
Propagating Functional Dependencies with Conditions

Wenfei Fan1,2,3 Shuai Ma1 Yanli Hu1,5 Jie Liu4 Yinghui Wu1

1University of Edinburgh 2Bell Laboratories 3Harbin Institute of Technologies
4Chinese Academy of Sciences 5National University of Defense Technology

{wenfei@inf,sma1@inf,yanli@sms,yinghui@sms}.ed.ac.uk lj@kg.ict.ac.cn

Abstract
The dependency propagation problem is to determine, given
a view defined on data sources and a set of dependencies
on the sources, whether another dependency is guaranteed
to hold on the view. This paper investigates dependency
propagation for recently proposed conditional functional de-
pendencies (CFDs). The need for this study is evident in
data integration, exchange and cleaning since dependencies
on data sources often only hold conditionally on the view.
We investigate dependency propagation for views defined in
various fragments of relational algebra, CFDs as view depen-
dencies, and for source dependencies given as either CFDs or
traditional functional dependencies (FDs). (a) We establish
lower and upper bounds, all matching, ranging from ptime
to undecidable. These not only provide the first results for
CFD propagation, but also extend the classical work of FD

propagation by giving new complexity bounds in the pres-
ence of finite domains. (b) We provide the first algorithm
for computing a minimal cover of all CFDs propagated via
SPC views; the algorithm has the same complexity as one
of the most efficient algorithms for computing a cover of
FDs propagated via a projection view, despite the increased
expressive power of CFDs and SPC views. (c) We experi-
mentally verify that the algorithm is efficient.

1. Introduction
The prevalent use of the Web has made it possible to ex-

change and integrate data on an unprecedented scale. A
natural question in connection with data exchange and in-
tegration concerns whether dependencies that hold on data
sources still hold on the target data (i.e., data transformed
via mapping from the sources). As dependencies (a.k.a. in-
tegrity constraints) specify a fundamental part of the se-
mantics of the data, one wants to know whether or not the
dependencies are propagated from the sources via the map-
ping, i.e., whether the mapping preserves information.

This is one of the classical problems in database research,
referred to as the dependency propagation problem. It is to
determine, given a view (mapping) defined on data sources
and dependencies that hold on the sources, whether or not

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

(a) Instance D1 of R1, for uk customers

AC phn name street city zip
t1: 20 1234567 Mike Portland LDN W1B 1JL
t2: 20 3456789 Rick Portland LDN W1B 1JL

(b) Instance D2 of R2, for us customers

AC phn name street city zip
t3: 610 3456789 Joe Copley Darby 19082
t4: 610 1234567 Mary Walnut Darby 19082

(c) Instance D3 of R3, for customers in Netherlands

AC phn name street city zip
t5: 20 3456789 Marx Kruise Amsterdam 1096
t6: 36 1234567 Bart Grote Almere 1316

Figure 1: Instances of R1, R2, R3 relations

another dependency is guaranteed to hold on the view? We
refer to the dependencies defined on the sources as source
dependencies, and those on the view as view dependencies.

This problem has been extensively studied when source
and view dependencies are functional dependencies (FDs),
for views defined in relational algebra (e.g., [7, 9, 15, 16,
12]). It is considered an issue already settled in the 1980s.

It turns out that while many source FDs may not hold
on the view as they are, they do hold on the view under
conditions. That is, source FDs are indeed propagated to the
view, not as standard FDs but as FDs with conditions. The
FDs with conditions are in the form of conditional functional
dependencies (CFDs) recently proposed [8], as shown below.

Example 1.1: Consider three data sources R1, R2 and R3,
containing information about customers in the uk, us and
Netherlands, respectively. To simplify the presentation we
assume that these data sources have a uniform schema:

Ri(AC: string, phn: string, name: string,
street: string, city: string, zip: string)

Each tuple in an Ri relation specifies a customer’s informa-
tion (area code AC, phone phn, name and address (street,
city, zip code)), for i ∈ [1, 3]. Example instances D1, D2 and
D3 of R1, R2 and R3 are shown in Fig. 1.

Consider the following FDs defined on the uk and Hol-
land sources: in instances of R1, zip code uniquely deter-
mines street (f1), and area code uniquely determines city
(f2); moreover, area code determines city in R3 data (f3).

f1: R1(zip → street), f2: R1(AC → city), f3: R3(AC → city).

Define a view V with query Q1 ∪Q2 ∪Q3 to integrate the
data from the three sources, where Q1 is

select AC, phn, name, street, city, zip, ‘44’ as CC from R1

391

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Define Q2 and Q3 by substituting ‘01’ and ‘31’ for ‘44’, R2

and R3 for R1 in Q1, respectively. The target schema R has
all the attributes in the sources and a country-code attribute
CC (44, 01, 31 for the uk, us and Netherlands, respectively).

Now one wants to know whether f1 on the R1 source still
holds on the target data (view). The answer is negative:
Figure 1 tells us that the view violates f1 due to tuples t3, t4
extracted from D2; indeed, in the us, zip does not determine
street. That is, f1 is not propagated to the view as an FD.
In contrast, the following CFD [8] holds on the view:

ϕ1: R([CC = ‘44’, zip] → [street]).

That is, for uk customers in the view, zip code uniquely
determines street. In other words, ϕ1 is an “FD” with a
condition: it is to hold only on the subset of tuples in the
view that satisfies the pattern CC = ‘44’, rather than on the
entire view. It cannot be expressed as a standard FD.

Similarly, from f2 and f3 one cannot derive a standard FD

on the view to assert that “area code uniquely determines
city”. Indeed, from tuples t1 and t5 in Fig. 1 we can see that
20 is an area code in both the uk and Holland, for London
and Amsterdam, respectively. However, not all is lost: the
following CFDs are propagated from f2 and f3 via the view:

ϕ2: R([CC = ‘44’, AC] → [city]),
ϕ3: R([CC = ‘31’, AC] → [city]).

That is, f2 and f3 hold conditionally on the view: area code
determines city for tuples with CC = ‘44’ (ϕ2) or CC = ‘31’
(ϕ3). In other words, the semantics specified by the FDs on
the sources is preserved by the CFDs on the view.

Furthermore, given the following CFDs on the sources:

cfd1: R1([AC = ‘20’] → [city = ‘ldn’]),
cfd2: R3([AC = ‘20’] → [city = ‘Amsterdam’]),

then the following CFDs are propagated to the view:

ϕ4: R([CC = ‘44’, AC = ‘20’] → [city = ‘ldn’]),
ϕ5: R([CC = ‘31’, AC = ‘20’] → [city = ‘Amsterdam’]),

which carry patterns of semantically related constants. 2

No previous algorithms developed for FD propagation are
capable of deriving these CFDs from the given source FDs

via the view. This highlights the need for investigating de-
pendency propagation, for CFDs as view dependencies.

Applications. The study of dependency propagation is not
only of theoretical interest, but also important in practice.

(1) Data exchange [17]. Recall Example 1.1. Suppose that
the target schema R and CFDs ϕ2 and ϕ3 are predefined.
Then the propagation analysis assures that the view defini-
tion V is a schema mapping from (R1, R2, R3) to R, i.e., for
any source instances D1 and D3 of R1 and R3 that satisfy
the FDs f2 and f3, respectively, and for any source instance
D2 of R2, the view V (D1, D2, D3) is an instance of the target
schema R and is guaranteed to satisfy ϕ2 and ϕ3.

(2) Data integration [18]. Suppose that V is a mapping in
an integration system, which defines a global view of the
sources. Then certain view updates, e.g., insertion of a tu-
ple t with CC = ‘44’, AC = ‘20’ and city = ‘edi’, can be
rejected without checking the data, since it violates the CFD

ϕ4 propagated from the sources.

(3) Data cleaning. In contrast to FDs that were devel-
oped for schema design, CFDs were proposed for data clean-
ing [8]. Suppose that CFDs ϕ1–ϕ5 are defined on the target

database, for checking the consistency of the data. Then
propagation analysis assures that one need not validate these
CFDs against the view V . In contrast, if in addition, an FD

ϕ6: R(CC, AC, phn → street, city, zip) is also defined on the
target, then ϕ6 has to be validated against the view since it
is not propagated from the source dependencies.

Contributions. In response to the practical need, we pro-
vide the first results for dependency propagation when view
dependencies are CFDs. We study views expressed in various
fragments of relational algebra (RA), and source dependen-
cies expressed either as traditional FDs or CFDs.

(1) Complexity bounds. We provide a complete picture of
complexity bounds on dependency propagation, for source
FDs and source CFDs, and for various RA views. Further-
more, we study the problem in two settings: (a) the infinite-
domain setting: in the absence of finite-domain attributes
in a schema, and (b) the general setting where finite-domain
attributes may be present. We establish upper and lower
bounds, all matching, for all these cases, ranging from poly-
nomial time (ptime) to undecidable. We show that in many
cases CFD propagation retains the same complexity as its
FD counterpart, but in some cases CFDs do make our lives
harder by incurring extra complexity.

Previous work on dependency propagation assumes the
infinite-domain setting. It is believed that FD propagation
is in ptime for SPCU views [1] (union of conjunctive queries,
defined with selection, projection, Cartesian product and
union operators). In real world, however, it is common to
find attributes with a finite domain, e.g., Boolean, date, etc.
It is hence necessary to study the dependency propagation
problem in the presence of finite-domain attributes, and get
the complexity right in the general setting.

In light of this we study the analysis of dependency prop-
agation in the general setting. We show that the presence
of finite-domain attributes complicates the analysis, even for
source FDs and view FDs. Indeed, while FD propagation is
in ptime for SPCU views in the infinite-domain setting, this
is no longer the case in the general setting: the problem
already becomes conp-complete for SC views, source FDs

and view FDs! This intractability is unfortunately what one
often has to cope with in practice.

To our knowledge this work is the first effort to study the
dependency propagation problem in the general setting.

(2) Algorithms for computing a propagation cover. In many
applications one wants not only to know whether a given
view dependency is propagated from source dependencies,
but also to find a cover of all view dependencies propagated.
From the cover all view dependencies can be deduced via
implication analysis. This is needed for, e.g., processing
view updates and detecting inconsistencies, as shown by the
data integration and data cleaning examples given above.

Although important, this problem is rather difficult. It is
known [9] that even for certain FDs and views defined with
a single projection operator, a minimal cover of all view FDs

propagated is sometimes necessarily exponentially large, in
the infinite-domain setting. A typical method to find a cover
is by first computing the closure of all source FDs, and then
projecting the closure onto the view schema. While this
method always takes exponential time, it is the algorithm
recommended by database textbooks [23, 26].

Already hard for FDs and projection views, the propaga-

392

tion cover problem is far more intriguing for CFDs and SPC

views. One way around this is by means of heuristic, at a
price: it may not always be able to find a cover.

In contrast, we provide an algorithm to compute a mini-
mal cover of all CFDs propagated via SPC views in the ab-
sence of finite-domain attributes, by extending a practical
algorithm proposed in [12] for computing a cover of FDs

propagated via projection views. Despite the increased ex-
pressive power of CFDs and SPC views, this algorithm has
the same complexity as the algorithm of [12]. The algorithm
behaves polynomially in many practical cases. Indeed, ex-
ponentially large covers are mostly found in examples in-
tentionally constructed. Further, from this algorithm an ef-
fective polynomial-time heuristic is immediate: it computes
a minimal cover when the cover is not large, and returns
a subset of a cover as soon as the computation reaches a
predefined bound, when covers are inherently large.

This is the first algorithm for computing minimal propa-
gation covers via SPC views, for FDs or CFDs.

(3) Experimental study. We evaluate the scalability of
the propagation cover algorithm as well as minimal covers
found by the algorithm. We investigate the impact of the
number of source CFDs and the complexity of SPC views
on the performance of the algorithm. We find that the
algorithm is quite efficient; for example, it takes less than 80
seconds to compute minimal propagation covers when given
sets of 2000 source CFDs and SPC views with 50 projection
attributes and selection conditions defined in terms of the
conjunction of 10 domain constraints. Furthermore, it
scales well with the number and complexity of source CFDs

and SPC views. The minimal covers found by the algorithm
are typically small, often containing less CFDs than the
sets of input source CFDs. We contend that the algorithm
is a promising method for computing minimal propagation
covers of CFDs via SPC views, and may find practical use
in data integration, data exchange and data cleaning.

This work not only provides the first results for CFD prop-
agation, but also extends the classical results of FD propa-
gation, an issue that was considered settled 20 years ago,
by investigating the propagation problem in the general and
practical setting overlooked by prior work. In addition, for
both FDs and CFDs, we give the first practical algorithm for
computing minimal propagation covers via SPC views.

Organization. We review CFDs and various fragments of
RA in Section 2. We establish complexity bounds on depen-
dency propagation in Section 3. We provide the algorithm
for computing minimal propagation covers via SPC views in
Section 4. Experimental results are reported in Section 5,
followed by related work in Section 6 and topics for future
work in Section 7. The proofs are in the appendix.

2. Dependencies and Views
In this section, we review conditional functional depen-

dencies (CFDs [8]) and fragments of relational algebra (RA).

2.1 Conditional Functional Dependencies

CFDs extend FDs by incorporating a pattern tuple of se-
mantically related data values. In the sequel, for each at-
tribute A in a schema R, we denote its associated domain
as dom(A), which is either infinite (e.g., string, real) or finite
(e.g., Boolean, date).

Definition 2.1: A CFD ϕ on a relation schema R is a pair
R(X → Y , tp), where (1) X → Y is a standard FD, called
the FD embedded in ϕ; and (2) tp is a tuple with attributes
in X and Y , referred to as the pattern tuple of ϕ, where for
each A in X (or Y), tp[A] is either a constant ‘a’ in dom(A),
or an unnamed variable ‘ ’ that draws values from dom(A).
We separate the X and Y attributes in tp with ‘‖’.

For CFDs on views (i.e., view CFDs) we also allow a special
form R(A → B, (x ‖ x)), where A, B are attributes of R and
x is a (special) variable. 2

Note that traditional FDs are a special case of CFDs, in
which the pattern tuples consist of ‘ ’ only.

Example 2.1: The dependencies we have seen in Section 1
can be expressed as CFDs. Some of those are given below:

ϕ1: R([CC, zip] → [street], (44, ‖)),
ϕ2: R([CC, AC] → [city], (44, ‖)),
ϕ4: R([CC, AC] → [city], (44, 20 ‖ ldn)),
f1: R1(zip → street, (‖)).

The standard FD f1 on source R1 is expressed as a CFD. 2

The semantics of CFDs is defined in terms of a relation
³ on constants and ‘ ’: η1 ³ η2 if either η1 = η2, or one
of η1, η2 is ‘ ’. The operator ³ naturally extends to tuples,
e.g., (Portland, ldn) ³ (, ldn) but (Portland, ldn) 6³ (,
nyc). We say that a tuple t1 matches t2 if t1 ³ t2.

An instance D of R satisfies ϕ = R(X → Y , tp), denoted
by D |= ϕ, if for each pair of tuples t1, t2 in D, if t1[X] =
t2[X] ³ tp[X], then t1[Y] = t2[Y] ³ tp[Y].

Intuitively, ϕ is a constraint defined on the set Dϕ =
{t | t ∈ D, t[X] ³ tp[X]} such that for any t1, t2 ∈ Dϕ, if
t1[X] = t2[X], then (a) t1[Y] = t2[Y], and (b) t1[Y] ³ tp[Y].
Here (a) enforces the semantics of the embedded FD, and (b)
assures the binding between constants in tp[Y] and constants
in t1[Y]. Note that ϕ is defined on the subset Dϕ of D
identified by tp[X], rather than on the entire D.

An instance D of R satisfies CFD R(A → B, (x ‖ x)) if for
any tuple t in D, t[A] = t[B]. As will be seen shortly, these
CFDs are used to express selection conditions of the form
A = B in a view definition, treating domain constraints and
CFDs in a uniform framework.

We say that an instance D of a relational schema R sat-
isfies a set Σ of CFDs defined on R, denoted by D |= Σ, if
D |= φ for each φ in Σ.

Example 2.2: Recall the view definition V from Exam-
ple 1.1 and the instances D1, D2, D3 of Fig. 1. The view
V (D1, D2, D3) satisfies ϕ1, ϕ2, ϕ4 of Example 2.1. How-
ever, if we remove attribute CC from ϕ4, then the view no
longer satisfies the modified CFD. Indeed, there are two tu-
ples t′1 and t′5 in V (D1, D2, D3) such that t′1 and t1 of Fig. 1
have identical AC and city values; similarly for t5 and t′5 of
Fig. 1. Then t′1 and t′5 violate the modified CFD: they have
the same AC attribute but differ in city. 2

2.2 View Definitions

We study dependency propagation for views expressed in
various fragments of RA. It is known that the problem is
already undecidable for FDs and views defined in RA [1].
In light of this we shall focus on positive fragments of RA,
without set difference, in particular SPC and SPCU.

Consider a relational schema R = (S1, . . . , Sm).

SPC. An SPC query (a.k.a. conjunctive query) Q on R is an

393

Complexity boundsΣ View language
Infinite domain only General setting

Propagation from FDs to CFDs
SP ptime ptime
SC ptime conp-complete
PC ptime ptime

FDs SPC ptime conp-complete
SPCU ptime conp-complete
RA undecidable undecidable

Propagation from CFDs to CFDs
S ptime conp-complete
P ptime conp-complete
C ptime conp-complete

CFDs SPC ptime conp-complete
SPCU ptime conp-complete
RA undecidable undecidable

Table 1: Complexity of CFD propagation

RA expression defined in terms of the selection (σ), projec-
tion (π), Cartesian product (×) and renaming (ρ) operators.
It can be expressed in the normal form below [1]:

πY (Rc × Es), where Es = σF (Ec), Ec = R1 × . . .×Rn,

where (a) Rc = {(A1 : a1, . . . , Am : am)}, a constant rela-
tion, such that for each i ∈ [1, m], Ai is in Y , Ai’s are dis-
tinct, and ai is a constant in dom(Ai); (b) for each j ∈ [1, n],
Rj is ρj(S) for some relation atom inR, and ρj is a renaming
operator such that the attributes in Rj and Rl are disjoint
if j 6= l, and Ai does not appear in any Rj ; (c) F is a con-
junction of equality atoms of the form A = B and A = ‘a’
for a constant a ∈ dom(A).

We also study fragments of SPC, denoted by listing the
operators supported: S, P, C, SP, SC, and PC (the renam-
ing operator is included in all these subclasses by default
without listing it explicitly). For instance, SC is the class of
queries defined with σ, × and ρ operators.

For example, Q1 given in Example 1.1 can be expressed
as a C query: {(CC: 44)} × R1.

SPCU. SPCU (a.k.a. union of conjunctive queries) is an
extension of SPC by allowing union (∪). An SPCU query
defined on R can be expressed in normal form V1 ∪ . . .∪Vn,
where Vi’s are union-compatible SPC queries. For example,
the view V given in Example 1.1 is an SPCU query.

In the sequel we only consider SPC and SPCU queries in
the normal form, unless stated otherwise.

3. Complexity on Dependency Propagation
We now give a full treatment of dependency propagation

to CFDs. Proofs of the results are given in the appendix.
Formally, the dependency propagation problem is to deter-

mine, given a view V defined on a schema R, a set Σ of
source dependencies on R, and CFD ϕ on the view, whether
or not ϕ is propagated from Σ via V , denoted by Σ |=V ϕ,
i.e., for any instance D of R, if D |= Σ then V (D) |= ϕ.

That is, ϕ is propagated from Σ via V if for any source D
that satisfies Σ, the view V (D) is guaranteed to satisfy ϕ.

We study the problem in a variety of settings. (a) We
consider views expressed in various fragments of RA: S, P,
C, SP, SC, PC, SPC, SPCU. (b) We study the propagation
problem when FDs and CFDs are source dependencies, re-
spectively. We refer to the problem as propagation from FDs

to CFDs when the source dependencies are FDs, and as prop-
agation from CFDs to CFDs when the source dependencies

Propagation from FDs to FDs
Complexity boundsView language

Infinite domain only General setting

SP ptime [16, 1] ptime
SC ptime [16, 1] conp-complete
PC ptime [16, 1] ptime

SPCU ptime [16, 1] conp-complete
RA undecidable [15] undecidable

Table 2: Complexity of FD propagation

are CFDs. (c) We investigate the problem in the absence and
in the presence of finite-domain attributes in the schema R,
i.e., in the infinite-domain setting and the general setting.

We first study propagation from FDs to CFDs, and then
from CFDs to CFDs. Finally, we address a related interesting
issue: the emptiness problem for CFDs and views.

3.1 Propagation from FDs to CFDs

In the infinite-domain setting, propagation from FDs to
FDs has been well studied, i.e., for source FDs and view
FDs. It is known that the propagation problem is

◦ undecidable for views expressed in RA [15], and
◦ in ptime for SPCU views [16, 1].

In this setting, CFDs do not make our lives harder.

Theorem 3.1: In the absence of finite-domain attributes,
the dependency propagation problem from FDs to CFDs is

◦ in ptime for SPCU views, and
◦ undecidable for RA views. 2

Proof Sketch: (a) For the ptime bound, we develop an al-
gorithm for testing propagation, via tableau representations
of given SPCU views and view CFDs, by extending the chase
technique (see [1] for details about chase, and [16] on exten-
sions of chase). We show that the algorithm characterizes
propagation and is in ptime. (b) The undecidability follows
from its counterpart for FDs, as CFDs subsume FDs. 2

From Theorem 3.1 it follows immediately that propaga-
tion from FDs to CFDs is also in ptime for views expressed
in fragments of SPCU, e.g., SPC, SP, SC and PC views.

In the general setting, i.e., when finite-domain attributes
may be present, the propagation analysis becomes harder.
Below we show that even for propagation from FDs to FDs

and for simple SC views, the problem is already intractable.

Theorem 3.2: In the general setting, the dependency prop-
agation problem from FDs to FDs is conp-complete for SC

views. 2

Proof Sketch: There is an np algorithm that, given source
FDs Σ, a view FD ψ and an SC view V , decides whether
Σ 6|=V ψ or not. The algorithm extends the chase technique
to deal with variables that are associated with finite domain
attributes, such that all those variables are instantiated with
constants from their corresponding finite domains. There
are exponential number of such instantiations that need to
be checked. For each instantiation, it can be done in poly-
nomial time by Theorem 3.1. Thus the problem is in conp.

The lower bound is established by reduction from the
3SAT problem to the complement of the propagation prob-
lem, where 3SAT is np-complete (cf. [10]). Given an instance
φ of the 3SAT problem, we define source relations R, a set
Σ of FDs on R, a view V defined by an SC expression, and
a FD ψ on V . We show that φ is satisfiable iff Σ 6|=V ψ. 2

394

In contrast to the ptime bound in the infinite-domain set-
ting [16, 1], Theorem 3.2 shows that the presence of finite-
domain attributes does complicate the analysis of propaga-
tion from FDs to FDs, and should be thoroughly studied.

Theorem 3.3: In the general setting, the dependency prop-
agation problem from FDs to CFDs is

◦ in ptime for PC views,
◦ in ptime for SP views,
◦ conp-complete for SC views,
◦ conp-complete for SPCU views,
◦ undecidable for RA views. 2

Proof Sketch: (a) The ptime bounds are verified by pro-
viding ptime algorithms for checking propagation, by ex-
tending chase to CFDs. (b) The conp upper bound is by giv-
ing an np algorithm for deciding Σ 6|=V ϕ for the given source
FDs Σ, view CFD ϕ and SPCU view V . The lower bound
follows from Theorem 3.2 for SC views, since CFDs subsume
FDs. (c) The undecidability follows from Theorem 3.1, since
the general setting subsumes the infinite-domain setting. 2

Theorem 3.3 also tells us that in the general setting, prop-
agation from FDs to CFDs is (a) in ptime for S, P and C

views, and (b) conp-complete for SPC views.
In addition, since FDs are a special case of CFDs, The-

orems 3.2 and 3.3 together yield a complete picture of
complexity bounds on the dependency propagation problem
from FDs to FDs in the general setting.

Corollary 3.4: In the general setting, the propagation prob-
lem from FDs to FDs is in ptime for SP and PC views, and
is conp-complete for SPC and SPCU views. 2

3.2 Propagation from CFDs to CFDs

Upgrading source dependencies from FDs to CFDs does
not incur extra complexity for propagation analysis, in the
infinite-domain setting. That is, the bounds of Theorem 3.1
remain intact, which are the same as for FD propagation.

Theorem 3.5: In the absence of finite-domain attributes,
the dependency propagation problem from CFDs to CFDs is

◦ in ptime for SPCU views, and
◦ undecidable for RA views. 2

Proof Sketch: (a) The ptime bounds are again verified
by developing a polynomial time checking algorithm, via an
extension of the chase algorithm in Theorem 3.1 to cope
with CFDs instead of FDs. (b) The undecidability follows
from Theorem 3.1, since FDs are a special case of CFDs. 2

This tells us that propagation from CFDs to CFDs is also
in ptime for SPC, SP, SC and PC views.

When it comes to the general setting, however, the prob-
lem becomes intractable even for very simple views.

Corollary 3.6: In general setting, the dependency propaga-
tion problem from CFDs to CFDs is

◦ conp-complete for views expressed as S, P or C queries;
◦ conp-complete for SPCU views; and
◦ undecidable for RA views. 2

Proof Sketch: (a) The implication problem for CFDs is a
special case of the dependency propagation problem, when
views are the identity mapping, which are expressible as
S, P or C queries. It is known that in the presence of
finite-domain attributes, CFD implication is already conp-

complete [8]. From this it follows that the propagation prob-
lem is already conp-hard for views expressed as S, P or C

queries. (b) The conp upper bound is verified along the
same lines as Theorem 3.3. (c) The undecidability follows
from Theorem 3.3, since FDs are a special case of CFDs. 2

From Corollary 3.6 it follows that the propagation prob-
lem is also conp-complete for SC, PC, SP and SPC views.

We summarize in Table 1 complexity bounds on propaga-
tion from FDs to CFDs, and from CFDs to CFDs. To give
a complete picture, we present the complexity bounds on
propagation from FDs to FDs in Table 2, including results
from [15, 16, 1].

3.3 Interaction between CFDs and Views

An interesting aspect related to dependency propagation
is the interaction between source CFDs and views.

Example 3.1: Consider a CFD φ = R(A → B, (‖ b1)) de-
fined on a source R(A, B, C), and an S view V = σB=b2(R),
with b2 6= b1. Then for any instance D of R that satisfies
φ, V (D) is always empty. Indeed, the CFD φ assures that
the B attributes of all tuples t in D have the same constant:
t[B] = b1, no matter what value t[A] has. Hence V cannot
possibly find a tuple t in D that satisfies the selection condi-
tion B = b2. As a result, any source CFDs are “propagated”
to the view, since the view satisfies any CFDs. 2

This suggests that we consider the emptiness problem for
views and CFDs: it is to determine, given a view V defined
on a schema R and a set Σ of CFDs on R, whether or not
V (D) is always empty for all instances D ofR where D |= Σ.

It turns out that this problem is nontrivial.

Theorem 3.7: In the general setting, the emptiness prob-
lem is conp-complete for CFDs and SPCU views. 2

Proof Sketch: We consider the non-emptiness problem,
the complement of the emptiness problem. We show that
the non-emptiness problem is np-hard by reduction from
the non-tautology problem, a known np-complete problem
(cf. [10]). Its upper bound is verified by providing an np
algorithm to check the non-emptiness, by extending chase.
From this follows immediately Theorem 3.7. 2

The lower bound is not surprising: it is already np-hard
for deciding whether there exists a nonempty database that
satisfies a given set of CFDs, in the general setting [8]. This,
known as the consistency problem [8], is a special case of the
complement of the emptiness problem when the view is the
identity mapping. Theorem 3.7 tells us that adding views
does not make our lives harder: the np upper bound for the
consistency problem for CFDs remains intact.

In the absence of finite-domain attributes, the implication
problem for CFDs becomes tractable [8]. It is also the case
for the emptiness problem for SPCU views and CFDs: a
ptime algorithm can be developed for the emptiness test.

Theorem 3.8: Without finite-domain attributes, the empti-
ness problem is in ptime for CFDs and SPCU views. 2

Proof Sketch: In the absence of finite-domain attributes,
one can readily turn the np algorithm given in the proof of
Theorem 3.7 into a ptime one, since instantiation of finite-
domain attributes, which would require a nondeterministic
guess, is no longer needed here. 2

395

4. Computing Covers of View Dependencies
We have studied dependency propagation in Section 3 for

determining whether a given view CFD is propagated from
source CFDs (or FDs). In this section we move on to a re-
lated yet more challenging problem, referred to as the prop-
agation cover problem, for finding a minimal cover of all
view CFDs propagated from source CFDs. As remarked in
Section 1, this problem is important for data integration and
data cleaning, among other things. Furthermore, an algo-
rithm for finding a propagation cover also readily provides
a solution to determining whether a given CFD φ is propa-
gated from a given set Σ of source CFDs via an SPC view
V : one can simply compute a minimal cover Γ of all CFDs

propagated from Σ via V , and then check whether Γ implies
φ, where CFD implication is already studied in [8].

No matter how important, this problem is hard. As will be
seen soon, most prior algorithms for finding FD propagation
covers always take exponential time.

The main result of this section is an algorithm for com-
puting a minimal cover of all view CFDs propagated from
source CFDs, via SPC views. It is an extension of a practi-
cal algorithm proposed in [12], for computing covers of FDs

propagated via projection views. It has the same complexity
as that of [12], and behaves polynomially in many practical
cases. It also yields an algorithm for computing propagation
covers when FDs are source dependencies, a special case.

To simplify the discussion we assume the absence of finite-
domain attributes, the same setting as the classical work on
FD propagation [1, 12, 15, 16]. In this setting, the empti-
ness problem for CFDs and SPC views, and the CFD propa-
gation problem via SPC views are all in ptime. We consider
w.l.o.g. CFDs in the normal form: (R : X → A, tp), where
A is a single attribute. Indeed, each CFD of the general
form given in Section 2 can be converted in linear time to
an equivalent set of CFDs in the normal form [8].

In the rest of the section, we first state the propagation
cover problem and discuss its challenges in Section 4.1. We
then provide basic results in Section 4.2, on which our algo-
rithm is based. The algorithm is presented in Section 4.3.

4.1 The Propagation Cover Problem

Implication and cover. We say that a set Σ of CFDs

defined on a schemaR implies another CFD ϕ onR, denoted
by Σ |= ϕ, if for any instance D of R, if D |= Σ then D |= ϕ.

A cover of a set Σ of CFDs is a subset Σc of Σ such that for
each CFD ϕ in Σ, Σc |= ϕ. In other words, Σc is contained
in, and is equivalent to, Σ. For a familiar example, recall
the notion of the closure F+ of a set F of FDs, which is
needed for designing normal forms of relational schema (see,
e.g., [1]). Then F is a cover of F+.

A minimal cover Σmc of Σ is a cover of Σ such that

◦ no proper subset of Σmc is a cover of Σ, and

◦ for each CFD φ = R(X → A, tp) in Σmc, there exists
no proper subset Z ⊂ X such that (Σmc∪{φ′})−{φ} |=
φ, where φ′ = R(Z → A, (tp[Z] ‖ tp[A])).

That is, there is neither redundant attributes in each CFD

nor redundant CFDs in Σmc.

We only include nontrivial CFDs in Σmc. A CFD R(X →
A, tp) is nontrivial if either (a) A 6∈ X, or (b) X = AZ but
tp is not of the form (η1, dZ ‖ η2), where either η1 = η2, or
η1 is a constant and η2 = ‘ ’.

It is known that without finite-domain attributes, implica-
tion of CFDs can be decided in quadratic time [8]. Further,
there is an algorithm [8], referred to as MinCover, which
computes Σmc in O(|Σ|3) time for any given set Σ of CFDs.

Propagation cover. For a view V defined on a schema R
and a set Σ of source CFDs on R, we denote by CFDp(Σ, V)
the set of all view CFDs propagated from Σ via V .

The propagation cover problem is to compute, given V and
Σ, a cover Γ of CFDp(Σ, V). We refer to Γ as a propagation
cover of Σ via V , and as a minimal propagation cover if Γ
is a minimal cover of CFDp(Σ, V).

Challenges. The example below, taken from [9], shows that
the problem is already hard for FDs and simple P views.

Example 4.1: Consider a schema R with attributes Ai, Bi,
Ci and D, and a set Σ of FDs on R consisting of Ai → Ci,
Bi → Ci, and C1, . . . , Cn → D, for each i ∈ [1, n]. Consider
a view that projects an R relation onto their Ai, Bi and D
attributes, dropping Ci’s. Then any cover Σc of the set of
view FDs propagated necessarily contains all FDs of the form
η1, . . . , ηn → D, where ηi is either Ai or Bi for i ∈ [1, n].
Obviously Σc contains at least 2n FDs, whereas the size of
the input, namely, Σ and the view, is O(n). Indeed, to derive
view FDs from C1, . . . , Cn → D, one can substitute either
Ai or Bi for each Ci, leading to the exponential blowup. 2

In contrast, the dependency propagation problem is in
ptime in this setting (recall from Section 3). This shows
the sharp distinction between the dependency propagation
problem and the propagation cover problem.

While we are not aware of any previous methods for find-
ing propagation covers for FDs via SPC views, there has
been work on computing embedded FDs [12, 23, 26], which
is essentially to compute a propagation cover of FDs via pro-
jection views. Given a schema R, a set F of FDs on R and
a set Y of attributes in R, it is to find a cover Fc of all
FDs propagated from F via a projection view πY (R). An
algorithm for finding Fc is by first computing the closure
F+ of F , and then projecting F+ onto Y , removing those
FDs with attributes not in Y . This algorithm always takes
O(2|F |) time, for computing F+. As observed in [12], this is
the method covered in database texts [23, 26] for computing
Fc. A more practical algorithm was proposed in [12], which
we shall elaborate shortly.

Already hard for FDs and P views, the propagation cover
problem is more intricate for CFDs and SPC views.

(a) While at most exponentially many FDs can be defined
on a schema R, there are possibly infinitely many CFDs.
Indeed, there are infinitely many CFDs of the form R(A →
B, tp) when tp[A] ranges over values from an infinite dom(A).

(b) While AX → A is a trivial FD and can be ignored,
φ = R(AX → A, tp) may not be. Indeed, when tp is (, dX‖
a), φ is meaningful: it asserts that for all tuples t such that
t[X] ³ dX , the A column has the same constant ‘a’.

(c) While X → Y and Y → Z yield X → Z for FDs, the
transitivity rule for CFDs has to take pattern tuples into
account and is more involved than its FD counterpart [8].

(d) As we have seen in the previous section, selection and
Cartesian product introduce interaction between domain
constraints and CFDs, a complication of SPC views that we
do not encounter when dealing with projection views.

396

4.2 Propagating CFDs via SPC Views

The exponential complexity of Example 4.1 is for the
worst case and is only found in examples intentionally con-
structed. In practice, it is common to find a propagation
cover of polynomial size, and thus it is an overkill to use
algorithms that always take exponential time. In light of
this one wants an algorithm for computing minimal propa-
gation covers that behaves polynomially most of the time,
whereas it necessarily takes exponential time only when all
propagation covers are exponentially large for a given input.

We next propose such an algorithm, referred to as
PropCFD SPC, by extending the algorithm of [12] for com-
puting a propagation cover of FDs via projection views.
Given an SPC view V defined on a schema R and a set
Σ of source CFDs on R, PropCFD SPC computes a mini-
mal propagation cover Γ of Σ via V , without increasing the
complexity of the algorithm of [12], although CFDs and SPC

views are more involved than FDs and P views, respectively.
Before we present PropCFD SPC, we give some basic re-

sults behind it. LetR = (S1, . . . , Sm) be the source schema.
Recall from Section 2 that V defined on R is of the form:

πY (Rc × Es), Es = σF (Ec), Ec = R1 × . . .×Rn

where Rc is a constant relation, Rj ’s are renamed relation
atoms ρj(S) for S in R, Y is the set of projection attributes,
and F is a conjunction of equality atoms.

Basic results. The constant relation Rc introduces no diffi-
culties: for each (Ai : ai) in Rc, a CFD RV (Ai → Ai, (‖ a))
is included in Γ, where RV is the view schema derived from
V and R. Thus in the sequel we assume that V = πY (Es).

The reduction below allows us to focus on Es instead of
V . The proof is straightforward, by contradiction.

Proposition 4.1: For any SPC view V of the form above,
and any set Σ of source CFDs, Σ |=V φ iff Σ |=Es φ when

◦ φ = RV (A → B, (x ‖ x)), denoting A = B;
◦ φ = RV (A → A, (‖ a)), denoting A = ‘a’; or
◦ φ = RV (X → A, tp);

where A ∈ Y , B ∈ Y , and X ⊆ Y . 2

We next illustrate how we handle the interaction between
CFDs and operators ×, σ and π in the view definition V .

Cartesian product. Observe that each Rj in Ec is ρj(S),
where S is in R. All source CFDs on S are propagated to
the view, after their attributes are renamed via ρj .

Selection. The condition F in σF brings domain con-
straints into play, which can be expressed as CFDs.

Lemma 4.2: (a) If A = ‘a’ is in the selection condition F ,
then RV (A → A, (‖ a)) is in CFDp(Σ, V). (b) If A = B
is in F , then RV (A → B, (x ‖ x)) is in CFDp(Σ, V) for the
special variable x. 2

That is, one can incorporate domain constraints A = ‘a’
and A = B enforced by the view V into CFDs. Here (a) as-
serts that the A column of the view must contain the same
constant ‘a’, and (b) asserts that for each tuple t in the view,
t[A] and t[B] must be identical, as required by the selection
condition F in the view V (this is why we introduced CFDs

of the form RV (A → B, (x ‖ x)) in Section 2).

Lemma 4.3: If RV (A → B, (x ‖ x)) and RV (BX →
G, tp), then RV (AX → G, t′p) is in CFDp(Σ, V), where
t′p[A] = tp[B], t′p[X] = tp[X] and t′p[G] = tp[G]. 2

That is, we can derive view CFDs by applying the domain

constraint A = B: substituting A for B in a view CFD yields
another view CFD. This also demonstrates how domain con-
straints interact with CFD propagation.

Let us use Σd to denote these CFDs as well as those in Σ
expressing domain constraints. Based on Σd we can decide
whether A = B or A = ‘a’ for attributes in Y (i.e., RV).

More specifically, we partition the attributes into a set EQ
of equivalence classes, such that for any eq ∈ EQ, and for
any attributes A, B in Y , (a) A, B ∈ eq iff A = B can be
derived from Σd; (b) if A = ‘a’ can be derived from Σd and
moreover, A ∈ eq, then for any B ∈ eq, B = ‘a’; we refer to
the constant ‘a’ as the key of eq, denoted by key(eq). If a
constant is not available, we let key(eq) be ‘ ’.

The use of EQ helps us decide whether or not V and Σ
always yield empty views (Section 3), which happens if there
exists some eq ∈ EQ such that key(eq) is not well-defined,
i.e., when two distinct constants are associated with eq.

It is easy to develop a procedure to compute EQ, referred
to as ComputeEQ, which takes Σ and V as input, and returns
EQ as output, along with key(eq) for each eq ∈ EQ. If
key(eq) is not well-defined for some eq, it returns a special
symbol ‘⊥’, indicating the inconsistency in V and Σ.

Projection. To remedy the limitations of closure-based
methods for computing propagation covers of FDs via P

views, a practical algorithm was proposed in [12] based on
the idea of Reduction by Resolution (RBR). We extend RBR
and the algorithm of [12] to handle CFDs and projection.

To illustrate RBR, we first define a partial order ≤ on
constants and ‘ ’: η1 ≤ η2 if either η1 and η2 are the same
constant ‘a’, or η2 = ‘ ’.

Given CFDs φ1 = R(X → A, tp) and φ2 = R(AZ →
B, t′p), if tp[A] ≤ t′p[A] and for each C ∈ X ∩ Z, tp[C] ³
t′p[C], then we can derive φ = R(XZ → B, sp) based on
CFD implication [8]. Here sp = (tp[X]⊕ t′p[Z] ‖ t′p[B]), and
tp[X]⊕ t′p[Z] is defined as follows:

◦ for each C ∈ X − Z, sp[C] = tp[C];
◦ for each C ∈ Z −X, sp[C] = t′p[C];
◦ for each C ∈ X ∩Z, sp[C] = min(tp[C], t′p[C]), i.e., the

smaller one of tp[C] and t′p[C] if either tp[C] ≤ t′p[C]
or t′p[C] ≤ tp[C]; it is undefined otherwise.

Following [12], we refer to φ as an A-resolvent of φ1 and φ2.

Example 4.2: Consider CFDs φ1 = R([A1, A2] → A, t1)
and φ2 = R([A, A2, B1] → B, t2), where t1 = (, c ‖ a) and
t2 = (, c, b ‖). Then φ = R([A1, A2, B1] → B, tp) is an
A-resolvent of φ1 and φ2, where tp = (, c, b ‖). 2

Following [12], we define the following. Given πY (R) and
a set Σ of CFDs on R, let U be the set of attributes in R.

◦ For A ∈ (U−Y), let Res(Σ, A) denote the set of all non-
trivial A-resolvents. Intuitively, it shortcuts all CFDs

involving A.
◦ Denote by Drop(Σ, A) the set Res(Σ, A)∪Σ[U −{A}],

where Σ[Z] denotes the subset of Σ by including only
CFDs with attributes in Z.

◦ Define RBR(Σ, A) = Drop(Σ, A) and inductively,
RBR(Σ, ZA) = Drop(Drop(Σ, A), Z).

Then we have the following result, in which F+ denotes the
closure of F , i.e., the set of all CFDs implied by F .

Proposition 4.4: For a view πY (R) and a set Σ of CFDs on
R, (a) for each A ∈ (U − Y), Drop(Σ, A)+ = Σ+[U − {A}];
(b) RBR(Σ, U − Y) is a propagation cover of Σ via πY (R),
where U is the set of attributes in R. 2

397

Input: Source CFDs Σ, and SPC view V = πY (Es), Es = σF (Ec).
Output: A minimal propagation cover of Σ via V .

1. ΣV := ∅; Σ := MinCover(Σ);
2. EQ := ComputeEQ(Es, Σ); /* handling σF */
3. if EQ = ⊥ /* inconsistent */
4. then return {RV (A → A, (‖ a)), RV (A → A, (‖ b))};

/* for some A ∈ Y , distinct a, b ∈ dom(A) */
5. for each Rj = ρj(S) in Ec do
6. ΣV := ΣV ∪ ρj(Σ); /* handling product ‘×’ */
7. for each eq ∈ EQ do /* applying domain constraints */
8. pick an attribute rep(eq) in eq

such that rep(eq) ∈ Y if eq ∩ Y is not empty;
9. substitute rep(eq) for each A ∈ eq, in ΣV ;
10. eq := eq ∩ Y ; /* keep only those attributes in Y */
11. Σc := RBR(ΣV , attr(Es)− Y); /* handling πY */

/* attr(Es) is the set of attributes in Es */
12. Σd := EQ2CFD(EQ); /* put domain constraints as CFDs */
13. return MinCover(Σc ∪ Σd);

Figure 2: Algorithm PropCFD SPC

The result is first established in [12] for FDs. The proof
of Proposition 4.4 is an extension of its counterpart in [12].

This yields a procedure for computing a propagation cover
of Σ via πY (R), also denoted by RBR. The idea is to repeat-
edly “drop” attributes in U −Y , shortcutting all CFDs that
involve attributes in U − Y . The procedure takes as input
Σ and πY (R), and returns RBR(Σ, U − Y) as the output.

We shall also need the following lemma.

Lemma 4.5: If for any source instance D where D |= Σ,
V (D) is empty, then RV (A → A, (‖ a)) and RV (A →
A, (‖ b)) are in CFDp(Σ, V), for any attribute A in RV

and any distinct values a, b ∈ dom(A). 2

This essentially assures that the view is always empty (re-
call the emptiness problem from Section 3.3): no tuple t in
the view can possibly satisfy the CFDs, which require t[A]
to take distinct a and b as its value. As a result any CFD

on the view can be derived from these “inconsistent” CFDs.

4.3 An Algorithm for Computing Minimal Covers

We now present algorithm PropCFD SPC, shown in Fig. 2.
The algorithm first processes selection σF (line 2), ex-

tracting equivalence classes EQ via procedure ComputeEQ
described earlier (not shown). If inconsistency is discovered,
it returns a pair of “conflicting” view CFDs that assure the
view to be always empty (lines 3-4), by Lemma 4.5. It then
processes the Cartesian product, and gets a set ΣV of CFDs

via renaming as described above (lines 5-6). It applies the
domain constraints of EQ to ΣV (line 9), by designating an
attribute rep(eq) for each equivalence class eq in EQ (line 8),
which is used uniformly wherever attributes in eq appear in
CFDs of ΣV . It also removes attributes in eq that are not in
the projection list Y (line 10), since these attributes do not
contribute to view CFDs. Next, it handles the projection πY ,
by invoking procedure RBR (line 11), and converts domain
constraints of EQ to CFDs via procedure EQ2CFD (line 12).
Finally, it returns a minimal cover of the results returned
by these procedures, by invoking procedure MinCover of [8].
This yields a minimal propagation cover of V via Σ (line 13).

Procedure RBR of Fig. 3 implements the RBR method: for
each A ∈ U − Y , it computes an A-resolvent (lines 4-8) and
Drop(Σ, A) (lines 4-11). Only nontrivial CFDs are included
(line 8). By dropping all attributes in U − Y , it obtains
RBR(Σ, U − Y), a cover of Σ and πY by Proposition 4.4.

Procedure EQ2CFD of Fig. 4 converts domain constraints

Input: An attribute set X = U − Y , and a set Σ of CFDs on U .
Output: A cover Γ of Σ+[Y].

1. let Γ := Σ;
2. while X is not empty do {
3. pick A ∈ X; X :=X − {A}; C := ∅;
4. for each CFD (W → A, t1) ∈ Γ do
5. for each CFD (AZ → B, t2) ∈ Γ do
6. if t1[A] ¹ t2[A] and t1[W]⊕ t2[Z] is well defined
7. then φ := RV (WZ → B, (t1[W]⊕ t2[Z] ‖ t2[B]));
8. if φ is not trivial then C:=C ∪ {φ};
9. for each CFD ϕ ∈ Γ do
10. if A occurs in ϕ then Γ :=Γ− {ϕ};
11. Γ :=Γ ∪ C;}
12. return Γ.

Figure 3: Procedure RBR

Input: A set EQ of attribute equivalence classes.
Output: A set Σd of CFDs expressing EQ.

1. Σd := ∅;
2. for each attribute equivalence class eq ∈ EQ do
3. if key(eq) is a constant then
4. for each attribute A ∈ eq
5. Σd :=Σd ∪ {RV (A → A, (‖ key(eq)))};
6. if key(eq)=‘ ’ then
7. for each A, B ∈ eq do
8. Σd :=Σd ∪ {RV (A → B, (x ‖ x))};
9. return Σd;

Figure 4: Algorithm EQ2CFD

enforced by EQ to equivalent CFDs (lines 2-8), by Lemma
4.2. For each eq in EQ, it leverages the constant key(eq)
whenever it is available (lines 4-5). When it is not available,
it uses the special variable x in the CFDs (lines 6-8).

Example 4.3: Consider sources R1(B
′
1, B2), R2(A1, A2, A),

R3(A
′, A′2, B1, B), and view V = πY (σF (R1 × R2 × R3)),

where Y = {B1, B2, B
′
1, A1, A2, B}, and F is (B1 = B′

1 and
A = A′ and A2 = A′2). Consider Σ consisting of ψ1 =
R2([A1, A2] → A, t1) and ψ2 = R3([A

′, A2, B1] → B, t2),
for t1, t2 given in Example 4.2.

Applying algorithm PropCFD SPC to Σ and V , after
step 10, EQ consists of {{B1, B

′
1}, {B2}, {A1}, {A2}, {B}},

and ΣV consists of φ1, φ2 of Example 4.2. As also given
there, procedure RBR returns φ of Example 4.2. Procedure
EQ2CFD returns φ′ = R(B1 → B′

1, (x ‖ x)), where R is the
view schema with attributes in Y . Then the cover returned
by the algorithm consists of φ and φ′. 2

Analysis. For the correctness of the algorithm, we show
that for each φ in CFDp(Σ, V), Γ |= φ, and vice versa, where
Γ is the output of the algorithm. For both directions the
proof leverages the lemmas and propositions given above.

For the complexity, let V = πY (σF (Ec)). Then |Y |≤|Ec|
and |F | ≤ (|Ec|2 + |Ec|). We have the following. (a) Pro-
cedure ComputeEQ takes O(|Ec|4 ∗ |Σ|) time. (b) EQ2CFD
is in O(|Y |3) time. (c) Procedure RBR has the same com-
plexity as its counterpart in [12]: O(|Ec|2 ∗ a3), where a is
an upper bound for the cardinality of Γ during the execu-
tion of RBR [12]. (d) The rest of the computation takes
at most O(|Σ|3 + a3 + |Ec|2) time. Since a is no less than
|Ec| ∗ |Σ|, RBR takes at least O(|Ec|5 ∗ |Σ|3) time. Putting
these together, clearly the cost of RBR dominates. That is,
the complexity of PropCFD SPC is the same as the bound on
the algorithm of [12]. Note that both Σ and V are defined
at the schema level (it has nothing to do with the instances

398

of source databases), and are often small in practice.
A number of practical cases are identified by [12], where

RBR is in polynomial time. In all these cases, PropCFD SPC
also behaves polynomially.

We use minimal cover as an optimization technique. First,
Σ is “simplified” by invoking MinCover(Σ) (line 1 of Fig. 2),
removing redundant source CFDs. Second (not shown), in
procedure RBR, to reduce the size of intermediate Γ dur-
ing the computation, one can change line 11 of Fig. 3 to
“Γ := MinCover(Γ ∪ C)”. In our implementation, we par-
tition Γ into Γ1, . . . , Γk, each of a fixed size k0, and invoke
MinCover(Γi). This removes redundant CFDs from Γ, to an
extent, without increasing the worst-case complexity since
it takes O(|Γ| ∗ k2

0) time to conduct.
As another optimization technique, one may simplify or

better still, minimize input SPC views. This works, but only
to an extent: the minimization problem for SPC queries is
intractable (see, e.g., [1] for a detailed discussion).

5. Experimental Study
In this section, we present an experimental study of al-

gorithm PropCFD SPC for computing minimal propagation
covers of CFDs via an SPC view. We investigate the effects
of the number of source CFDs and the complexity of SPC

views on the performance of PropCFD SPC. We also eval-
uate the impacts of these factors on the cardinality of the
minimal propagation covers computed by PropCFD SPC.

Experimental Setting. We designed two generators to
produce CFDs and SPC views, on which our experiments are
based. We considered source relational schemasR consisting
of at least 10 relations, each with 10 to 20 attributes.

(a) CFD generator. Given a relational schema R and two
natural numbers m and n, the CFD generator randomly pro-
duces a set Σ consisting of m source CFDs defined onR, such
that the average number of CFDs on each relation in R is n.
The generator also takes another two parameters LHS and
var% as input: LHS is the maximum number of attributes
in each CFD generated, and var% is the percentage of the
attributes which are filled with ‘ ’ in the pattern tuple, while
the rest of the attributes draw random values from their cor-
responding domains. Note that LHS and var% indicate how
complex the CFDs are. The experiments were conducted on
various Σ’s ranging from 200 to 2000 CFDs, with LHS from
3 to 9 and var% from 40% to 50%.

(b) SPC view generator. Given a source schema R and three
numbers |Y |, |F | and |Ec|, the view generator randomly
produces an SPC view πY (σF (Ec)) defined on R such that
the set Y consists of |Y | projection attributes, the selection
condition F is a conjunction of |F | domain constraints of
the form A = B and A = ‘a’, and Ec is the Cartesian
product of |Ec| relations. Here each constant a is randomly
picked from a fixed range [1, 100000] such that the domain
constraints may interact with each other. The complexity
of an SPC view is determined by Y , F and Ec. In the
experiments we considered |Y | ranging from 5 to 50, |F |
from 1 to 10, and |Ec| from 2 to 11.

The algorithm was implemented in Java. The experiments
were run on a machine with a 3.00GHz Intel(R) Pentium(R)
D processor and 1GB of memory. For each experiment, we
randomly generated 10 sets of source CFDs (resp. SPC views)
with fixed parameters, and ran the experiments 5 times on

each of the datasets. The average is reported here.

Experimental results. We conducted two sets of experi-
ments: one focused on the scalability of the algorithm and
the cardinality of minimal propagation covers w.r.t. vari-
ous source CFDs, while the other evaluated these w.r.t. the
complexity of SPC views.

Varying CFDs on the Source. To evaluate the impact of
source CFDs on the performance of PropCFD SPC, we fixed
|Y | = 25, |F | = 10, |Ec| = 4, and varied the set Σ of source
CFDs. More specifically, we considered Σ with |Σ| ranging
from 200 to 2000, w.r.t. var% = 40% and var% = 50%, while
the number of attributes in each CFD ranged from 3 to 9
(LHS = 9). The running time and the cardinality of minimal
propagation covers are reported in Fig. 5.

Figure 5(a) shows that PropCFD SPC scales well with |Σ|
and is rather efficient: it took less than 7 seconds for |Σ| =
2000. Further, the algorithm is not very sensitive to (var%,
LHS): the results for various (var%, LHS) are quite con-
sistent. As we will see, however, when Y also varies, the
algorithm is sensitive to Y and (var%, LHS) taken together.

Figure 5(b) tells us that the more source CFDs are given,
the larger the minimal propagation cover found by the al-
gorithm is, as expected. It is interesting to note that the
cardinality of the minimal propagation cover is even smaller
than the number |Σ| of the source CFDs. This confirms the
observation of [12]: (minimal) propagation covers are typ-
ically much smaller than an exponential of the input size,
and thus there is no need to pay the price of the exponential
complexity of the closure-based methods to compute covers.

Varying the complexity of SPC views. In the second set
of experiments, we evaluated the performance of algorithm
PropCFD SPC w.r.t. each of the following parameters of SPC

views πY (σF (Ec)): the set Y of projection attributes, the
selection condition F , and the Cartesian product Ec. In each
of the experiments, we considered sets Σ of source CFDs with
|Σ| = 2000, w.r.t. var% = 40% and var% = 50%, while the
number of attributes in each CFD ranged from 3 to 9.

(a) We first evaluated the scalability of PropCFD SPC with
Y : fixing |F | = 10 and |Ec| = 4, we varied |Y | from 5 to
50. The results are reported in Fig. 6(a), which shows that
the algorithm is very sensitive to |Y |. On one hand, the
larger |Y |, the smaller |U −Y |, where U is the total number
of attributes in Ec (which is determined by |Ec| and the
arities of the relations in the source schema R). Note that
the outer loop of procedure RBR is dominated by |U − Y |:
the larger |U − Y | is, the more iterations RBR performs.
On the other hand, the larger |Y | is, the more source CFDs

are propagated to the view, which has bigger impact on the
performance of RBR. As a combination of the above two
factors, the running time of PropCFD SPC does not increase
much when |Y | ranges from 5 to 30. However, the running
time increases rather rapidly when |Y | is beyond 30. The
good news is that even when |Y | is 50 (with |Σ| = 2000),
the algorithm took no more than 80 seconds.

Further, Figure 6(a) shows that when |Y | < 30, differ-
ent settings of var% do not make much difference. How-
ever, when |Y | ≥ 30, their impact on the performance of
PropCFD SPC becomes more obvious. This is because con-
stants may block the transitivity (and thus propagation)
of CFDs in procedure RBR (lines 4-8 of Fig. 3); thus more
CFDs are propagated to the view when there are less con-

399

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

tim
e

(s
ec

.)

The number of source CFDs

var%=40%
var%=50%

(a) Scalability w.r.t. the number of source CFDs

 0

 500

 1000

 1500

 2000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 C

FD
s

View CFDs vs. source CFDs

View CFDs (var%=40%)
View CFDs (var%=50%)

Source CFDs

(b) The cardinality of minimal propagation cover

Figure 5: Varying source CFDs

stants (larger var%). When |Y | is small, the impact is not
obvious since only a small number of CFDs are propagated
to the view. Note that Figures 6(a) and 5(a) are consistent:
in the experiments for Fig. 5(a), |Y | was fixed to be 25.

Figure 6(b) shows that when |Y | or var% gets larger, more
source CFDs are propagated to the view, as expected. Again
it confirms that the minimal covers found are smaller than
the source CFDs even when |Y | reached 50.

(b) We next evaluated the scalability of PropCFD SPC with
the selection condition F of SPC views. We fixed |Y | =
25 and |Ec| = 4, and varied |F | from 1 to 10. The results
are reported in Fig. 7. Figure 7(a) shows that when |F |
increases, the running time decreases. This is because F
introduces domain constraints, which interact with source
CFDs, and may either make those CFDs trivial, or combine
multiple CFDs into one (see line 9 of Fig. 2). As a result,
the larger |F | is, the smaller the set ΣV is, which is passed
to procedure RBR (lines 10-11 of Fig. 2). This leads to
the decrease in the running time of RBR, and in turn, the
decrease in the running time of PropCFD SPC. This is rather
consistent for the two settings of var%.

Figure 7(b) shows the cardinality of minimal propagation
covers w.r.t. various |F |. The cardinality went up and then
down. This is because when |F | increases, to an extent (less
than 4 for var% = 40% or 5 for var% = 50%, Fig. 7(b)),
more domain constraints are propagated to the view. How-
ever, when |F | gets larger, the interaction between domain
constraints and CFDs takes a lager toll and as a result, fewer
source CFDs are propagated to the view, for the reason given
above. This leads to the decrease in the cardinality of the
minimal covers when |F | is large. Figure 7(b) also confirms
that when var% gets larger, more source CFDs are propa-
gated to the view, which is consistent with Fig. 6(b).

(c) Finally, we evaluated the impact of Ec on the perfor-
mance of PropCFD SPC. Fixing |F | = 10 and |Y | = 25, we
varied |Ec| from 2 to 11. The results are reported in Fig. 8.

Figure 8(a) shows that when |Ec| gets larger, the algo-
rithm takes less time. This is because when Y , F and
Σ are fixed, increasing |Ec| leads to more CFDs to be
dropped from the minimal propagation cover, for involv-
ing attributes not in Y . Further, when |Ec| gets larger,
i.e., when the total number of attributes involved gets larger,
F is less effective in identifying attributes in Y and those
not in F . As an example, consider two views defined
on the same source: V1 = πAB(σC=D(R1(ABCD))), and
V2 = πAE(σC=H(R1(ABCD) × R2(EGHL))), while the
set Σ consists of source CFDs R1(A → B, (‖)) and
R2(E → L, (‖)). Let V1, V2 also denote the view schema

of V1, V2, respectively. Then a minimal cover of the CFDs

propagated via V1 consists of V1(A → B, (‖)) whereas
no nontrivial CFDs are propagated to the view via V2.

Figure 8(a) also shows that when |Ec| ≥ 6, the algorithm
is insensitive to Ec, because most of the sources CFDs are
dropped, i.e., not propagated to the view (as |Σ| is fixed).

For the same reason, when |Ec| gets larger, the minimal
propagation covers get smaller, as shown in Fig. 8(b). How-
ever, different from Fig. 6(b) and Fig. 7(b), the number of
CFDs propagated in this case is insensitive to different set-
tings of var%. This is because the effect of |Ec| outweighs
that of var% in this experiment.

Summary. We have presented several results from our ex-
perimental study of algorithm PropCFD SPC. From the re-
sults we find the following. First, the algorithm is quite
efficient; for example, it took less than 80 seconds when
|Σ| = 2000, |Y | = 50, |F | = 10 and |Ec| = 4. Second,
it scales well with the input set Σ of source CFDs, the se-
lection condition F and the number of relations involved
in Cartesian product Ec in the input SPC views. In con-
trast, the cost increases rapidly when the set Y of projec-
tion attributes gets large. Nonetheless, as remarked above,
the cost is not unbearable: when |Y | = 50 the algorithm
still performed reasonably well. Third, we note that mini-
mal propagation covers found by the algorithm are typically
small, often smaller than the input set Σ of source CFDs.
Finally, while the algorithm is quite sensitive to Y , it is less
sensitive to the other complexity factors F and Ec of SPC

views. Further, the complexity factors (var%, LHS) of source
CFDs do not have significant impact on the performance of
the algorithm when the size of Y is less than 30.

6. Related Work
To our knowledge, no previous work has considered (a)

CFD propagation, (b) dependency propagation in the gen-
eral setting, FDs or CFDs, and (c) methods for computing
minimal propagation covers for SPC views, even for FDs.

Closest to the study of the CFD propagation problem are
[15, 16], which are the first to investigate dependency propa-
gation. The undecidability result for FD propagation via RA

views is shown in [15]. An extension of chase is given in [16],
for FDs and beyond, based on which the ptime complexity
of FD propagation via SPCU views is derived by [1]. Our
proofs of the results in Sections 3 further extend the chase
of [16], to accommodate CFDs. As remarked earlier, [15, 16,
1] assume the absence of finite-domain attributes. This work
extends [15, 16, 1] by providing complexity bounds for FD

propagation in the general setting, and for CFD propagation

400

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

(s
ec

.)

The size |Y|

var%=40%
var%=50%

(a) Scalability w.r.t. the size |Y |

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 v

ie
w

 C
FD

s

The size |Y|

var%=40%
var%=50%

(b) The number of CFDs propagated

Figure 6: Varying the number of projection attributes in Y in SPC views

 6

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
ec

.)

The size |F|

var%=40%
var%=50%

(a) Scalability w.r.t. the size |F |

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

1 2 3 4 5 6 7 8 9 10
N

um
be

r
of

 v
ie

w
 C

FD
s

The size |F|

var%=40%
var%=50%

(b) The number of CFDs propagated

Figure 7: Varying the selection condition F in SPC views

 0

 5

 10

 15

 20

 25

 30

 35

2 3 4 5 6 7 8 9 10 11

R
un

tim
e

(s
ec

.)

The size |Ec|

var%=40%
var%=50%

(a) Scalability w.r.t. the size |Ec|

 0

 100

 200

 300

 400

 500

 600

2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 v

ie
w

 C
FD

s

The size |Ec|

var%=40%
var%=50%

(b) The number of CFDs propagated

Figure 8: Varying the number of relations in the Cartesian product Ec in SPC views

in the infinite-domain setting and in the general setting.
As remarked in Section 4, prior work on propagation cov-

ers has focused on FDs and projection views, in the absence
of finite-domain attributes [12, 23, 26]. The first algorithm
for computing covers without computing closures is proposed
by [12], based on the RBR method. Our algorithm of Sec-
tion 4 is inspired by [12], and also uses RBR to handle the
interaction between CFDs and the projection operator. This
work is the first that deals with selection, Cartesian product
and projection operators for computing propagation covers.

Dependency propagation has also been studied for other
models [6, 13, 21]. Propagation from xml keys to relational
FDs is studied in [6], and composition of views and a pow-
erful set of constraints is investigated for object-oriented
databases in [21]. The complexity bounds and techniques
developed there do not apply to CFD propagation. An ex-

tension of FDs, and their interaction with schema transfor-
mation operators (e.g., folding, unfolding) are considered
in [13]. Those extended FDs and transformation operators
are very different from CFDs and SPC views, respectively.

There has also been a host of work on satisfaction families
of dependencies, e.g., [7, 11, 14]. The focus is on the closure
problem for dependencies under views. It is to decide, given
a set Σ of dependencies and a view V , whether the set Γ
of dependencies propagated from Σ via V characterizes the
views, i.e., whether the set of databases that satisfy Γ is pre-
cisely the set of views V (D) where D |= Σ. It is shown [11]
that FDs are not closed under projection views. This work
provides another example for that FDs are not closed under
SPCU views: as shown in Section 1, FDs may be propagated
to CFDs but not to standard FDs. While CFDs are not closed
under SPC views either, the analysis of CFD propagation al-

401

lows us to preserve certain important semantics of the source
data that traditional FDs fail to capture.

The notion of CFDs is proposed in [8], which also studies
the implication and consistency problems for CFDs. The
propagation problem is not considered in [8].

A variety of extensions of classical dependencies have been
proposed, for specifying constraint databases [3, 4, 19, 20].
Constraints of [4, 19] cannot express CFDs. More expres-
sive are constraint-generating dependencies (cgds) of [3] and
constrained tuple-generating dependencies (ctgds) of [20],
both subsuming CFDs. A cgd is of the form ∀x̄(R1(x̄) ∧
. . . ∧ Rk(x̄) ∧ξ(x̄) → ξ′(x̄)), where Ri’s are relation atoms,
and ξ, ξ′ are arbitrary constraints that may carry constants.
A ctgd is of the form ∀x̄(R1(x̄) ∧ . . . ∧ Rk(x̄) ∧ ξ →
∃ȳ(R′1(x̄, ȳ)∧. . .∧R′s(x̄, ȳ)∧ξ′(x̄, ȳ))), subsuming both cinds

and tgds. The increased expressive power of cgds and
ctgds comes at the price of a higher complexity for reason-
ing about these dependencies. For example, the implication
problem for cgds is already conp-complete even when all
involved attributes have an infinite domain, while in con-
trast, its CFD counterpart is in quadratic time. Detailed
discussions about the connections between CFDs and these
extensions can be found in [8]. No previous work has studied
propagation analysis of these extensions via views.

There has also been recent work on specifying dependen-
cies for XML in terms of description logics [25, 24]. These
dependencies also allow constants (concepts). However, the
implication problem for such dependencies is undecidable,
and as a result, their propagation problem is also undecid-
able even for views defined as identity mappings.

7. Conclusion
This work is the first effort to study CFD propagation

via views. The novelty of the work consists in the follow-
ing: (a) a complete picture of complexity bounds on CFD

propagation, for source dependencies given as either FDs

or CFDs, and for views expressed in various fragments of
relational algebra; (b) the first complexity results on de-
pendency propagation when finite-domain attributes may
be present, a practical and important problem overlooked
by previous work; and (c) the first algorithm for computing
minimal propagation covers for CFDs via SPC views in the
absence of finite-domain attributes, without incurring more
complexity than its counterparts for FDs and P views. Our
experimental results have verified that the algorithm is effi-
cient. These results are not only of theoretical interest, but
also useful for data exchange, integration and cleaning.

A number of issues need further investigation. First, we
are currently experimenting with larger datasets and other
optimization techniques. Second, when finite-domain at-
tributes are taken into account, the propagation cover algo-
rithm should be generalized. Third, another interesting ex-
tension of the propagation cover algorithm is by supporting
union. Finally, like CFDs, an extension of inclusion depen-
dencies with conditions, referred to as cinds, has recently
been proposed [5]. It is interesting yet challenging to study
propagation of CFDs and cinds taken together.

Acknowledgments. Wenfei Fan is supported in part by
EPSRC GR/S63205/01, GR/T27433/01 and EP/E029213/1.

8. References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equiva-
lences among relational expressions. SIAM J. Comput.,
8(2):218–246, 1979.

[3] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-
Generating Dependencies. JCSS, 59(1):94–115, 1999.

[4] P. D. Bra and J. Paredaens. Conditional dependencies
for horizontal decompositions. In Colloquium on Au-
tomata, Languages and Programming, 1983.

[5] L. Bravo, W. Fan, and S. Ma. Extending dependencies
with conditions. In VLDB, 2007.

[6] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating
XML constraints to relations. In ICDE, 2003.

[7] R. Fagin. Horn clauses and database dependencies.
J. ACM, 29(4):952–985, 1982.

[8] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Con-
ditional functional dependencies for capturing data in-
consistencies. TODS, to appear.

[9] P. C. Fischer, J. H. Jou, and D.-M. Tsou. Succinctness
in dependency systems. TCS, 24:323–329, 1983.

[10] M. Garey and D. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, 1979.

[11] S. Ginsburg and S. Zaiddan. Properties of functional-
dependency families. J. ACM, 29(3):678–698, 1982.

[12] G. Gottlob. Computing covers for embedded functional
dependencies. In PODS, 1987.

[13] Q. He and T. Ling. Extending and inferring functional
dependencies in schema transformation. In CIKM, 2004.

[14] R. Hull. Non-finite specifiability of projections of func-
tional dependency families. TCS, 39:239–265, 1985.

[15] A. C. Klug. Calculating constraints on relational ex-
pressions. TODS, 5(3):260–290, 1980.

[16] A. C. Klug and R. Price. Determining view dependen-
cies using tableaux. TODS, 7(3):361–380, 1982.

[17] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS, 2005.

[18] M. Lenzerini. Data integration: A theoretical perspec-
tive. In PODS, 2002.

[19] M. J. Maher. Constrained dependencies. TCS,
173(1):113–149, 1997.

[20] M. J. Maher and D. Srivastava. Chasing Constrained
Tuple-Generating Dependencies. In PODS, 1996.

[21] L. Popa and V. Tannen. An equational chase for path-
conjunctive queries, constraints, and views. In ICDT,
1999.

[22] Y. Sagiv and M. Yannakakis. Equivalences among rela-
tional expressions with the union and difference opera-
tors. J. ACM, 27(4):633–655, 1980.

[23] A. Silberschatz and H. F. Korth. Database System Con-
cepts. McGraw-Hill, 1986.

[24] D. Toman and G. E. Weddell. On reasoning about
structural equality in XML: a description logic ap-
proach. TCS, 336(1):181–203, 2005.

[25] D. Toman and G. E. Weddell. On keys and functional
dependencies as first-class citizens in description logics.
In IJCAR, 2006.

[26] J. D. Ullman. Principles of Database Systems. Com-
puter Science Press, 1982.

402

APPENDIX: Proofs
Tableaux: A Brief Overview

Tableaux have proved useful in studying relational algebra
expressions. Below we briefly review the notion of tableaux
of [16], which allows multiple rows in the summary.

Consider a relational schemaR= (R1, . . . , Rm). A tableau
T defined on R is represented as (Sum, T1, . . . , Tm), where
for each i ∈ [1, m], Ti consists of a finite set of free tuples
over Ri(A1, . . . , Ak), and k = arity(Ri). For a free tuple t
= (a1, . . . , ak) ∈ Ti, aj is either a constant or a variable for
j ∈ [1, k]. If aj is a constant, then aj ∈ dom(Aj). If aj is a
variable, then aj ∈ Var, which is an infinite set of variables.
Here Sum is called the summary, which also consists of a
finite set of free tuples. For a free tuple s = (w1, . . . , wh) ∈
Sum, where h = arity(Sum), and for j ∈ [1, h], wj is a blank, a
constant, or a variable. The variables in Sum are also called
distinguished variables, and they must appear in some free
tuples from Ti (1 ≤ i ≤ m).

Intuitively, the tableau T represents a query, where Ti’s
specify a pattern, and the summary tuples represent the tu-
ples to be included in the answer to the query, i.e., those for
which the pattern specified by Ti’s is found in the database
(see, e.g., [1] for detailed discussions about tableau queries).
For a database instance D of R, we use T (D) to denote the
answer to query T in the database D.

For a tableau query T and a query Q in relational algebra,
both defined on the same relational schema R, we say that
T and Q are equivalent iff for any instance D of R, T (D) =
Q(D).

The following is known.

Theorem 1: For every SPC expression E, there exists a
tableau T such that E is equivalent to T [16]. 2

Note that for an SPC query, one can always find an equiva-
lent tableau query in which the summary consists of a single
row [16]. Using the translation rules of [22, 2], it is easy to
get the following corollary:

Corollary 2: Given an SPC expression E, there is a polyno-
mial time algorithm, which transforms E into an equivalent
tableau query. 2

Proof of Theorem 3.1

We show that in the absence of finite-domain attributes, the
dependency propagation problem from FDs to CFDs is
(a) in ptime for SPCU views, and
(b) undecidable for RA views.

(a) We first show that it is in ptime for SPCU views. We
develop an algorithm for checking propagation, via tableau
representations of given SPCU views and view CFDs, by ex-
tending the chase technique. We show that the algorithm
characterizes propagation and is in ptime.

More specifically, assume that the set of source dependen-
cies is Σ, the SPCU view V is e1 ∪ . . . ∪ ek, where ei is an
SPC expression for each i ∈ [1, k], and the view CFD on V
is ϕ. We show that Σ |=V ϕ can be determined in ptime.
We first show the ptime bound for k = 1, and then extend
the proof to k > 1.

(a.1) We prove that for k = 1, Σ |=V ϕ is in ptime, i.e.,
Σ |=V ϕ can be determined in ptime when V is an SPC

expression.

Bi1 . . . Big B
x1 . . . xg y1

x1 . . . xg y2

y1 = y2 ³ tp[B]

(a) Tϕ for ϕ = V (Bi1 . . . Big → B, tp)

Sum
B1 . . . Bn

vs1 . . . vsn

Ri(Ai1, . . . , Aini) for i ∈ [1, h]
Ai1 . . . Aini

vmi+1 . . . vmi+ni

vmi+ni+1 . . . vmi+2∗ni

...
vmi+pi∗ni+1 . . . vmi+(pi+1)∗ni

(b) TV for V (B1, . . . , Bn)

Ri(Ai1, . . . , Aini) for i ∈ [1, h]
Ai1 . . . Aini

ρ1(vmi+1) . . . ρ1(vmi+ni)
...

ρ1(vmi+pi∗ni+1) . . . ρ1(vmi+(p1+1)∗ni
)

ρ2(vmi+1) . . . ρ2(vmi+ni)
...

ρ2(vmi+pi∗ni+1) . . . ρ2(vmi+(pi+1)∗ni
)

(c) Instance I

/* Here mi = Σi−1
j=1(pj−1 + 1) ∗ nj−1 in (b) and (c) */

Figure 9: Tableau Representations

To do this, we first give tableau representations of the view
FD and the SPC view. We also construct a representation
of an source instance, in which tuples contain variables. We
then present an extension of Chase defined on this instance.
Finally, we show that the Chase process is actually a ptime
algorithm for testing propagation, i.e., Σ |=V ϕ iff the chase
process terminates on the instance and moreover, it either
yields an empty view or leads to a view that satisfies the
view dependency ϕ. Further, the chase process is in ptime.

Assume that the view V (B1, . . . , Bn) be de-
fined on h source relations: R1(A11, . . . , A1n1), . . .,
Rh(Ah1, . . . , Ahnh). Let the view dependency CFD ϕ be
V (Bi1 . . . Big → B, tp). Their corresponding tableau rep-
resentations Tϕ and TV are shown in Fig. 9. In tableau Tϕ,
if tp[Bij] (j ∈ [1, g]) is a constant, then xj = tp[Bij]. Oth-
erwise, xj is a new variable distinct from xl for l ∈ [1, j−1].
Further, y1 and y2 are two new variables distinct from xj

(j ∈ [1, g]). In tableau TV , for each j ∈ [1, n], vsj appearing
in Sum is a blank, a constant, or some variable appearing
in the free tuples for Ri (i ∈ [1, h]).

Note that the CFD ϕ is defined on the view, and thus B
and each Bij of Tϕ are attributes in {B1, . . . , Bn} of the
summary tuple of TV , for each j ∈ [1, g].

In order to test whether ϕ holds on V or not, it suffices
to check whether there exist two tuples t1, t2 ∈ V such that
either t1[B] 6= t2[B] or t1[B] 6³ tp[B] while t1[Bi1 . . . Big] =
t2[Bi1 . . . Big] ³ tp[Bi1 . . . Big]. To check the existence of

403

t1, t2 in V , we construct tuples in source relations shown in
Fig. 9, along with two mappings ρ1 and ρ2 from constants
and variables of TV to those of Tϕ, such that if t1, t2 exist,
then t1 is generated by V applied to those source tuples
given by ρ1, and t2 is generated by V and ρ2.

Intuitively, ρ1 and ρ2 aim to map the summary tuple
(vs1, . . . , vsn) of TV to (x1, . . . , xk, y1) and (x1, . . . , xk, y2)
of Tϕ respectively. We define ρ1 and ρ2 based on the cor-
respondences between the attributes in TV and those in Tϕ

(i.e., vsi and xl), as follows. We start with the definition of
ρ1.

Case 1. When Bj = Bil for some 1 ≤ j ≤ n and 1 ≤
l ≤ g, i.e., the attribute Bil in Tϕ corresponds to Bj in the
summary of TV , vsj should be mapped to xl. We define ρ1 as
follows. (a) If vsj is a variable, then let ρ1(vsj) = xl. (b) If
both vsj and xl are the same constant, then let ρ1(vsj) =
vsj . (c) If both vsj and xl are constants but vsj 6= xl, then
ρ1(vsj) is undefined.

Case 2. When Bj = B for some 1 ≤ j ≤ n, vsj should be
mapped to y1. More specifically, (a) if vsj is a variable, then
let ρ1(vsj) = y1. (b) If vsj is a constant and vsj ³ tp[B],
then let ρ1(vsj) = vsj . Otherwise, let ρ1(vsj) be undefined.

Case 3. Otherwise, Bj does not correspond to any attribute
in Tϕ. Then we let ρ1(vj) = vj . We also let ρ1(vj) = vj for
n ≤ j ≤ (mh + (ph + 1) ∗ nh).

Similarly, we define the mapping ρ2 to map the summary
tuple (vs1, . . . , vsn) of TV to (x1, . . . , xk, y2) of Tϕ. Again,
we consider three cases.

Cases 1 and 2. Here ρ2 is defined along the same lines as
ρ1.

Case 3. For each constant vj in TV that is not covered by
Case 1 or 2, where 1 ≤ j ≤ (mh + (ph + 1) ∗ nh), let ρ2(vj)
= vj .

Case 4. For all those variables vj1 , vj2 in TV that are not
covered by Case 1 or 2, where 1 ≤ j1, j2 ≤ (mh + (ph + 1) ∗
nh), we define ρ2 such that
◦ ρ2(vj1) 6= vj1 , ρ2(vj2) 6= vj2 ;
◦ ρ2(vj1) 6= ρ2(vj2) if vj1 6= vj2 ;
◦ there does not exist any variable vj in TV such that

ρ2(vj1) = vj or ρ2(vj2) = vj .
That is, ρ2 uses variables different from ρ1 in this case. It
is easy to see that such ρ2 exists.

If there exists a constant vj in TV such that ρ1(vj) (resp.
ρ2(vj)) is undefined, we say ρ1 (resp. ρ2) is undefined. If
ρ1 or ρ2 is undefined, it is easy to verify that no tuples in
V match the LHS of ϕ. From this it follows that Σ |=V ϕ.
If both ρ1 and ρ2 are well defined, we create an instance I
of the source relation schemas (R1, . . . , Rh), such that the
instance Ii of Ri is ρ1(TV .Ri) ∪ ρ2(TV .Ri) (shown in Fig. 9
(c)) for i ∈ [1, h].

Chase. Next, we show how to check whether Σ |=V ϕ by
performing Chase on the instance I. Without loss of gener-
ality, assume a total order ≤ on the variables in I.

Consider an FD φ = Ri(X → Y) in Σ, where 1 ≤ i ≤ h.
We define the chase of I by φ, denoted by Chaseφ, as follows.
For any tuples t, t′ ∈ Ii of I, if t[X] = t′[X] and t[A] 6= t′[A]
for some A ∈ Y , then Chaseφ applies φ to I as follows. (a) If
both t[A] and t′[A] are variables, then let t[A] = t′[A] if
t′[A] ≤ t[A]. Otherwise, let t′[A] = t[A]. (b) If t[A] is a
constant and t′[A] is a variable, then let t′[A] = t[A]. (c) If
t[A] is a variable and t′[A] is a constant, then let t[A] = t′[A].

(d) If both t[A] and t′[A] are (distinct) constants, Chaseφ is
undefined.
Here by t[A] = t′[A] (resp. t′[A] = t[A]) means replacing
each appearance of t[A] (resp. t′[A]) in I with t′[A] (resp.
t[A]).

This process repeats for all FDs in Σ until one of the fol-
lowing cases happens: (1) no further changes can be incurred
to I, (2) the Chase process is undefined, or (3) y1 and y2 are
identified during the process.

Observe that Chase process must terminate. Indeed, there
are at most 2 ∗ (mh + (ph + 1) ∗ nh) variables in I. Let |I|
= 2 ∗ (mh + (ph + 1) ∗ nh), then there are at most O(|I|2)
value assignments, and each can be done in O(|Σ||I|2) time.
From this, it follows that the Chase process is in O(|Σ||T |4)
time.

We next show that the chase process suffices to determine
whether or not Σ |=V ϕ. Consider the following cases. If the
Chase process is undefined, then the view V must be empty.
As a result, obviously Σ |=V ϕ. If the chase terminates due
to y1 = y2, then Σ |=V ϕ since for any two tuples t1, t2 ∈
V , we have that t1[B] = t2[B] ³ tp[B], if t1[Bi1 . . . Big] =
t2[Bi1 . . . Big] ³ tp[Bi1 . . . Big]. Otherwise, the chase of I by
FDs yields a counterexample for the propagation, and thus
Σ 6|=V ϕ.

From these it follows that the Chase process is a ptime
algorithm that determines whether Σ |=V ϕ, when V is an
SPC expression.

(a.2) We next prove that for k > 1, Σ |=V ϕ can also be
determined in ptime.

When V is e1 ∪ . . . ∪ ek, V can be represented as a set of
tableaux T = (T1, . . . , Tk), where Ti is the tableau represen-
tation of SPC expression ei for i ∈ [1, k]. Here to construct
source relations such that there exists a pair of view tuples
t1 and t2 in V that serves as a counterexample for Σ |=V ϕ,
we have to consider t1 and t2 generated by any two of the
k SPC expressions, namely, t1 may be generated via ei and
t2 may be produced by ej while i and j are not necessarily
the same. In total, there are k2 combinations of the SPC ex-
pressions, and the checking needs to be performed on each
of these combination. The Chase given above for k = 1 can
be easily extended to check each combination. From these
it follows that there is a ptime algorithm to check whether
Σ |=V ϕ.

(b) The undecidability follows from its counterpart for FDs

(see [1]), since CFDs subsume FDs. 2

Proof of Theorem 3.2

We show that in the general setting, the dependency prop-
agation problem from FDs to FDs is conp-complete for SC

views.
We first present an np algorithm that, given source FDs Σ,

a view FD ϕ and an SC view V , decides whether Σ 6|=V ϕ or
not. The algorithm is based on tableaux and instance con-
structed in the same way as in the proof of Theorem 3.1. The
difference here is that we have to deal with variables that are
associated with finite domain attributes, such that all those
variables are instantiated with constants from their corre-
sponding finite domains. There are exponentially many such
instantiations that need to be checked. To cope with this,
we first guess an instantiation, and then check, w.r.t. this
instantiation, whether or not Σ 6|=V ϕ. The latter can be
done in polynomial time by using the ptime algorithm given

404

in the proof of Theorem 3.1. Note that Σ 6|=V ϕ if and only
if there exists an instantiation such that Σ 6|=V ϕ w.r.t. the
instantiation. From this it follows that this problem is in
conp.

The lower bound is shown by reduction from 3SAT to the
complement of the propagation problem (i.e., the problem
to decide whether Σ 6|=V ϕ), where 3SAT is np-complete
(cf. [10]). More specifically, consider an instance φ = C1 ∧
· · ·∧Cn of 3SAT, where all the variables in φ are x1, . . . , xm,
Cj is of the form yk1 ∨yk2 ∨yk3 , and moreover, for i ∈ [1, 3],
yki is either xpki or xpki , for pki ∈ [1, m]. We shall construct
a database schema R = (R0, R1, . . . , Rn), a set Σ of FDs on
R, a view V defined by an SC expression, and a FD ϕ on V .
Then we show that φ is satisfiable if and only if Σ 6|=V ϕ.

Let the schema of R0 be (X, A, Z), where Dom(X) =
{1, . . . , m, . . .} (e.g., int), Dom(A) = Dom(Z) = {0, 1}, i.e.,
A and Z are finite domain attributes. Moreover, an FD ϕ0

= R0(X → A) is defined on R0. Intuitively, for each tuple
t ∈ R0, t[X], t[A] and t[Z] encode a variable, its correspond-
ing truth assignment, and the truth value of φ, respectively.
The FD ϕ0 guarantees that each variable has a unique truth
assignment.

Let the schema of Ri be (A1, A2, X
i, Ai) for i ∈ [1, n],

where Dom(A1) = Dom(A2) = Dom(Ai) = {0, 1}, and
Dom(Xi) = {1, . . . , m, . . .} (e.g., int), i.e., A1, A2 and A
are finite domain attributes. Moreover, we define two FDs

ϕi1 = Ri(A1, A2 → XiAi), and ϕi2 = Ri(X
i → Ai) on Ri.

Intuitively, for each tuple t ∈ Ri, t[Xi] and t[Ai] is to encode
a variable and its corresponding truth assignment that make
the clause Ci true. Here A1 and A2 serve as a “counter” to
assure that there are three variables that could satisfy Ci

(note that while A1 and A2 encode numbers from 0 to 3,
one of these is redundant as Ci is defined in terms of 3 liter-
als). The FD ϕi1 assures that A1 and A2 are used as a “key”
such that only variables in Ci and their appropriate truth
assignments are considered. Again, the FD ϕi2 assures that
each variable has a unique truth assignment.

Let the set Σ of source FDs be {ϕ0, ϕ11 , ϕ12 , . . . , ϕn1 ,
ϕn2}.

We next define the SC expression V to be e× e01 × e02 ×
e1 × . . .× en, where
◦ e = R0,
◦ e01 = σX=1(R0)× . . .× σX=m(R0),
◦ e02 = σR0.X=R1.X1∧R0.A=R1.A1(R0 ×R1)× . . .×

σR0.X=Rn.Xn∧R0.A=Rn.An(R0 ×Rn), and
◦ for j ∈ [1, n], ej = σXj=pk1∧Aj=a1∧A1=0∧A2=0(Rj)
×σXj=pk2∧Aj=a2∧A1=0∧A2=1(Rj)
×σXj=pk3∧Aj=a3∧A1=1∧A2=0(Rj)
×σXj=pk1∧Aj=a1∧A1=1∧A2=1(Rj),
such that for i ∈ {1, 2, 3}, ai = 1 if yki = xpki and ai

= 0 if yki = xpki .
Intuitively, (a) the subexpression e01 assures that R0 con-
tains a truth assignment for all variables of φ, i.e., x1, . . .,
xm appear in e01 ; (b) e02 is to assure that the truth as-
signments of variables in R0 and the truth assignments of
variables in Rj are consistent, for j ∈ [1, n]; and (c) for
each j ∈ [1, n], ej encodes the clause Cj : it enumerates all
the truth assignments that make Cj true (note that when
A1 = 1 and A2 = 1, the truth assignment is redundant: it
repeats the assignment when A1 = 0 and A2 = 0).

Based on the definition of V and Σ, it is easy to verify the
following: for any instance I of (R0, R1, . . . , Rn), if V (I)
is not empty then the instance of R0 in I contains a truth

assignment that makes φ true.
Finally, we define ϕ to be V (X, A → Z), where attributes

X, A, Z come from the subexpression e.
Now we verify that φ is satisfiable if and only if the view

FD ϕ is not propagated from the source FDs Σ via V .
Suppose that Σ 6|=V ϕ. Then there exists an instance I

such that I |= Σ, while V (I) 6|= ϕ. Since V (I) 6|= ϕ, we have
that V (I) is not empty. As remarked earlier, the instance
of R0 in I contains a truth assignment that makes φ true.
Thus φ is satisfiable.

Conversely, if φ is satisfiable, then there is a truth as-
signment ξ that makes φ true. We construct an instance I
of (R0, R1, . . . , Rn) such that I |= Σ but V (I) 6|= ϕ. Let
the instance of R0 in I consist of 2m tuples {t1, . . . , t2m}.
For each i ∈ [1, . . . , m], let (a) ti[X] = i, ti[A] = ξ(xi)
and ti[Z] = 0; and (b) tm+i[X] = i, tm+i[A] = ξ(xi) and
tm+i[Z] = 1. That is, ti and tm+i agree on their X and A
attributes, i.e., they encode the same truth assignment for
Xi; however, they differ in their Z attributes. For j ∈ [1, n],
let the instance of Rj in I contain exactly four tuples as
specified by ej , which are all true assignments that make Cj

true only. It is easy to verify that I |= Σ and V (I) 6|= ϕ.
From this it follows that ϕ is not propagated from Σ via V .

Therefore, the problem is conp-complete. 2

Proof of Theorem 3.3

We show that in the general setting, the dependency prop-
agation problem from FDs to CFDs is
(a) in ptime for PC views,
(b) in ptime for SP views,
(c) conp-complete for SC views,
(d) conp-complete for SPCU views,
(e) undecidable for RA views.

(a) We develop a ptime algorithm that, given source FDs

Σ, a view CFD ϕ and an PC view V , checks whether
Σ |=V ϕ or not. In fact the ptime algorithm given in
the proof of Theorem 3.1 suffices here. To see this, as-
sume that V is πB1,...,Bm(R1 × . . . × Rn), and that ϕ is
V (Bi1 . . . Big → B, tp), where Bij , B ∈ {B1, . . . , Bm} for
j ∈ [1, g]. It is easy to verify that if Σ |=V ϕ, all of
Bi1 . . . Big and B must be attributes of the same relation
Ri (1 ≤ i ≤ n). Therefore, without loss of generality, we
assume that there is only one relation R involved in the PC

view V . We construct an instance I as in the proof of The-
orem 3.1. In this case, I only need to contain two tuples of
R. As a result, the instantiations of finite domain variables
are not necessary because each domain has at least two ele-
ments: we can simply construct the two tuples with distinct
values whenever necessary, regardless of what values they
are. Then the algorithm given in the proof of Theorem 3.1
suffices to determine whether or not Σ |=V ϕ.

(b) Similar to the proof of (a), one can verify that the al-
gorithm given in the proof of Theorem 3.1 suffices to deter-
mine whether Σ |=V ϕ or not in this case. Indeed, when V
is defined as an SP expression, only one source relation is
involved in V . Then the argument for (a) suffices to show
that the algorithm in the proof of Theorem 3.1 is a ptime
algorithm for determining the propagation in this case.

(c, d) We first show the dependency propagation problem
from FDs to CFDs is in conp for SPCU views. Then we show
the dependency propagation problem from FDs to CFDs is

405

in conp-hard for SC views.
The conp upper bound is verified by giving an np algo-

rithm for deciding Σ 6|=V ϕ for any given source FDs Σ, view
CFD ϕ and SPCU view V . The proof is similar to that of
Theorem 3.2. The only difference here is that we represent
the CFD as a tableau, instead of an FD. Again we have deal
with variables associated with finite domain attributes, such
that all those variables are instantiated with constants from
their corresponding finite domains. There are exponentially
many such instantiations that need to be checked. To cope
with this, we first guess an instantiation, and then check,
w.r.t. this instantiation, whether or not Σ 6|=V ϕ. The latter
can be done in polynomial time by using the ptime algo-
rithm given in the proof of Theorem 3.1. Note that Σ 6|=V ϕ
if and only if there exists an instantiation such that Σ 6|=V ϕ
w.r.t. the instantiation. From this it follows that this prob-
lem is in conp.

The conp lower bound follows from the proof of Theo-
rem 3.2 for SC views, since CFDs subsume FDs.

(e) The undecidability follows from Theorem 3.1, since the
general setting subsumes the infinite-domain setting. 2

Proof of Theorem 3.5

We next show that in the absence of finite-domain at-
tributes, the dependency propagation problem from CFDs

to CFDs is
(a) in ptime for SPCU views, and
(b) undecidable for RA views.

(a) The ptime bound is again verified by developing a poly-
nomial time checking algorithm. The algorithm is similar to
that given in the proof of Theorem 3.1. The only difference
here is that a minor extension of the chase rules is used here
to cope with CFDs instead of FDs.

(b) The undecidability follows from Theorem 3.1, since FDs

are a special case of CFDs. 2

Proof of Corollary 3.6

We show that in general setting, the dependency propaga-
tion problem from CFDs to CFDs is
◦ conp-complete for views expressed as S, P or C queries;
◦ conp-complete for SPCU views; and
◦ undecidable for RA views.

(a, b) We first show that the propagation problem is conp-
hard for views expressed as S, P, or C queries. Then we show
the propagation problem for SPCU views is in conp.

We show the lower bound by reduction from the implica-
tion problem for CFDs. The implication problem for CFDs

is to determine, given a set Σ of CFDs and a single CFD ϕ
defined on a relation schema R, whether or not Σ entails ϕ,
denoted by Σ |= ϕ, i.e., whether or not for all instances I
of R, if I |= Σ then I |= ϕ. It is known that in the pres-
ence of finite-domain attributes, CFD implication is already
conp-complete [8]. Observe that the implication problem for
CFDs is a special case of the dependency propagation prob-
lem by limiting the views to the identity mappings, which
are expressible as S, P, C or SPCU queries. From these it
follows that the propagation problem is conp-hard for views
expressed as S, P or C queries.

The conp upper bound is verified along the same lines as
the proof of Theorem 3.3 for SPCU views. The only differ-

ence here is that we need to extend chase to deal with source
CFDs instead of source FDs.

(c) The undecidability follows from Theorem 3.3, since FDs

are a special case of CFDs. 2

Proof of Theorem 3.7

We show that in the general setting, the emptiness problem
is conp-complete for CFDs and SPCU views.

To do this, we first show that the emptiness problem for
CFDs and SPCU views is conp-hard. We then show that this
problem is in conp.

The lower bound is verified by reduction from the satisfia-
bility problem for CFDs to the complement of the emptiness
problem. The satisfiability problem for CFDs is to deter-
mine, given a set Σ of CFDs defined on a relation schema
R, whether or not there exists a nonempty instance I of R
such that I |= Σ. It is known that the satisfiability prob-
lem for CFDs is np-complete [8]. Obviously the satisfiability
problem is a special case of the complement of the emptiness
problem (i.e., the non-emptiness problem), where views are
defined as the identity mapping. Putting these together, we
have that the emptiness problem is conp-hard.

The upper bound is verified by providing an np algorithm
to check the non-emptiness based on an extended Chase pro-
cess. More specifically, assume that the SPCU expression V
is e1 ∪ . . .∪ ek, where for each i ∈ [1, k], ei is an SPC expres-
sion. Note that if V is not empty, then there must exist at
least one ei (1 ≤ i ≤ k) such that ei is not empty.

To present the np algorithm, we first give a tableau rep-
resentation Tei for each SPC view ei. We then extend the
Chase technique to handle Tei . Finally, we show that the
Chase process is actually an np algorithm for checking the
non-emptiness.

The construction of tableau Tei follows the same way as
that of TV given in the proof of Theorem 3.1. Without
loss of generality, we assume that there is a total order ≤
on the variables in Tei . Variables in Tei that are associated
with finite domain attributes are instantiated with constants
from their corresponding finite domains. There are exponen-
tially many such instantiations. To cope with this, we first
guess an instantiation; we then check, w.r.t. this instantia-
tion, whether or not V yields a non-empty instance on some
source database. To show that the algorithm is in np, it suf-
fices to show that the checking step can be done in ptime,
for each instantiation.

For each instantiation of tableau Tei , the following Chase

process is performed to apply each CFD ϕ = R(X → A, tp)
in Σ. We next extend the chase rules for CFDs. There are
two cases to consider, depending on tp[A].

Case 1. The pattern value tp[A] is an unnamed variable ‘ ’.
In this case, for any free R tuples t, t′ of Tei , if t[X] = t′[X],
t[X] ³ tp[X] but t[A] 6= t′[A], we do the following. (a) If
both t[A] and t′[A] are variables, then we let t[A] = t′[A] if
t′[A] ≤ t[A], or t′[A] = t[A] if t[A] ≤ t′[A]. (b) If t[A] is a
constant and t′[A] is a variable, then let t′[A] = t[A]. (c) If
t[A] is a variable and t′[A] is a constant, then let t[A] = t′[A].
(d) If both t[A] and t′[A] are (distinct) constants, then we
say that the Chase process is undefined.

Case 2. The pattern value tp[A] is a constant. In this case,
for any free R tuple t of Tei , if t[X] ³ tp[X] and t[A] 6= tp[A],
we do the following. (a) If t[A] is a variable, then we let

406

t[A] = tp[A]. (b) If t[A] is a (distinct) constant, then we say
that the Chase process is undefined.

Here by t[A] = t′[A] (resp. t′[A] = t[A], t[A] = tp[A]) we
mean replacing each appearance of t[A] (resp. t′[A], t[A]) in
Tei with t′[A] (resp. t[A], tp[A]).

This process repeats for all source CFDs in Σ until either
no further changes can be incurred to Tei , or the Chase pro-
cess becomes undefined for some CFD. It is easy to see that
one of these cases must happen.

We now show that the Chase process actually yields an
algorithm for checking the non-emptiness. If the Chase pro-
cess terminates because no changes can be made to Tei , we
can easily construct a source instance I such that I |= Σ
and V (I) is non-empty. Indeed, the instance I can be con-
structed by instantiating variables in the final chasing result
of Tei with pairwise different constants. If the Chase process
terminates because it becomes undefined for some CFD, then
the view must be empty w.r.t. the instantiation. From these
it follows that ei is non-empty if and only if there exists an
instantiation such that the Chase process terminates because
of no changes.

Finally we verify that the Chase process above is in np. It
suffices to show that for each instantiation, the Chase process
for Tei terminates in ptime. Without loss of generality, we
assume that Tei is the same as TV shown in Fig. 9. There
are at most (mh +(ph +1)∗nh) variables in Tei . Let |Tei | =
(mh+(ph+1)∗nh), then there are at most O(|Tei |2) value as-
signments, and each can be done in O(|Σ||Tei |2) time. Thus
the Chase process must terminate in O(|Σ||Tei |4) time.

Putting these together, we have that the emptiness prob-
lem is conp-complete for CFDs and SPCU views. 2

Proof of Theorem 3.8

We show that without finite-domain attributes, the empti-
ness problem is in ptime for CFDs and SPCU views.

In the absence of finite-domain attributes, one can readily
turn the np algorithm given in the proof of Theorem 3.7 into
a ptime one, since instantiation of finite-domain attributes,
which would require a nondeterministic guess, is no longer
needed here. 2

407

