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ABSTRACT

We present SGuard, a new fault-tolerance technique for dis-
tributed stream processing engines (SPEs) running in clus-
ters of commodity servers. SGuard is less disruptive to nor-
mal stream processing and leaves more resources available
for normal stream processing than previous proposals. Like
several previous schemes, SGuard is based on rollback recov-
ery [18]: it checkpoints the state of stream processing nodes
periodically and restarts failed nodes from their most recent
checkpoints. In contrast to previous proposals, however,
SGuard performs checkpoints asynchronously: i.e., opera-
tors continue processing streams during the checkpoint thus
reducing the potential disruption due to the checkpointing
activity. Additionally, SGuard saves the checkpointed state
into a new type of distributed and replicated file system
(DFS) such as GFS [22] or HDFS [9], leaving more memory
resources available for normal stream processing. To man-
age resource contention due to simultaneous checkpoints by
different SPE nodes, SGuard adds a scheduler to the DFS.
This scheduler coordinates large batches of write requests
in a manner that reduces individual checkpoint times while
maintaining good overall resource utilization. We demon-
strate the effectiveness of the approach through measure-
ments of a prototype implementation in the Borealis [2]
open-source SPE using HDFS [9] as the DFS.

1. INTRODUCTION

Today’s Web and Internet services (e.g., email, instant
messaging, search, online games, e-commerce) must handle
millions of users distributed across the world. To manage
these large-scale systems, service providers need sophisti-
cated monitoring tools: they must continuously monitor the
health of their infrastructures, the quality-of-service expe-
rienced by users, and any potentially malicious activities.
Stream processing engines (SPEs) [2, 48]' are well-suited

'Also called data stream managers [I, 38], stream
databases [16], continuous query processors [11], or event
processing engines [5, 15].
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to support these types of monitoring activities as they pro-
cess data streams continuously and with low latency. The
scale of today’s monitoring applications, however, requires
running these SPEs in clusters of commodity servers.

Several distributed stream processing engines exist and
could be applied to the problem [2, 11, 14]. However, an im-
portant challenge when running distributed SPEs in server
clusters is fault-tolerance. As the size of the cluster grows,
so does the likelihood that one or more servers will fail.
Server failures include both software crashes and hardware
failures. In this paper, we assume server clusters with tens
of infrequently failing servers and focus only on fail-stop
failures [45)% : when a server fails (either due to a software
or hardware bug), it stops processing streams, loses its in-
memory state and possibly its persistent state, and loses all
messages in flight to and from other servers. The failure
can be detected by other servers through keep-alive mes-
sages. The server may never recover. Additionally, multiple
servers can fail simultaneously.

A failure can cause a distributed SPE to block or to pro-
duce erroneous results. In both cases, applications that
rely on these results are negatively impacted by the failure.
To address this problem and enable a distributed SPE to
achieve high-availability, several fault-tolerance techniques
have recently been proposed [6, 25, 26, 46]. These tech-
niques rely on replication: the state of stream processing
operators is replicated on multiple servers. In some schemes,
these servers all actively process the same input streams at
the same time [6, 25, 46]. In other techniques, only one
primary server performs the processing while the other sec-
ondary servers passively hold the replicated state in memory
until the primary fails [25, 26]. The replicated state is peri-
odically refreshed through a process called checkpointing to
ensure the backup nodes hold a recent copy of the primary’s
state. Although these techniques provide excellent protec-
tion from failures, they do so at relatively high cost. When
all processing is replicated, the number of servers available
for normal stream processing is cut at least in half. When
replicas only keep snapshots of a primary’s state without
performing any processing, the CPU overhead is less but the
cluster still loses at least half of its memory capacity (the
exact overhead depends on the degree of replication). Cur-
rently, fault-tolerance in SPEs can thus only be achieved by
reserving for fault-tolerance resources that could otherwise

2Even though we assume fail-stop failures, SGuard could
be used in the presence of other types of failures with the
addition of standard failure detection and membership man-
agement techniques [31].



be used for normal stream processing. Additionally, fault-
tolerance can be disruptive because checkpointing the SPE
state requires temporarily suspending normal processing.

In this paper, we show that it is possible to make SPEs
fault-tolerant at a much lower cost and in a manner that
maintains the efficiency of normal SPE operations. Our ap-
proach, called SGuard, is based on three key innovations.

First, because SPEs process streams in memory, memory
is a critical resource. To save memory resources, SGuard
saves checkpoints to disk. Stable storage has previously
not been considered for streaming systems because saving
state to disk was considered too slow for streaming appli-
cations. SGuard partly overcomes this performance chal-
lenge by using a new generation of distributed and repli-
cated file system (DFS) such as the Google File System
(GFS) [22], the Hadoop Distributed File System (HDFS) [9],
and KFS [29]. In contrast to earlier distributed files sys-
tems such as NFS [39] or AFS [24], these new DFSs are
optimized for reads and writes of large data volumes and for
append-style workloads, which exactly matches our applica-
tion. They also maintain high-availability in the face of disk
failures. Furthermore, these DFSs are already being used
in the context of large-scale infrastructures for Internet and
Web services. They are thus readily available in the environ-
ments for which we design SGuard. Our approach leverages
their presence. With SGuard, each SPE node now serves as
both a stream processing and a file system node. SGuard
checkpoints the operator states periodically into the DFS.
If the state to checkpoint is large, SGuard partitions it into
smaller chunks that are written in parallel onto many nodes
in the DFS. The first innovation of SGuard is thus the use
of a DF'S as stable storage for SPE checkpoints.

Second, even with these new DFSs, when many nodes
have large states to checkpoint, they contend for disk
and network bandwidth resources, slowing down individual
checkpoints. To address this resource contention problem,
SGuard extends the DFS master node with a new type of
scheduler, called Peace. Given a queue of write requests,
Peace selects the replicas for each data chunk and schedules
all writes in a manner that significantly reduces the latency
of individual writes, while only modestly increasing the com-
pletion time for all writes in the queue. For example, in a
17-node network spread across two racks on a LAN, if 16
nodes need to checkpoint 512MB each, we find that Peace
reduces the individual checkpoint times from 45s to less than
20s, while increasing the time to complete all checkpoints
only from 55s to 75s, all this with a three-fold replication
level (Section 6.2, Figure 10). Hence, Peace reduces the
maximum DFS throughput slightly to achieve high perfor-
mance of individual write batches. Peace achieves this goal
by scheduling only as many concurrent writes as there are
available resources and by selecting the destination for each
write in a manner that avoids resource contention. Although
developed in the context of SGuard, the Peace scheduler
is generally applicable to reduce the latency of individual
writes in a DF'S under high levels of contention.

Third, to make checkpoints transparent, SGuard provides
a new memory management middleware (MMM) that makes
it possible to checkpoint the state of an SPE operator while
it continues executing. MMM partitions the SPE mem-
ory into application-level “pages”, i.e. large fragments of
memory allocated on the heap, and uses application-level
copy-on-write to perform asynchronous checkpoints. That
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Figure 1: SPE query diagram composed of 20 operators
distributed across three nodes.

is, to checkpoint the state of an operator, its pages are
marked as read-only. They are copied to disk while the
operator continues processing. The operator is only sus-
pended when it touches a page that has not yet been re-
copied to disk. The system creates a copy of the page be-
fore letting the operator resume its execution. MMM check-
points are more efficient than previous approaches. Most
previous approaches for concurrent checkpointing rely on
the operating system’s page protection mechanism and use
copy-on-write techniques to checkpoint the state of an en-
tire process asynchronously [3, 23, 35] (or they emulate this
approach in a virtual machine [52]). Because they must
checkpoint the entire process, these techniques yield large
checkpoints. In contrast, SGuard enables selective check-
points at the application-level. Unlike other fine-grained
application-level checkpointing mechanisms, SGuard offers
asynchronous checkpoints and provides a good level of trans-
parency by exposing to application writers a standard data
structure interface. Finally, with the MMM, pages are writ-
ten to disk without requiring any expensive translation.
Overall, the MMM checkpoints are thus more efficient and
less disruptive to normal stream processing than previous
schemes. For example, when checkpointing 128MB of state,
as soon as the state is split into four independent partitions,
the MMM checkpoint latency is completely hidden, while
conventional methods require more than 64 partitions to
hide the latency due to checkpoints (Section 6.1, Figure 8).
Even though it is designed to checkpoint the state of an
SPE, the MMM is more generally applicable to efficiently
checkpointing data flow applications.

In summary, SGuard’s contributions are thus (1) the use
of a new generation DFS such as GFS to achieve fault-
tolerance in a distributed SPE, (2) the new Peace DFS
scheduler, and (3) the new MMM.

2. BACKGROUND

In this section, we review the query execution model and
fault-tolerance techniques used in distributed SPEs. We also
present an overview of the emerging distributed, replicated
file systems that SGuard uses for stable storage.

2.1 Stream Processing Engines

A large number of stream processing engines (SPEs) have
recently been developed. These engines include numerous
research prototypes [1, 2, 7, 11, 16, 27, 38] and several com-
mercial products [5, 15, 48]. In an SPE, a query takes the
form of a loop-free, directed graph of operators. Each op-
erator processes data arriving on its input streams and pro-
duces data on its output stream. The processing is done



in memory without going to disk.> Common operators in-
clude filters (a form of selection), maps (a generalized pro-
jection), windowed aggregates, and windowed joins [1]. We
assume the stream processing computation is deterministic,
although rollback recovery and thus our technique can also
work in face of non-determinism [18, 25].

These query graphs are called query diagrams and can be
distributed across multiple servers in a local-area network
(LAN) [2, 11, 14, 16] or a wide-area network (WAN) [2, 14].
Each server runs one instance of the SPE and we refer to
it as a processing node (or simply node). Figure 1 illus-
trates a query diagram composed of twenty operators (O1
through Og0) distributed across three nodes. In this dia-
gram, nodes N; and Nz are upstream from N3 because they
produce streams consumed by operators on V3.

Several techniques have been proposed to mask failures
of processing nodes and achieve high availability (HA) in
distributed SPEs. Most techniques [6, 25, 46] are based
on state-machine replication [45]. They achieve fault-
tolerance by replicating query diagram operators across mul-
tiple nodes and having all replicas process the same input
streams in parallel. With this approach, however, at least
half the cluster resources are dedicated to fault-tolerance.

An alternate technique, called passive standby [25],
consists in using rollback recovery [18] to achieve fault-
tolerance. With this approach, only a primary replica of
each node processes streams. This primary periodically
takes a snapshot of its state and sends that snapshot to one
or more backup nodes [25, 26] (the primary can also copy
only the difference of its state since the last checkpoint).
When a failure occurs, one of the backups is selected as
the new primary. With this approach, the CPU overhead is
smaller since backups do not need to process input streams
in the absence of a failure. This approach, however, still
incurs at least 100% memory overhead because checkpoints
are stored in memory on the backup nodes.

In many large-scale monitoring applications, the state of
stream processing queries can be large. For example, a sin-
gle operator that joins two 20Mbps streams within a 10min
time-window has a 3GB state. Similarly, an operator that
needs to keep even a small amount of statistics (e.g., 1KB)
for each of a million URLs or clients, can easily end-up
maintaining an aggregate state on the order of a gigabyte.
Queries are composed of several such operators. Even if the
state of individual operators is small or is partitioned, the
aggregate state remains large.

Memory is thus a critical resource in an SPE. Our goal
is to develop a fault-tolerance scheme that does not require
reserving half the memory in a cluster for fault-tolerance.
To achieve this goal, we propose to save checkpoints to disk.
The challenge, however, is that disks have high write laten-
cies while stream processing applications have near real-time
processing requirements and can only tolerate minimal dis-
ruptions in the stream processing flow. To meet this chal-
lenge, our system uses and extends a DFS.

2.2 Distributed, Replicated File Systems

The growth of Internet-scale services requires new mon-
itoring infrastructures but also creates unprecedented data
processing needs. To address these needs, companies rely on

3Some systems include operators that join streams with
stored relations, but we ignore such operators in this pa-
per.
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Figure 2: SGuard system architecture.

large-scale data centers housing clusters consisting of thou-
sands of commodity servers (which we call nodes) that store
and process terabytes of data [22]. To manage such large
data volumes, new types of large-scale file systems or data
stores in general are emerging, including the Google File
System (GFS) [22], the Hadoop Distributed File System
(HDFS) [9], KFS [29], and Amazon’s Dynamo [20].

GF'S and similar systems (KFS and HDFS) provide sev-
eral features that make them especially attractive for our
problem. SGuard is based on HDF'S, the open-source version
of GF'S, which has the following two important properties:

Support for large data files. HDFS is designed to op-
erate on large, Multi-GB files. It is optimized for append
and bulk read operations. To provide high read and ap-
pend performance, each file is divided into chunks. Chunks
are typically large (e.g., 64MB). Different chunks are stored
on different nodes. A single master node (the Coordinator)
makes all chunk placement decisions. A client that needs to
read or write a file communicates with the Coordinator only
to learn the location of the required chunks. All data trans-
fers are then performed directly between the client and the
individual nodes storing the data. SGuard exploits this stor-
age infrastructure to save checkpoints of operators’ states.

Fault-tolerance through replication. Because these
file systems assume clusters of commodity hardware, they
also assume frequent failures. To protect from failures,
each data chunk is replicated on multiple nodes using syn-
chronous master replication: the client sends data to the
closest replica, which forwards it to the next closest replica
in a chain, and so on. Once all replicas have the data,
the client is notified that the write has completed. The
level of replication is set by the client but the location of
the replicas is determined by the Coordinator. The Coor-
dinator detects node failures and creates new replicas for
any under-replicated chunks. The Coordinator itself is also
fault-tolerant (using rollback recovery). SGuard relies on
this automatic replication to protect the distributed SPE
against multiple simultaneous failures.

3. SGuard OVERVIEW

SGuard is based on passive standby, the rollback-recovery
technique for SPEs mentioned in Section 2.1. Passive
standby works as follows. Each SPE node takes periodic
checkpoints of its state and writes these checkpoints to sta-
ble storage. SGuard uses the DFS as stable storage, while
previous techniques used the memory of other SPE nodes.
To take a checkpoint, a node suspends its processing and
makes a copy of its state (we later discuss how SGuard avoids
this suspension). For example, in Figure 1, Node N3 takes a
checkpoint by making a copy of the states of operators O14



through O and their input and output queues. Between
checkpoints, each node logs the output tuples it produces.
In the example, operators Oz, O19, O13, and Oz log their
output (as we discuss later, O17 also logs its output). When
a failure occurs, a backup node recovers by reading the most
recent checkpoint from stable storage and reprocessing all in-
put tuples since then. For example, if N3 fails, another node
will read N3’s most recent checkpoint and will ask operators
O~ and Oip to replay their logged output tuples. To enable
upstream nodes to remove tuples from their output queues,
once a checkpoint is written to stable storage, a node sends
a message to all its upstream neighbors to inform them of
the checkpointed input tuples. These tuples will no longer
be needed in the case of a failure and can be discarded.

Because nodes buffer output tuples, they can checkpoint
their states independently and still ensure consistency in
the face of a failure. Within a node, however, all intercon-
nected operators must be suspended and checkpointed at
the same time to capture a consistent snapshot of the SPE
state. Such interconnected groups of operators are called
HA units [26]. They are the smallest unit of work that can
be checkpointed and recovered independently. SGuard also
uses HA units, but it constructs them by explicitly placing
new operators, that we call HAInput and HAQutput, on all
input and output streams of each HA unit. As in Flux [46],
these operators implement all the output tuple logging and
acknowledgment logic. They enable the definition of HA
units around arbitrary partitions of a query diagram. In Fig-
ure 1, there are five HA units: {O1,---,07}, {Os, Og, O10},
{011, 012,013}, {O14,- - , 017}, and {O1s, O19,O20}.

The level of replication of the DF'S determines the level of
fault-tolerance of SGuard. With k + 1 replicas, SGuard can
tolerate up to k simultaneous failures.

In SGuard, the distributed SPE and the DFS could run
on two separate sets of servers. A more typical deployment,
however, shares servers between these two systems as illus-
trated in Figure 2: each server takes the role of a data node
in the DF'S and a processing node in the distributed SPE. In
the absence of competing workload (from applications other
than the SPE), running the DFS on the same nodes as the
SPE adds only a small overhead. Through micro bench-
marks, not shown due to space limitation, we observed that
a DFS data node uses approximately 20 to 50% of a single
CPU and 100 to 150MB of RAM while receiving a chunk
of data at maximum rate. When serving a chunk of data, a
node uses less than 10% of a single CPU. Considering emerg-
ing multicore architectures, running DFS does not pose a
significant overhead on the SPE, making it reasonable to
run both on the same set of servers.

As in existing DFSs, SGuard relies on a single, fault-
tolerant Coordinator to manage the placement and repli-
cation of data in the DFS. With SGuard, the Coordinator
also detects SPE node failures, selects recovery nodes, and
initiates recovery of lost query diagram fragments. To sup-
port these functions, all nodes periodically send keep-alive
messages to the Coordinator.

A problem with the approach described so far is the im-
pact of checkpoints on the normal stream processing flow.
Because operators must be suspended during the check-
point, each checkpoint introduces extra latency in the result
stream. This latency will be exacerbated by writing check-
points to disks rather than keeping them in memory at other
nodes. To address these challenges, SGuard uses two key
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Figure 3: SGuard software architecture.

techniques. First, it uses a new Memory Management Mid-
dleware (MMM) illustrated in Figure 3 to (a) make check-
points asynchronous so that operators can continue process-
ing during checkpoints and (b) almost completely eliminate
all serialization costs to speed-up the checkpointing process.
Second, SGuard extends the DFS Coordinator with a sched-
uler, called Peace, that reduces the total time to write the
state of a single HA unit while maintaining good overall re-
source utilization. We describe the MMM in Section 4 and
Peace in Section 5.

The SGuard technique introduces a new middleware layer
for SPEs as illustrated in Figure 3 that includes the MMM.
This layer also includes two other components: a ChkptMngr
and an IOService. The asynchronous IOService efficiently
parallelizes all reads and writes of checkpointed states to
and from the DFS as we discuss further in Section 5.

The ChkptMngr orchestrates checkpoint and recovery op-
erations. It checkpoints an HA unit in five steps: (1) it
notifies HAInput operators that the checkpoint is starting,
(2) it prepares the state of the HA unit, (3) it writes the
prepared states into the DFS, (4) it informs the Coordina-
tor about the new checkpoint, and (5) it notifies HAInput
operators that the checkpoint completed. Only the first two
steps are performed synchronously while the corresponding
HA unit is suspended. The remaining steps proceed asyn-
chronously while the HA unit continues execution. The first
and last steps enable HAInputs to send appropriate acknowl-
edgments to upstream HAOutputs (for output queue trim-
ming). We omit the details of this process due to space con-
straints and because they are not important for SGuard’s
key contributions. We further present the checkpointing
procedure after we describe the MMM in Section 4.

4. MMM MEMORY MANAGER

To checkpoint operators’ states without serializing them
first into a buffer (and similarly without deserializing them
from a buffer upon recovery) and to enable concurrent check-
points, where the state of an operator is copied to disk while
the operator continues erecuting, SGuard must control the
memory of stream processing operators. This is the role of
the Memory Management Middleware (MMM).

The MMM partitions the SPE memory into a collection
of “pages”, which are large fragments of memory allocated
on the heap. Operator states are stored inside these pages.
To checkpoint the state of an operator, its pages are re-
copied to disk. To enable an operator to execute during the
checkpoint, the MMM performs an application-level copy-
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Method

Page* create(PSID)
void destroy(PSID)
Page* allocate(PSID)
void release(Page*)

Description

Create a new page set

Destroy a page set

Allocate or release a page asso-
ciated with a page set

Return the memory address of
a given page

Page* resolve(PagelD)

Table 1: Page Manager’s standard API.

on-write: when the checkpoint begins, the operator is briefly
suspended and all its pages are marked as read-only. The
operator execution is then resumed and pages are written
to disk in the background. If the operator touches a page
that has not yet been written to disk, it is again briefly
interrupted while the MMM makes a copy of the page.

To avoid serialization costs, the page format is identical in
memory and on disk. For this, page content is constrained
to sets of flat and independent records (no pointers). To
facilitate application development on top of this page ab-
straction, the MMM exposes standard data structures such
as lists, maps, and queues. Operator writers use these MMM
data structures instead of ordinary data structures to store
the state of operators.

Figure 3 shows the architecture of the MMM, which com-
prises two layers: a Page Manager (PM) layer and a Data
Structures (DS) layer. The PM allocates, frees, and check-
points pages. The DS implements data structure abstrac-
tions on top of the PM’s page abstraction. To make the
MMM easily extensible, we also provide a library of data
structure wrappers on top of each page, called the Page
Layout (PL) library. The PL simplifies the implementation
of new data structures on top of the PM by simplifying the
management of records within a page. We now present each
of these components in more detail.

4.1 Page Manager Layer

As we mentioned above, the PM partitions the heap space
into application-level pages. It maintains the list of free and
allocated pages and controls all requests for allocating and
freeing these pages. The PM also enables higher layers to
group allocated pages into sets. Each set is uniquely iden-
tified with a page set identifier (PSID) and the PM keeps
track of the pages allocated for each PSID. Figure 4 illus-
trates the internal data structures of the PM. Each page has
a unique PagelD, which is the concatenation of the PSID
and a sequence number unique within the set identified by
the PSID. The PM maintains and exposes a page table that
maps PagelDs onto the addresses of the pages in memory.
The PM manages pages only as sets. Creating meaningful
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Method

static ADT*
create(PSID,Schema)

Description

Create a data structure with a given
schema (or recover data structure
from a checkpoint).

Destroy a data structure

Data structure specific methods

void destroy ()
insert, find, ...

Table 2: Data Structures’ API. This API is provided by each
data structure class in the DS layer. ADT refers to a generic data
structure.

relationships between pages is left to the DS layer. The DS
layer associates a different PSID with each data structure
instance that it creates.

Table 1 shows the PM’s API. We present additional meth-
ods for checkpoint and recovery in Section 4.4. The DS uses
this API to create data structure instances with unique IDs
and add or remove pages from them as they grow and shrink.

4.2 Page Layout Library

The Page Layout library simplifies the implementations of
data structures on top of the page abstraction by providing a
seamless mechanism for operating on records within a page.
Our implementation currently includes a List, Map, Queue,
Dequeue, and Raw page layouts. A page layout is a wrapper
for a page and has two key features: (1) it provides a data
structure abstraction on top of each page, (2) it provides a
level of indirection between the data structure and the un-
derlying pages, enabling copy-on-write of the pages during
checkpoints. Each page layout includes a page header re-
gion that contains at least the PagelD. For example, a list
page layout enables accessing the records within a page us-
ing a list API and includes the PagelDs of the preceding and
following pages in the header.

4.3 Data Structures Layer

The DS layer is a collection of classes, each implementing a
data structure type on top of the page abstraction exported
by the PM. Each data structure operates on records with a
fixed schema and without pointers to avoid serialization at
the record level. Pages are written to disk directly as they
appear in memory. The only deserialization that must be
done during recovery is mapping PagelDs to addresses of en-
tire pages in memory. In our current prototype, we provide
list, ordered map, and unordered map data structures with
similar APIs to their STL [47] counterparts. These are the
main data structures required for stream processing opera-
tors, but additional data structures could be implemented.

Table 2 summarizes the API of each data structure pro-
vided by the DS. Each data structure must implement only
two methods: a static method to create a new instance
given a record schema (create (PSID, Record Schema)) and
a method to destroy an instance (destroy). Otherwise, each
data structure is free to expose any additional methods to
insert, remove, or search for data items in the data structure.

Since each data structure is implemented on top of a set
of pages, the data structure must somehow link these pages
together for efficient data access and retrieval. For this,
the data structure writes appropriate PagelDs in each page
header. These PagelDs are links to other pages. Manag-
ing such linkage structure is specific to each data structure.
Table 3 describes the content of the Super Page, which is
the first page allocated for each PSID, and the content of
the page headers for the three abstract data types (ADTs)



Abstract Internal
T Represen- Super Page Page Header
ype .
tation
page id of . .
List ]'Doublyv head and tail | Pa8e id of previous
linked list and next pages
pages
Ordered page id of | page id of parent and
Map T-tree [33] root page left, right child pages
Number of
. directory page id of previous
Unordered | Linear . .
Map hash [36] pages and list | and next pages in
of page ids in | each bucket
order
Table 3: Data structure examples.
Method Description

bool exists(PSID)
Page* recover(PSID)

Returns true if a page set exists
Recover an existing page set
Make a copy of a page. Replace
old page with new one in page
set.

Checkpoint a list of page sets
under a single name

Load all pages from a check-
point

Page* clone(Page*)

void chkpt(name, list<PSID>)

void load(name)

Table 4: Page Manager’s checkpoint and recovery API.

implemented in our prototype.

When traversing pages, a data structure must continu-
ously invoke the resolve method of the PM, but this call is
fast as it only involves one hash-table lookup. As a straight-
forward optimization, however, the data structure can cache
the mapping from PagelD to in-memory address and avoid
invoking the PM. As a further optimization, a data structure
class can build an in-memory representation of each data
structure instance with direct access to all pages in memory.
For example, a list data structure can keep an in-memory
list where each element of the list points to the underlying
page. This redundant structure must be updated when the
underlying data structure changes, but adding and remov-
ing pages is a much less frequent operation than adding and
removing records. This in-memory data structure is also
lost when a processing node fails and must be re-built when
recovering from a checkpoint. This optimization can thus
be seen as analogous to a very coarse-grained deserializa-
tion. Importantly, however, because this data structure is
redundant, it can be rebuilt lazily.

4.4 Checkpoint and Recovery

By standardizing the state representation into pages, the
checkpoint process becomes universal for all stream opera-
tors. It can be performed by the ChkptMngr without the
participation of the operators and concurrently with the op-
erator execution. As we mentioned above, each checkpoint
is performed in five steps, but the three key steps are: (2)
prepare the state of the HA unit, (3) write the prepared
states into the DFS, and (4) inform the Coordinator about
the new checkpoint. In the second step, the ChkptMngr pre-
pares the state of an HA unit by calling the chkpt method of
the Page Manager. This method is part of the PM’s check-
point/recovery API shown in Table 4. The chkpt method
accepts two parameters: an identifier for the checkpoint and,
optionally, a list of PSIDs to checkpoint. Without the list,
all pages are checkpointed.

The Page Manager prepares the state of each data struc-
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ture by taking a snapshot of the corresponding set of pages.
To do so, the PM makes a copy of the set of all PagelDs
associated with the data structure and marks each page as
read-only. This process is significantly faster than serializa-
tion (as we show in Figure 6). The set of all PagelDs is then
copied into a “checkpoint request”. During this short state
preparation operation, the HA unit must be suspended to
ensure that a consistent state is checkpointed.

Once its pages are marked as read-only, an operator can
resume execution, while the pages are written to disk asyn-
chronously. After a page is written to disk, it is marked
read-writable again. If an operator modifies a page while it
is still marked read-only, the underlying data structure does
a copy-on-write using the clone method of the Page Man-
ager. The new page is read-writable so subsequent updates
to the same page incur no copy overhead. The PM puts the
old read-only page into a separate queue of pages that are
garbage collected once written to disk.

As part of the third step of the checkpoint process, the
PM hands over the checkpoint request to the underlying
IOService. The latter writes to the DFS all pages identified
in the checkpoint request. As soon as a page is written to
disk, the IOService marks this page as read-writable again.

When all the writes complete, the IOService notifies the
PM. The PM, in turn, notifies the ChkptMngr and the
ChkptMngr notifies the Coordinator about the new check-
point. As part of the notification, the ChkptMngr trans-
mits to the Coordinator all the meta-data associated with
the checkpoint, which includes the identifier of the check-
pointed HA unit and the identifier of the checkpoint.

Upon a failure, the Coordinator selects one recovery node
for each HA unit and informs the node of the most recent
checkpoint. To restart from a checkpoint, the ChkptMngr
loads the checkpoint data into the PM by invoking the PM’s
load method. Under the covers, the PM invokes the IOSer-
vice to read the data pages and populate a set of free pages.
As the IOService reads the pages in, the PM reconstructs
the page table information on the fly for each page set. Since
the page table is not ordered, it can be rebuilt independently
of the order in which pages are read from disk.

Operators do not know they are being restarted from a
checkpoint. They call their usual create method for each
one of their data structures. To support recovery, the under-
lying data structures do not directly call the PM’s create
method. Instead, they first check if the requested instance
already exists by using the exists method of the PM. If
the instance exists, the data structures invoke the recover
method to retrieve the appropriate Super Page.

Only HAInputs need to know that the HA unit has been
recovered from a checkpoint. When it is started, each HAIn-
put operator checks if its internal state contains information
about any previously received input tuples. If it does, the
HAInput operator requests that the upstream HAOutput
operator replay all tuples since the last checkpoint.

If a failure affects stored data, the DF'S also needs to re-
copy all lost chunks to ensure that the system regains its
original level of replication. With SGuard, this steps is not
strictly necessary since the original level of replication is au-
tomatically regained at the next checkpoint.

5. Peace SCHEDULER

To write the state of a checkpointed HA unit to the DFS,
the PM uses an asynchronous 10Service (Figure 3), which
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Figure 5: Example graph model for a LAN with two
switches and four servers. Solid edges have cost 1 and dashed
edges have cost 0. Capacities are not represented.

parallelizes all I/O operations to achieve good performance:
the pages of an HA unit are split across multiple worker
threads that write them to the DFS in parallel. The DFS
further spreads the data written by each thread across many
nodes. To recover the state of an HA unit, the IOService
similarly reads that state from many nodes in parallel.

Checkpoints are managed under the DFS names-
pace. Each checkpoint is in a directory called
/checkpoint/chkpt_id, where the chkpt_id is the concate-
nation of the HAUnitID and the checkpoint sequence num-
ber. Inside this directory, each worker thread writes its set
of pages into one file under a unique name (e.g., the thread
identifier). Each file comprises one or more DFS chunks.

Within a node, the ChkptMngr can checkpoint one HA
unit at a time and the above approach already provides
good performance as we show in Section 6.2. However, when
many nodes try to checkpoint HA units at the same time,
they contend for network and disk resources, slowing down
individual checkpoints. This contention is exacerbated by
the replication inside the file system.

Peace addresses this resource contention problem. Peace
runs inside the Coordinator at the DFS layer. Given a set of
requests to write one or more data chunks, Peace schedules
the writes in a manner that reduces the time to write each
set of chunks while keeping the total time for completing
all writes small. It does so by scheduling only as many con-
current writes as there are available resources, scheduling all
writes from the same set close together, and by selecting the
destination for each write in a manner that avoids resource
contention. The advantage of adding a scheduler at the DF'S
rather than the application layer is that the scheduler can
better control and allocate resources and we get a general,
rather than application-specific, approach.

Peace takes as input a model of the network in the form
of a directed graph G = (V| E), where V is the set of ver-
tices and E the set of edges. This model defines the network
topology and the capacities of different resources. Figure 5
shows an example. Each server i is represented with two
vertices, v?NP and vRCV, which represent the sending and
receiving processes running on server . If a server ¢ is con-
nected to a switch u, then v$NP is connected to v via a
vertex v, The edge between v;"" and v} represents the
physical connection between 7 and v and has cost 1. An edge
between v;* and v;" represents the internal switch connec-
tion and has cost 0. The downstream connection is modeled
similarly with an intermediate vertex vi®. Vertices repre-
senting physically connected switches are also connected in
the graph. In addition to a cost, each edge also has a ca-

Algorithm 1 Peace DFS chunk scheduling algorithm.

Input: W < a set of triples (w,r, k) where w is the writer node, r
is the desired replication level, and k is the number of chunks to
be written
G < residual network graph for current timestep
P < I/0 schedule plan for current timestep.

C' <« constraint templates for each replication level (e.g., same
node, same rack, different rack).

1: P« ¢ // Initialize I/O schedule

2: W’ « ¢ // Unscheduled write requests

3: // For each request

4: for all (w,r, k) €W do

5:  // For each chunk in the request

6: while k>0 do

7 r’ « 0 // Current replication level

8: z «— w // Current source node

9: p < [w] // Total path

10: G’ «— G // Temporary residual graph

11: // For each replica of the chunk

12: while r’ < r do

13: H « create_graph(G’, z) // Add extra s and d nodes

14: ¢ « create_constraint(C,p, ")

15: q < randomized_shortest_path(H, c)

16: if there is a path ¢ then

17: G’ «— residual_graph(G’,q,1) // Compute residual
graph after augmenting path with one unit flow

18: r—r 41

19: z « last element of ¢

20: p « concat(p, [z])

21: else

22: W' — W' U {(w,r,k)}

23: continue with next (w,r, k)

24: end if

25: end while

26: k—k—-1

27: P.append(p)

28: G~ G’

29:  end while

30: end for

31: return (P,G,W')

pacity indicating the maximum number of data chunks that
can be transferred along the edge in a scheduling timestep.

The administrator must specify the network model. De-
scribing the network topology is simple, but determining
edge capacities requires running benchmarks. This process,
however, could be automated. We discuss edge capacities in
Section 6.2. Because the network model specifies the cost for
all resources (disk and network bandwidth), it is applicable
to settings where either resource is the bottleneck.

Given the above model, Peace schedules all write requests
using Algorithm 1. The basic idea is the following. Nodes
submit write requests to the Coordinator, in the form of
triples (w,r, k), where w is the node identifier, r is the de-
sired replication level (typically a system-wide parameter),
and k is the number of chunks to write. The algorithm
iterates over all requests. For each replica of each chunk,
it selects the best destination node by solving an instance
of the min-cost max-flow problem over the graph G. To
do so, the graph is extended with an extra source node s
and destination node d. s is connected to the writer node
i with an edge (s, v$NP) with capacity 1. d is connected to
all servers j # i with edges (vi©Y,d) and infinite capac-
ity. Figure 5 shows the extended graph when SVR1.1 is the
writer. The algorithm finds the minimum cost maximum
flow path from s to d using a variant of the successive short-
est path(SSP) algorithm [4]. The original SSP repeatedly
chooses the shortest path from s to d and sends as much
flow as possible along that path. In our case, because the
capacity on the outgoing edge from s is 1, the algorithm
reduces to finding the shortest path from s to d.



To ensure that different chunks and different replicas are
written to different nodes, Algorithm 1 selects the destina-
tion for one chunk replica at a time. Additionally, it uses a
randomized shortest path algorithm (RSP), where next hop
links out of a node are always traversed in a random order,
to ensure that different equivalent destinations are selected
on different iterations of the algorithm. After each itera-
tion, the algorithm computes the residual graph G’. The
next iteration uses this updated graph.

So far, we described how Peace schedules writes for a sin-
gle timestep. The duration of a timestep is approximately
the time it takes to write one data chunk to k replicas. If
only a subset of the requested chunks can be written in the
next timestep, Peace runs the algorithm again on timestep
t+1, and so on until all chunks are scheduled. For a chunk to
be scheduled during a timestep, all its replicas must be writ-
ten in that timestep. Because write requests arrive at the
Coordinator continuously, this overall scheduling algorithm
is an online algorithm. For each timestep, the algorithm
has time complexity linear in the number of data chunks
to schedule. The most expensive operation is randomized
shortest path, which is executed once per data chunk replica.

Peace’s schedule must satisfy two important properties of
the DFS. First, to exploit network bandwidth resources effi-
ciently, a node does not send a chunk directly to all replicas.
Instead, it only sends it to one replica, which then transmits
the data to others in a pipeline. A write is considered com-
pleted only after all replicas receive the data. To create such
a pipeline, at the end of each iteration of the inner loop of
Algorithm 1, the newly chosen destination node for a replica
becomes the next source z, such that the series of selected
destinations for the r replicas of a chunk forms a path. Sec-
ond, to reduce correlations between failures, the DFS places
replicas at different locations in the network (e.g., one copy
on the same rack and another on a different rack [9]). To
achieve this property, the destination selected at each iter-
ation must satisfy a specific set of constraints. In Peace,
these constraints are specified in the form of a template. A
constraint predicate c is then dynamically instantiated from
the constraint templates at the beginning of each iteration.
The randomized shortest path algorithm returns the short-
est path that satisfies the given constraints.

To illustrate the approach, consider the graph from Fig-
ure 5. We assume that all edges have capacity 1 and that
both SVR1.1 and SVR2.1 request to write one chunk with
a replication factor of 2. Peace first processes the request
from SVR1.1 and, using RSP, assigns the first replica to
SVR1.2. It assigns the second replica to SVR2.2 because
the second replica is constrained to be on a different rack.
Peace now processes the request from SVR2.1. RSP cannot
find any path for the first replica because the link (v5", v3%)
is full and the constraint requires that the first replica re-
main on the same rack. Thus, the request from SVR2.1 will
be scheduled at t + 1.

The above example demonstrates that our algorithm does
not guarantee that it will find an optimal solution but, as
we show in Section 6.2, it still enables nodes to write their
individual checkpoints faster in practice.

Given the above algorithm, the file-system write protocol
now works as follows. Each node submits write requests to
the Coordinator indicating the number of chunks it needs to
write. Peace schedules the chunks. The Coordinator then
uses callbacks to let the client know when and where to
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Window size 256 KB 512KB 1MB

Original SPE 592.1(10.5) | 1144(4.84) | 2109(11.1)
MMM with 8KB page 605.0(3.11) | 1175(5.90) | 2158(11.5)
MMM with 64KB page | 604.8(3.40) | 1179(4.67) | 2161(9.84)

Table 5: Per-tuple processing time and standard devia-
tions of the Join operator in microseconds. Average of 100
executions of processing 12K tuples.

write each chunk. To keep track of the progress of writes,
each node informs the Coordinator every time a write com-
pletes. Once a fraction of all scheduled writes complete,
Peace declares the end of a timestep and moves on to the
next timestep. If the schedule does not allow a client to
start writing right away, the Coordinator returns an error
message. In SGuard, upon receiving such a message, the
IOService propagates the message to the PM, which cancels
the checkpoint by marking all pages of the HA unit read-
writable again. The state of the HA unit is checkpointed
again when the node can finally start writing. If the num-
ber of pages in the checkpoint changed, the node re-submits
a new request instead.

6. EVALUATION

In this section, we evaluate SGuard by measuring the per-
formance of its components. In Section 6.1, we measure the
overhead and performance of the MMM. In Section 6.2, we
measure the performance of Peace. To evaluate the MMM,
we implement it as a C++ library (& 9k lines of code) and
modify the Borealis distributed SPE [2] to use it. To evalu-
ate Peace, we implement it in the Hadoop Distributed File
System [9]. Overall, we added about 500 lines of code to
Borealis and 3k lines of code to HDFS.

6.1 MMM Evaluation

To evaluate the MMM, we measure its runtime overhead
and its checkpoint and recovery performances.

6.1.1 Runtime Operator Overhead

We first measure the overhead of using the MMM to hold
the state of an operator compared with using a standard
data structures library such as STL. We study Join and Ag-
gregate, the two most common stateful operators. In both
cases, we compare the original Borealis operator implemen-
tation to our modified operator that uses the MMM. All
experiments are executed on a dual 2.66GHz quad-core ma-
chine with 16GB RAM running 32bit Linux kernel 2.6.22
and single 500GB commodity SATA2 hard disk.

Table 5 shows the results for the Join operator. For each
new input tuple, the Borealis Join scans all tuples in the
window of the opposite stream to find matches. Because
this Join implementation is not efficient, we run experiments
only on window sizes of 256KB, 512KB, and 1MB. In this
experiment, the Join does a self-join of a stream using an
equality predicate on unique tuple identifiers. We measure
the total time to process 12K tuples and compute the result-
ing average per-tuple processing latency. The figure shows
the average from 100 executions. As the results show, the
overhead of using the MMM for this operator is within 3%
for all three window sizes. Additionally, the overhead is not
significantly affected by the MMM page sizes.

Table 6 shows the performance for the Aggregate opera-
tor. In this experiment, the Aggregate groups input tuples



Aggregate 1MB 10MB 100MB
Original SPE 18.82(0.30) | 24.93(0.27) | 47.73(0.72)
MMM with 8KB page 21.25(0.33) | 24.60(0.42) | 31.54(0.30)
MMM with 64KB page | 19.97(0.32) | 23.18(0.42) | 29.78(0.39)

Table 6: Per-tuple processing time and standard devia-
tions of Aggregate operator in microseconds. Average of
100 executions of processing 1M tuples.
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Figure 6: Checkpoint preparation performance. The

MMM avoids the expensive state serialization cost. Average of
100 executions. Maximum standard deviation is less than 3% of
the average.

by a 4-byte group name and computes count, min, and max
on a timestamp field. We vary the number of groups from
1,000 to 100,000, which varies the state size from 1MB to
100MB. The results show that the MMM implementation is
actually more efficient for large numbers of groups because
it forces the allocation of larger memory chunks at a time,
amortizing the per-group memory allocation cost.

Overall, the MMM has thus a negligible impact on oper-
ator performance. Additionally, to port Borealis operators
to use the MMM required only changing 13 lines of Join
operator code and 120 lines of Aggregate code®.

6.1.2 Cost of Checkpoint Preparation

Before the state of an HA unit can be saved to disk, it
must be prepared. This requires either serializing the state
or copying all PagelDs and marking all pages as read-only.
Figure 6 shows the time to prepare the checkpoint for a Join
operator, which is faster to serialize than Aggregate because
it has simpler data structures. As expected, all techniques
impose an overhead linear with the size of the checkpointed
state, but the MMM approach is up to two orders of magni-
tude faster than serialization. Avoiding serialization is thus
beneficial, but the comparison is not completely fair because
it ignores the copy-on-write overhead of the MMM, which
we evaluate below.

6.1.3 Checkpoint Overhead

We now examine the overall runtime overhead by measur-
ing the end-to-end stream processing latency while the SPE
checkpoints the state of one operator. In this experiment,
we use an Aggregate operator because it shows the worst-
case performance for the MMM as it randomly rather than
sequentially touches its memory pages.

The total state of the operator is 128MB, which yields
103.4MB after serialization and 143.6MB with the MMM
(the extra state comes from internal fragmentation in the
T-tree). We compare the performance of using the MMM

4Most of the change comes from the new code to efficiently
handle aggregate state originally represented as nested STL

types.
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Figure 8: End-to-end latency while taking a checkpoint of
one Aggregate operator split into four. The overhead of the
MMM becomes negligible while the overhead of other techniques
remains visible. Over 7 consecutive checkpoints after warm up,
we observed identical trends.

against synchronously serializing state (i.e., suspending the
operator for the duration of both state serialization and copy
to disk), and asynchronously serializing state (i.e., the op-
erator resumes execution once the state is serialized and the
copy to disk proceeds in the background). We also compare
with using an off-the-shelf virtual machine (VMware [52])
that can transparently checkpoint the state of the entire
SPE process either while the latter is suspended (foreground
snapshot) or continues executing (background snapshot).
We fed 2.0K tuples/sec for 10 minutes while checkpointing
every minute. Figure 7 shows the results for one checkpoint
after warm up (all checkpoints displayed the same trends).
All approaches cause an interruption in the normal stream
processing, but the interruption due to the MMM is 2.84
times lower than that of the nearest competitor (note the
log-scale on the y-axis).

A common technique for reducing checkpoint overhead is
to partition the state of an operator [26, 46]. Figure 8 shows
the effect of splitting the operator into four. Partitioning re-
duces the overhead of all techniques. The overhead of MMM
becomes negligible because it reduces the time when a page
is in the read-only state, thus, lowering the chance of a copy.
To hide the overhead of both synchronous and asynchronous
serialization, we have to split the state of the operator into
64 partitions (not shown), which adds the overhead of man-
aging all the partitions and may not always be possible. The
virtual machine cannot benefit from partitioning as it check-
points the state of an entire process. The MMM approach
is thus the least disruptive to normal stream processing.

Table 7 summarizes the average end-to-end processing la-
tency of various techniques when we split the state across



1 op. 4 ops 64 ops # of concurrent Client Data node

Original SPE 23.1(1.85) | 24.1(1.88) | 25.0(1.81) 1/0 READ WRITE READ WRITE

MMM w/o checkpointing | 21.6(1.63) | 21.8(1.63) | 22.7(1.58) 1 60.5(1.10) | 63.7(2.84) | 42.7(3.57) | 30.0(2.07)

MMM 202(645) 22.2(1.91) | 22.8(1.66) 2 56.3(3.18) | 91.3(7.88) | 6.16(0.35) | 22.5(1.32)

Synch. Serialization 617(1530) | 157(334) | 30.2(3.58) 4 95.3(6.15) | 102(3.49) | 3.04(0.31) | 9.90(0.81)

Asynch. Serialization 302(862) 100(208) 26.6(5.49) 8 105(9.32) 104(2.98) 1.29(0.10) | 6.03(3.85)

VM Foreground Snapshot | 349(1020) 16 110(1.78) 105(1.47) | 0.63(0.03) | 2.57(2.48)
VM Background Snapshot | 299(1180)

Table 7: Average stream processing latency and stan-
dard deviation (in milliseconds) with various checkpoint-
ing methods for a 128MB operator state-size. High stan-
dard deviations are due to disruptions during checkpoints when
latency spikes. Overall, the MMM has the lowest overhead.

~
=}

- -+ 8K —m-64K
60
£ K4
g 50
E
c 40
S -
B 5 Pid
£ L4
g 20 et
o I Sas
& 10 A
0

256M

128M 512M
Size of State(MB)

Figure 9: Page Manager state recovery time. Average of
100 executions. Maximum standard deviation is less than 2% of
the average.

different number of operators. The results show the average
of a 600 second run with 10 checkpoints per operator®. The
overhead of the MMM is the lowest of all techniques.

6.1.4 Recovery Performance

Finally, we present the recovery performance of SGuard.
Once the Coordinator detects a failure and selects a recovery
node, the recovery proceeds in four phases: (1) the recov-
ery node reads the checkpointed state from the DFS; (2)
it reconstructs the Page Manager state; (3) it reconstructs
any additional Data Structure state; and (4) it replays tu-
ples logged at upstream HA units. The total recovery time
is the sum of these four phases plus the failure detection
and recovery node selection times. We now evaluate the
performance of phases two and three. We evaluate the per-
formance of the first phase in the next section. The last
phase is the same with SGuard as with previous techniques
and so we do not evaluate it again.

Figure 9 shows the performance of the Page Manager re-
covery. We recover the state of a 64MB to 512MB page pool
using either 8KB or 64KB pages. The figure shows the av-
erage of 100 experiments. The recovery simply consists in
scanning each page, associating each page with the appro-
priate data structure, and registering the mapping between
the physical PagelD and the in-memory address of the page.
The time thus increases linearly with the state size and re-
mains small overall (below 60ms for 512MB). Additionally,
because pages can be processed out-of-order, this phase can
proceed in parallel with reading the pages from disk. The
overall overhead is thus negligible.

Recovering additional data structure information also re-
quires scanning all pages once. This phase thus doubles the

SWe increase checkpoint interval to 2 minutes for 64 op-
erators not to overload the disk. Thus, 5 checkpoints per
operator for 64 operators.
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Table 8: Average and standard deviations of HDF'S client
throughputs (in MB/s). Parallel I/Os at the client improve
throughput as long as the network bandwidth permits. In con-
trast, the per-client data node performance degrades quickly with
the number of concurrent I/O requests. Average of 10 executions.

overhead, which remains small overall (we do not show the
numbers due to space constraints). This process, however,
requires that all pages already be in memory and cannot be
done in parallel with reading pages from disk. It can, how-
ever, be done lazily as the operators touch different pages.

Overall, recovery with the MMM thus imposes a low extra
overhead once pages are read from disk.

6.2 10OService and Peace Evaluation

In this section, we evaluate the performance of reading
checkpoints from the DFS and writing them to the DFS.

All experiments are done in a cluster of 17 machines split
across two racks (8 and 9 machines each). All machines in a
rack share a gigabit ethernet switch and run the HDF'S data
node program. The two racks are connected with a gigabit
ethernet link. All machines have specifications comparable
to the machine used in the previous experiments.

We first measure the performance of an HDFS client writ-
ing 1GB of data to the HDFS cluster using varying degrees
of parallelism. Table 8 shows the results. As the number of
threads increases, so does the total throughput at the client,
until the network capacity is reached with four threads. It
takes more than one thread to saturate the network because
the client computes a checksum for each data chunk that it
writes. In our network model, we use the more conserva-
tive capacity of 2 for the (v, vI') edges. Similarly, read
performance improves with parallelism until the network ca-
pacity is reached (before running the read benchmark, we
flush the OS cache). The reads are also fast. With four
threads, a client reads at 95 MB/s. It could thus recover a
128MB HA unit in under two seconds.

Second, we benchmark an HDFS data node. For this, we
vary the number of clients simultaneously reading a 64MB
chunk from the node or writing it to the node. The ta-
ble shows the read and write performances per client. As
expected, when more clients access a data node, the per-
formance per-client drops significantly. For reads, the ag-
gregate performance also drops. To get good performance
per-client, it is thus best if the data node serves no more
than two clients at a time. In our data model, we translate
this goal into a capacity of 2 on the (v, vF°V) links.

To evaluate Peace, we measure the time to write check-
points to the DFS when multiple nodes checkpoint their
states simultaneously. In this experiment, the data to check-
point is already prepared. We only measure the I/O times.
We vary the number of concurrently checkpointing nodes
from 8 to 16 and the size of each checkpoint from 128MB to
512MB. The replication level is set to 3. We compare the
performance against the original HDFS implementation.®

5To maximize the write throughput, we modified HDFS to
never choose the local hard disk as a replica.



o]
o

OHDFS IO BHDFS COMP

SGI0 ESG COMP

(20|
o ©

a1
o o

nN W H
o o

Average time(s)

S

o
L

256MB ‘ 512MB ‘

128MB ‘
Size of state per host and # of concurrent writing hosts

Figure 10: Average write latencies per write request (I0)
or for all writes (COMP) for varying numbers of concur-
rent writers with varying size I/O tasks. Peace (SG) en-
ables each client to complete its I/O twice as fast as HDF'S, while
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original implementation. Average of 5 executions. We observed
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Figure 10 shows the average time to write each checkpoint
and the time to write all the checkpoints. In this experiment,
Peace waits until 80% of writes complete in a timestep be-
fore starting the next one. Thus, we do not aggressively hide
the latency of the schedule, resulting in an increased global
completion time for larger aggregated volumes of 1/0O tasks.
However, individual task completes their I/O much faster
than in the original HDFS.

Overall, Peace thus significantly reduces the write latency
for individual writes with only a small decrease in overall re-
source utilization. Such performance characteristics are bet-
ter suited for applications such as ours where extended write
latencies are undesirable (due to the copy-on-write over-
head). However, because it now takes longer for all nodes to
checkpoint their states, the maximum checkpoint frequency
is reduced. This reduction implies somewhat longer recover-
ies as more tuples need to be re-processed after a failure. We
believe that this is the correct trade-off since recovery with
passive standby anyways imposes a small delay on streams.

7. RELATED WORK

Rollback recovery is a well known technique for making a
distributed system fault-tolerant [18, 44]. Most previous ap-
proaches for concurrent checkpointing rely on the operating
system’s page protection mechanism and use copy-on-write
techniques to checkpoint the state of an entire process asyn-
chronously [3, 23, 35] (or they emulate this approach in a
virtual machine [52]). As it runs entirely at the application-
level, SGuard produces finer-grained checkpoints.

Several application-level checkpointing techniques ex-
ist [53]. Semi-transparent approaches [8, 42] provide APIs
to specify when and what to checkpoint. Transparent ap-
proaches [8, 28] use preprocessors to produce checkpoint-
capable code. SGuard is more transparent than semi-
transparent approaches and more fine-gained than static or
runtime analysis ones. Additionally, unlike SGuard, some of
the above techniques do not provide concurrent checkpoint-
ing [8] and many require expensive state serialization [8].
The C? [10] application-level checkpointing system is most
similar to SGuard in that it also uses a custom memory
manager. However, because C® checkpoints the state of en-
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tire applications, its checkpoints remain more coarse-grained
than those produced by the MMM. Additionally, C® does
not support concurrent checkpoints. SRS [50] is also similar
to SGuard. It provides a checkpoint framework for appli-
cations and uses a network-based storage system. However,
unlike SGuard’s MMM, it only checkpoints primitive data
types and users must be aware of APIs to register, check-
point, and recover application state.

SGuard’s approach for writing checkpoints to disk com-
bines ideas from striped [12] and staggered [41, 51] SGuard
stripes checkpoints by writing different pieces of the check-
pointed state to different DF'S nodes. It staggers checkpoints
by carefully assigning backup nodes and scheduling all write
activities at the file system level.

The MMM shares some features with an OODBMS stor-
age manager [17, 19, 30, 54]. Unlike an OODBMS, however,
the MMM is designed to hold the state of stream processing
operators. It thus only supports flat objects (no nesting and
no pointers) and does not implement locking nor transac-
tions. Furthermore, the MMM enables selective checkpoints
of individual data structures.

Compared with an embedded database such as Berke-
leyDB [40], the MMM exposes a greater variety of data
structures that can also be individually checkpointed. Be-
cause the MMM is not a database, it is more lightweight
(e.g., it need not implement locking nor transactions). Fi-
nally, the MMM exposes to developers the standard data
structures API, making it more transparent to use.

Peace uses the well-known min-cost max-flow [4] and first-
come first-served techniques. Peace innovation lies in ap-
plying these techniques in a way that ensures: (1) different
replicas are sent to different nodes that meet specific con-
straints, (2) data is transmitted from the source to replicas
in a chain, and (3) a batch of write requests from the same
source are scheduled as close together as possible.

Commercial database management systems (DBMSs) also
rely on replication to provide fault-tolerance [13, 43, 49]. In
contrast to a DBMS which replicates stored data, SGuard
replicates the transient state of SPE queries. Also, because
SPEs do not have any notion of transactions, techniques
such as fuzzy checkpoints [37] do not apply. SPEs can be
viewed as a kind of main-memory database [21]. However,
since SPEs do not execute transactions but continuously
transform streams, checkpoint and recovery techniques from
main-memory databases (e.g., [32, 34]) are orthogonal to
fault-tolerance in SPEs.

8. CONCLUSION

We presented SGuard, a new technique for fault-tolerant
distributed stream processing. SGuard leverages the ex-
istence of a new type of DFS to provide efficient fault-
tolerance at a lower cost than previous proposals. Addition-
ally, SGuard extends the DFS with Peace, a new scheduler
that reduces the time to write individual checkpoints in face
of high contention. SGuard also improves the transparency
of SPE checkpoints through the Memory Management Mid-
dleware, which enables efficient asynchronous checkpoint-
ing. Overall, the performance of SGuard is promising. With
Peace and the DFS, nodes in a 17-server cluster can check-
point 512MB of state within less than 20s each. At the same
time, the MMM efficiently hides this checkpointing activity.
Many optimizations are possible to the scheme we proposed
in this paper and we plan to explore them in future work.
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