Closing The Query Processing Loop in Oracle 11g-

Allison W. Lee, Mohamed Zait
Oracle USA
400 Oracle Parkway
Redwood Shores,

CA 94065, USA
E-mail: {allison.waingold,
mohamed.zait}@oracle.com

ABSTRACT

The role of a query optimizer in a database system is to find the
best execution plan for a given SQL statement based on statistics
about the objects related to the tables referenced in the statement.
These statistics include the tables themselves, their indexes, and
other derived objects. Statistics include the number of rows, space
utilization on disk, distribution of column values, etc.
Optimization also relies on system statistics, such as the I/O
bandwidth of the storage sub-system. All of this information is
fed into a cost model. The cost model is used to compute the cost
whenever the query optimizer needs to make a decision for an
access path, join method, join order, or query transformation. The
optimizer picks the alternative that yields the lowest cost.

The quality of the final execution plan depends primarily on the
quality of the information fed into the cost model as well as the
cost model itself. In this paper, we discuss two of the problems
that affect the quality of execution plans generated by the query
optimizer: the cardinality of intermediate results and host variable
values. We will give details of the solutions we introduced in
Oracle 11g. Our approach establishes a bridge from the SQL
execution engine to the SQL compiler. The bridge brings valuable
information to help the query optimizer assess the impact of its
decisions and make better decisions for future executions of the
SQL statement. We illustrate the merits of our solutions based on
experiments using the Oracle E-Business Suite workload.

1. INTRODUCTION

Database query processing refers to the process inside a database
management system (DBMS) that is responsible for compiling
and executing SQL statements. The compilation process
(performed by the SQL Compiler) takes as input a SQL statement
text (with optional host variables) and produces an execution
plan. The execution process (performed by the Execution Engine)
takes as input the execution plan and returns the result of the

Patents have been filed for the techniques described in this paper.

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

1368

execution. An execution plan contains the detailed steps necessary
to execute the SQL statement. These steps are expressed as a set
of database operators that consumes and produces rows. The
processing order and implementation of the operators are decided
by the query optimizer, using a combination of query
transformations and physical optimization techniques.

The execution plan generated for the SQL statement is just one of
the many alternative execution plans considered by the query
optimizer. The query optimizer selects the execution plan with the
lowest cost. Cost is a proxy for performance; the lower the cost,
the better the performance (e.g. response time) of the query is
expected to be. The cost model used by the query optimizer
accounts for the 10, CPU, and network utilization during query
execution. The cost model relies on object statistics (e.g. number
of rows, number of blocks, and distribution of column values) and
system statistics (e.g. IO bandwidth of the storage subsystem).

Figure 1 illustrates the lifecycle of a SQL statement inside the
SQL compiler and the execution engine. A SQL statement goes
through the Parser, Semantic Analysis (SA), and Type-Check
(TC) first before reaching the optimizer. The Oracle optimizer
performs a combination of logical and physical optimization
techniques [1]. The Query Transformer (QT) is responsible for
selecting the best combination of transformations (e.g. subquery
unnesting and view merging) while the Plan Generator (PG) is
responsible for selecting access paths, join methods, and join
orders. The QT calls the PG for every candidate set of
transformations and retains the one that yields the lowest cost.
The PG calls the Cost Estimator (CE) for every alternative access
path, join method, and join order and keeps the one that has the
lowest cost. The Code Generator (CG) stores the optimizer
decisions into a structure called a cursor. All cursors are stored in
a shared memory area of the database server called the Cursor
Cache (CC). The goal of caching cursors in the cursor cache is to
avoid compiling the same SQL statement every time it is
executed, i.e. subsequent executions of the same statement will
use the cached cursor instead of going through the SQL compiler.
The Dictionary contains the database metadata (definitions of
tables, indexes, views, constraints, etc) as well as object and
system statistics. When processing a SQL statement, the SQL
compiler components look in the dictionary for information about
the objects referenced in the statement, e.g. the optimizer reads
the statistics about a column referenced in the WHERE clause. At

run-time the cursor corresponding to a SQL statement is identified
based on several criteria, among which is the SQL text, the
compilation environment, and authentication rules. If a matching
cursor is found then it is used to execute the statement, otherwise
the SQL compiler builds a new one. Several cursors may exist for
the same SQL text, e.g. if the same SQL text is submitted by two
users that have different authentication rules. All the factors that
affect the execution plan, such as whether a certain optimization
is enabled by the user running the SQL statement, are used in the
algorithm used to match a cursor from the CC.

User or DB sSQL
Application statement
A
SQL Compiler
1 ;
i Parser, SA, i
! TC, ... :
! .
i il i
i A 4 i
sat : Query i
i i < Dictionar H
Execution ; Transformer [Y :
I i
A ; -
i Plan X Cost
! Generator v Estimator
E | i
Cursor ! * :
Cache <« Code i
@ @ H Generator i
i i

Figure 1: Architecture of the Oracle SQL Engine

The quality of the final execution plan produced by the query
optimizer depends on the quality of the information used by the
cost model and the cost model itself. In the remainder of this
section we discuss two of the problems that affect the quality of
executions plans: cardinality (number of rows) of intermediate
results and host variables.

1.1 Cardinality Estimation

The cardinality of tables involved in a SQL statement directly
affects the cost computed by the cost estimator. All database
systems provide a special purpose utility to gather statistics on
database objects. The utility can be called directly by a database
administrator (DBA) or is automatically called from an automatic
process maintained by the database system [3]. Since the data is
constantly changing, the DBA or the automatic statistics
maintenance process periodically refreshes the statistics whenever
they are determined to be stale, e.g. when update statements touch
more than 10% of the rows in a table. In addition to using the
statistics on base tables, the optimizer derives statistics for
intermediate results. An intermediate result is the output of a
database operator such as a scan, join, union, etc. For several
reasons, statistics on intermediate results are often inaccurate,
leading to poor choices by the optimizer. The consequences are
execution plans that perform very badly and negatively affect the
customer’s business processes. For example, consider the SQL
statement in Q1. It retrieves the product names and translated US
English product names for bulk purchases of an item with a
specified price.

1369

01

SELECT d.translated name,
p.product name

FROM order items oi, products p,

product descriptions pd

WHERE oi.unit price = 15
AND oi.quantity > 1
AND p.product id = oi.product id
AND pd.product id = p.product id
AND pd.language id = 'US'

The corresponding execution plan is shown in Figure 2 (a). Note
that products is a view that joins product information
(PI) and product descriptions (PD). The optimizer
selected nested-loops to join order items (OE) and
product information (PI) tables. Prior to making this
decision the optimizer has to estimate the number of rows
generated by the table scan node (TS) on table order items
(OE) taking into consideration the filters [oi.unit price
15 AND oi.quantity > 1]. The estimated number of rows
comes much lower than the actual number, causing the nested-
loops join cost to be under-estimated. Figure 2 (b) shows the
alternative plan that the optimizer would produce if the actual
number of rows were known during optimization; a hash-based
join would have been selected instead of the nested-loops join.
Boxes are used to represent base tables (PD for
product descriptions, etc.) and circles are used to
represent database operators (TS for Table Scan, IS for index
scan, HJ for hash-join, NL for nested-loops join).

o, (N
OO OEO
QW Go[Po] Gy G [Po]
@ G [Po] @ G [Po]
[cE] [P1] [oE] [P1]

(a) (b)

Figure 2: Execution Plans for Q1

This problem has been the subject of several research papers.
Database system vendors also introduced technologies to tackle
this problem in their most recent software releases [3]. In Oracle
10g, the concept of SQL profiling was introduced as part of the
Automatic SQL Tuning feature. This and other such
enhancements will be explained and compared in Section 4.

1.2 Host Variables

The cursor cache is most useful when SQL statements contain
host variables. They are referred to as bind variables in Oracle
DBMS, while other DBMS use the term host variables. We will
use the term bind variables in the rest of this paper. These bind
variables are declared and initialized in a program written using a
host programming language (e.g. PL/SQL, C, C++) then

embedded inside SQL statements submitted from that program.
The cursor corresponding to a SQL statement is re-used when
different values of the bind variables are specified. For example,
consider the statement in Q2. It retrieves the earliest start time
(START TIME), latest end time (END TIME), and the count of
all employees for a given job title (JOB_ID). The cursor built for
this statement will be re-used for all executions even when
different values are used for bind variable : JOB_V.

Q2

SELECT count (distinct e.employee id),
min(j.start date),
max (j.end date)
FROM employees e, job history jh
WHERE e.job id :job v
AND e.employee id = jh.employee id

When optimizing SQL statements containing bind variables, the
Oracle query optimizer peeks at the bind variable values in order
to compute cost as well as cardinality of derived tables. Bind
variable peeking helps the optimizer compute cost and cardinality
more accurately, especially in the presence of data skew or
correlation. However, in releases prior to Oracle 11g, the plan
generated based on the bind variable values submitted with the
first execution is re-used for subsequent executions of the same

SQL statement.

LE] [H]

LE |

(a) (b)
Figure 3: Executions Plans for Q2

The problem with this approach is that a plan that is optimal when
the bind variable value is *Clerk’ may be sub-optimal when the
bind variable value is ‘VP’. The selectivity! of the predicate
e.job id :job v in the above example when the bind
variable value is ‘Clerk’ is very different from the selectivity
when the bind value is *“VP’, e.g. 0. versus 0.001. Assuming an
index exists on column job_ id, the optimizer would have
selected a full table scan when optimizing with the bind value
‘Clerk’ and an index range scan when optimizing with the
value *VP’. The join method would also have been different, e.g.
nested-loops join would be more appropriate than hash-join if the
variable value is ‘VP’ because fewer rows would qualify from
the employees table. Figure 3 shows the two possible execution
plans depending on the variable value. The optimizer will
generate the execution plan in Figure 3 (a) if it uses the bind

! The selectivity of a predicate P on a table R is defined as the
probability for P to evaluate to true for any row of R.

1370

variable value ‘Clerk’, while it will generate the execution
plan in Figure 3 (b) if it uses value ‘VP’.

To workaround this problem database developers have to decide
between two choices where there is no clear winner:

1. Getting an execution plan that performs well for all
variable values, but cursors are not shared leading to

high compilation overhead and shared memory usage.

Avoid the compilation overhead and reduce shared
memory utilization, but at the expense of getting a plan
that works for a limited set of the variable values.

To this end some database vendors provide knobs for database
developers to explicitly state to the system the desired behavior
(to share or not to share cursors, to peek or not to peek bind
variable values) or the user has to decide whether to write
application code using bind variables or literals in the first place.

In Oracle 11g, we enhanced the SQL Engine architecture to let
the optimizer know how accurate the decisions made during
compilation turned out to be during execution. We will illustrate
changes we made to the SQL Engine, and demonstrate how these
changes improve the performance of SQL statements from the
Oracle E-Business suite. Figure 4 shows the new design of the
SQL Engine. The main difference with the older design is the
addition of two new steps:

1. Update the corresponding cursor with information

collected during or at the end of a statement execution.

Use the information reported from execution during
query optimization.

These two steps essentially establish a feedback loop from the
SQL execution component to the SQL compiler component. The
details of these and other changes to the SQL Engine are given in
the following section.

The rest of this paper is organized as follows. In Section 2, we
present enhancements made to the SQL Engine in Oracle 11g.
Section 3 contains the result of our performance experiments.
Related work is summarized in Section 4. Finally, we conclude
the paper in Section 5.

User or DB
Application statement
SQL Compiler

] !
Parser, SA, 1
TC, ... :
v :
v 1
saL Query i
i < Dicti H
Execution Transformer | ictionary :
i
-
D Plan f/ Cost L
Generator Estimator :
T !
Cursor i * !
Cache . Code H
@ @ | Generator
! .

Figure 4: Architecture of the SQL Engine in Oracle 11g

2. FEEDBACK-BASED OPTIMIZATIONS

Oracle 11g contain two new features that address the problems of
cardinality estimation and generation of plans for queries
containing bind variables. Both of these features use the
paradigm summarized in Figure 4: for certain queries, monitoring
information is collected at execution time and fed back to the
cursor cache (arrow 1 in the figure), so that on subsequent
executions, this new information is provided to the plan generator
(arrow 2), to improve the plan that is generated.

2.1 Cardinality Feedback

Cardinality feedback aims to address cardinality misestimates by
the Oracle cost-based optimizer due to complex predicates, and
inaccurate or missing statistics. During the first execution of a
SQL statement, an execution plan is generated as usual. During
optimization, certain types of estimates that are known to be low
quality (for instance, estimates for tables which lack statistics or
tables with complex predicates) are noted, and monitoring is
enabled for the cursor that is produced. If cardinality feedback
monitoring is enabled for a cursor, then at the end of execution,
the estimates for single table cardinalities are compared to the
actual cardinalities. If an estimate is found to be significantly
different from the actual value, then the correct value is stored for
later use. On subsequent executions, the query is re-optimized,
and the correct cardinality is substituted for the usual estimate. If
the estimate is found to be relatively close to the original estimate
after the first execution, then the monitoring is disabled for future
executions.

Recall query Q1 from above, which retrieves product names and
translated US English product names for bulk purchases of an
item with a specified price.

01

SELECT d.translated name,
p.product name
FROM order items oi, products p,
product descriptions pd
WHERE oi.unit price 15
AND oi.quantity > 1
AND p.product id
AND pd.product id
AND pd.language id

oi.product id
p.product id

'Us!

The combination of equality and inequality filter predicates
makes it difficult to estimate the single table cardinality of
order items. The cardinality is incorrectly estimated and the
plan in Figure 2 (a) is chosen. Because this combination of
predicates is known to be difficult to estimate cardinality for,
cardinality feedback monitoring is enabled. At the end of the first
execution, the actual single table cardinality is found to be
significantly different from the estimate. So the new cardinality
is stored in the cursor and the cursor is marked to be re-optimized.

On the second execution of the query, the cursor cache finds a
matching cursor that is marked for re-optimization, so it does not
share the cursor. Instead, the query is re-optimized, and the
stored cardinality replaces the usual estimate. This leads to a
different plan, shown in Figure 2 (b).

Cardinality feedback is enabled in a variety of cases where the
quality of cardinality estimates is known to be suspicious. These
includes tables with no statistics, combining selectivity of

1371

multiple conjunctive or disjunctive filter predicates, and
predicates containing complex operators that the optimizer cannot
accurately compute selectivity estimates for. In some cases, there
are other optimizations available for these complex predicates; for
instance, dynamic sampling or multi-column statistics [3] allow
the optimizer to more accurately estimate selectivity of
conjunctive predicates. In cases where these optimizations apply,
cardinality feedback is not enabled. However, if, for instance,
multi-column statistics are not present for the relevant
combination of columns, the optimizer can fall back on
cardinality feedback.

Cardinality feedback is useful for queries where the data volume
being processed is stable over time. For a query on volatile
tables, the first execution statistics are not necessarily reliable.
This feature is not meant to evolve plans over time as the data in
the table changes; it is meant to address queries where the plan is
not correct to begin with. That is why the monitoring for
cardinality feedback is disabled after the first execution.
Disabling monitoring also minimizes the impact of cardinality
feedback on queries where it is not necessary — for queries where
the estimates are correct, this one time overhead is not dissimilar
to the one time overhead of optimizing a query.

The performance impact of cardinality feedback on query
optimization is minimal. Supplying cardinality estimates based
on feedback is achieved using existing infrastructure in the Oracle
optimizer. The infrastructure introduced for Oracle Automatic
SQL Tuning [5] allows cardinality estimates to be supplied to the
optimizer using optimizer hints. If a cardinality estimate is
supplied, the optimizer is saved the time to generate the estimate,
so if anything optimizer performance improves for this case. For
all other cases, there is some minor overhead for hint processing.
While we do not have experimental data to support it, we do not
believe that this has a significant impact on optimizer
performance.

Oracle currently supports cardinality feedback for single table
cardinalities only. Feedback of join cardinalities presents some
additional challenges. The intermediate join cardinalities from
execution only include the join prefixes in the plan that is actually
used. If the optimizer were to use these as corrected estimates
during compilation, it would compare costs of plans for some join
orders that use higher quality estimates derived from execution
feedback, and some that use the usual optimizer estimates. This
apples to oranges comparison is likely to cause strange behavior.
Oracle Automatic SQL Tuning [5] provides an offline alternative
for improving plans where intermediate cardinality estimates are
inaccurate. Real-time feedback of join cardinalities warrants
consideration for future work.

2.2 Bind-Aware Cursor Sharing

In Oracle 11g, we introduced a new feature called bind-aware
cursor sharing, to better optimize SQL statements containing bind
variables. The new feature helps the optimizer generate better
performing execution plans. Oracle uses feedback techniques to
determine when to use this feature. We first summarize the
feature, and then discuss the need for and use of feedback
techniques.

2.2.1 Bind-Aware Cursor Sharing
We discussed earlier, in Section 1.2, the approach of bind variable
peeking to allow the optimizer to estimate cardinalities and costs

of a query containing bind variables. This approach allows the
optimizer to choose an optimal plan for the first value of a bind
variable encountered, but the plan may not be optimal for
subsequent values. For this reason, there has always been a trade-
off when using bind variables in a query — bind variables result in
less shared memory consumption and fewer costly query
compilations, but for certain queries, this may result in
unpredictable run-time performance (depending on what bind
variable values are used).

In Oracle 11g, bind aware cursor sharing (BACS) was introduced
to solve this problem. Prior to this extension, SQL developers
had to choose between always sharing the same plan (by using
bind variables) and never sharing the same plan (using no bind
variables). With this new feature, the database automatically
decides whether an existing plan is likely to be optimal for a new
bind variable value; in this case, it shares the existing plan,
otherwise it re-optimizes using the current bind variable value.

Bind-aware cursors have extra sharing criteria related to a bind
profile that is generated for the query. The bind profile stores
information about the selectivity estimates of the predicates
containing bind variables. If a different value for the bind
variable would cause the optimizer to generate a different
selectivity estimate, then that bind’s value should be considered
during cursor matching. To do this, the cursor’s bind profile
stores selectivity ranges for each bind-containing predicate. When
deciding whether to share a cursor, the bind profile for the current
bind values is computed, and the two profiles are compared. If the
current selectivity estimates fall within the acceptable range for
the stored bind profile, then the cursor is shared; otherwise,
Oracle recompiles the query with the current bind values. If it
turns out that the same execution plan is chosen by the optimizer,
then the optimizer merges the bind profiles for the two cursors,
and frees one cursor. This prevents contention in the cursor cache
due to many equivalent cursors appearing in the cache. Each bind
profile starts with a relatively small selectivity range based on the
selectivity for the bind value that the cursor was originally
compiled for, and over time, the applicable selectivity ranges
grow as new bind variable values are encountered.

Recall query Q2 from above.
Q2

SELECT count (distinct e.employee id),
min(j.start date),
max (j.end date)
FROM employees e, job history jh
WHERE e.job id :job v
AND e.employee id jh.employee id

The employees table is skewed on the job id column —
certain jobs, like ‘Clerk’ or ‘Sales Rep’ are common,
while other jobs, like VP’ , are much less common. The optimal
plan for a very common job is a full table scan following by a
hash join, whereas for the less common jobs, it is a nested loop
join with index range scan. Consider executing this query three
times, with three jobs: ‘Sales Rep’, ‘Clerk’, and ‘VP’.
Suppose that 10% of the records in the employees table are
Sales Reps, 12% are Clerks, and 0.05% are Vice Presidents.
Using bind-aware cursor sharing, on the first execution, the
optimizer would choose the hash join plan, and the bind profile
would contain a selectivity range of approximately 10%. On the

1372

second execution, the optimizer computes the selectivity for
‘Clerk’, and finds that it is quite close to that of the existing
cursor. Thus, that cursor would be shared. On the third
execution, the optimizer computes the selectivity for VP’ and
finds that it is not at all close to the existing cursor’s selectivity.
So the query is optimized with the current bind value, and a new
plan is generated. That cursor’s bind variable profile contains a
selectivity range around 0.05%.

Bind-aware cursor sharing requires that additional computation
take place at cursor matching time, to determine if a cursor is a
good fit for the current bind values. In particular, the optimizer
must compute the selectivity estimate of each of the relevant
predicates for the current bind values. In order to reduce the
slowdown to cursor matching, we have restricted the types of
predicates supported to be those whose selectivity can be
computed quickly. Efficient cursor matching was a hard
requirement for this feature, so reducing the scope of the feature
or slightly increasing the shared memory utilization is more
acceptable than slowing down cursor matching. Efficiently
computing selectivity at cursor matching time requires additional
information be stored in the BACS context, including some of the
column statistics for the columns appearing in these predicates,
and a compile-time representation of the predicate. The types of
predicates supported include equality and range predicates of the
form:

<col> <op> <bind>
For instance, these predicates are supported:
:bnd
:bnd

name

salary >

Whereas this predicate is not:

:bnd

substr (name, 1, 5)

For equality predicates, the object statistics must include a
histogram for the column appearing in the predicate; otherwise,
the selectivity estimate of the predicate will not change depending
on the bind value.

2.2.2 Feedback for Bind-Aware Cursor Sharing
Bind-aware cursor sharing introduces overhead in terms of both
time and shared memory utilization. There is additional overhead
to check if a bind-aware cursor matches a new bind set (a set of
bind variable values), and if it does not, incurring an additional
compilation consumes additional resources, and leads to more
cursors vying for space in the cursor cache. The additional
compilation slows down the current execution of the query, but it
also consumes more machine resources in general. The additional
cursors that are created can cause contention in the cursor cache,
which leads to other cursors (for different queries) being aged out.
This in turn requires that those other queries will incur the cost of
compilation on subsequent executions. So the problem of cursor
cache contention can snowball to create system-wide problems.
Furthermore, in order to decide if an existing plan is appropriate
for a newly-encountered set of bind variable values, additional
context information is stored in the cursor, so the cursor size is
also slightly increased, resulting in greater shared memory
utilization. For a fixed size cursor cache, this also means that
fewer cursors can fit into the cache, again leading to possible
cache contention.

All of these additional forms of overhead may be worthwhile if
the result is improved plans for commonly executed queries. Our
solution is to use feedback from execution to target specific
queries for bind-aware cursor sharing. This allows us to avoid the
added overhead for queries where it is unlikely to improve
performance. We call the use of feedback to determine the mode
of cursor sharing adaptive cursor sharing (ACS).

If a query is eligible for BACS, the cursor is initially in a
monitored state where it does not use BACS, but its execution
characteristics are monitored to determine if it is likely to be
useful. The cursor is monitored using Oracle’s rowsource
profiling, a feature introduced in Oracle 11g, which tracks certain
execution statistics for all queries at the rowsource level. One of
these statistics, the number of rows processed, is used in the
BACS determination. The numbers of rows produced by all
rowsources are combined to generate a value that represents the
amount of data processed in that execution of the query. If there
is a lot of variation in the amount of data processed by a query as
the bind values change, then it is likely that choosing different
execution plans for different bind values may be beneficial. If
after several executions, such variation is noted, then the cursor is
switched to bind-aware cursor sharing for future executions. This
monitoring takes place at the end of execution during a sample of
all of the executions. The sample rate decreases over time, since
after many executions if Oracle has not seen variation in the
amount of data processed, it is likely it never will. This decreases
the overhead introduced by the monitoring. The data points
representing amount of data processed are stored in a histogram,
to reduce the memory consumption. The computation
determining if there is variation in the amount of data processed is
actually based on variation across the histogram buckets. For
example, consider the simple single-table query in query Q3.

Q3
SELECT count (e.employee 1id)

FROM employees e
WHERE e.job id

:job v

The amount of data processed by the query depends on the
job_v variable. Consider two scenarios: (A) over a number of
executions, several of the executions query on common jobs, and
several query on uncommon jobs, and (B) all of the executions
query on common jobs. Figure 5 shows the histograms
representing the amount of data processed across executions for
the two scenarios.

Execution Histogram for
Scenario A

Execution Histogram for
Scenario B

of Executions

of Executions

of Rows Processed # of Rows Processed

Figure 5: Execution Statistic Histograms

1373

In scenario A, BACS would be enabled; the histogram shows that
there is variation in the number of rows processed across different
executions. In scenario B, no such variation is reflected in the
histogram, so BACS would not be enabled.

To summarize the entire process end-to-end, consider again query
Q2 from above, and the three executions previously described.
Using ACS, after the first execution, the statistics about the
relatively small number of rows processed are recorded. After the
second execution, the statistics are again recorded, and checked to
see if BACS is warranted. Since the number of rows processed
across the two executions is similar, BACS is not enabled. After
the third execution, the statistics are recorded, and Oracle finds
that there is substantial variation in the amount of data processed
across the three runs. Hence, BACS is enabled. Future
executions of the query will use BACS. However, BACS requires
additional context information be stored in the cursor, which has
not been stored up until this point, so the optimizer must in
essence start from scratch on the next execution. The next
execution will trigger re-optimizing the query, and the relevant
context information is stored.

2.3 An Abstract Feedback Process

These two features show commonalities in the process by which
feedback is used to improve query optimization. This common
process provides a template for future feedback-based
optimizations.

Figure 6 summarizes the state transitions that a cursor can go
through using these feedback-based optimizations, and the
interactions with the query compiler. The compiler initially
generates a cursor that is in a monitoring state, and populates
some compiler information (e.g. optimizer cardinality estimates)
into the context structure. The cursor continues to be in the
monitoring state for some period of time, and may transition to a
no monitoring state (i.e. Oracle pre-11g behavior) or to a
feedback-enhanced state. During the monitoring phase, the
context is further populated with execution information. In the
feedback-enhanced state, there is additional interaction with the
query compiler on subsequent executions. The context may be
further populated with improved compilation information during
this phase.

SQL Compiler

Cursor Context Cursor Context

Optimizer estimates| Optimizer estimates
Execution statistics|
Enhanced compiler|

estimates, ...

Feedback-
enhanced

Cursor Context

I monitoring

no monitoring

Optimizer estimateg
Execution statistics|

Figure 6: Cursor State Transitions with Feedback

3. PERFORMANCE STUDIES

We conducted experiments to measure the impact of cardinality
feedback and adaptive cursor sharing. The experiments were
conducted on an Oracle E-Business Suite sample database and
workload. We first give a brief overview of the database and
workload, followed by a discussion of the experiments.

3.1 Oracle E-Business Suite

The Oracle E-Business Suite (EBS) is a suite of business
applications that includes Human Resources, Financial, CRM,
Supply Chain and other applications. The EBS schema consists of
approximately 25,000 tables and 45,000 indexes. Most of the
schema is highly normalized. For our experiments, we used a
sample database that is used for testing purposes. This sample
database is 60 GB in size, with tables ranging from over a million
rows to fewer than ten rows. The workload consists of
approximately 332,000 queries from these various applications.
The queries vary in complexity from simple one-table queries to
queries containing joins of up to 140 tables. The most complex
queries are significantly more complex than queries we have seen
from other OLTP applications, containing complex and deeply
nested subqueries. We believe the workload to be representative
of the different types of OLTP queries that are encountered in the
real world. The workload lacks long-running analytics queries
submitted by batch job, but since these two features are targeted
at shorter-running frequently executed queries, we believe this to
be a sufficient workload for our experiments.

3.2 Cardinality Feedback

We conducted an experiment using an Oracle E-Business Suite
(EBS) demo database, and a workload consisting of
approximately 40,000 queries from EBS. These queries were
selected from the larger test workload; we discarded non-
SELECT statements, and queries containing bind variables. Each
query was executed twice, and information about the execution
plans used for each execution was gathered. Our goal was to
determine what portion of these queries is impacted by cardinality
feedback (monitored and recompiled), and what impact on
performance this has. Ideally we would see a new plan and a
performance improvement for each query that is recompiled.
Executing each query exactly twice is not realistic. In reality,
some queries may never be re-executed, and some may be
executed many more times. We generally assume that queries are
compiled once and run many times while the cursor is cached.
For such queries, any improvement from cardinality feedback will
be magnified by repeated execution, and the overhead of the
additional compilation will be amortized over all subsequent runs.

Figure 7 summarizes the frequency of monitoring and
recompilation. A little over one-third of the queries were
monitored. Other queries were not monitored, because the
optimizer did not believe selectivity estimates were uncertain
enough to warrant runtime checking of the optimizer’s estimates.
Of the monitored queries, the vast majority did not trigger a
recompilation. In total, 10% of the queries were compiled a
second time, and 40% of those generated a new plan with the
accurate cardinality recorded from execution.

1374

Cardinality Feedback Monitoring

@ not monitored
Bnot recompiled

DBrecompiled, same plan

DOrecompiled, diff plan

Figure 7: Cardinality Feedback Frequencies

Figure 8 summarizes the performance impact of cardinality
feedback on the queries with new plans. We used buffer gets as a
measure of query performance; a buffer get represents a logical
I/O operation. While a buffer get will not necessarily result in
disk access, it represents a potential disk access, depending on the
state of the buffer cache. ~We measured the performance
improvement or degradation using the following formula:

improvement/degradation = (before BG — after BG)/before BG

where before BG is the number of buffer gets with the feature
disabled and the after BG is the number of buffer gets with the
feature enabled.

Of the 1317 queries with different plans on the second execution,
924 improved, 214 degraded, and 179 had the same performance.
The amount of improvement in the improved queries (68%) was
greater than the degradation among the degraded queries (29%),
so overall, there was a 58% improvement. The degraded queries
are an interesting example of how better estimates can sometimes
lead to a worse plan, due to weaknesses in the cost model or bad
estimates elsewhere. Query degradation with better estimates
may seem surprising, but there are many explanations for this.
For instance, misestimates in cardinalities throughout a plan
might complement each other — an overestimate in one table’s
cardinality may counteract an underestimate in a joined table’s
cardinality. This can result in improved estimates leading to a
worse plan. But overall, one would expect improved estimates to
lead to better plans, as is the case with this workload.

Performance Impact of Cardinality Feedback

IS
o

w
o

o

5}

—~
2

o 30

= 25

£

~ 2 B@BG 1st plan
2]

5 @BG 2nd plan
(o]

@

=

)

e}

o

—i

degraded (214
queries)

o

total (1317 queries) improved (924

queries)

Figure 8: Impact of Cardinality Feedback

Figure 9 shows the distribution of the improvement across the
queries. Most of the queries show an improvement between 0 and
100%, and the improvements are nearly evenly distributed over
this range. The concentration around zero includes the 179
queries that had no change.

Cardinality Feedback Improvement

350
300 -
250
200 -
150 -
100

of queries

NS

<)
S
At

Percentage Improvement

Figure 9: Distribution of Cardinality Feedback Improvement

3.3 Bind Variables

We conducted an experiment for adaptive cursor sharing using the
same Oracle EBS sample database and workload. Bind values
from a realistic run of the system were not available to us, so we
used a tool to generate bind values. The bind value generation
tool essentially reverse engineers a query to return combinations
of bind values which when supplied to the query will return non-
empty results. The distribution of the bind sets mirrors the
distribution of the data — values appearing in more rows of the
table are more likely to be generated in one of the sample bind
sets. Due to the simplicity of the tool, bind values could not be
generated for all queries. For instance, bind values appearing in
complex predicates could not be generated, e.g.:

substr (:bind, 1, 5)
Because of these restrictions, our experiment may be skewed

towards more simplistic queries for which bind value generation
succeeded.

col

1375

We started with a set of approximately 400 queries and their
generated bind values. These queries were selected because they
had been found to generate multiple plans in previous
experiments where binds were replaced with literals (effectively
disabling cursor sharing entirely). The queries had between 1 and
6 binds variables in them, with an average of 2.4. The number of
bind sets generated ranged from 2 to 316 per query, with an
average of 55. We ran each query with each bind set, and
collected information on what execution plan was used for each
execution. With adaptive cursor sharing enabled, 58 of the
queries (approximately 14%) showed more than one plan was
used. We then re-ran this set of 58 queries in two other
configurations, for a total of three runs. The three configurations
can be summarized as follows:

e ACS: Use adaptive cursor sharing to determine the

mode of cursor sharing

ALWAYS SHARE: Always share the cursor,
regardless of bind values. This is equivalent to the
Oracle pre-11g default behavior.

NEVER SHARE: Disable cursor sharing entirely, and
always create a new cursor for each bind set. This is
equivalent to replacing bind variables with literals for
each bind set.

Our goal was to determine how many distinct plans each
technique generates (as a measure of consumption of cursor
cache), and the overall performance of the queries. We would
expect NEVER_SHARE to have the best performance, but with
the most cursor cache consumption and greater compilation
overhead; and ALWAYS SHARE to have the worst performance
with the least cursor cache consumption (one plan per query).
ACS represents a compromise between these two concerns. At
best, ACS could approach the performance characteristics of

NEVER_SHARE, with minimal impact on cursor cache
contention.

We found that eight queries performed worse with
NEVER SHARE than with ALWAYS SHARE. This is an

example of a worse plan being generated even when better
information is input to the optimizer. This behavior makes it
difficult to compare the performance of ACS to
NEVER _SHARE, so we removed these eight queries from further
analysis. This left us with 50 queries.

Figure 10 summarizes the performance results of this study. As
expected, ACS results in performance that is somewhere between
NEVER_SHARE and ALWAYS_SHARE. ACS showed an 18%
improvement compared with ALWAYS SHARE.
NEVER_SHARE showed a further 14% improvement. Our
choice of workload may limit the improvement available when we
do not share plans. Oracle EBS has been heavily tuned to avoid a
combination of histograms and bind variables in queries where
they can result in significant plan instability. Hence, the total
improvement between ALWAYS SHARE and NEVER SHARE
is not huge. But the goal of adaptive cursor sharing is merely to
close the gap between these two configurations. In this
experiment, we are more than halfway to closing the gap. We
would expect the performance improvement to be higher if we
lifted the restrictions on which histograms are created in Oracle
EBS (e.g. by using the Oracle automatic histogram feature), or
used binds in more cases where literals are used today.

Query Performance

18
16
14
12
10

Buffer gets (Millions)

ON O

ALWAYS_SHARE ACS NEVER_SHARE

Figure 10: Cursor Sharing Impact on Query Performance

Figure 11 summarizes the number of distinct plans generated
across the entire set of 50 queries in the three experiments. With
NEVER _SHARE, we generate more than twice as many (149)
plans as with ALWAYS SHARE (65). Again ACS falls into the
middle ground, with 119 distinct plans. Note that even with
ALWAYS_SHARE there is slightly more than 1 cursor per query.
This is because there are other cursor sharing criteria that must be
met in order to share a cursor, independent of the bind variables.

Distinct Plans

Plan count

ALWAYS_SHARE

ACS NEVER_SHARE

Figure 11: Cursor Sharing Impact on Number of Plans

This experiment demonstrates that adaptive cursor sharing offers
improved execution performance for queries over classic cursor
matching, without the cursor cache contention and compilation
overhead caused by not using bind variables.

3.3.1 Feedback in Adaptive Cursor Sharing

It is clear from the above experiment that adaptive cursor sharing
offers benefits for some queries containing bind variables. We
conducted a second experiment to evaluate the necessity of using
feedback to determine when to enable bind-aware cursor sharing.
The impetus for using feedback to enable BACS is to control the

1376

overhead in terms of number of compilations (which adds latency
to some query executions as well as consuming more machine
resources overall) and number of distinct plans generated (which
results in cursor cache contention).

We conducted an experiment on the original 428 queries that
were known to produce different plans for different bind values.
We ran each query with each bind set under two different
configurations. In the first, adaptive cursor sharing was enabled as
usual. In the second, the feedback aspect was disabled, so that
every query eligible for bind-aware cursor sharing would use it; in
other words, the monitoring phase was skipped, and bind-aware
cursor sharing was enabled from the first execution. We collected
information on the total number of plans generated for each query
(which represents the number of compilations) and the total
number of child cursors (distinct plans) for that query resident in
the cursor cache after executing all of the bind value sets. Our
goal was to determine if using feedback from execution really
does reduce the two types of overhead mentioned above.

Figure 12 summarizes the results of this experiment. Without
feedback, the number of compilations (6193) is nearly five times
as high as with feedback (1256). Without feedback, the number
of resident child cursors (1000) is nearly twice as high as with
feedback (506). This experiment demonstrates the need for
runtime information to determine when it is appropriate to enable
BACS. Using feedback helps to achieve our goals of reducing
overhead both in terms of additional compilations and cursor
cache consumption.

Cursor Sharing Overhead

7000
6000

5000

4000 Bwith feedback

Bwithout feedback

3000

2000

1000

compilations

distinct plans

Figure 12: Feedback Impact on Cursor Sharing Overhead

4. RELATED WORK

The work described in this paper falls in the general area of
feedback systems, where the output of a system is used to control
its behavior. The system adapts when fed new information. There
are several applications of this concept, and in this paper we are
concerned with its application to improve the performance of a
database system in processing SQL statements. In general, a
feedback system is implemented around two main components: a
decision component (DC) and a monitoring component (MC). DC
makes decisions based on parameters updated by MC.

An example of a feedback system is the Automatic Memory
Manager introduced in Oracle 9i [6]. In that paper the memory
manager decides the maximum amount of memory a database
operator (such as sort or hash) can consume during its execution.
The amount of memory is dynamically updated by a monitoring
component based on the number of active operators and their
consumption patterns. The operators adapt to directives from the
memory manager during their execution.

Another example is the work described in [3], [8], [9], and [11] to
deal with the use of inaccurate or incomplete information that
leads the optimizer to generate sub-optimal execution plans.
While these papers proposed solutions to address a problem that is
similar to one of the two problems we raised in our work, there
are still differences that are worth highlighting.

First, despite the fact that the approach proposed in [3] automates
the tuning of a SQL statement, it still relies on the user to activate
the tuning process using the most expensive statements identified
by the system. The user does not play a role in our approach.
Furthermore, the feedback happens at the end of every execution
of the statement, and is continuously updated with new
information.

Second, unlike the work described in [8] and [9], our approach
does not affect the current execution of the SQL statement; the
plan does not change during execution. One of our major design
goals is to have a solution that works out of the box because it is
part of the production version of the Oracle DBMS. This requires
that the current execution of the statement not be affected and the
overhead from monitoring be extremely low. The information
gathered at the end of execution will benefit future executions.
Furthermore, we screen the statements during query optimization
to pick the candidates for monitoring. This helps limit the
monitoring overhead to the ones that we think may benefit from
feedback. These statements represent 37% of the SQL workload
used in the experiments described in Section 3.2. Furthermore, we
stop monitoring the statement if feedback does not help the
optimizer to find a better plan.

Third, the approach proposed in [11] computes adjustments based
on the deviation between the estimated and actual cardinalities for
filter predicates on the tables in a SQL statement, and stores them
in the dictionary tables. The next time a SQL statement is
compiled the optimizer checks whether adjustments exist and if so
uses them. While the idea of correcting cardinality estimation is
similar to ours, the two approaches differ in a few ways:

1. LEO monitors every SQL statement, while the Oracle
optimizer monitors a subset of SQL statements, those
where cardinality estimates are known to be low
quality. This helps limit the overhead of monitoring and
make the solution more practical in a production

environment.

If the recompilation of a SQL statement based on
feedback information did not cause a different plan then
the Oracle optimizer will disable monitoring for it. LEO
will keep monitoring the SQL statement.

LEO stores the feedback information (cardinality
adjustments) in dictionary tables and readjusts them
when new statistics are collected for the related tables.
We believe that this approach can lead to incorrect
adjustments over time because the readjustment process

1377

cannot predict how the data distribution has shifted in
the new statistics. The Oracle optimizer starts the
learning from the beginning every time new statistics
are collected. The feedback information is kept in
memory allowing a fast access to it.

While LEO has both an online and offline option to
analyze the feedback information, it seems that it is
harder to design the online option correctly as per the
paper. So we assume that the offline option was used.
The Oracle optimizer performs the feedback online at
the end of the statement execution with minimal
overhead.

The second aspect of our work relates to the selection of
execution plans for SQL statements containing bind variables.
Based on our research of the literature on this topic, we believe
that our work is the first to propose a feedback-based approach to
this problem.

In [4] it is assumed that the value of bind variables is unknown
during query optimization. The solution proposed in that paper
consists of delaying the decisions that depend on the value of the
bind variables to query start time. For every such decision the
plan would contain multiple choices rooted to a special operator,
choose-plan. The fundamental difference with our approach is
that the impact on the plan is limited to the plan fragment under
the choose-plan operator while our approach allows the whole
query plan to change. The second difference is that our approach
relies on feedback from execution to decide when re-optimization
is needed. Last, the approach proposed in [4] might work well for
an optimizer that deals only with localized decisions such as
access path and join method. However, it is not practical for a
modern query optimizer, where an early decision can impact the
whole plan. For example, in Oracle the value of a bind variable
can affect a simple decision such as an access path, as well as
whether to apply a transformation such as join predicate
pushdown [1].

All the approaches available in commercial systems rely on the
SQL developer to decide whether the plan built for such SQL
statements be shared or not when executed using different bind
variable values.

IBM DB2 Version 9 [7] offers several options to the SQL
developer using the REOPT command:

1. Always — re-generates the plan for the SQL statement
each time the statement is executed. This is equivalent
to disabling cursor sharing.

2. None or Once — generates the plan for the SQL
statement once, using the bind variables values
specified during the first execution.

3. Auto — re-generates the plan for the SQL statement

every time the bind variable values change and an
execution plan has not been generated for the specified
bind variable values.

The SQL developer is clearly in charge of telling the system what
to do and the system does not contain any form of feedback based
on previous optimizations or executions of the same statement.

Microsoft SQL Server 2005 [10] allows a SQL developer to write
SQL statements with bind variables (e.g. SQL statement is
embedded in Transact-SQL program). It also provides a process

to convert literal-based statements into bind variable-based
statements, where literals are essentially substituted by bind
variables. The purpose of this process is to offer the same benefits
from using bind variables (reduce compilation overhead and the
memory used to store cursors in the cache) without requiring the
SQL developer to rewrite existing applications. This process is
referred to as parameterization. There are two variants of this
process and the user is expected to pick which one to use: auto
and forced parameterization. Under the auto variant, the system
re-uses the same plan for different variable values when it is
certain this does not lead to a sub-optimal plan. This variant is
only used for very simple statements, i.e. involving a single table,
seriously limiting its application. The forced variant can be used
for more complex statements. However, the execution plan
generated for the statement is shared regardless of the bind
variable values. The documentation warns that because of forced
parameterization the query optimizer might choose sub-optimal
execution plans for SQL statements and that it should not be used
for environments that rely heavily on “indexed views and indexes
on computed columns.” It is further recommends that it “should
only be used by experienced database administrators after
determining that doing this does not adversely affect
performance.”

5. CONCLUSION

In this paper, we discussed two of the problems that affect the
quality of execution plans generated by query optimizers: bind
variables and inaccurate cardinality estimation for intermediate
results. The solutions we proposed have been implemented in the
Oracle DBMS and shipped in a production release, Oracle 11g.
Our approach relies on monitoring the execution of SQL
statements to feed back a summary of the execution to the SQL
compiler, more specifically the query optimizer. The feedback
allows the query optimizer to adapt its decisions with the goal of
improving the performance of future executions of the SQL
statements. Two of the main design goals of our approach are (1)
zero input from SQL developers and zero maintenance for the
DBA, (2) extremely low overhead from monitoring the SQL
statements that is limited to only the statements that may benefit
from the feedback. We demonstrated, using a real SQL workload,
how our approach can be used to improve the performance of
SQL statements. The SQL workload comes from the Oracle E-
Business Suite, used by tens of thousands of customers
worldwide. The framework we developed can be leveraged to
support feedback of other information that will further improve
the database system performance. We plan to add such support in
the future as well as improving the framework itself, e.g. by
making the feedback information persistent (disk-based).

1378

6. ACKNOWLEDGMENTS
We would like to thank Vadim Tropashko for his efforts in the
validation of the initial ideas discussed in this paper.

7. REFERENCES

[1] Ahmed, R., Lee, A., Witkowski, A., Das, D., Su, H., Zait,
M., and Cruanes, T. “Cost-based Query Transformation in
Oracle”. In Proc. of the 32" International Conference on
Very Large Databases, 2006. Pages 1026-1036.

Avnur, R., Hellerstein, J. M. “Eddies: Continuously
Adaptive Query Processing”. In Proc. of the ACM SIGMOD
International Conference on Management of Data, 2000.
Pages 261-272.

Chakkappen, S., Cruanes, T., Dageville, B., Jiang, L., Shaft,
U., Su, H., and Zait, M. “Efficient and Scalable Statistics
Gathering for Large Databases in Oracle 11g”. In Proc. of
the ACM SIGMOD, 2008.

Cole, R., Graefe, G. “Optimization of Dynamic Query
Execution Plans”. In Proc. of the ACM SIGMOD, 1994.
Pages 150-160

Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M., and
Ziauddin, M. “Automatic SQL Tuning in Oracle 10g”. In
Proc. of the 30™ International Conference on Very Large
Databases, 2004. Pages 1098 - 1109.

Dageville, B., and Zait, M. “Automatic Memory
Management in Oracle 9i”. In Proc. of the 28" International
Conference on Very Large Databases, 2002. Pages 962 -
973.

DB2 Version 9.1 http://www-
1.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh,
H., and Cilimdzic, M. “Robust Query Processing Through
Progressive Optimization”. In Proc. of the ACM SIGMOD,
2004. Pages 659 - 670.

Navin, K., and DeWitt, D. J. “Efficient mid-query re-
optimization of sub-optimal query execution plans”, In Proc.
of the ACM SIGMOD, 1998. Pages 106 — 117.

[10] SQL Server 2005 Books Online
http://msdn2.microsoft.com/en-us/library/ms130214.aspx.

[11] Stillger, M., Lohman, G., Markl, V., Kandil, M. “LEO —
DB2’s Learning Optimizer”. In Proc. of the 27"

International Conference on Very Large Databases, 2001.
Pages 19-28.

(9]

