
AuditGuard: A System for Database Auditing Under
Retention Restrictions

Wentian Lu and Gerome Miklau
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{wen,miklau}@cs.umass.edu

1. INTRODUCTION
Auditing the changes to a database is critical for iden-

tifying malicious behavior, maintaining data quality, and
improving system performance. But an accurate audit log
is a historical record of the past that can also pose a seri-
ous threat to privacy. In many domains, retention policies
govern how long data can be preserved by an institution.
Regulations like FERPA and HIPAA (in the U.S.) or the
Directive of Data Protection (in the EU), require strict re-
tention periods to be observed, mandating the disposal of
past data. In addition, institutions often adopt their own
retention policies, choosing to remove sensitive data after a
period of time to avoid its unintended release, or to avoid
disclosure that could be forced by subpeona.

Policies that limit data retention conflict with the goal of
accurate auditing, and data owners have to carefully balance
the need for accurate auditing with the privacy goals of re-
tention policies. Unfortunately, existing technologies make
balancing these goals difficult. Most database systems in-
clude audit logs, but there are few mechanisms for limiting
access to logs beyond wholesale destruction of the log for a
given time period. Some proposed database systems support
persistence, in which past states are retained. These can be
used for some (but not all) audit functions, and also lack
effective protection mechanisms for past versions of data.

The AuditGuard system is a flexible database audit mech-
anism which retains history and enforces retention policy. It
allows an auditor to selectively remove data from a log of
the past, while still retaining non-sensitive aspects of history
that can be vital to an audit. The main components of the
AuditGuard system are the following:

Historical data model AuditGuard implements a trans-
action time data model that stores past states of the
database, along with an operational log which contains
additional metadata. This data model enables the user
to perform powerful audit queries over the past.1

1Note that the goal of AuditGuard is to audit modifications

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Retention policies AuditGuard’s distinctive feature is that
it supports retention policies, which remove or pro-
tect past data from disclosure. For example, a typical
policy might require that an employee’s salary be re-
moved from the database prior to 5 years ago, or that
the records of employees working on Project X be re-
moved from the history.

Incomplete history Applying such retention policies causes
the (physical or logical) removal of individual data val-
ues or entire tuples from the historical record. Once
retention policies have been applied, the AuditGuard
system stores a partially incomplete record of history
that respects the privacy goals of the policy.

Querying incompleteness A key feature of the Audit-
Guard system is the capability to evaluate audit queries
over the protected, incomplete audit history that re-
sults from policy application. Naturally, some audit
queries cannot be answered as accurately while re-
specting the retention policies. AuditGuard presents
partial answers whenever possible, representing directly
the uncertainty introduced by the retention policy.

The main benefit of AuditGuard is the enforcement of
retention policies along with the ability to get audit query
answers where none would be possible before. In particular,
AuditGuard allows sensitive values to be removed, while re-
taining the history of changes to values for auditing. Such a
sanitized audit log can meet many of the goals of the audi-
tor by reporting on who made changes, when changes were
made, and in what context they were made. At the same
time disclosure of sensitive information can still be avoided.

2. AUDITING HISTORY
In this section we present the main components of the

AuditGuard system by reference to an example scenario.

2.1 Historical Data Model
The AuditGuard data model stores, for each table of the

user schema, a transaction-time table [8] and an operational
history table. The transaction-time table records a complete
history of tuples’ state. The active time period of a tuple is
indicated by the transaction time of creation (i.e. after in-
sert or update) and the transaction time of deletion (or the
special value now for active tuples). User modifications to
the database are applied to the current snapshot only, and

to the database. We do not audit read-only queries.

1484

Permission to make digital or hard copies of portions of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for  profit or commercial advantage and 
that copies bear this notice and the full citation on the first page.  
Copyright for components of this wor k owned by  others than VLDB 
Endowment must be honored. 
Abstracting with credit is permitted. To copy otherwise, to republish, 
to post on servers or  to redistribute to lists requires prior specific 
permission and/or a fee. Request permission to republish from: 
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or  
permissions@acm.org. 
 
PVLDB '08, August 23-28, 2008, Auckland, New Zealand 
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08 



name dept sal from to

Bob Mgmt 10k 0 100
Chris HR 15k 50 400
Bob Sales 10k 100 200
Bob Sales 12k 200 500
Chris Sales 15k 400 450
Chris Sales 12k 450 700
Bob Sales 15k 500 now

(a) Transaction-time table T

tid name type attr user ttime

1 Bob ins all Jack 0
2 Bob upd dept Chris 100
3 Bob upd sal Chris 200
4 Bob upd sal Chris 500
5 Chris ins all Jack 50
6 Chris upd dept Jack 400
7 Chris upd sal Jack 450
8 Chris del all Jack 700

(b) Operational history table H

1: Table 1: The logical schema for a sample Employee history.

never modify history. The operational history table records
metadata about the update transactions that have been ap-
plied to the database. This table stores, for each transaction,
descriptive fields which may include the authorization ID of
the user issuing the transaction, the IP address of user, etc.

As a running example we consider auditing a simple Em-
ployee database with an original schema Emp(name, dept,

salary). Table 1a shows T , the transaction-time table record-
ing the department and salary history for employees Bob and
Chris. The columns from and to are added to the original
schema. Table 1b shows H, the operational history table.
We assume for this example that name is the primary key
of T , that each operation is assigned a unique transaction
time, ttime, and that each update operation in H changes
exactly one tuple in the original table. The attr column in
H indicates the attribute changed by an operation if it is an
update query, or all if it is an insert or delete operation.

2.2 A Language for Auditing Queries
AG-SQL is an extension to SQL designed to support queries

over the transaction-time and operational history tables.
The formal semantics of our language (omitted due to space
constraints) is based on extended relational algebra oper-
ators for temporal relations [4, 8, 11]. The following are
examples of simple auditing queries that can be expressed
over the Employee history described by tables T and H:

A1: Return all users who have updated Bob’s salary, along
with the time of update.

SELECT user, ttime

FROM H

WHERE name=’Bob’ AND type=’upd’ AND attr=’sal’

A2: Return the history of all employees no longer employed
by the company.

SELECT name, dept, sal, from, to

FROM T

WHERE name NOT IN(SELECT name FROM T(now))

A3: Return the name and time of modifications for all em-
ployees whose salary was updated by Chris while Chris
was not in the HR department.

SELECT H.name, H.ttime

FROM TEMPORAL T, H

WHERE H.user=T.name AND H.attr=’sal’

AND T.name=’Chris’ AND T.dept!=’HR’

A1, in fact, includes no temporal features, consisting of
standard SQL. In such situations, the transaction-time ta-
bles listed in FROM are treated as traditional tables with ad-
ditional time attributes. In A2, T(now) is the current snap-
shot of table T. Attributes from and to in the SELECT clause
indicate that the result will be a transaction time table. In
A3, the TEMPORAL identifier in the FROM clause declares a
temporal join of tables.

2.3 Data Retention Policies
A retention policy specifies time periods for which data

or documents should be retained, and limits on retention.
The AuditGuard prototype supports two kinds of retention
policies which are used to limit the lifetime of data in our
historical data model.

The first is called redaction. When redaction is applied
to an attribute value it removes the value, but does not hide
its existence. Redaction can be applied to any combination
of attributes, an entire tuple, or sets of tuples. The second
operation is called expunction. When a tuple is expunged,
its values are removed, along with a record of its existence.
These two operators serve fundamentally different purposes
as they enact value removal in one case and existence re-
moval in the other. Our example scenario will focus on the
redaction policy operator, as illustrated in these simple poli-
cies:

P1: Hide Bob’s salary prior to time 200.

P2: Hide Chris’s salary and dept prior to time 400.

Policies can be specified by the following SQL-like lan-
guage. A policy can be evaluated like a SELECT query in
SQL, but with the addition of a WHEN clause indicates the re-
tention period. The language enables flexibility and expres-
siveness of policy customization, and policies can be freely
combined.

EXPUNGE | REDACT attribute-list

FROM table-list

WHERE condition-list

WHEN time-condition-list

The meaning of an individual redaction policy rule on
relation R, which is denoted pR(k, a, t), is as follows: for the
tuple τ ∈ r with k as its value of key, all values of attribute
a before time t should be removed from the database. It
should not be possible for a user to infer these values from
the database instance accessible after policy application.

1485



2.4 Applying Retention Policies
Applying a retention policy to a database changes history,

removing sensitive information. Removal can be physical
(history is deleted from physical storage) or logical (history
is inaccessible to some class of users, but still stored phys-
ically). The AuditGuard prototype currently implements
physical removal, but logical removal is clearly important in
order to support conflicting retention policies for multiple
parties.

Whether removal is logical or physical, application of a
retention policy results in an incomplete database, repre-
senting a set of possible worlds (or more precisely, a set of
possible histories). The set of possible worlds is introduced
by attribute variables and a tuple status indicator. The
variables represent an unknown value from a given domain.
The tuple status specifies whether a tuple exists in all the
possible histories.

Applying this policy set P = {P1, P2} to the database
consisting of T and H, we get an incomplete transaction-
time table T P (shown as Table 2). The operational table H
is unchanged2.

In T P , redacted values have been replaced by a set of vari-
ables {sx, sy, dx}. The domain of sx and sy is dom(sal); the
domain of dx is dom(dept). Distinct variables in the same
column are assumed to take distinct values. An additional
column status, with domain {p, c}, has been added in the
representation of T P . A status of c means the tuple is cer-
tain to be present in the relation; p means the existence of
the tuple is merely possible.

name dept sal from to status

Bob Mgmt sx 0 100 c
Chris dx sy 50 400 c
Bob Sales sx 100 200 c
Bob Sales 12k 200 500 c
Chris Sales sy 400 450 c
Chris Sales 12k 450 700 c
Bob Sales 15k 500 now c

2: Table after redaction T P

In general, each policy set P will cause a series of removals
on T , H (or both) over the specified time period. Policy ap-
plication results in incomplete information tables [7, 1], T P

and HP , which represent a set of possible worlds. A map-
ping of each variable present in T P into an element of its
domain defines a possible world in the expected way: all cer-
tain tuples must be in present, and any subset of the possible
tuple may optionally be present. It is not hard to show that,
for any policy P , the application of P is truth-preserving:
the original database (T, H) is one of the possible worlds
described by (T P , HP ).

Policy application causes an unavoidable loss of informa-
tion, but much of the information about the sequence of
changes applied to the database may remain. The Audit-
Guard system can evaluate audit queries over the incomplete
history and still return useful answers.

2In AuditGuard, there are other policies whose application
will change both T and P , namely when a retention policy
splits the active period of a tuple version.

3. AUDITING INCOMPLETENESS
AuditGuard is designed to support audit queries over the

incomplete history resulting from retention policy applica-
tion. Answers to our audit queries on an incomplete history
have the expected semantics, representing the set of possi-
ble answers on the possible worlds. We can show that for
the kind of incompleteness introduced by our policies, AG-
SQL query answers can be represented concisely in our data
model [5].

Returning to the three auditing queries discussed previ-
ously, Table 3 compares the answers to A1, A2, A3 on the
original and incomplete tables.

A1. Return all users who have updated Bob’s salary, along
with the time of update. Although policy P1 removes the
salary information of Bob before time 200, we can still get
the full answer to this audit query: Chris updated Bob’s
salary at time 200 and 500 respectively. Bob’s private values
are protected, but the record of changes to his data can still
be audited.

A2. Return the history of all employees no longer employed
by the company. This query answer represents certainty
about the existence of employee Chris in the database at
time 50, as well as a change to his salary at time 400. His
department between time 50 and 400 is unknown – it may
have been Sales, or it may have been changed to Sales at
time 400. It is again possible to present an accurate history
of Chris, without revealing sensitive values.

A3. Return the name and time of update for all employees
whose salary was updated by Chris while Chris was not in
the HR department. This query includes one certain tuple
and one possible tuple. From the incomplete history it is
clear that Bob’s salary was updated by Chris at time 500
when Chris was not in HR. However, Bob’s salary was also
updated at time 200 by Chris, but Chris’s department is
unknown at that time. Therefore, (Bob, 200) is a possi-
ble answer for this query. The audit query contains some
uncertainty, but provides a superset of the true answer.

4. IMPLEMENTATION
We implement AuditGuard by translating our historical

data model into standard relations in Postgres. The proto-
type implementation includes the following:

Managing historical data. Each modification (insert, up-
date and delete) on a user-defined table triggers a series of
operations on the corresponding transaction-time table and
operational log. The original persistence features of Post-
gres have been deprecated in recent software releases and
are not used in our implementation.

Managing retention policies. AuditGuard provides a sim-
ple but powerful language to specify retention policies. As
we discussed above, policies can be implemented logically
or physically. AuditGuard currently supports physical re-
moval which means expired history will disappear from the
database after execution of the policy. AuditGuard trans-
lates the policy into update queries which will delete or mod-
ify some parts of history, introducing tuple-variables.

Implementing Query Evaluation. Query evaluation is im-
plemented by transforming AQ-SQL queries into standard
relational operators that can be optimized and executed

1486



Original Results After Redaction
name ttime name ttime status

Chris 200 Chris 200 c
Chris 500 Chris 500 c

(A1)

Original Results After Redaction
name ttime name ttime status

Bob 500 Bob 200 p
Bob 500 c

(A3)

Original Results
name dept sal from to

Chris HR 15k 50 400
Chris Sales 15k 400 450
Chris Sales 12k 450 700

After Redaction
name dept sal from to status

Chris dx sy 50 400 c
Chris Sales sy 400 450 c
Chris Sales 12k 450 700 c

(A2)

3: Table 3: The result of three audit queries, evaluated over the original database and the redacted database.

in Postgres. Standard transformations for accommodating
temporal features in a relational database are adopted [11].
The extended relational algebra operators that are the ba-
sis of AG-SQL are evaluated using special comparisons that
take into account tuple-variables in the instances. For exam-
ple, conditions in the WHERE clause return TRUE or FALSE
or POSSIBLE on an incomplete tuple. We follow exist-
ing work on maybe-operations [3] and incomplete temporal
models [5] and tune the performance of our relational rep-
resentation through query-rewriting and index selection for
efficient evaluation in Postgres.

Demonstration Outline & Significance
The AuditGuard demonstration will present an example sce-
nario in which the historical record of an institutional database
is audited under retention policy constraints. The complete
demonstration will: (i) Illustrate audit queries expressed as
AG-SQL expressions, as well as redaction and expunction
policies expressed as policy rules; (ii) Demonstrate the feasi-
bility of query execution over the incomplete historical data
model, and evaluate scalability with respect to database size,
history size, and number of retention policies applied; (iii)
Display incomplete answers to users.

As a result, the AuditGuard demonstration will provide
insight into the interplay between retention policies and the
accuracy of audit query answers, illuminating fundamen-
tal conflicts that exist between auditing and privacy as well
cases where auditing can be performed without threatening
unwanted disclosure.

5. RELATED WORK
Garcia-Molina et al. considered expiring tuples from ma-

terialized views in a data warehouse [6]. An administrator
can declaratively request to remove tuples from a view, and
the system will remove as much information as possible as
long as it does not impact of views referencing the origi-
nal view. Toman proposed techniques for automatically ex-
piring data in a historical data warehouse while preserving
answers to a fixed set of queries [12]. Skyt et al. consider
vacuuming a temporal database [10]. Policies remove entire
tuples, and the authors are concerned with the correctness
of vacuum specifications, and mitigating actions to handle
queries referencing missing information. The above works
differ from ours because they do not consider cell-level re-

moval, do not view the resulting database as an incomplete
history from which possible answers can be derived, and do
not consider an audit log accompanying the history. Re-
cently, Ataullah et al. [2] have considered retention restric-
tions on complex business records that are defined, in their
framework, by logical views in a database. A complete de-
scription of related work is included in our technical report
[9].

Acknowledgements. This work was supported by NSF CA-
REER Award IIS-0738244.

6. REFERENCES
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
Theor. Comput. Sci., 78(1):159–187, 1991.

[2] A. Ataullah. A framework for records management in
relational database systems. Master’s thesis, University of
Waterloo, 2008.

[3] J. Biskup. A foundation of codd’s relational
maybe-operations. ACM Trans. Database Syst., 8:608–636,
1983.

[4] S. K. Gadia. A homogeneous relational model and query
languages for temporal databases. ACM Trans. Database
Syst., 13:418–448, 1988.

[5] S. K. Gadia, S. S. Nair, and Y.-C. Poon. Incomplete
information in relational temporal databases. In L.-Y.
Yuan, editor, VLDB Conference, pages 395–406, 1992.

[6] H. Garcia-Molina, W. Labio, and J. Yang. Expiring data in
a warehouse. In VLDB Conference, pages 500–511, San
Francisco, CA, USA, 1998.

[7] T. Imieliński and J. W. Lipski. Incomplete information in
relational databases. J. ACM, 31:761–791, 1984.

[8] C. S. Jensen, L. Mark, and N. Roussopoulos. Incremental
implementation model for relational databases with
transaction time. IEEE TKDE, 3:461–473, 1991.

[9] W. Lu and G. Miklau. Log sanitization: Auditing a
database under retention restrictions. Technical Report 22,
Univ. of Massachusetts Amherst, June 2008.

[10] J. Skyt, C. S. Jensen, and L. Mark. A foundation for
vacuuming temporal databases. Data Knowl. Eng.,
44(1):1–29, 2003.

[11] R. T. Snodgrass. Developing time-oriented database
applications in SQL. Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 1999.

[12] D. Toman. Expiration of historical databases. In
Symposium on Temporal Representation and Reasoning
(TIME), pages 128–135, 2001.

1487




