, then p3 will have a non-zero gain because the
maximum-entropy estimates u∗ will be based on the assumption
that all Saturday tuples, including the Saturday afternoon ones cov-
ered by p3, have a similar distribution of the outcome attribute v.

We refer to Algorithm 1 as Baseline. Note that line 4 is the bot-
tleneck as it needs to compute gain for a very large number of pat-
terns whenever a new pattern needs to be added to T ; line 6 is
relatively inexpensive as it only needs to run iterative scaling once,
after the best pattern has been selected. Since we cannot prune pat-
terns from consideration throughout the execution of Algorithm 1,
we propose to improve performance (at the expense of accuracy)
using sampling.

4.2 A Straightforward Sampling Approach
A straightforward sampling approach to constructing explana-

tion tables is to draw a random sample s from D and run Algo-
rithm 1 on s instead of D. A useful strategy is to draw a new
random sample s before starting the next iteration (the cost of re-
sampling at each iteration is negligible compared to other costs, and
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Figure 1: Average information gain and running time of Sam-
pleCube as a function of sample size (using Upgrade).

re-sampling can compensate for the rare case of a bad sample). The
set of possible patterns in line 4 becomes P(s), i.e., the data cube
of s with respect to the attributes A1 through Ad, which should be
much smaller thanP(D). The running time of Query 1, which now
operates over s instead of D, becomes independent of the size of
D. We call this straightforward sampling approach SampleCube.

Instead of testing all possible patterns, SampleCube only consid-
ers those which appear in the data cube of the sample. The proba-
bility of a pattern belonging toP(s) and therefore being considered
for inclusion in T is proportional to its support. For example, there
are two Friday tuples and five Saturday tuples in Table 1; there-
fore, a Saturday tuple is more likely to be included in a random
sample than a Friday tuple, and the pattern (Sat,*,*) is more likely
to be considered than (Fri,*,*). This is a reasonable strategy since
adding a pattern with high support into T can improve the u∗ esti-
mate for more tuples and therefore increase the information content
of the explanation table.

The efficiency of SampleCube over Baseline comes at the cost
of accuracy. Figure 1 quantifies the tradeoff between runtime and
information content. We tested Baseline and SampleCube on a data
set we refer to as Upgrade. It contains 5795 airline ticket records
from United Airlines, recording various attributes about the tick-
ets (origin airport, destination airport, flight date and time, book-
ing class, etc.) and a binary outcome attribute indicating whether
the passenger was upgraded to business class. We ran SampleCube
five times, each time choosing a different random sample of a given
size, and report the average numbers across the five runs. The sam-
ple size is shown on the lower x-axis and it varies from 128 to
5795. The upper x-axis shows the running time to create an expla-
nation table with 50 patterns: Baseline took just over 2000 seconds
whereas the running time of SampleCube increases as the sample
size increases. Note that the upper x-axis is linear and was used to
decide the positions of the numbers on the lower x-axis. The y-axis
shows the average information gain of the constructed information
tables. We define this as the improvement in DKL compared to
an explanation table with only the all-wildcards pattern. The hori-
zontal line at an information gain of just over 1000 corresponds to
Baseline.

As Figure 1 shows, SampleCube is not particularly effective: a
very large sample size is required to approach the information gain
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Query 2 Gain calculation in SampleCube gainD
SELECT (P.A1,..., P.Ad) AS p,

gain(count(D.*), AVG(D.v), AVG(D.u∗))
FROM D, P(s) AS P
WHERE (P.A1 ISNULL OR P.A1 = D.A1) AND ...

AND (P.Ad ISNULL OR P.Ad = D.Ad)
CUBE BY P.A1,..., P.Ad
ORDER BY gain DESC
LIMIT 1

of Baseline. For example, to achieve an information gain of 900,
which is 90 percent of Baseline’s information gain of 1000, we
need a sample size of 4096, on which SampleCube ran for 1500
seconds, which is 75 percent of the time taken by Baseline. It might
appear that the problem is with the smaller candidate pattern space
of SampleCube: P(s) versus P(D). However, upon closer exam-
ination, we found that P(s) did in fact include the patterns that
Baseline was adding to the explanation table. The best patterns
were in the candidate set of SampleCube but they were not being
selected because their gain was not high enough. The problem is
that the information gain of these patterns was not being estimated
accurately using the sample compared to using the entire relation.

To verify this claim, we implemented a new algorithm that is
effectively a hybrid of Baseline and SampleCube. Before we ex-
plain the new algorithm, we define gainD(p) to be the result of
Equation 3 using the actual fraction of tuples with 1-outcomes in
p’s support set, i.e., fD,v(p), and the estimates gD,u∗(p). This is
the information gain of adding p to T in terms of being able to
estimate v(t) over D. In contrast, we define gains(p) to be the
result of Equation 3 using the f and g values computed from the
sample s, i.e., fs,v(p) and gs,u∗(p). This is the information gain of
adding p to T in terms of being able to estimate v(t) over s. Note
that Baseline computes gainD but SampleCube computes gains.
The new algorithm considers the same candidate pattern space as
SampleCube, namely P(s), but computes gainD . We refer to the
new algorithm as SampleCube gainD and the original as Sample-
Cube gains. Query 2 shows the SQL implementation of line 4 of
SampleCube gainD . Note the join of P(s) withD to obtain gainD
and the use of ISNULL to compute support sets for patterns with
wildcards.

Figure 2 shows the results using the Upgrade data set, with the
sample size on the x-axis and the average information gain over five
runs with different random samples on the y-axis; both algorithms
were given exactly the same samples. The difference is dramatic:
on this data set, SampleCube gainD approaches the information
gain of Baseline with a sample size as small as 16. This confirms
that restricting the candidate pattern space to those which appear
in the sample is an effective optimization, as long as we compute
gainD instead of gains. Of course, computing gainD for pat-
terns in P(s) (Query 2) requires a data cube over p joined with D,
which is much more expensive than computing gains. In the next
section, we show how to compute gainD for patterns in P(s) more
efficiently.

4.3 The Flashlight Strategy
As we explained in the previous section, sampling can be used

to obtain good explanation tables, but only when combined with
accurate gain estimates obtained by taking the entire relation into
account. In this section, we introduce the Flashlight strategy that
produces the same output as Query 2, but instead of joining inputs
of sizes |P(s)| and |D|, it only needs to join inputs of sizes |s| and
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Figure 2: Average information gain of two SampleCube vari-
ants as a function of sample size (using Upgrade).

Table 5: A sample of three tuples from the Exercise table
day time meal goal met?
Sun Morning Banana Yes
Thu Dawn Oatmeal Yes
Sat Dawn Banana No

|D|. Since P(s) can be much larger than s, Flashlight significantly
improves the performance of explanation table construction, as we
will show experimentally in Section 5.

First, we need the following definitions.

Definition 4. Let p = lcap(t1, t2) be the lowest common an-
cestor pattern of tuples t1 and t2. Then p[Aj ] = t1[Aj ] when
t1[Aj ] = t2[Aj ] and p[Aj ] = ‘*’ otherwise.

For example, lcap((Fri,Dawn,Banana), (Fri,Night,Green salad)
is (Fri,*,*) and lcap((Fri,Dawn,Banana), (Sat,Midday,Toast)) is
(*,*,*). Intuitively, lcap(t1, t2) gives the “tightest” or most spe-
cific pattern that matches both tuples.

Definition 5. The lowest common ancestor cross-product,
LCA(D1, D2), of two relation instances, D1 and D2, is⋃
ti∈D1

⋃
tj∈D2

lcap(ti, tj).

Table 6 shows the LCA of the Exercise relation from Table 1
with a sample of three tuples from it, as shown in Table 5. Each
row of Table 6 corresponds to one of the 14 tuples from the Ex-
ercise table and each column to one of the three tuples from the
sample. Note that Table 6 assumes a duplicate-preserving version
of LCA, meaning that the same lowest common ancestor pattern
can be derived from multiple combinations of a tuple from Exercise
and a tuple from the sample. For example, the underlined pattern
(*,*,Banana) appears in the LCA five times.

4.3.1 Algorithm Description
The insight behind Flashlight is that LCA(s,D) can be used

to compute gainD without computing the costly cross-product of
P(s) with D that is done in Query 2. We explain Flashlight using
the following worked example. Take the Exercise relation from
Table 1 and the sample from Table 5. Assume the (*,*,*) pattern
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Table 6: Computing the LCA of the Exercise table with the sample from Table 5
relation \Sample (Sun,Morning, Banana) (Thu,Dawn,Oatmeal) (Sat,Dawn, Banana)

(Fri,Dawn ,Banana ) (*,*,Banana) (*,Dawn ,*) (*,Dawn ,Banana)
(Fri,Night ,Green salad) (*,*,*) (*,*,*) (*,*,*)

(Sun,Dusk ,Oatmeal) (Sun,*,*) (*,*,Oatmeal) (*,*,*)
(Sun,Morning ,Banana ) (Sun,Morning,Banana) (*,*,*) (*,*,Banana)

(Mon,Afternoon ,Oatmeal) (*,*,*) (*,*,Oatmeal) (*,*,*)
(Mon,Midday ,Banana ) (*,*,Banana ) (*,*,*) (*,*,Banana)

(Tue,Morning ,Green salad) (*,Morning,*) (*,*,*) (*,*,*)
(Wed,Night ,Burgers) (*,*,*) (*,*,*) (*,*,*)
(Thu,Dawn ,Oatmeal) (*,*,*) (Thu ,Dawn ,Oatmeal) (*,Dawn ,*)
(Sat,Afternoon ,Nuts) (*,*,*) (*,*,*) (Sat ,*,*)
(Sat,Dawn ,Banana) (*,*,Banana) (*,Dawn ,*) (Sat ,Dawn ,Banana)
(Sat,Dawn ,Oatmeal) (*,*,*) (*,Dawn ,Oatmeal) (Sat ,Dawn ,*)

(Sat,Dusk ,Rice) (*,*,*) (*,*,*) (Sat ,*,*)
(Sat,Midday ,Toast) (*,*,*) (*,*,*) (Sat ,*,*)

has just been added to T , meaning that every tuple in D now has
a u∗ of 0.5; recall that we assumed an additional column of D to
store the u∗’s. We now show how Flashlight implements line 4
of the greedy algorithm for selecting the next pattern for T , i.e.,
computing gainD of all the tuples in P(s) and choosing the one
with the highest gain.

The first step is to compute the cross-product LCA(s,D), fol-
lowed by a group-by aggregation on each unique pattern that com-
putes the following: count(D.∗), SUM(D.v) and SUM(D.u∗).
Table 7 shows these aggregates for the 13 distinct patterns in
LCA(s,D); we will explain the “All ancestors” column shortly.
Take the (*,*,Banana) pattern for instance. It appears five times
in the LCA set, so its count is five. To understand SUM(v), note
that the five occurrences of (*,*,Banana) in theLCA set are derived
from (Fri,Dawn,Banana) which has v = 1, (Sun,Morning,Banana)
which has v = 1, (Mon,Midday,Banana) twice which has v = 1,
and finally (Sat,Dawn,Banana) which has v = 0. The sum of v’s
is four, including counting (Mon,Midday,Banana) twice. Similarly,
the sum of u∗’s is 2.5, including counting (Mon,Midday,Banana)
twice; recall that at this point every tuple in D has u∗ = 0.5.

An important observation is that at this point, the above aggre-
gates do not correspond to the support or the f(p) and g(p) values
of the patterns. For instance, the support of (*,*,Banana) in D is
four tuples, but its count in the LCA is five.

In the second step, for each pattern p produced as output of
the previous step, we generate its ancestor patterns, defined as
p itself plus all other patterns that are the same as p except one
or more of the attribute values in p have been replaced by wild-
cards. These are shown in the rightmost column of Table 7. For
each ancestor pattern of p, we associate with it exactly the same
count, SUM(v) and SUM(u∗) values as p. We then take the
ancestor patterns of all patterns in the LCA and compute another
group-by aggregation on each unique pattern to get a new count,
SUM(v) and SUM(u∗). These are shown in the four leftmost
columns of Table 8. For example, (*,*,Banana) is an ancestor
of itself (with count 5), of (*,Dawn,Banana) (with count 1), of
(Sat,Dawn,Banana) (with count 1) and of (Sun,Morning,Banana)
(with count 1). Thus, its count in Table 8 is eight, and SUM(v)
and SUM(u∗) are computed similarly.

Note that at this point, after generating the ancestor patterns of
those in the LCA, the resulting set of 20 patterns is exactly the set
P(s), i.e., the data cube of s.

The third step is to correct the count and sum aggregates so they
correspond to |SD(p)|, fD,v(p) and sD,u∗(p). The trick is to real-
ize that we do not have to probeD again, but rather we only need to

compare what we have computed so far with the sample s. For ex-
ample (*,*,Banana) matches two tuples in s (shown in Table 5), so
it suffices to divide the aggregates we have computed by two. This
gives the corrected count = 4, SUM(v) = 3 and SUM(u∗) =

2. From these, we compute fD,v(*,*,Banana)=SUM(v)
count

= 3
4

and
gD,u∗ (*,*,Banana)=SUM(u∗)

count
= 2

4
. The rightmost four columns

of Table 8 show the “frequency in sample” of each candidate pat-
tern p (i.e., how many tuples in s it matches), the corrected count
(i.e., |SD(p)|), and fD,v(p) and gD,u∗(p).

The final step is to select the pattern from P(s) with the highest
gainD . We have all the aggregates we need for this, and we evalu-
ate Equation 3 for each candidate pattern. In this round, the pattern
(Sat,*,*) has the highest gain of 5 ∗ (0 + log( 1

0.5
)) = 5 log(2), so

it is added to the explanation table.

4.3.2 Complexity Analysis
We now discuss the computational complexity of Flashlight,

which is O(|s||D| + |P(s)||s|). Recall that Query 2 requires
|P(s)||D| operations to compute gainD for patterns in P(s). On
the other hand, the first step of Flashlight only requires |s||D|
operations to compute LCA(s,D), the second step needs |P(s)|
operations to generate ancestor patterns, and the third step needs
|P(s)||s| operations to join ancestor patterns with the sample to
compute the corrected aggregates.

4.3.3 SQL Implementation
We implemented Flashlight in PostgreSQL as a series of non-

materialized SQL views that include joins and group-by aggrega-
tion, and call two user-defined functions: one for computing gain
(Equation 3) and one for generating the ancestor patterns of a given
pattern p. The first view computes LCA(s,D) and a group-by ag-
gregation query over it. For each such pattern, the second view
generates its ancestors and computes a group-by aggregation query
to obtain the required counts and averages (recall Table 8). The
third view joins all the patterns in P(s) with s to compute the cor-
rected aggregates.

One advantage of our SQL implementation is that we can leave
it to the query optimizer to select the best plan, including suitable
join and aggregation techniques depending on the characteristics of
the data. In our experiments, Postgres chose a nested-loops join for
LCA(s,D) and hash-aggregate for the group-bys.

4.4 The Laserlight Strategy
The Flashlight strategy from the previous section works with a

reduced space of candidate patterns (P(s) instead of P(D)), but

67



Table 7: Computing aggregates over the LCA from Table 6 and generating all ancestor patterns
Pattern count SUM(v) SUM(u∗) All ancestors
(*,*,*) 21 9 10.5 → (*,*,*)

(*,*,Banana) 5 4 2.5 → (*,*,Banana) ,(*,*,*)
(*,Dawn ,*) 3 2 1.5 → (*,Dawn ,*) ,(*,*,*)

(Sat ,*,*) 3 0 1.5 → (Sat ,*,*) ,(*,*,*)
(*,*,Oatmeal) 2 2 1 → (*,*,Oatmeal), (*,*,*)

(*,Dawn ,Banana) 1 0 .5 → (*,Dawn ,Banana),(*,Dawn,*),(*,*,Banana) ,(*,*,*)
(*,Dawn ,Oatmeal) 1 0 .5 → (*,Dawn ,Oatmeal),(*,Dawn,*),(*,*,Oatmeal),(*,*,*)

(*,Morning,*) 1 0 .5 → (*,Morning,*),(*,*,*)
(Sat ,Dawn ,*) 1 0 .5 → (Sat,Dawn,*),(Sat ,*,*),(*,Dawn ,*),(*,*,*)

(Sat ,Dawn ,Banana) 1 0 .5 → (Sat,Dawn,Banana),. . . , (Sat ,*,*),(*,Dawn ,*),(*,*,*)
(Sun,*,*) 1 1 .5 → (Sun,*,*),(*,*,*)

(Sun,Morning,Banana) 1 1 .5 → (Sun,Morning,Banana),. . . , (*,Morning,*),(*,*,Banana),(*,*,*)
(Thu ,Dawn ,Oatmeal) 1 1 .5 → (Thu,Dawn,Oatmeal),. . . ,(*,Dawn,*),(*,*,Oatmeal),(*,*,*)

Table 8: Computing aggregates over P(s)
Pattern count SUM(v) SUM(u∗)

Freq. in
sample

|SD(p)| fD,v(p) gD,u∗ (p)

(*,*,*) 42 21 21 3 14 .5 .5
(*,*,Banana) 8 6 4 2 4 .75 .5
(*,*,Oatmeal) 4 3 2 1 4 .75 .5
(*,Dawn ,*) 8 4 4 2 4 .5 .5

(*,Morning,*) 2 1 1 1 2 .5 .5
(Sat ,*,*) 5 0 2.5 1 5 0 .5
(Sun,*,*) 2 2 1 1 2 1 .5
(Thu,*,*) 1 1 .5 1 1 1 .5

(*,Dawn,Banana) 2 1 1 1 2 .5 .5
(*,Dawn ,Oatmeal) 2 1 1 1 2 .5 .5
(*,Morning,Banana) 1 1 .5 1 1 1 .5

(Sat,*,Banana) 1 0 .5 1 1 0 .5
(Sun,*,Banana) 1 1 .5 1 1 1 .5
(Thu,*,Oatmeal) 1 1 .5 1 1 1 .5

(Sat,Dawn,*) 2 0 1 1 2 0 .5
(Sun,Morning,*) 1 1 .5 1 1 1 .5

(Thu,Dawn,*) 1 1 .5 1 1 1 .5
(Sun,Morning,Banana) 1 1 .5 1 1 1 .5

(Sat,Dawn,Banana) 1 0 .5 1 1 0 .5
(Thu,Dawn,Oatmeal) 1 1 .5 1 1 1 .5

computes gainD , not gains. However, it still requires scanning
D at each iteration to compute LCA(s,D). In contrast, our sec-
ond strategy, Laserlight, improves SampleCube by optimizing its
running time rather than its accuracy, computing gains rather than
gainD , but for a smaller set of patterns. As a result, it enables
larger sample sizes than SampleCube.

We start with the following observation. Recall Table 8,
which lists all 20 patterns in P(s) using s from Table 5,
with statistics computed based on D from Table 1. Consider
the following two patterns from P(s): p1=(Sat,*,Banana) and
p2=(Sat,Dawn,Banana). They have exactly the same support set
overD as they both match only tuple 11. As a result, they will have
the same gain in every iteration of the explanation table construc-
tion algorithm. Similarly, two patterns that overlap significantly
will have very similar gain. The idea behind Laserlight is to avoid
considering redundant patterns, which are common in real data sets
due to correlations, and therefore speed up the process of choosing
the pattern with the highest gain.

To accomplish this, we revisit the idea of lowest common an-
cestor patterns, which we used in Flashlight to efficiently com-
pute gainD for patterns in P(s). The insight is that the pattern
set LCA(s, s) does not contain any redundant patterns, as each

such pattern is the lowest descendant for which a unique pair of
tuples co-occurs in the same support set and, hence, mutually non-
redundant. This is exactly the new Laserlight strategy: we generate
a random sample s and run Algorithm 1 on the sample, as in Sam-
pleCube gains, but with line 4 choosing the best pattern only from
those in LCA(s, s).

To quantify how many patterns in P(s) are redundant, Fig-
ure 3 plots three quantities as functions of the sample size over
the Upgrade data set, calculated as averages over five runs with
different uniform samples; note that both axes are logarithmic. The
first is |P(s)|, which is 7229 for |s| = 64 and grows to approx-
imately 350,000, which is |P(D)|. The other two lines are very
similar: the number of patterns with unique support sets in P(s),
labeled “|unique supps(P(s))|” and the size of LCA(s, s). At
|s| = 64, there are only roughly 330 of these, meaning that most
patterns in P(s) are in fact redundant in this example. This means
that Laserlight can be significantly more efficient in practice than
SampleCube gains.

We now give a worked example of Laserlight using the same in-
put as in the worked example of Flashlight in the previous section:
D is the Exercise relation from Table 1, s consists of the three tu-
ples from Table 5; furthermore, assume the (*,*,*) pattern has just
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Figure 3: Number of patterns as a function of sample size using
Upgrade

Table 9: Computing aggregates over LCA(s, s)
Pattern |Ss(p)| fs,v(p) gs,u∗ (p)

(*,*,*) 3 2
3

2
3

(*,*,Banana) 2 1
2

2
3

(*,Dawn,*) 2 1
2

2
3

(Sun,Morning,Banana) 1 1 2
3

(Thu,Dawn,Oatmeal) 1 1 2
3

(Sat,Dawn,Banana) 1 0 2
3

been added to T , meaning that every tuple in s now has a u∗ of
2
3

, which is the fraction of 1-outcomes in the sample (not in D, as
was the case for Flashlight). Assume the table storing the sample
s includes an additional column to store the u∗’s.

To select the next pattern into T , the first step is to compute
LCA(s, s), which is shown in the leftmost column of Table 9.
There are only six patterns in this set, as compared to 20 in P(s)
(recall Table 8). Step two is to scan s and compute the follow-
ing three aggregates for each pattern in LCA(s, s): the support
|Ss(p)| and the fractions fs,v(p) and gs,u∗(p). These are shown
in Table 9. The final step is to select the pattern with the high-
est gains, which turns out to be (Sat,Dawn,Banana). Its gains is
0 log 0+1 log(1/ 1

3
) = log 3. Recall from the previous section that

Flashlight chose the pattern (Sat,*,*) next, whereas this pattern is
not even in the candidate set of Laserlight.

4.4.1 Complexity Analysis
Computing the pattern set LCA(s, s) takes |s|2 operations

and joining this set with the sample to compute gains requires
|LCA(s, s)||s| operations. Since P(s) can be much larger than
LCA(s, s), as we showed earlier, Laserlight can be much more
efficient than SampleCube gains, whose complexity is |P(s)||s|.

4.5 Discussion
We conclude this section with a summary of the algorithms in

Table 10; for completeness, we include the two SampleCube tech-
niques which are stepping stones to Flashlight and Laserlight. The
algorithms differ in the set of candidate patterns considered and the
method for computing gain. Since LCA(s, s) ⊆ P(s) ⊆ P(D),

Table 10: A comparison of algorithms for explanation table
construction

Algorithm Candidate pattern space gain estimation
Baseline P(D) gainD

SampleCube gains P(s) gains
SampleCube gainD P(s) gainD

Flashlight P(s) gainD
Laserlight LCA(s, s) gains

Baseline is the most accurate (i.e., it should have the highest in-
formation gain), but least efficient. Flashlight should be much
faster but less accurate, followed by Laserlight, which should be
the fastest but likely the least accurate. Flashlight constructs the
same explanation tables as SampleCube gainD but is faster.

5. EXPERIMENTS
In this section, we present our experimental results. We compare

the information content of explanation tables against existing meth-
ods including decision trees and database summaries (Section 5.2),
and we compare the proposed explanation table construction algo-
rithms in terms of running time, scalability and information content
(Section 5.3).

5.1 Experimental Setup
The experiments were performed on a 3.3 GHz AMD machine

with 16 GB of Ram and 6 MB of cache, running Ubuntu Linux. The
proposed algorithms are implemented in PostgreSQL 9.1. No per-
sonally identifiable information was gathered or used in conduct-
ing this study. Our analysis is based on the following anonymous
and/or aggregated data sets.

• Upgrade: 5795 United Airline ticket records obtained from
https://www.diditclear.com/. Each record con-
tains seven attributes about the tickets (origin airport, desti-
nation airport, date, booking class, etc.) and a binary attribute
indicating whether the passenger was upgraded to business
class. This data set has |P(D)| = 346, 532.

• Adult: U.S. Census data containing demographic
attributes such as occupation, education and gen-
der, and a binary outcome attribute denoting whether
the given person’s income exceeded $50K. This
data set was downloaded from the UCI archive at
archive.ics.uci.edu/ml/datasets/Adult/
and contains 32561 tuples, 8 attributes and 436, 414 possible
patterns.

• Income: U.S. Census data containing demographic at-
tributes such as the number of children and marital sta-
tus, and a binary outcome attribute indicating whether
the given person’s income exceeded 100, 000 dollars.
This data set was downloaded from IPUMS-USA at
https://usa.ipums.org/usa/data.shtml/ and
contains roughly 1.5 million tuples, 9 attributes and 78 mil-
lion possible patterns.

Throughout this section, we measure the information content of
explanation tables and other summaries in terms of the average in-
formation gain. As we explained in Section 4.2, this is the im-
provement in DKL compared to having only the all-wildcards pat-
tern and knowing only the fraction of tuples in the whole data set
having outcome 1.
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5.2 Comparison of Explanation Tables with
Related Approaches

We begin with a comparison of explanation tables with three re-
lated approaches: 1) decision trees, 2) the SURPRISE operator for
data cube exploration [11], and 3) the summarization techniques
from [5, 6] which find the fewest patterns that cover most of the
tuples with outcome 1.

For decision trees, we used the Weka J48 implementation [7] of
the C4.5 algorithm, which provides a confidence parameter to con-
trol pruning and the number of tuples a leaf node can cover. We
consider both multi-way split decision trees in which a node can
have many children (which we abbreviate DT) and binary split de-
cision trees in which a node has exactly two children (which we ab-
breviate DTN). Since there is no direct way to enforce decision tree
size in Weka, a common approach for finding the best decision tree
parameters is to perform a grid search over the parameter space. In
our experiments, we varied confidence in the range [0.01 − 0.59]
and the minimum number of tuples per leaf in the range [2− 20].

For the SURPRISE operator, which also uses information gain
to find informative patterns but does not allow partially overlap-
ping patterns, we tried different values of the accuracy threshold ε
using Upgrade and Adult. A lower ε indicates a finer algorithm
resolution but slower runtime. To fairly represent SURPISE, we
have chosen two values for ε for each data set: SURPRISE cmp,
which uses ε that gives comparable runtime to Flashlight, and
SURPRISE bst, which uses ε that yields the best possible infor-
mation gain given our CPU and memory resources.

The summaries from [5, 6] require a confidence threshold that
denotes the minimum fraction of 1-outcomes per pattern. We
experiment with a variety of confidence thresholds, including
{0.4, 0.5, . . . , 0.9, 0.95, 0.99}, and report the runtime of the one
with the best information gain, denoted Cover bst. After gener-
ating the summaries, we apply the maximum entropy principle to
derive u∗(t) for each tuple t in D and compute information gain.

Finally, to compute our explanation tables, we use Flashlight
with a sample size of 16, which we observed to offer a good trade-
off between running time and information gain (recall Figure 2).
The reported runtimes and information gains are averages of five
runs with different samples.

Figure 4 plots the average information gain using Upgrade
(left) and Adult (right) as a function of the number of patterns
(or, in the case of decision trees, the number of leaves). DT and
DTN are represented as individual points on the graphs, corre-
sponding to the numbers of leaves we were able to obtain using
the grid search explained above. Flashlight outperforms all other
approaches except for small numbers of patterns (below 8) on the
Adult data set, in which case SURPRISE has a slightly higher
information gain. Upon further inspection, we observed that the
problem is with our gain formula from Equation 3. The SURPRISE
operator computes the exact KL-divergence for candidate patterns
because doing so is feasible for non-overlapping patterns. One of
the first patterns chosen by SURPRISE bst gives a high improve-
ment in KL-divergence, but a relatively modest gain, as calculated
by Equation 3, and therefore is not chosen by Flashlight. We omit
the results for our largest data set, Income, because many of the
competing techniques ran out of memory.

Table 11 shows the corresponding running times, assuming each
technique is required to generate 50 patterns. For DT and DTN, we
report the total running time of the grid search since it is not pos-
sible to directly control decision tree size. “N/A” indicates that the
algorithm ran out of memory and did not produce any output. We
conclude that Flashlight offers the best information gain, running
time and scalability out of the tested algorithms.

Table 11: Running time comparison
Upgrade Adult Income

Flashlight 47 s 252 s 0.6 h
DT 1021 s 2599 s 56 h

DTN 6120 s 8348 s N/A
SURPRISE cmp 61 s (ε = 0.2) 243 s (ε = 0.1) N/A
SURPRISE bst 88 s (ε = 0.08) 875 s (ε = 0.02) N/A

cover bst 240 s (ĉ = 0.99) 2051 s (ĉ = 0.6) N/A

5.3 Comparison of Explanation Table Con-
struction Algorithms

5.3.1 Running Time
We start by showing the efficiency improvement of Flashlight as

compared to SampleCube gainD . Figure 5 shows the average run-
ning time (over five runs with different random samples) of Flash-
light and a Traditional plan corresponding to the plan for Query 2
chosen by PostgreSQL, with the sample size on the x-axis. For
comparison, the horizontal lines at the top of the figures show the
running time for Baseline, which considers all possible patterns.
The left figure refers to Upgrade with |T | = 50, the middle fig-
ure to Adult with |T | = 50 and the right figure to Income with
|T | = 20 (we chose a smaller explanation table size for this large
data set to keep the total running time of the very large number
of experimental runs manageable). The performance advantage of
Flashlight is dramatic: as the sample size increases, Flashlight be-
comes several orders of magnitude faster.

We also compared the running time of Laserlight and Sample-
Cube gains, expecting the former to be much faster because its
space of candidate patterns is smaller. We found that Laserlight
was several times faster for sample sizes under 1000. For instance,
using Upgrade and a sample size of 256, Laserlight took under
40 seconds while SampleCube gains took 141 seconds.

5.3.2 Running Time vs. Information Gain
We now compare the “bang for the buck” of the proposed algo-

rithms in terms of the best possible information gain they can pro-
vide for various running time budgets. To calculate the best possi-
ble information gain, we ran each algorithm with different sample
sizes between 2 and 8192, and, for each sample size, we gener-
ated explanation tables of sizes between one and 50 patterns for
Upgrade and Adult and between 1 and 20 for Income. Fig-
ure 6 plots the best average information gain (averaged over five
runs with different samples) for various running time budgets. The
left figure refers to Upgrade, the middle figure to Adult and
the right figure to Income. Each point on the curves represents
a combination of |T | and |s| that gave the best information gain
at that running time budget for the given algorithm (labeled Flash-
light bst, Laserlight bst and SampleCube bst). We also separately
plot a line for Flashlight with a sample size of 16, on which each
point corresponds to a different number of patterns, to show that
Flashlight performs well even at this small sample size. For con-
text, we also draw horizontal lines to indicate the information gain
of Baseline, even though its running time was extremely high and
off the scale (as shown in Figure 5).

We make two observations from Figure 6. First, the informa-
tion gain of Flashlight approaches that of Baseline for large run-
ning times (i.e., large |T |), but the running time of Flashlight is
orders of magnitude less than that of Baseline (not shown in the
figure). In fact, this is also true for a small sample of 16. Sec-
ond, for sufficiently large running times, Flashlight offers the best
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Figure 4: Average information gain of different techniques using Upgrade (left) and Adult (right)
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Figure 5: Running time of Flashlight, SampleCube gainD and Baseline using Upgrade (50 patterns, left), Adult (50 patterns,
middle) and Income (20 patterns, right)

tradeoff in running time versus information gain. Only for smaller
running times (and not for every data set) does Laserlight becomes
the method of choice. Specifically, Laserlight wins for runtimes un-
der 28 seconds using Adult and runtimes under 619 seconds us-
ing Income. Further, SampleCube gains was never the preferred
method in our experiments.

5.3.3 Scalability
Next, we investigate the scalability of Flashlight and Laserlight

with respect to the data set size and the number of dimensions. To
characterize the effect of |D|, we create smaller versions of our
largest data set Income by sampling from it. We ensure a con-
tainment relationship among the samples of Income, e.g., all the
tuples in the 50-percent sample are included in the 60-percent sam-
ple. Figure 7 shows the effect of varying the size of the portion of
Income on Flashlight with |s| = 16 and |T | = 20 and Laserlight
with |s| = 512 and |T | = 20. The running time of Flashlight
grows linearly with |D| since one of its steps needs to compute
LCA(s,D). On the other hand, the running time of Laserlight
grows very slowly because it operates over s, not D. The reason
why there is any growth in the running time at all is because our
implementation of Laserlight re-samples from D after inserting a
new pattern into the explanation table, and we need to scan D to
generate a new sample.

In the final experiment, we vary the number of dimensions d.

Again, we take Income and project out one dimension at a time.
Results are shown in Figure 8. Laserlight is not affected by increas-
ing the number of dimensions, but the running time of Flashlight
increases roughly linearly. This is likely because |P(s)|, which
is the candidate pattern space of Flashlight grows more rapidly
with d than |LCA(s, s)|, which is the candidate pattern space of
Laserlight.

6. CONCLUSIONS
In this paper, we introduced the concept of explanation tables

to summarize relations with binary outcome attributes in an inter-
pretable and informative manner. We proved that constructing opti-
mal explanation tables is NP-hard and we proposed novel heuristic
algorithms for generating approximate solutions. Experimental re-
sults on real data sets showed the advantages of explanation tables
over existing techniques in terms of information content and signif-
icant performance advantages of our explanation table construction
algorithms over straightforward approaches.

We have two directions in mind for future work. The first is to
make further advances in efficient and scalable construction of ex-
planation tables by considering parallel and distributed evaluation,
especially implementations using MapReduce. The second is to in-
crease the complexity of the patterns included in explanation tables
by adding negation and numeric attribute ranges.
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