
Rose: Compressed, log-structured replication

Russell Sears
UC Berkeley

sears@cs.berkeley.edu

Mark Callaghan
Google

mcallaghan@google.com

Eric Brewer
UC Berkeley

brewer@cs.berkeley.edu

ABSTRACT
Rose1 is a database storage engine for high-throughput repli-
cation. It targets seek-limited, write-intensive transaction
processing workloads that perform near real-time decision
support and analytical processing queries. Rose uses log
structured merge (LSM) trees to create full database repli-
cas using purely sequential I/O, allowing it to provide or-
ders of magnitude more write throughput than B-tree based
replicas. Also, LSM-trees cannot become fragmented and
provide fast, predictable index scans.

Rose’s write performance relies on replicas’ ability to per-
form writes without looking up old values. LSM-tree lookups
have performance comparable to B-tree lookups. If Rose
read each value that it updated then its write throughput
would also be comparable to a B-tree. Although we target
replication, Rose provides high write throughput to any ap-
plication that updates tuples without reading existing data,
such as append-only, streaming and versioning databases.

We introduce a page compression format that takes ad-
vantage of LSM-tree’s sequential, sorted data layout. It in-
creases replication throughput by reducing sequential I/O,
and enables efficient tree lookups by supporting small page
sizes and doubling as an index of the values it stores. Any
scheme that can compress data in a single pass and provide
random access to compressed values could be used by Rose.

Replication environments have multiple readers but only
one writer. This allows Rose to provide atomicity, consis-
tency and isolation to concurrent transactions without re-
sorting to rollback, blocking index requests or interfering
with maintenance tasks.

Rose avoids random I/O during replication and scans,
leaving more I/O capacity for queries than existing systems,
and providing scalable, real-time replication of seek-bound
workloads. Analytical models and experiments show that
Rose provides orders of magnitude greater replication band-
width over larger databases than conventional techniques.

1Replication Oriented Storage Engine

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

1. INTRODUCTION
Rose is a database replication engine for workloads with

high volumes of in-place updates. It is designed to provide
high-throughput, general purpose transactional replication
regardless of database size, query contention and update
patterns. In particular, it is designed to run real-time deci-
sion support and analytical processing queries against some
of today’s largest TPC-C style online transaction processing
applications.

Traditional database replication technologies provide ac-
ceptable performance if the application write set fits in RAM
or if the storage system is able to update data in place
quickly enough to keep up with the replication workload.

Transaction processing (OLTP) systems use fragmenta-
tion to optimize for small, low-latency reads and writes.
They scale by adding memory and additional drives, increas-
ing the number of I/O operations per second provided by the
hardware. Data warehousing technologies introduce latency,
giving them time to reorganize data for bulk insertion, and
column stores optimize for scan performance at the expense
of random access to individual tuples.

Rose combines the best features of the above approaches:

• High throughput writes, regardless of update patterns

• Scan performance comparable to bulk-loaded struc-
tures

• Low latency lookups and updates

We implemented Rose because existing replication technolo-
gies only met two of these three requirements. Rose achieves
all three goals.

Rose is based on LSM-trees, which reflect updates imme-
diately without performing disk seeks or resorting to frag-
mentation. This allows it to provide better write and scan
throughput than B-trees. Unlike existing LSM-tree imple-
mentations, Rose makes use of compression, further increas-
ing replication and scan performance.

Rose provides extremely high write throughput to ap-
plications that perform updates without performing reads,
such as replication, append-only, streaming and versioning
databases. Replication is a particularly attractive applica-
tion of LSM-trees because it is common, well-understood
and requires complete transactional semantics. Also, we
know of no other scalable replication approach that provides
real-time analytical queries over seek-bound transaction pro-
cessing workloads.

526

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Figure 1: The structure of a Rose LSM-tree

2. SYSTEM OVERVIEW
A Rose replica takes a replication log as input and stores

the changes it contains in a log structured merge (LSM)
tree [11]. An LSM-tree is an index that consists of mul-
tiple sub-trees called components (Figure 1). The smallest
component, C0, is a memory resident binary search tree that
is updated in place. The next-smallest component, C1, is
a bulk-loaded B-tree. C0 is merged with C1 as it grows.
The merge process consists of index scans and produces a
new bulk-loaded version of C1 that contains the updates
from C0. LSM-trees can have arbitrarily many components,
though three (two on-disk trees) is generally adequate. All
other components are produced by repeated merges with the
next smaller component. Therefore, LSM-trees are updated
without using random disk I/O.

Lookups are performed by examining tree components,
starting with the in-memory component and moving on to
progressively larger and out-of-date trees until a match is
found. This involves a maximum of two on-disk tree lookups
unless a merge is in process, in which case three lookups may
be required.

Rose’s first contribution is to use compression to increase
merge throughput. Compression reduces the amount of se-
quential I/O required by merges, trading surplus compu-
tational power for scarce storage bandwidth. Lookup per-
formance is determined by page cache hit ratios and the
number of seeks provided by the storage system. Rose’s
compression increases the effective size of the page cache.

The second contribution is the application of LSM-trees
to database replication workloads. In order to take full
advantage of LSM-trees’ write throughput, the replication
environment must not force Rose to obtain pre-images of
overwritten values. Therefore, we assume that the replica-
tion log stores each transaction begin, commit, and abort

performed by the master database, along with the pre- and
post-images associated with each update. The ordering of
these entries must match the order in which they are ap-
plied at the database master. Workloads that do not con-
tain transactions or do not update existing data may omit
some of the mechanisms described here.

Rose immediately applies updates to C0, making them
available to queries that do not require a consistent view of
the data. Rose supports transactional isolation by delaying
the availability of new data for the duration of a few update
transactions. It then produces a new, consistent snapshot
that reflects the new data. Multiple snapshots can coexist,

allowing read-only transactions to run without creating lock
contention or being aborted due to concurrent updates.

Long-running transactions do not block Rose’s mainte-
nance tasks or index operations. However, long-running
read-only queries delay the deallocation of stale data, and
long-running updates introduce replication delay. Rose’s
concurrency control mechanisms are described in Section 2.5.

Rose merges tree components in background threads, al-
lowing it to continuously process updates and service index
lookup requests. Index lookups minimize the overhead of
thread synchronization by latching entire tree components
at a time. On-disk tree components are read-only so these
latches only block reclamation of space used by deallocated
tree components. C0 is updated in place, preventing inserts
from occurring concurrently with lookups. However, opera-
tions on C0 are comparatively fast, reducing contention for
C0’s latch.

Recovery, allocation and atomic updates to Rose’s meta-
data are handled by Stasis [13], an extensible transactional
storage system. Rose is implemented as a set of custom
Stasis page formats and tree structures.

In order to provide inexpensive queries to clients Rose as-
sumes the replication log is made durable by some other
mechanism. Rather than commit each replicated transac-
tion independently, it creates one Stasis transaction each
time a tree component is created. These transactions gen-
erate negligible amounts of log entries.

Redo and undo information for tree component metadata
and headers are written to the Stasis log. Data contained
in tree components are never written to the log and tree
component contents are sequentially forced to the page file
at Stasis commit. During recovery, partially written tree
components are deallocated and tree headers are brought to
a consistent state.

After Stasis recovery completes, Rose is in a consistent
state that existed at some point in the past. The replication
log must be replayed from that point to finish recovery.

Rose determines where to begin replaying the log by con-
sulting its metadata, which is updated each time a tree
merge completes. This metadata contains the timestamp
of the last update that is reflected in C1, which is simply
the timestamp of the last tuple written to C0 before the
merge began.

2.1 Tree merging
Rose’s LSM-trees always consist of three components (C0,

C1 and C2), as this provides a good balance between in-
sertion throughput and lookup cost. Updates are applied
directly to the in-memory tree, and repeated tree merges
limit the size of C0. These tree merges produce a new ver-
sion of C1 by combining tuples from C0 with tuples in the
existing version of C1. When the merge completes C1 is
atomically replaced with the new tree and C0 is atomically
replaced with an empty tree. The process is eventually re-
peated when C1 and C2 are merged.

Replacing entire trees at once introduces a number of
problems. It doubles the number of bytes used to store each
component, which is important for C0, as it doubles memory
requirements. It is also important for C2, as it doubles the
amount of disk space used by Rose. Finally, ongoing merges
force index probes to access both versions of C1, increasing
random lookup times.

The original LSM-tree work proposes a more sophisticated

527

scheme that addresses these issues by replacing one sub-tree
at a time. This reduces peak storage and memory require-
ments but adds complexity by requiring in-place updates of
tree components.

An alternative approach would partition Rose into mul-
tiple LSM-trees and merge a single partition at a time [8].
This would reduce the frequency of extra lookups caused
by ongoing tree merges. Partitioning also improves write
throughput when updates are skewed, as unchanged por-
tions of the tree do not participate in merges and frequently
changing partitions can be merged more often. We do not
consider these optimizations in the discussion below; includ-
ing them would complicate the analysis without providing
any new insight.

2.2 Amortized insertion cost
This section provides an overview of LSM-tree perfor-

mance. A more thorough analytical discussion [11], and
comparisons between LSM-trees and a wide variety of other
indexing techniques [8] are available elsewhere.

To compute the amortized LSM-tree insertion cost we con-
sider the cost of comparing the inserted tuple with existing
tuples. Each tuple insertion ultimately causes two rounds
of I/O operations. One merges the tuple into C1; the other
merges it into C2. Insertions do not initiate more I/O once
they reach C2.

Write throughput is maximized when the ratio of the sizes
of C1 to C0 is equal to the ratio between C2 and C1 [11].
This ratio is called R, and:

size of tree ≈ R2 ∗ |C0|

Merges examine an average of R tuples from C1 for each
tuple of C0 they consume. Similarly, R tuples from C2 are
examined each time a tuple in C1 is consumed. Therefore:

insertion rate ∗R(tC2 + tC1) ≈ sequential i/o cost

Where tC1 and tC2 are the amount of time it takes to read
from and write to C1 and C2.

2.3 Replication Throughput
LSM-trees have different asymptotic performance charac-

teristics than conventional index structures. In particular,
the amortized cost of insertion is O(

√
n log n) in the size of

the data and is proportional to the cost of sequential I/O.
In a B-tree, this cost is O(log n) but is proportional to the
cost of random I/O. This section describes the impact of
compression on B-tree and LSM-tree performance.

We use simplified models of each structure’s performance
characteristics. In particular, we assume that the leaf nodes
do not fit in memory, that tuples are accessed randomly
with equal probability, and that internal tree nodes fit in
RAM. Without a skewed update distribution, reordering
and batching I/O into sequential writes only helps if a sig-
nificant fraction of the tree’s data fits in RAM. Therefore,
we do not consider B-tree I/O batching here.

In B-trees, each update reads a page and eventually writes
it back:

costBtree update = 2 costrandom io

In Rose, we have:

costLSMtree update = 2 ∗ 2 ∗ 2 ∗R ∗ costsequential io

compression ratio

We multiply by 2R because each new tuple is eventually
merged into both on-disk components, and each merge in-
volves an average of R comparisons with existing tuples.
The second factor of two reflects the fact that the merger
must read existing tuples into memory before writing them
back to disk.

An update of a tuple is handled as an insertion of the new
tuple and a deletion of the old tuple. Deletion is an insertion
of a special tombstone tuple that records the deletion of the
old version of the tuple, leading to the third factor of two.
Updates that do not modify primary key fields avoid this
final factor of two. The delete and insert share the same
primary key and snapshot number, so the insertion always
supersedes the deletion. Therefore, there is no need to insert
a tombstone.

The compression ratio is uncompressed size
compressed size

, so improved
compression leads to less expensive LSM-tree updates. For
simplicity, we assume the compression ratio is the same
throughout each component of the LSM-tree; Rose addresses
this at runtime by reasoning in terms of the number of pages
used by each component.

Our test hardware’s hard drive is a 7200RPM, 750 GB
Seagate Barracuda ES. Third party benchmarks [14] report
random access times of 12.3/13.5 msec (read/write) and
44.3-78.5 megabytes/sec sustained throughput. Timing dd

if=/dev/zero of=file; sync on an empty ext3 file system
suggests our test hardware provides 57.5 megabytes/sec of
storage bandwidth, but running a similar test via Stasis’
buffer manager produces a multimodal distribution ranging
from 22 to 47 megabytes/sec.

Assuming a fixed hardware configuration and measuring
cost in disk time, we have:

costsequential =
|tuple|

78.5MB/s
= 12.7 |tuple| nsec/tuple (min)

costsequential =
|tuple|

44.3MB/s
= 22.6 |tuple| nsec/tuple (max)

and

costrandom =
12.3 + 13.5

2
= 12.9 msec/tuple

Assuming 44.3mb/s sequential bandwidth:

2 costrandom ≈ 1, 000, 000
costsequential

|tuple|

yields:

costLSMtree update

costBtree update
=

2 ∗ 2 ∗ 2 ∗R ∗ costsequential

compression ratio ∗ 2 ∗ costrandom

≈ R ∗ |tuple|
250, 000 ∗ compression ratio

If tuples are 100 bytes and we assume a compression ratio
of 4, which is lower than we expect to see in practice, but
numerically convenient, then the LSM-tree outperforms the
B-tree when:

R <
250, 000 ∗ compression ratio

|tuple|

R < 10, 000

528

A 750 GB tree with a 1GB C0 would have an R of
√

750 ≈
27. If tuples are 100 bytes such a tree’s sustained inser-
tion throughput will be approximately 8000 tuples/sec or
800 kilobytes/sec.

Our hard drive’s average access time allows the drive to
deliver 83 I/O operations/sec. Therefore, we can expect an
insertion throughput of 41.5 tuples/sec from a B-tree that
does not cache leaf pages. With 1 GB of RAM, Rose should
outperform the B-tree by more than two orders of magni-
tude. Increasing Rose’s system memory to cache 10 GB of
tuples would increase write performance by a factor of

√
10.

Increasing memory another ten fold to 100 GB would yield
an LSM-tree with an R of

p
750/100 = 2.73 and a through-

put of 81,000 tuples/sec. In contrast, the B-tree would cache
less than 100 GB of leaf pages in memory and would write
fewer than 41.5

1−(100/750)
= 47.9 tuples/sec. Increasing mem-

ory further yields a system that is no longer disk bound.
Assuming CPUs are fast enough to allow Rose to make

use of the bandwidth supplied by the disks, we conclude
that Rose will provide significantly higher throughput than
a seek-bound B-tree.

2.4 Indexing
Our analysis ignores the cost of bulk-loading and storing

LSM-trees’ internal nodes. Each time the merge process fills
a page it inserts an entry into the rightmost position in the
tree, allocating additional internal nodes if necessary. Our
prototype does not compress internal tree nodes.

The space overhead of building these tree nodes depends
on the number of tuples that fit in each page. If tuples take
up a small fraction of each page then Rose gets good fan-out
on internal nodes, reducing the fraction of storage used by
those nodes. Therefore, as page size increases, tree overhead
decreases. Similarly, as tuple sizes increase, the fraction of
storage dedicated to internal tree nodes increases.

Rose pages are 4KB. Workloads with larger tuples would
save disk and page cache space by using larger pages for in-
ternal nodes. For very large trees, larger internal tree nodes
also avoid seeks during index lookups.

2.5 Isolation
Rose handles two types of transactions: updates from the

master and read-only queries from clients. Rose has no con-
trol over the order or isolation of updates from the master
database. Therefore, it must apply these updates in an order
consistent with the master database in a way that isolates
queries from concurrent modifications.

LSM-tree updates do not immediately remove pre-existing
data from the tree. Instead, they provide a simple form of
versioning where data from the newest component (C0) is
always the most up-to-date. We extend this idea to pro-
vide snapshots. Each transaction is assigned to a snapshot,
and no more than one version of each tuple exists within a
snapshot.

To lookup a tuple as it existed at some point in time,
we examine all snapshots that were taken before that point
and return the most recent version of the tuple that we find.
This is inexpensive because all versions of the same tuple are
stored in adjacent positions in the LSM-tree. Furthermore,
Rose’s versioning is meant to be used for transactional con-
sistency and not time travel, limiting the number of snap-
shots.

To insert a tuple, Rose first determines to which snap-

shot it should belong. At any given point in time up to two
snapshots may accept new updates. One snapshot accepts
new transactions. If the replication log may contain inter-
leaved transactions, such as when there are multiple mas-
ter databases, then a second, older snapshot waits for any
pending transactions that it contains to complete. Once all
of those transactions are complete, the older snapshot stops
accepting updates, the first snapshot stops accepting new
transactions, and a snapshot for new transactions is created.

Rose examines the timestamp and transaction ID associ-
ated with the tuple insertion and marks the tuple with the
appropriate snapshot ID. It then inserts the tuple into C0,
overwriting any tuple that matches on primary key and has
the same snapshot ID.

The merge thread uses a list of currently accessible snap-
shots to decide which versions of the tuple in C0 and C1 are
accessible to transactions. Such versions are the most recent
copy of the tuple that existed before the end of an accessible
snapshot. After finding all such versions of a tuple (one may
exist for each accessible snapshot), the merge process writes
them to the new version of C1. Any other versions of the
tuple are discarded. If two matching tuples from the same
snapshot are encountered then one must be from C0 and
the other from C1. The version from C0 is more recent, so
the merger discards the version from C1. Merges between
C1 and C2 work the same way as merges between C0 and
C1.

Rose handles tuple deletion by inserting a tombstone.
Tombstones record the deletion event and are handled sim-
ilarly to insertions. A tombstone will be kept if it is the
newest version of a tuple in at least one accessible snapshot.
Otherwise, the tuple was reinserted before next accessible
snapshot was taken and the tombstone is deleted. Unlike
insertions, tombstones in C2 are deleted if they are the old-
est remaining reference to a tuple.

Rose’s snapshots have minimal performance impact, and
provide transactional concurrency control without rolling
back transactions or blocking the merge and replication pro-
cesses. However, long-running updates prevent queries from
accessing the results of recent transactions, leading to stale
results. Long-running queries increase Rose’s disk footprint
by increasing the number of accessible snapshots.

2.6 Parallelism
Rose operations are concurrent; readers and writers work

independently, avoiding blocking, deadlock and livelock. In-
dex probes must latch C0 to perform a lookup, but the more
costly probes into C1 and C2 are against read-only trees.
Beyond locating and pinning tree components against deal-
location, probes of these components do not interact with
the merge processes.

Each tree merge runs in a separate thread. This allows our
prototype to exploit two to three processor cores while in-
serting and recompressing data during replication. Remain-
ing cores could be exploited by range partitioning a replica
into multiple LSM-trees, allowing more merge processes to
run concurrently. Therefore, we expect the throughput of
Rose replication to increase with memory size, compression
ratios and I/O bandwidth for the foreseeable future.

3. ROW COMPRESSION
Rose stores tuples in a sorted, append-only format. This

simplifies compression and provides a number of new oppor-

529

Table 1: Compression ratios and index overhead -
five columns (20 bytes/column)

Format Compression Page count
PFOR 1.96x 2494
PFOR + tree 1.94x +80
RLE 3.24x 1505
RLE + tree 3.22x +21

Table 2: Compression ratios and index overhead -
100 columns (400 bytes/column)

Format Compression Page count
PFOR 1.37x 7143
PFOR + tree 1.17x 8335
RLE 1.75x 5591
RLE + tree 1.50x 6525

tunities for optimization. Compression reduces sequential
I/O, which is Rose’s primary bottleneck. It also increases
the effective size of the buffer pool, allowing Rose to service
larger read sets without resorting to random I/O.

Row-oriented database compression techniques must cope
with random, in-place updates and provide efficient ran-
dom access to compressed tuples. In contrast, compressed
column-oriented database layouts focus on high-throughput
sequential access, and do not provide in-place updates or
efficient random access. Rose never updates data in place,
allowing it to use append-only compression techniques from
the column database literature. Also, Rose’s tuples never
span pages and are stored in sorted order. We modified col-
umn compression techniques to provide an index over each
page’s contents and efficient random access within pages.

Rose’s compression format is straightforward. Each page
is divided into a header, a set of compressed segments and a
single exception section (Figure 2). There is one compressed
segment per column and each such segment may be managed
by a different compression algorithm, which we call a com-
pressor. Some compressors cannot directly store all values
that a column may take on. Instead, they store such values
in the exception section. We call Rose’s compressed page
format the multicolumn format, and have implemented it to
support efficient compression, decompression and random
lookups by slot id and by value.

3.1 Compression algorithms
The Rose prototype provides three compressors. The first,

NOP, simply stores uncompressed integers. The second,
RLE, implements run length encoding, which stores values
as a list of distinct values and repetition counts. The third,
PFOR, or patched frame of reference, stores values as a sin-
gle per-page base offset and an array of deltas [17]. The
values are reconstructed by adding the offset and the delta
or by traversing a pointer into the exception section of the
page. Currently, Rose only supports integer data although
its page formats could be easily extended with support for
strings and other types. Also, the compression algorithms
that we implemented would benefit from a technique known
as bit-packing, which represents integers with lengths other
than 8, 16, 32 and 64 bits. Bit-packing would increase Rose’s
compression ratios, and can be implemented with a modest
performance overhead [17].

We chose these techniques because they are amenable to
optimization; our implementation makes heavy use of C++
templates, static code generation and g++’s optimizer to
keep Rose from becoming CPU-bound. By hardcoding table
formats at compilation time, this implementation removes
length and type checks, and allows the compiler to inline
methods, remove temporary variables and optimize loops.

Rose includes a second, less efficient implementation that
uses dynamic method dispatch to support runtime creation
of new table schemas. A production-quality system could
use runtime code generation to support creation of new
schemas while taking full advantage of the compiler’s op-
timizer.

3.2 Comparison with other approaches
Like Rose, the PAX [2] page format stores tuples in a way

that never spans multiple pages and partitions data within
pages by column. Partitioning pages by column improves
processor cache locality for queries that do not need to ex-
amine every column within a page. In particular, many
queries filter based on the value of a few attributes. If data
is clustered into rows then each column from the page will
be brought into cache, even if no tuples match. By cluster-
ing data into columns, PAX ensures that only the necessary
columns are brought into cache.

Rose’s use of lightweight compression algorithms is similar
to approaches used in column databases [17]. Rose differs
from that work in its focus on small, low-latency updates and
efficient random reads on commodity hardware. Existing
work targeted RAID and used page sizes ranging from 8-
32MB. Rather than use large pages to get good sequential
I/O performance, Rose relies upon automatic prefetch and
write coalescing provided by Stasis’ buffer manager and the
underlying operating system. This reduces the amount of
data handled by Rose during index probes.

3.3 Tuple lookups
Because we expect index lookups to be a frequent oper-

ation, our page format supports efficient lookup by tuple
value. The original “patched” compression algorithms store
exceptions in a linked list and perform scans of up to 128
tuples in order to materialize compressed tuples [17]. This
reduces the number of branches required during compres-
sion and sequential decompression. We investigated a num-
ber of implementations of tuple lookup by value including
per-column range scans and binary search.

The efficiency of random access within a page depends on
the format used by column compressors. Rose compressors
support two access methods. The first looks up a value by
slot id. This operation is O(1) for frame of reference columns
and O(log n) in the number of runs of identical values on
the page for run length encoded columns.

The second operation is used to look up tuples by value
and is based on the assumption that the the tuples are stored
in the page in sorted order. The simplest way to provide ac-
cess to tuples by value would be to perform a binary search,
materializing each tuple that the search needs to examine.
Doing so would materialize many extra column values, po-
tentially performing additional binary searches.

To lookup a tuple by value, the second operation takes a
range of slot ids and a value, and returns the offset of the
first and last instance of the value within the range. This
operation is O(log n) in the number of slots in the range for

530

Column 1 compressor header (algorithm specific)

Column 1 compressed data

Column 2 Column 3 Column 4 Column 5

Exceptional data
(non-compressible values)

Column offsets and compressor ids Column count

Exceptions offset Stasis page header

Figure 2: Multicolumn page format. Many com-
pression algorithms can coexist on a single page.
Tuples never span multiple pages.

Table 3: Compressor throughput - Random data
Mean of 5 runs, σ < 5%, except where noted

Format Ratio Compress Decompress
PFOR - 1 column 3.96x 547 mb/s 2959 mb/s
PFOR - 10 column 3.86x 256 719
RLE - 1 column 48.83x 960 1493 (12%)
RLE - 10 column 47.60x 358 (9%) 659 (7%)

frame of reference columns and O(log n) in the number of
runs on the page for run length encoded columns. The mul-
ticolumn implementation uses this method to look up tuples
by beginning with the entire page in range and calling each
compressor’s implementation to narrow the search until the
correct tuple(s) are located or the range is empty. Partially
matching tuples are only partially decompressed during the
search, reducing the amount of data brought into processor
cache.

3.4 Multicolumn computational overhead
Our multicolumn page format introduces additional com-

putational overhead. Rose compresses each column in a sep-
arate buffer then uses memcpy() to gather this data into a
single page buffer before writing it to disk. This happens
once per page allocation.

Bit-packing is typically implemented as a post-processing
technique that makes a pass over the compressed data [17].
Rose’s gathering step can be performed for free by such a bit-
packing implementation, so we do not see this as a significant
disadvantage compared to other approaches.

Also, Rose needs to translate tuple insertions into calls
to appropriate page formats and compression implementa-
tions. Unless we hardcode the Rose executable to support a
predefined set of page formats and table schemas, each tu-
ple compression and decompression operation must execute
an extra for loop over the columns. The for loop’s body
contains a switch statement that chooses between column
compressors, since each column can use a different compres-
sion algorithm and store a different data type.

This form of multicolumn support introduces significant
overhead; these variants of our compression algorithms run
significantly slower than versions hard-coded to work with
single column data. Table 3 compares a fixed-format single
column page layout with Rose’s dynamically dispatched (not
custom generated code) multicolumn format.

3.5 The append() operation
Rose’s compressed pages provide a tupleAppend() oper-

ation that takes a tuple as input and returns false if the
page does not have room for the new tuple. tupleAppend()

consists of a dispatch routine that calls append() on each
column in turn. append() has the following signature:

void append(COL_TYPE value, int* exception_offset,

void* exceptions_base, void* column_base,

int* freespace)

where value is the value to be appended to the column,
exception offset is a pointer to the offset of the first free
byte in the exceptions region, and exceptions base and
column base point to page-sized buffers used to store ex-
ceptions and column data as the page is being written. One
copy of these buffers exists for each LSM-tree component;
they do not significantly increase Rose’s memory require-
ments.
freespace is a pointer to the number of free bytes remain-

ing on the page. The multicolumn format initializes these
values when the page is allocated. As append() implemen-
tations are called they update this data accordingly. Each
time a column value is written to a page the column com-
pressor must allocate space to store the new value. In a naive
allocation approach the compressor would check freespace

to decide if the page is full and return an error code oth-
erwise. Then its caller would check the return value and
behave appropriately. This would lead to two branches per
column value, greatly decreasing compression throughput.

We avoid these branches by reserving a portion of the
page approximately the size of a single incompressible tuple
for speculative allocation. Instead of checking for freespace,
compressors decrement the current freespace count and ap-
pend data to the end of their segment. Once an entire tuple
has been written to a page, it checks the value of freespace
and decides if another tuple may be safely written. This also
simplifies corner cases; if a compressor cannot store more tu-
ples on a page, but has not run out of space2 it simply sets
freespace to -1 and returns.

The original PFOR implementation [17] assumes it has
access to a buffer of uncompressed data and is able to make
multiple passes over the data during compression. This
allows it to remove branches from loop bodies, improving
compression throughput. We opted to avoid this approach
in Rose because it would increase the complexity of the
append() interface and add a buffer to Rose’s merge threads.

3.6 Buffer manager interface extensions
In the process of implementing Rose, we added a new API

to Stasis’ buffer manager implementation. It consists of four
functions: pageLoaded(), pageFlushed(), pageEvicted(),
and cleanupPage().

Stasis supports custom page layouts. These layouts con-
trol the byte level format of pages and must register call-
backs that will be invoked by Stasis at appropriate times.
The first three are invoked by the buffer manager when it
loads an existing page from disk, writes a page to disk, and
evicts a page from memory.

The fourth is invoked by page allocation routines immedi-
ately before a page is reformatted to use a different layout.

2This can happen when a run length encoded page stores a
very long run of identical tuples.

531

This allows the page’s old layout’s implementation to free
any in-memory resources that it associated with the page
during initialization or when pageLoaded() was called.

We register implementations for these functions because
Stasis maintains background threads that control eviction
of Rose’s pages from memory. As we mentioned above,
multicolumn pages are split into a number of temporary
buffers while they are being created and are then packed
into a contiguous buffer before being flushed. Multicol-
umn’s pageFlushed() callback guarantees that this happens
before the page is written to disk. pageLoaded() parses
the page headers and associates statically generated com-
pression code with each page as it is read into memory.
pageEvicted() and cleanupPage() free memory that is al-
located by pageLoaded().
pageFlushed() could be safely executed in a background

thread with minimal impact on system performance. How-
ever, the buffer manager was written under the assump-
tion that the cost of in-memory operations is negligible.
Therefore, it blocks all buffer management requests while
pageFlushed() is being executed. In practice, calling pack()

from pageFlushed() would block multiple Rose threads.
Also, pack() reduces Rose’s memory utilization by freeing

up temporary compression buffers. For these reasons, the
merge threads explicitly invoke pack() instead of waiting
for pageFlushed() to be called.

3.7 Storage overhead
The multicolumn page format is similar to the format of

existing column-wise compression formats. The algorithms
we implemented have page formats that can be divided into
two sections. The first section is a header that contains an
encoding of the size of the compressed region and perhaps
a piece of uncompressed data. The second section typically
contains the compressed data.

A multicolumn page contains this information in addition
to metadata describing the position and type of each col-
umn. The type and number of columns could be encoded
in the “page type” field or be explicitly represented using a
few bytes per page column. If we use 16 bits to represent
the page offset and 16 bits for the column compressor type
then the additional overhead for each column is four bytes
plus the size of the compression format headers.

A frame of reference column header consists of a single
uncompressed value and two bytes to record the number of
encoded rows. Run length encoding headers consist of a two
byte count of compressed blocks. Therefore, in the worst
case (frame of reference encoding 64-bit integers, and 4KB
pages) our prototype’s multicolumn format uses 14 bytes,
or 0.35% of the page to store each column header. Bit-
packing and storing a table that maps page types to lists of
column and compressor types would reduce the size of the
page headers.

In cases where the data does not compress well and tuples
are large, additional storage is wasted because Rose does
not split tuples across pages. Table 2 illustrates this; it was
generated in the same way as Table 1, except that 400 byte
tuples were used instead of 20 byte tuples. Larger pages
would reduce the impact of this problem. We chose 4KB
pages because they are large enough for the schemas we
use to benchmark Rose, but small enough to illustrate the
overheads of our page format.

Table 4: Weather data schema
Column Name Compression Format Key
Longitude RLE *
Latitude RLE *
Timestamp PFOR *
Weather conditions RLE
Station ID RLE
Elevation RLE
Temperature PFOR
Wind Direction PFOR
Wind Speed PFOR
Wind Gust Speed RLE

4. EVALUATION

4.1 Raw write throughput
To evaluate Rose’s raw write throughput, we used it to

index weather data. The data set ranges from May 1, 2007
to Nov 2, 2007 and contains readings from ground stations
around the world [10]. Our implementation assumes these
values will never be deleted or modified. Therefore, for this
experiment the tree merging threads do not perform ver-
sioning or snapshotting. This data is approximately 1.3GB
when stored in an uncompressed tab delimited file. We du-
plicated the data by changing the date fields to cover ranges
from 2001 to 2009, producing a 12GB ASCII dataset that
contains approximately 132 million tuples.

Duplicating the data should have a limited effect on Rose’s
compression ratios. We index on geographic position, plac-
ing all readings from a particular station in a contiguous
range. We then index on date, separating duplicate versions
of the same tuple from each other.

Rose only supports integer data types. We store ASCII
columns for this benchmark by packing each character into 5
bits (the strings consist of A-Z, “+,” “-” and “*”) and stor-
ing them as integers. Floating point columns in the original
data set are always represented with two digits of precision;
we multiply them by 100, yielding an integer. The data
source uses nonsensical readings such as -9999.00 to repre-
sent NULL. Our prototype does not understand NULL, so
we leave these fields intact.

We represent each integer column as a 32-bit integer, even
when we could use a 16-bit value. The “weather conditions”
field is packed into a 64-bit integer. Table 4 lists the columns
and compression algorithms we assigned to each column.
The “Key” column indicates that the field was used as part
of a B-tree primary key.

In this experiment, we randomized the order of the tu-
ples and inserted them into the index. We compare Rose’s
performance with the MySQL InnoDB storage engine. We
chose InnoDB because it has been tuned for bulk load per-
formance, and avoid the overhead of SQL insert statements
and MySQL transactions by using MySQL’s bulk load inter-
face. Data is loaded 100,000 tuples at a time so that MySQL
inserts values into its tree throughout the run and does not
sort and bulk load the data all at once.

InnoDB’s buffer pool size was 2GB and its log file size
was 1GB. We enabled InnoDB’s doublewrite buffer, which
writes a copy of each updated page to a sequential log. The
doublewrite buffer increases the total amount of I/O per-
formed, but decreases the frequency with which InnoDB

532

0.1 1 10 100

Million tuples inserted

1.00

10.00
M

e
g

a
b

y
te

s
/

se
c

Rose
InnoDB

Figure 3: Mean insertion throughput (log-log). We
truncated InnoDB’s trend line; throughput was
20kb/s (1

57
th of Rose’s) after 50 million insertions.

calls fsync() while writing dirty pages to disk. This in-
creases replication throughput for this workload.

We compiled Rose’s C components with “-O2”, and the
C++ components with “-O3”. The later compiler flag is
crucial, as compiler inlining and other optimizations improve
Rose’s compression throughput significantly. Rose was set
to allocate 1GB to C0 and another 1GB to its buffer pool.
In this experiment, Rose’s buffer pool is essentially wasted
once its page file size exceeds 1GB; Rose accesses the page
file sequentially and evicts pages using LRU, leading to a
cache hit rate near zero.

Our test hardware has two dual core 64-bit 3GHz Xeon
processors with 2MB of cache (Linux reports 4 CPUs) and
8GB of RAM. We disabled the swap file and unnecessary sys-
tem services. Datasets large enough to become disk bound
on this system are unwieldy, so we mlock() 5.25GB of RAM
to prevent it from being used by experiments. The re-
maining 750MB is used to cache binaries and to provide
Linux with enough page cache to prevent it from unexpect-
edly evicting portions of the Rose binary. We monitored
Rose throughout the experiment, confirming that its resi-
dent memory size was approximately 2GB.

All software used during our tests was compiled for 64-
bit architectures. We used a 64-bit Ubuntu Gutsy (Linux
2.6.22-14-generic) installation and its prebuilt MySQL pack-
age (5.0.45-Debian 1ubuntu3). All page files and logs were
stored on a dedicated drive. The operating system, executa-
bles and input files were stored on another drive.

4.2 Comparison with conventional techniques
Rose provides roughly 4.7 times more throughput than

InnoDB at the beginning of the experiment (Figure 3). Inn-
oDB’s throughput remains constant until it starts to per-
form random I/O, which causes throughput to drop sharply.

Rose’s performance begins to fall off earlier due to merg-
ing and because its page cache is half the size of InnoDB’s.
However, Rose does not fall back on random I/O and main-
tains significantly higher throughput than InnoDB through-
out the run. InnoDB’s peak write throughput was 1.8 mb/s
and dropped to 20 kb/s after 50 million tuples were in-
serted. The InnoDB trend line in Figure 3 has been trun-
cated for readability. In contrast, Rose maintained an av-
erage throughput of 1.13 mb/sec over the entire 132 million
tuple dataset.

Rose merged C0 and C1 59 times and merged C1 and C2

20 40 60 80 100 120

Million tuples inserted

0.01

0.10

1.00

10.00

M
ill

is
e
co

n
d

s
/

tu
p

le

Rose (mean)
Rose (instantaneous)
InnoDB (mean)

Figure 4: Tuple insertion time (log). “Instanta-
neous” is the mean over 100,000 tuples. Rose’s cost
increases with

√
n; InnoDB’s increases linearly.

15 times. At the end of the run (132 million tuple insertions)
C2 took up 2.8GB and C1 was 250MB. The actual page
file was 8.0GB, and the minimum possible size was 6GB.
InnoDB used 5.3GB after 53 million tuple insertions.

4.3 Comparison with analytical model
In this section we measure update latency and compare

measured write throughput with the analytical model’s pre-
dicted throughput.

Figure 4 shows tuple insertion times for Rose and InnoDB.
The “Rose (instantaneous)” line reports insertion times av-
eraged over 100,000 insertions, while the other lines are av-
eraged over the entire run. The periodic spikes in instanta-
neous tuple insertion times occur when an insertion blocks
waiting for a tree merge to complete. This happens when
one copy of C0 is full and the other one is being merged
with C1. Admission control would provide consistent inser-
tion times.

Figure 5 compares our prototype’s performance to that of
an ideal uncompressed LSM-tree. The cost of an insertion is
4R times the number of bytes written. We can approximate

an optimal value for R by taking
q
|C2|
|C0| , where tree compo-

nent size is measured in number of tuples. This factors out
compression and memory overheads associated with C0.

We use this value to generate Figure 5 by multiplying
Rose’s replication throughput by 1 + 4R. The additional 1
is the cost of reading the inserted tuple from C1 during the
merge with C2.

Rose achieves 2x compression on the real data set. For
comparison, we ran the experiment with compression dis-
abled, and with run length encoded synthetic datasets that
lead to 4x and 8x compression ratios. Initially, all runs
exceed optimal throughput as they populate memory and
produce the initial versions of C1 and C2. Eventually, each
run converges to a constant effective disk utilization roughly
proportional to its compression ratio. This shows that Rose
continues to be I/O bound with higher compression ratios.

The analytical model predicts that, given the hard drive’s
57.5 mb/s write bandwidth, an ideal Rose implementation
would perform about twice as fast as our prototype. We
believe the difference is largely due to Stasis’ buffer man-
ager, which delivers between 22 and 47 mb/s of sequential
bandwidth on our test hardware. The remaining difference
in throughput is probably due to Rose’s imperfect overlap-
ping of computation with I/O and coarse-grained control

533

0 20 40 60 80 100 120

Million tuples inserted

0.00

50.00

100.00

150.00

200.00

250.00
M

e
g

a
b

y
te

s
/

se
c

8x (synthetic data)
4x (synthetic data)
2x (real data)
1x (uncompressed)

Figure 5: Disk bandwidth an uncompressed LSM-
tree would require to match Rose’s throughput. The
buffer manager provides 22-45 mb/s.

over component sizes and R.
Despite these limitations, compression allows Rose to de-

liver significantly higher throughput than would be possible
with an uncompressed LSM-tree. We expect Rose’s through-
put to increase with the size of RAM and storage bandwidth
for the foreseeable future.

4.4 TPC-C / H
TPC-H is an analytical processing benchmark that targets

periodically bulk-loaded data warehousing systems. In par-
ticular, compared to TPC-C, it de-emphasizes transaction
processing and rollback and allows database vendors to per-
mute the dataset off-line. In real-time database replication
environments faithful reproduction of transaction process-
ing schedules is important and there is no opportunity to
sort data before making it available to queries. Therefore,
we insert data in chronological order.

Our Rose prototype is far from a complete storage engine
implementation. Rather than implement relational algebra
operations and attempt to process and appropriately opti-
mize SQL queries on top of Rose, we chose a small subset
of the TPC-H and C benchmark queries and wrote custom
code to invoke appropriate Rose tuple modifications, table
scans and index lookup requests. For simplicity, updates
and queries are performed by a single thread.

When modifying TPC-H and C for our experiments, we
follow an existing approach [12, 7] and start with a pre-
computed join and projection of the TPC-H dataset. We
use the schema described in Table 5, and populate the table
by using a scale factor of 30 and following the random distri-
butions dictated by the TPC-H specification. The schema
for this experiment is designed to have poor update locality.

Updates from customers are grouped by order id, but
the index is sorted by product and date. This forces the
database to permute these updates into an order that would
provide suppliers with inexpensive access to lists of orders
to be filled and historical sales information for each product.

We generate a dataset containing a list of product orders,
and insert tuples for each order (one for each part number
in the order), then add a number of extra transactions. The
following updates are applied in chronological order:

• Following TPC-C’s lead, 1% of orders are immediately
cancelled and rolled back. This is handled by inserting
a tombstone for the order.

Table 5: TPC-C/H schema
Column Name Compression Format Data type
Part # + Supplier RLE int32
Year RLE int16
Week NONE int8
Day of week NONE int8
Order number NONE int64
Quantity NONE int8
Delivery Status RLE int8

• Remaining orders are delivered in full within the next
14 days. The order completion time is chosen uni-
formly at random between 0 and 14 days after the
order was placed.

• The status of each line item is changed to “delivered”
at a time chosen uniformly at random before the order
completion time.

The following read-only transactions measure the perfor-
mance of Rose’s access methods:

• Every 100,000 orders we initiate a table scan over the
entire data set. The per-order cost of this scan is pro-
portional to the number of orders processed so far.

• 50% of orders are checked with order status queries.
These are simply index probes that lookup a single line
item (tuple) from the order. Orders that are checked
with status queries are checked 1, 2 or 3 times with
equal probability. Line items are chosen randomly
with equal probability.

• Order status queries happen with a uniform random
delay of 1.3 times the order processing time. For ex-
ample, if an order is fully delivered 10 days after it is
placed, then order status queries are timed uniformly
at random within the 13 days after the order is placed.

The script that we used to generate our dataset is publicly
available, along with Stasis’ and Rose’s source code (Sec-
tion 7).

This dataset is not easily compressible using the algo-
rithms provided by Rose. Many columns fit in a single
byte, rendering Rose’s version of PFOR useless. These fields
change frequently enough to limit the effectiveness of run
length encoding. Both of these issues would be addressed
by bit packing. Also, occasionally re-evaluating and modify-
ing compression strategies is known to improve compression
of TPC-H data. TPC-H dates are clustered during week-
days, from 1995-2005, and around Mother’s Day and the
last few weeks of each year.

Order status queries have excellent temporal locality and
generally succeed after accessing C0. These queries simply
increase the amount of CPU time between tuple insertions
and have minimal impact on replication throughput. Rose
overlaps their processing with the asynchronous I/O per-
formed by merges.

We force Rose to become seek bound by running a second
set of experiments with a different version of the order status
query. In one set of experiments, which we call “Lookup
C0,” the order status query only examines C0. In the other,
which we call “Lookup all components,” we force each order

534

0 2 4 6 8 10 12 14

Million orders processed

0.1

1

10

T
h
o
u
sa

n
d

 o
rd

e
rs

 /
 s

e
c

No query
Lookup C0
Scan
Lookup all components
Scan + Lookup all components

Figure 6: Rose TPC-C/H order throughput

status query to examine every tree component. This keeps
Rose from exploiting the fact that most order status queries
can be serviced from C0. Finally, Rose provides versioning
for this test; though its garbage collection code is executed,
it never collects overwritten or deleted tuples.

Figure 6 plots the number of orders processed by Rose per
second against the total number of orders stored in the Rose
replica. For this experiment, we configure Rose to reserve
1GB for the page cache and 2GB for C0. We mlock() 4.5GB
of RAM, leaving 500MB for the kernel, system services, and
Linux’s page cache.

The cost of searching C0 is negligible, while randomly
accessing the larger components is quite expensive. The
overhead of index scans increases as the table increases in
size, leading to a continuous downward slope throughout
runs that perform scans.

Surprisingly, periodic table scans improve lookup perfor-
mance for C1 and C2. The effect is most pronounced after
3 million orders are processed. That is approximately when
Stasis’ page file exceeds the size of the buffer pool, which
is managed using LRU. After each merge, half the pages
it read become obsolete. Index scans rapidly replace these
pages with live data using sequential I/O. This increases the
likelihood that index probes will be serviced from memory.
A more sophisticated page replacement policy would fur-
ther improve performance by evicting obsolete pages before
accessible pages.

We use InnoDB to measure the cost of performing B-tree
style updates. In this experiment, we limit InnoDB’s page
cache to 1GB, and mlock() 6GB of RAM. InnoDB does
not perform any order status queries or scans (Figure 7).
Although Rose has a total of 3GB for this experiment, it
only uses 1GB for queries, so this setup causes both systems
to begin performing random I/O at the same time.

InnoDB’s performance degrades rapidly once it begins us-
ing random I/O to update its B-tree. This is because the
sort order of its B-tree does not match the ordering of the
updates it processes. Ignoring repeated accesses to the same
tuple within the same order, InnoDB performs two B-tree
operations per line item (a read and a write), leading to
many page accesses per order.

In contrast, Rose performs an index probe 50% of the
time. Rose’s index probes read C1 and C2, so it accesses
one page per order on average. However, by the time the ex-
periment concludes, pages in C1 are accessed R times more
often (∼ 6.6) than those in C2, and the page file is 3.9GB.
This allows Rose to keep C1 cached in memory, so each order

4 6 8 10 12 14

Million orders processed

0

13.5

27

M
ill

is
e
co

n
d

s
/

o
rd

e
r

No query
Scan
Lookup all components
Scan + Lookup all
InnoDB-No query

Figure 7: Rose and InnoDB TPC-C/H order times,
averaged starting after 3.3 million orders. Drive ac-
cess time is ∼13.5ms. Reading data during updates
dominates the cost of queries.

uses approximately half a disk seek. At larger scale factors,
Rose’s access time should double, but remain well below the
time a B-tree would spend applying updates.

After terminating the InnoDB run, we allowed MySQL to
quiesce, then performed an index scan over the table. At
this point, it had processed 11.8 million orders, and index
scans took 19 minutes and 20 seconds. Had we performed
index scans during the InnoDB run this would translate to
an 11.5 ms cost per order. The overhead of Rose scans at
that point in the run was approximately 2.2 ms per order.

5. RELATED WORK

5.1 LSM-trees
The original LSM-tree work [11] provides a more detailed

analytical model than the one presented above. It focuses on
update intensive OLTP (TPC-A) workloads and hardware
provisioning for steady state workloads.

LHAM is an adaptation of LSM-trees for hierarchical stor-
age systems [9]. It stores higher numbered components on
archival media such as CD-R or tape drives, and scales
LSM-trees beyond the capacity of high-performance stor-
age media. It also supports efficient time travel queries over
archived, historical data [9].

Partitioned exponential files are similar to LSM-trees, ex-
cept that they range partition data into smaller indices [8].
This solves a number of issues that are left unaddressed by
Rose, most notably skewed update patterns and merge stor-
age overhead.

Rose is optimized for uniform random insertion patterns
and does not attempt to take advantage of skew in the repli-
cation workload. If most updates are to a particular parti-
tion then partitioned exponential files merge that partition
frequently, skipping merges of unmodified partitions. Also,
smaller merges duplicate smaller components, wasting less
space. Multiple merges can run in parallel, improving con-
currency. Partitioning a Rose replica into multiple LSM-
trees would enable similar optimizations.

Partitioned exponential files avoid a few other pitfalls of
LSM-tree implementations. Rose addresses these problems
in different ways. One issue is page file fragmentation. Par-
titioned exponential files make use of maintenance tasks to
move partitions, ensuring that there is enough contiguous
space to hold a new partition. Rose avoids this problem by

535

allowing tree components to become fragmented. It does
this by using Stasis to allocate contiguous regions of pages
that are long enough to guarantee good sequential scan per-
formance. Rose always allocates regions of the same length,
guaranteeing that Stasis can reuse all freed regions before
extending the page file. This can waste nearly an entire re-
gion per component, which does not matter in Rose, but
could be significant to systems with many small partitions.

Some LSM-tree implementations do not support concur-
rent insertions, merges and queries. This causes such im-
plementations to block during merges that take O(n) time
in the tree size. Rose overlaps insertions and queries with
tree merges. Therefore, admission control would provide
predictable and uniform latencies. Partitioning can be used
to limit the number of tree components. We have argued
that allocating two unpartitioned on-disk components is ad-
equate for Rose’s target applications.

Reusing existing B-tree implementations as the underly-
ing storage mechanism for LSM-trees has been proposed [5].
Many standard B-tree optimizations, such as prefix com-
pression and bulk insertion, would benefit LSM-tree imple-
mentations. However, Rose’s custom bulk-loaded tree im-
plementation benefits compression. Unlike B-tree compres-
sion, Rose’s compression does not need to support efficient,
in-place updates of tree nodes.

Recent work optimizes B-trees for write intensive work-
loads by dynamically relocating regions of B-trees during
writes [6]. This reduces index fragmentation but still relies
upon random I/O in the worst case. In contrast, LSM-trees
never use disk seeks to service write requests and produce
perfectly laid out B-trees.

Online B-tree merging [15] is closely related to LSM-trees’
merge process. B-tree merging addresses situations where
the contents of a single table index have been split across
two physical B-trees that now need to be reconciled. This
situation arises, for example, during rebalancing of parti-
tions within a cluster of database machines.

One B-tree merging approach lazily piggybacks merge op-
erations on top of tree access requests. To service an index
probe or range scan, the system must read leaf nodes from
both B-trees. Rather than simply evicting the pages from
cache, this approach merges the portion of the tree that has
already been brought into memory.

LSM-trees can service delayed LSM-tree index scans with-
out performing additional I/O. Queries that request table
scans wait for the merge processes to make a pass over the in-
dex. By combining this idea with lazy merging an LSM-tree
implementation could service range scans immediately with-
out significantly increasing the amount of I/O performed by
the system.

5.2 Row-based database compression
Row-oriented database compression techniques compress

each tuple individually and sometimes ignore similarities be-
tween adjacent tuples. One such approach compresses low
cardinality data by building a table-wide mapping between
short identifier codes and longer string values. The map-
ping table is stored in memory for convenient compression
and decompression. Other approaches include NULL sup-
pression, which stores runs of NULL values as a single count
and leading zero suppression which stores integers in a vari-
able length format that does not store zeros before the first
non-zero digit of each number. Row oriented compression

schemes typically provide efficient random access to tuples,
often by explicitly storing tuple offsets at the head of each
page.

Another approach is to compress page data using a generic
compression algorithm, such as gzip. The primary drawback
of this approach is that the size of the compressed page is not
known until after compression. Also, general purpose com-
pression techniques typically do not provide random access
within pages and are often more processor intensive than
specialized database compression techniques [16].

5.3 Column-oriented database compression
Some column compression techniques are based on the

observation that sorted columns of data are often easier to
compress than sorted tuples. Each column contains a single
data type, and sorting decreases the cardinality and range
of data stored on each page. This increases the effectiveness
of simple, special purpose, compression schemes.

PFOR was introduced as an extension to MonetDB [17],
a column-oriented database, along with two other formats.
PFOR-DELTA is similar to PFOR, but stores differences
between values as deltas. PDICT encodes columns as keys
and a dictionary that maps to the original values. We plan
to add both these formats to Rose in the future. We chose
to implement RLE and PFOR because they provide high
compression and decompression bandwidth. Like MonetDB,
each Rose table is supported by custom-generated code.

C-Store, another column oriented database, has relational
operators that have been optimized to work directly on com-
pressed data [1]. For example, when joining two run length
encoded columns, it is unnecessary to explicitly represent
each row during the join. This optimization would be useful
in Rose, as its merge processes perform repeated joins over
compressed data.

Search engines make use of similar techniques and apply
column compression to conserve disk and bus bandwidth.
Updates are performed by storing the index in partitions
and replacing entire partitions at a time. Partitions are
rebuilt offline [4].

A recent paper [7] provides a survey of database compres-
sion techniques and characterizes the interaction between
compression algorithms, processing power and memory bus
bandwidth. The formats within their classification scheme
either split tuples across pages or group information from
the same tuple in the same portion of the page.

Rose, which does not split tuples across pages, takes a
different approach and stores each column separately within
a page. Our column-oriented page layouts incur different
types of per-page overhead and have fundamentally different
processor cache behaviors and instruction-level parallelism
properties than the schemes they consider.

In addition to supporting compression, column databases
typically optimize for queries that project away columns
during processing. They do this by precomputing the pro-
jection and potentially resorting and recompressing the data.
This reduces the size of the uncompressed data and can im-
prove compression ratios, reducing the amount of I/O per-
formed by the query. Rose can support these optimizations
by computing the projection of the data during replication.
This provides Rose replicas optimized for a set of queries.

Unlike column-oriented databases, Rose provides for high
throughput, low-latency, in-place updates and tuple lookups
comparable to row-oriented storage.

536

5.4 Snapshot consistency
Rose relies upon the correctness of the master database’s

concurrency control algorithms to provide snapshot consis-
tency to queries. Rose is compatible with most popular
approaches to concurrency control in OLTP environments,
including two-phase locking, optimistic concurrency control
and multiversion concurrency control.

Rose only provides read-only queries. Therefore, its con-
currency control algorithms need only address read-write
conflicts. Well-understood techniques protect against such
conflicts without causing requests to block, deadlock or live-
lock [3].

6. CONCLUSION
Compressed LSM-trees are practical on modern hardware.

Hardware trends such as increased memory size and se-
quential disk bandwidth will further improve Rose’s perfor-
mance. In addition to developing new compression formats
optimized for LSM-trees, we presented a new approach to
database replication that leverages the strengths of LSM-
trees by avoiding index probing during updates. We also
introduced the idea of using snapshot consistency to pro-
vide concurrency control for LSM-trees.

Our implementation is a first cut at a working version of
Rose. Our prototype’s random read performance compares
favorably to that of a production-quality B-tree, and we have
bounded the increases in Rose’s replication throughput that
could be obtained without improving compression ratios. By
avoiding disk seeks for all operations except random index
probes, uncompressed LSM-trees can provide orders of mag-
nitude more write throughput than B-trees. With real-world
database compression ratios ranging from 5-20x, Rose can
outperform B-tree based database replicas by an additional
factor of ten.

7. AVAILABILITY
Rose’s source code and the tools used to generate our

TPC-C/H workload are available at:
http://www.cs.berkeley.edu/∼sears/stasis

8. ACKNOWLEDGEMENTS
We would like to thank Petros Maniatis, Tyson Condie,

Jens Dittrich and the anonymous reviewers for their feed-
back. Portions of this work were performed at Intel Re-
search, Berkeley.

9. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented
database systems. In SIGMOD, 2006.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving relations for cache
performance. In VLDB, 2001.

[3] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM
Comput. Surv., 13(2):185–221, 1981.

[4] E. A. Brewer. Combining systems and databases: A
search engine retrospective. In J. M. Hellerstein and
M. Stonebraker, editors, Readings in Database
Systems. 4th edition, 2005.

[5] G. Graefe. Sorting and indexing with partitioned
B-Trees. In CIDR, 2003.

[6] G. Graefe. B-Tree indexes for high update rates.
SIGMOD Rec., 35(1):39–44, 2006.

[7] A. L. Holloway, V. Raman, G. Swart, and D. J.
DeWitt. How to barter bits for chronons:
Compression and bandwidth trade offs for database
scans. In SIGMOD, 2007.

[8] C. Jermaine, E. Omiecinski, and W. G. Yee. The
partitioned exponential file for database storage
management. The VLDB Journal, 16(4):417–437,
2007.

[9] P. Muth, P. O’Neil, A. Pick, and G. Weikum. Design,
implementation, and performance of the LHAM
log-structured history data access method. In VLDB,
1998.

[10] National Severe Storms Laboratory Historical
Weather Data Archives, Norman, Oklahoma, from
their Web site at http://data.nssl.noaa.gov.

[11] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta
Informatica, 33(4):351–385, 1996.

[12] V. Raman and G. Swart. How to wring a table dry:
Entropy compression of relations and querying of
compressed relations. In VLDB, 2006.

[13] R. Sears and E. Brewer. Stasis: Flexible transactional
storage. In OSDI, 2006.

[14] StorageReview.com. Seagate barracuda 750es.
http://www.storagereview.com/ST3750640NS.sr, 12
2006.

[15] X. Sun, R. Wang, B. Salzberg, and C. Zou. Online
B-tree merging. In SIGMOD, 2005.

[16] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Rec., 29(3):55–67,
2000.

[17] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
2006.

537

