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ABSTRACT
We present the WebContent platform for managing distributed repos-
itories of XML and semantic Web data. The platform allows inte-
grating various data processing building blocks (crawling, transla-
tion, semantic annotation, full-text search, structured XML query-
ing, and semantic querying), presented as Web services, into a
large-scale efficient platform. Calls to various services are com-
bined inside ActiveXML [8] documents, which are XML docu-
ments including service calls. An ActiveXML optimizer is used
to: (i) efficiently distribute computations among sites; (ii) perform
XQuery-specific optimizations by leveraging an algebraic XQuery
optimizer; and (iii) given an XML query, chose among several dis-
tributed indices the most appropriate in order to answer the query.

1. CONTEXT
The Web has become the platform of choice for the delivery of

business applications. In particular, the popularity of Web service
technologies (WSDL [17], BPEL4WS [9] etc.) and their closeness
to HTML and XML, the predominant content delivery languages
on the Web, has opened the way to the development of complex
business applications by integrating Web services provided by dif-
ferent parties. This model has several advantages. From a develop-
ment viewpoint, it relies on widely accepted standards, and benefits
from the plethora of available application building blocks. From a
business viewpoint, it allows organizing the activity in cleanly de-
fined modules, each of which is implemented by some Web ser-
vices. This enables several entities to provide implementations of a
given module, and facilitates replacing one entity with another.

We are currently involved in a large R&D project called Web-
Content [22], whose purpose is to build and exploit large-scale
repositories of rich, semantically annotated Web data. The over-
all setting of the project, outlined in Figure 1, exemplifies the kinds
of applications discussed above. Afocused crawler (1) service re-
turns Web documents related to specific domains, in our case, air-
craft sales by Airbus and Boeing (for a continuous, online market
survey), respectively, food risk information, for a consortium of
food companies seeking to organize and structure information re-
lated to different food problems (contaminations, allergens etc.).
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Figure 1: WebContent architecture outline.

Thecrawler service returns XML documents with information-rich
headers (crawling date, origin site etc.). Astorage (2) service can
be invoked to make the crawled document persistent in the Web-
Content warehouse. Observe that multipletranslation (3) services
are used to translate to and from English, French, Chinese etc.Se-
mantic annotation (4) services are invoked to analyze the text of
the crawled pages and extract, e.g., specific aircraft brands, names
of edible plants or bacteria that taint food etc. The annotations are
added as a semantic header to the XML documents, under the form
of XML-ized RDF snippets, and the modified documents are put
back in the store.Visualization (5) andquery (6) services can be
used at this point to exploit the corpus, either via advanced user in-
terfaces (e.g. “fish-eye lens” view on documents) or by querying it,
using a subset of XQuery (with full-text search) or SPARQL [14].

The WebContent warehouse is deployed in two settings. First, in
a ”closed” scenario, in a company Intranet, all services are provided
by in-house components and communication takes place via an
ESB [10]. Second, in a distributed, decentralized setting, comput-
ers are connected via the Internet and communication takes place
via Web services exchanged over SOAP [18]. In both cases, there
can be several instances of each service, in particular, storage ser-
vices are provided by multiple machines, to cope with large data
volumes; and, services can be called from inside or outside the fed-
eration of sites implementing the warehouse.

Two problems have to be solved in both settings: identifying ser-
vices that implement a given interface, and efficiently executing the
Web service calls. Efficiency is a particularly important concern in
the distributed setting, since data transfers from one site to another
may become the bottleneck. However, distribution is a great asset
for large-scale warehouses such as the ones envisioned in our tar-
get applications, with large (and growing!) data volumes, therefore

1428

Permission to make digital or hard copies of portions of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for  profit or commercial advantage and 
that copies bear this notice and the full citation on the first page.  
Copyright for components of this wor k owned by  others than VLDB 
Endowment must be honored. 
Abstracting with credit is permitted. To copy otherwise, to republish, 
to post on servers or  to redistribute to lists requires prior specific 
permission and/or a fee. Request permission to republish from: 
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or  
permissions@acm.org. 
 
PVLDB '08, August 23-28, 2008, Auckland, New Zealand 
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08 



Figure 2: Internal architecture of a WebContent peer.

we focus on the distributed setting. Another source of inefficiency
concerns repeated (redundant) execution of identical service calls,
which may occur in large data processing tasks.

To combine Web services provided by different partners in the
WebContent project, our solution is based on a composition lan-
guage, namely ActiveXML (or AXML in short) [8], which in our
setting can be seen as equivalent to a subset of BPEL. An Ac-
tiveXML document is an XML document specifying which ser-
vices to call, how to build their input messages, and how the calls
should be ordered. AXML raises several interesting technical prob-
lems addressed in previous works [1, 2, 3]. More recently, an Ac-
tiveXML algebraic optimizer, named OptimAX [5, 6], have been
developed. Given an AXML document, OptimAX appliesequiv-
alence preserving rewritings that transform it into different docu-
ments, producing the same results, but possibly very different in
shape and in the set of services it invokes. Thus, the execution of
the rewritten document is likely to both shorten response time, and
consume less CPU resources, than that of the original document.

Following the service-oriented architecture illustrated in Figure 1,
we have implemented OptimAX as a Web service which, when in-
voked with an AXML document, returns the rewritten document.
This step allows to benefit from the kind of performance-enhancing
techniques typically applied in distributed databases [16], but in
a new setting: loosely coupled (vs. tightly controlled servers),
generic (vs. tailored to specific indices and execution techniques),
extensible to any service (vs. limited to the “inside” of the database
server box). Another important difference is that AXML supports
continuous (streaming) services, such as the crawler service in Fig-
ure 1, or more generally any RSS feed. XML streams are at the
core of many modern Web applications, e.g. for keeping a portal’s
content up-to-date, or for implementing continuous business inter-
actions in a workflow-style setting.

OptimAX functioning is extremelygeneric. It explores a search
space based on a given set of rewriting rules. Some rules corre-
spond to optimization techniques previously developed in isolation,
such as query pushing over calls to Web services [2]. The same
genericity allows us to apply several types of rewritings particu-
larly useful in the WebContent setting:

algebraic XQuery manipulations : user queries expressed in XML
over the distributed warehouse are analyzed with the help of
an algebraic XQuery analyzer called TGV [15] which may
e.g. decompose them into smaller queries that can be effi-
ciently handled

query compiling : we have defined a few abstract services spe-
cific to the WebContent setting, for instance, a query answer-

ing service over the whole distributed warehouse. OptimAX
will always replace a call to this service by a set of calls to
concrete, implemented services, which compute the desired
result.

DHT index selection : WebContent sites are connected in a DHT
network, in which several types of XML content indices can
be materialized. (Currently there are two such indices, pro-
vided by the KadoP [4] and PathFinder [12] systems, but this
can clearly be extended.) OptimAX may pick one index or
another, thus realizing distributed access path selection.

This document is organized as follows. The next section details
the WebContent peer architecture. Then, we focus on the precise
issue of the DHT XML index selection in this context.

2. ARCHITECTURE OF A WEBCONTENT
PEER

The overall architecture of the P2P platform is outlined in Fig-
ure 2. All peers are connected to a Distributed Hash Table (in short,
a DHT) [11]. The DHT keeps the peers logically connected in dis-
tributed structure that assigns themlogical IDs. Given a peer ID,
a DHT structure is typically able to route a message to that peer,
from any peer in the network, in at mostlog2(N) hops across the
network, whereN is the number of peers in the DHT.

Thestoragefunctionality is implemented jointly by peers in the
network, each of which may become responsible of storing part of
the resources, as follows:

• WebContent resources: XML documents are stored in an
XML repository local to each peer, whereas other types of
files (such as Word documents, PDF files etc.) are stored
directly in the local file system. Modifications (such as en-
richment etc.) to any resource which is an XML document
are made via the update functionality of the local XML data
management store on each peer.

• Parts of the index: an important aspect of the WebContent
P2P platform is the capability to efficiently search the dis-
tributed warehouse. To that effect, data access structures are
built and stored collaboratively by the peers.

• Other helper data structures, which (like the index) may in-
crease performance. This category mainly concerns materi-
alized views or caches (this feature is currently under devel-
opment).

In principle, any XML database can be used to store XML re-
sources on a given peer. We have integrated so far eXist [20] and
MonetDB/XQuery [21].
Several modules in each peer cooperate to implement the platform’s
searchandupdate functionality. We outline their roles next.

Local SPARQL semantic query processorEach peer is capable
of processing semantic queries over RDF data, expressed in
a conjunctive subset of the SPARQL [14] language. The se-
mantic query processor exploits RDFS (RDF Schema) infor-
mation in order to rewrite a query asked at a given peer, based
on themappings that explain how resources are potentially
stored at several peers [7]. The output of the rewriting pro-
cess is a union of XML queries which correspond precisely
to the XML resources that are part of the answer to the query.

Local component of a distributed execution enginePeers collab-
orate in order to ship data from one to another and to com-
pute query results in a collaborative fashion. To that effect,
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each peer is endowed with several functionalities which re-
side in its local execution module. Thus, a peer is capable
of sending and receiving data (including XML subtrees, in-
dex entries etc.), as well as information on how a given query
should be evaluated.

Local optimizer The volume and variety of resources considered
in WebContent raise a significant challenge from the perfor-
mance viewpoint. To address these challenges, the indexing
framework and the execution engine provide several tools,
such as data access support structures (or indices, described
in the next section), efficient join algorithms, alternative eval-
uation strategies etc. Furthermore, peers in the WebCon-
tent network may have different capabilities (e.g. different
computing power) which make them more or less interesting
choices to process a given query. All these choices are avail-
able to the OptimAX optimizer on the query peer; OptimAX
explores them using its local cost and catalog information.

Based on Figure 2, thequery processing chain in WebContent
can be described as follows.

Assume that peerp receives a queryqx expressed in a dialect of
XQuery (for the time being, restricted to downward navigation and
excluding type-dependent features such ascast, typeswitch etc.).
The semantics of the query is: return results for queryqx from all
the documents published in the WebContent warehouse. Clearly,
a naı̈ve semantics-driven implementation would exhibit very poor
performance.

This query is modeled in our setting as an ActiveXML docu-
ment including a call to theWebContentQuery@p service. Here,
WebContentQuery is an abstract service, i.e. it is not provided by
any concrete endpoint [17]. For a human reader-friendly version
of AXML, we use the notationf@p to refer to a servicef pro-
vided by peerp. OptimAX is aware thatWebContentQuery is an
abstract service, and includes a rewriting rule that replaces the call
to WebContentQuery(qx) with an expression containing nested ser-
vice calls, of the form:

(3) GenericQueryService@p(recomposeQ,
tpq@any(t1), tpq@any(t2), . . ., tpq@any(tn) )

wheret1, t2 etc. are conjunctive tree pattern queries,tpq is a tree
pattern query processing service (to be detailed next), andrecom-
poseQ is an XQuery query such that, for any set of XML documents
indexed in the WebContent warehouse:

q ≡ recomposeQ(t1,t2,. . .,tn)

TheGenericQueryService is a query service available on all peers
which, given an XQuery and some locally available XML inputs,
evaluates the query and returns the XML answer, as in [2, 5] etc. In
other words, the queryqx has beendecomposed in a set of tree pat-
tern queries, and a recomposition query which typically performs
value joins, and element construction (in caseqx requires new el-
ements in its result). The interest of the decomposition is that the
tpq service is concretely available on all WebContent peers, and ef-
ficiently implemented based on distributed XML indices material-
ized on the DHT. The notationtpq@any specifies that any concrete
endpoint for thetpq service can be used; they are all guaranteed to
give the same answers, and usingany informs the optimizer that
the processing of these tree pattern queries can be pushed to any
particular site, as is judged best for performance purposes.

As previously mentioned, two DHT-based XML indexing mod-
els are currently supported in WebContent. In our current platform,

all peers provide thus two concrete implementations of thetpq ser-
vice, each using a distinct index. The choice of which one to use is
again made by OptimAX, based on the particular tree pattern query
ti that is a parameter of eachtpq call (this will be detailed in the
next section).

Starting from the AXML expression (3) previously mentioned,
OptimAX enumerates some distributed execution strategies, seek-
ing to replace theany locations of thetqp calls with specific peers,
so as to reduce the amount of index data transfers necessary for
evaluating thetpq calls. To do this, OptimAX uses cardinality
statistics maintained in the network, locally cached copies of which
reside on every peer. The search space is potentially large, therefore
OptimAX can employ a set of heuristics such as greedily exploring
the best cost-saving rewritings, exploring at most 30 rewritings etc.,
in the style of classical distributed query processing [16] applied to
our specific search space. The expression is then brought to a form:

(2) GenericQueryService@p(recomposeQ,
tpq@p1(t1), tpq@p2(t2), . . ., tpq@pm(tn) )

and handled to the local AXML evaluation engine, which will trig-
ger the calls to peersp1, p2, . . ., pm, receive the results, and inte-
grate them in the document (as siblings of the service calls). The
last call to be triggered is the one toGenericQueryService, which
performs the last computations needed in order to produce the XML
result ofqx at peerp.

An important extra layer to this query processing chain is needed
when queries are not asked at the level of XML (syntax), but at the
level of RDF classes (semantics). WebContent documents can be
enriched with semantic annotations (recall Figure 1), and user may
be interested in retrieving resources that are pertinent for a given
semantic concepts. Consider such a semantic queryqs, expressed
at peerp in a SPARQL-style language. Peerp may know of some
mappings describing how a concept ins relates to other concepts
present in the WebContent warehouse. Then,p initiates a semantic
rewriting step, which traverses the available mappings and refor-
mulates (enriches)s. For instance, ifqs asks for documents relevant
to the concept “Airbus aircraft”, if a mapping specifies that “A320
isA Airbus aircraft”, then documents annotated with the “A320”
concepts should also be part of the result.

RDF semantic annotations are serialized in XML in our plat-
form, and indexed like any other XML resource. Therefore, once
qs has been fully rewritten based on mappings, it is automatically
translated into an XML queryqx, and processed just as explained
above.

3. DHT-BASED XML INDEXING
We now outline the two XML indexing models employed in We-

bContent and show how they can be used during query processing.

KadoP indexing The first WebContent XML indexing model is
provided by the KadoP system [4]. In this model,index keys are
extracted from: all XML element and attribute names; and, all
words (after stemming and ignoring stop-words) that appear in text
nodes and attribute values in XML documents.Index values are
structural identifiers of the formdocID, start, end characterizing
all the locations where each individual key occurs in the system.
For instance, for an element nametitle, the key isn-title (opposed
to w-title which stands for a text word “title”), and the value is
the list (sorted bydocID, start) of the structural identifiers of “ti-
tle” elements occurring in all WebContent documents. KadoP’s
tree pattern language consists of trees where each node is labeled
with an XML node or a word, and edges stand for parent-child or
ancestor-descendant relationships. KadoP processes such tree pat-
terns by performing a Holistic Structural Twig Join on the lists of
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identifiers (also known asposting lists) associated to the query node
labels. Observe that KadoP cannot process tree pattern queries with
inequalities, e.g.,//article[year>2005]. The KadoP index distribu-
tion on peers is left to the DHT’s hash function.

PathFinder indexing The second indexing model comes from the
PathFinder platform [12], which seeks to place index entries on
the DHT peers in such a way as to reduce the number of hops
(peers contacted) for answering a query. PathFinder keys arelin-
ear parent-child rooted paths encountered in the network’s XML
documents, and the values are the sorteddocID lists of identifiers
of documents exhibiting a given path. The last step in PathFinder
paths may be either an element or attribute name, or a text node
(word occurring in an XML string) or attribute value. Sample in-
dex keys are:/article, /article/title, article/title/WebContent etc.
By tuning the hash function, PathFinder ensures that index en-
tries corresponding to keys that areclose (in lexicographic order)
are placed on peers that are close (in the sense of proximity in
the DHT structure). It can also answer inequality queries such as
/article[year>2005], because it can find all index paths starting
whose prefix is/article/year and whose last step is a value larger
than 2005.

Putting it all together Given an XQuery queryxq, the TGV al-
gebraic analyzer extracts the recomposition query and a set of tree
patterns, which are then analyzed. Depending on their syntax, Op-
timAX will dispatch them to the KadoP, resp. to the PathFinder
index. For instance, consider the query:

for $x in //report[//’A320’], $y in /airbuslib/report[year>2005]
where $x/author=$y/author
return <res>{$x/title, $y/title}</res>

The pattern//report[//’A320’] will be handled by KadoP, while
/airbuslib/report[year>2005] will be handled by PathFinder. The
recomposition query is:

for $i in $res1, $j in $res2
where $i/author=$j/author
return <res>{$i/title, $j/title}</res>

Patterns featuring both // and inequalities are currently handled
to KadoP ignoring the value predicate, which is applied as a post-
processing step.

Demo highlights The demonstration will focus on two technical
aspects. (i) The architecture of a WebContent peer; and (ii) the
DHT XML index selection feature and query processing outline.
For the latter, we will show, by means of a GUI that surveys all in-
teractions between network peers, which kinds of messages are ex-
changed among peers for query processing purposes: index lookup
in KadoP and PathFinder, data transfers, query execution etc. We
will use at least two laptops and if network connection is available,
some remote peers running in our labs in France.

Our scenario is inspired from the WebContent project. It con-
cerns market surveillance for the European Advanced Defence Sys-
tem (EADS) company, interested in economical news and market
analysis concerning the sale of its Airbus aircraft.

4. RELATED WORKS AND CONCLUSION
We have mentioned in the introduction how the current work re-

lates to previous AXML results. More generally, WebContent can
be seen as an attempt to bridge the numerous existing technologies
for handling XML data, distributed queries, Semantic Web tech-
nologies and Web services into building new-generation data man-
agement platforms. From this perspective, our approach is compa-
rable with similar project such as [19]. WebContent differs from
these in the focus on distributed data management, which we be-

lieve is a must for large-scale, growing data warehouses such as
those we envision; in this context, WebContent leverages DHT-
based XML indexing technologies [4, 15] that follow the first pro-
posal in this area [13]. Finally, a specific innovative aspect in We-
bContent is the presence of OptimAX, an “external” optimizer that
attempts to coordinate distributed data management stages with-
out requiring a tight connection between the pluggable modules
(implemented as Web services), facilitating the construction of ef-
ficient distributed Web applications.
AcknowledgementsWe are grateful to Laurent Yeh from Univer-
sity of Versailles for providing us the TAIO P2P visualisation tool
to be used for the demo GUI.
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