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ABSTRACT

The ever increasing amount of data being handled in data
centers causes an intrinsic inefficiency: moving data around
is expensive in terms of bandwidth, latency, and power con-
sumption, especially given the low computational complex-
ity of many database operations.

In this paper we explore near-data processing in database
engines, i.e., the option of offloading part of the compu-
tation directly to the storage nodes. We implement our
ideas in Caribou, an intelligent distributed storage layer in-
corporating many of the lessons learned while building sys-
tems with specialized hardware. Caribou provides access to
DRAM/NVRAM storage over the network through a simple
key-value store interface, with each storage node providing
high-bandwidth near-data processing at line rate and fault
tolerance through replication. The result is a highly effi-
cient, distributed, intelligent data storage that can be used
to both boost performance and reduce power consumption
and real estate usage in the data center thanks to the micro-
server architecture adopted.

1. INTRODUCTION

The exponential increase of data to be stored and pro-
cessed in datacenters is a challenge for current systems. An
answer to this challenge comes in the form of distributed
in-memory database systems |27} (33} [36} 40] that scale out
compute and storage capacity beyond a single machine. One
common architectural element in such systems is the sepa-
ration between storage and processing nodes [36} [37]. The
storage nodes expose a single large shared pool of network-
addressable storage which can be accessed from any process-
ing node. Since data in the storage layer is shared across all
processing nodes, flexibility is increased and load balancing
at the processing layer is simplified |5, |36]. Additionally, the
two layers can be independently provisioned. While there
are many benefits to such an architecture, the data move-
ment it requires is an obvious source of inefficiencies.
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Data movement between layers can be reduced by pushing
operators down to storage. This is already done in shared-
disk architectures that rely on traditional servers to provide
storage supporting query offloading [62]. Today, however,
processing offload can be achieved with much less hardware
and resources, for instance, by using SSDs embedded with
computational capabilities |10} |14} 23 24} |64]. Compared
to these two approaches, we explore an alternative design
point: smart distributed storage with replication that ex-
poses a high level interface such as those found in shared
disk DBMSs and provides performance characteristics on a
par with CPUs, but is implemented with energy efficient
specialized hardware such as that found in “active” SSDs.

In this work we use DRAM for storage as it allows us
to explore near-data processing ideas for upcoming memory
technologies without being limited by either random access
performance or bandwidth of the underlying medium. Fur-
thermore, storage is already moving away from strict block-
based interfaces and allows more flexible access methods [6].
For instance, Intel Optane SSDﬂ can be used as a persistent
extension of RAM, blurring the boundaries between main-
memory and persistent storage.

We use field programmable gate arrays (FPGAs) to create
Cam'bm/ﬂ a first prototype of our ideas for near-data pro-
cessing for database engines. Caribou builds on top of earlier
projects [19} [21} |50} |64] and consolidates their ideas into a
single system. It shows that it is possible to hide the idiosyn-
crasies of specialized hardware behind regular TCP /IP sock-
ets and a clean, general purpose, key-value interface. Repli-
cation is built into the system for fault tolerance. Thanks to
the internal dataflow parallelism, Caribou nodes deliver rich
functionality at a high bandwidth and low latency. We iden-
tify a set of features and properties a storage node should
have to be suitable for use with relational databases and ex-
plain below how Caribou fulfills these. To our knowledge,
Caribou is the first system to integrate all these aspects into
a single device:

Low latency and high throughput: We extend the state
of the art in hardware-based key-value stores [8, |53, |67],
generalizing to use-cases beyond caching. This is done by
implementing a cuckoo hash table with a slab-based memory
allocator to improve the handling of collisions and various
value sizes.

Lookups and scans on the same data: To minimize the
amount of data transfered over the network, it is important

! https://www.intel.com/content/www/us/en/
solid-state-drives/optane-ssd-dc-p4800x-brief.html
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to execute scans without having to send multiple requests
to the storage. We have augmented the key-value store with
bitmap indexes for efficient scan operations.

Near-data computation: We implement selection both
for structured and unstructured data in an effort to reduce
data movement even further in a wide range of workloads.
Our design ensures that in-storage processing has no nega-
tive impact on the data retrieval rate as the selection opera-
tors are parameterizable at runtime (require no reprogram-
ming for different queries).

Fault tolerance through transparent replication: We
demonstrated in earlier work [21] that FPGAs can be used
to build replication into a system at high throughput and
without slowing down common operations. In this work we
integrate this module into a complex processing pipeline.

Simple interface over traditional network: Many hard-
ware solutions today expose either no proper API (the inter-
face is intertwined with software) or require dedicated sec-
ondary networks. We acknowledge the importance of easy
integration with existing infrastructures, and provide tradi-
tional TCP/IP connectivity using our network stack [49].

2. BACKGROUND

There are multiple possible internal architectures for near-
data processing, ranging from using low-power ARM cores
all the way to fully custom hardware, with various steps
in between, combining for instance ARMs and FPGAs. In
this work we prototype our ideas on FPGAs. These are
hardware chips that can be reprogrammed and, once pro-
grammed, deliver similar properties as application specific
integrated circuits (ASICs) but have lower clock rates. For
network-facing applications they are usually clocked in the
150-300MHz range. What makes them interesting as proto-
typing tools is that, in comparison to traditional processors,
they allow fine-grained dataflow parallelism due to the fact
that all “code” executes in parallel in the device [54]. This
allows for exploring implementations that break traditional
software tradeoffs of complexity vs. performance.

Internally, FPGAs are a collection of small look-up tables
(LUTSs), on-chip memory (BRAM) and specialized digital
signal processing units (DSPs), which can be configured and
interconnected in such a way to implement any hardware
logic on top. Their energy footprint is an order of magnitude
lower than that of server-grade CPUs.

A majority of the FPGA platforms available for develop-
ment today are intended for networking or accelerator use-
cases and have only modest amounts of DRAM (1-8 GBs).
The limitation is not fundamental. There are examples of
FPGAs with access to tens of GBs of DRAM (e.g. Maxeler
MPX2000 or Convey HC-2).

Many of the ideas presented in this paper could be ap-
plied to future architectures and the presence of a CPU core
would also simplify management tasks. The Xilinx MPSoC
ling’} for instance, promises a combination of ARM cores
and programmable fabric attached to fast DRAM memory.

Shttps ://www.xilinx.com/support/documentation/
product-briefs/zyng-ultrascale-plus-product-brief.pdf
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Figure 1: Caribou offers replicated intelligent storage
for shared-data databases. Replication uses Zookeeper’s
Atomic Broadcast and is transparent to the layers above.

3. SYSTEM OVERVIEW

3.1 Interface

Caribou implements a distributed key-value store with
built-in replication and offload capabilities. Figure [I] shows
that Caribou exposes a key-value store interface over 10Gbps
TCP/IP sockets [48] to the processing nodes (we will re-
fer to these as clients for the remaining of the paper) and
runs Zookeeper’s Atomic Broadcast protocol (21} [26] be-
tween nodes. Replication happens over the same network
as the client-serving traffic.

We target row-oriented databases which have a shared-
data model. Figure [2illustrates how relations can be stored
in the key-value data structure: the primary key column(s)
represent the key for a row and the whole tuple is stored as
the value. The system can handle variable sized keys and
values, and at its core is agnostic to the schema of the rela-
tion. Selection and more advanced processing requires more
structural information but, for the purpose of management,
tuples are treated as BLOBs in memory. Caribou exposes
the following operations to clients:

Insert — Stores a value in memory, under a key specified
in the request. It can be performed both in a replicated or
a node-local way. The response encodes the success/failure
state of the operation.

Read — Retrieves a value based on a key. If the key is not
present in the system it will return failure.

Conditional Read — Retrieves a value corresponding to
the key in the request and evaluates a predicate on it. The
parameters for the predicate evaluation are provided with
the request. If the predicate matches, the value is returned.
Otherwise a failure header (16 B) is returned.

Delete — Removes a key’s entry from the hash table and
frees the memory holding the value.

Update — Given a key and a value, updates value stored in
the system. This operation does not allocate memory if the
new value size is the sameEl as the existing one. Updating a
non-existent key will fail.

Scan Query — Scans internally over alEI values in the stor-
age and evaluates a predicate on each. Only the values that
fulfill the predicate are sent to the client.

4To be more precise, as long as the new value and the old value
are the same multiple of 64 Bs

5The scan operation retrieves all values stored in the same ta-
blespace. In our current implementation there is only a global
tablespace, but as later explained the system can be extended
to support multiple tablespaces. This means that scans on one
relation will not be influenced by the size of other relations.
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Figure 2: Mapping tables to storage in Caribou.

Keys can be variable size, with a maximum size of 16 B.
Values can be of arbitrary length, but we have designed
and optimized the system with smaller (32-512 B) values in
mind. For larger values, the management tasks become less
challenging and can be performed by software as well (as
the transmission overhead dominates the cost).

We consider the above set of operations enough to imple-
ment a transactional processing layer on top. In the future,
depending on the needs of applications, it could be benefi-
cial to augment the interface with compare-and-set (CAS)
operations to implement versioning. We showed in our ear-
lier work how CAS operations can be added to a hardware
hash-table [21].

3.2 Architectural Elements

Figure [3] depicts the high level architecture of a single
Caribou node. The logic is centered around a hash table
that 1) can handle reads and writes in constant time, so
that the storage has predictable performance, and 2) can
store variable sized or non-ordered keys, so that Caribou
can be used in different use-cases. We implement a Cuckoo
hash table because it provides constant time lookups. Inser-
tions and deletions might need variable time to be carried
out but our implementation can finalize these operations in
the background while still providing constant time answers
to clients. In order to make sure that memory space is used
efficiently, the location of hash table entries and values needs
to be completely decoupled. Memory for the values is allo-
cated by a separate module. The same module is respon-
sible for carrying out scans as well. Caribou implements a
slab-based allocation strategy (similar to the one found in
memcached).

Near-memory processing is carried out by the module at
the end of the pipeline. It receives values retrieved either
as a result of a lookup or a scan operation. This module
supports selection on both structured and less structured
data. Thanks to hardware parallelism, selection can be com-
bined with other transformations, e.g., decompression. As
explained in Section [5] these units exploit parallelism using
methods that apply to other data processing operators as
well. Functionality could be extended in the future with,
e.g., group-by aggregation [64], with statistics [22], skyline
queries [63] or complex pattern detection [65].

The networking component of Caribou is taken from ear-
lier work on TCP/IP stacks in hardware (more details can
be found in [48} |49]). An important feature of the network-
ing stack is that it has low latency (< 10us RTTs), can
saturate 10Gbps even with small packets, and can support
up to thousands of connections at the same time. We use
the same network interface and the same networking stack
to communicate both with clients and with other FPGAs.
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Figure 3: Modules in Caribou and their connections.

We used Zookeeper’s atomic broadcast |21} 26] to replicate
data from the node that acts as master copy to the replica
nodes. Writes are directed to the master copy and they are
successful if a majority of nodes perform them. Reads can
be directed to any node, but an external commit manager
or coordinator (36| [43] should be used by the processing
nodes to make sure that they are not reading from nodes
with stale data (e.g., after recovering from a network parti-
tion). The implementation in hardware comes from previ-
ous work [21] and we chose this algorithm because it allows
for pipelining of proposal sending and taking commit deci-
sions, fitting well with hardware execution. Furthermore,
low latency TCP/IP networking and reliable response times
of other FPGA nodes help to maintain high performance
while using ordinary sockets instead of special purpose net-
working or dedicated links.

4. KEY-VALUE STORE

There is a rich body of work on implementing key-value
stores based on hash tables inside an FPGA. Most of it is
focused on caching use-cases |7, |8} |19} |53}, [67]. This means
that read operations are given more importance than writes
and hash collisions are usually not resolved if this would lead
to variable response time (hence, the data structures are
typically lossy). For Caribou we implemented from scratch
a cuckoo hash table with slab-based memory allocation to
be able to handle update workloads and make more efficient
use of memory even with changing value sizes.

4.1 Cuckoo Hash Table

In a cuckoo hash table every item has two possible loca-
tions, determined by two different hash functions. When
a key is searched, it has to be in either one of its two lo-
cations, otherwise it is not in the table. If upon an insert
both locations are occupied, a randomly chosen key in one
of these locations is “kicked out”. This key is then rein-
serted in the background (done using the connection on top
in Figure |4). Even if this leads to an additional reorgani-
zation, it has no impact on the throughput of the system
since regular lookup/insert requests are processed in paral-
lel to the reinsert. The implementation of the hash table
is depicted in Figure [ and shows how the different opera-
tions are pipelined. As a result multiple key lookups can be
carried out in parallel.

In order to reduce reorganizations on collisions, each loca-
tion in the hash table is a “bucket” with three slots. The size
of the bucket is a function of memory line width (64B) and
the maximum key size chosen (16 B). Additional metadata is
stored for each key, containing the length of its correspond-
ing value and a pointer to the data area of the memory.
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Figure 4: Pipelined cuckoo hash table

Incoming keys are hashed and the hash value is used to
request the corresponding hash table bucket from the mem-
ory. We implemented two hash functions for this system: a
simple shift-and-XOR, function well suited for mostly consec-
utive binary keys, and a multiplicative hash function similar
to the one used in [18] that works well on ASCII strings. The
two functions we chose illustrate well the difference in on-
chip area required for a low and high compute complexity
function (we quantify area requirements in Section 6.3). Al-
ternatively, there are also hash functions that require very
little compute (hence minimal logic footprint) but rely on
pre-generated tables (leading to more BRAM resource us-
age) such as the one described by Kara et al. [29].

The FPGA has no caches in front of DRAM, so each read
is served directly from memory. Read requests are pipelined
to hide the memory latency. Incoming keys are queued at
the decide module and consumed when the corresponding
data from the memory arrives. Multiple memory requests
can be in flight, and although there is no need for locking
in the software sense, read-after-write hazards might still
occur. That is, the modifications that a previous key has
written to the hash table might arrive to the DRAM after
the current key’s table entry has already been fetched. To
prevent this, the decide module implements a small write-
through cache that stores recent writes with their address,
much like the write buffers present in CPUs. Then, each key
is compared either to the data from memory, or if available,
its most recent corresponding write stored in this cache.
There is also a secondary data structure that holds keys
which have been kicked out and are “in flight”. This is im-
portant to ensure that the same key is not inserted twice or
appears to be deleted but then reappears later.

4.2 Choice of Memory Allocator

We use a slab-based memory allocator in Caribou. It al-
locates and deallocates memory in constant time and its
performance does not degrade with higher fill rates. Back-
ground processing is avoided through combining housekeep-
ing tasks with allocation/deallocation requests (e.g. reclaim-
ing large chunks of freed memory). The memory allocator
can handle 2 million operations per second, currently bot-
tlenecked only by the DRAM access latency.

An alternative decision would have been to opt for log-
structured storage and its corresponding allocation scheme.
In software, log-based structures have the advantage of sim-
ple append-only writes and updates, the drawback is that
they require periodic garbage collection [3]. This is not only
because of deletes, but also updates that do not happen in
place. In software this is less of an issue because CPUs run
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at high clock rates and are very efficient at executing itera-
tive, loop-based code. In hardware, iterative code would run
too slow, so we opted instead for a method that introduces
no “background noise” in the system during normal execu-
tion and requires no lengthy garbage collection operations,
thereby making response times more predictable.

4.3 Management of Pages and Blocks

We tailored the allocation logic to predefined classes of
value sizes (this is done similarly in memcached and other
related work [31} [53]). The current circuit supports 4 allo-
cation classes, but the modules are parameterizable and can
support more. The size classes can be dynamically chosen
as multiples of 64B, which is the smallest allocation unit
supported (called a “block” in Figure |5)). This is because
our DRAM bus width is 64 B. An empty memory page is
32 KB and initially it can hold any size values. Once a page
is used to allocate data of, e.g., 128 B, it becomes associated
with this size class and the leftover space has to be allocated
in the same increments. The pointer lists shown in Figure [f]
encode free space as pointers to pages, extended with an
associated class (or none if the page is empty). When a
page is freed completely, it can be used to allocate any size
data again. The way we keep track of the allocated and free
or reclaimable space is through bitmaps that represent each
block with one bit, as seen in Figure

On an FPGA, accessing DRAM has more than an or-
der of magnitude higher latency than accessing the on-chip
BRAMs, therefore we keep the head and tail of each free-
page list in on-chip memory and periodically flush/grab a
batch of entries from main memory. Since there is only one
component reading and writing these lists, storing parts of
them in BRAM does not lead to inconsistencies. Because
the BRAM buffers can hold thousands of entries per list, the
cost of additional memory accesses is amortized over many
operations, leading to near constant cost for allocation.

4.4 Bitmaps and Scanning

Two bitmaps are used to keep track of allocated memory
(“written”) and memory that has been freed but it is not
contained yet in a page descriptor as usable space, i.e., it is
“reclaimable”. The “written” bitmap is updated on every
insert and delete operation, and is used in scan operations.
The scan reads the bitmaps representing the whole memory
and for each bit set to 1, it issues a read command to memory
to fetch that address. Since in this module the actual size of
values is not known, we rely on meta-data stored with the
values to process them in the reading modules.



Deletions are handled by returning pointers and updating
the “reclaimable” bitmap indicating that it has been freed
but not yet reclaimed. A memory page is reclaimed and put
in the “free list” if either a) all data on it has been freed
(fully free page), or b) in case the system is low on free mem-
ory, if it has a large enough empty space to allow for further
allocations (partially free page). Every time the bitmap is
updated, the system will attempt to reclaim memory. This
is done by inspecting the amount of contiguous “free bits” in
the bitmap representing the page. If either condition a) or b)
is fulfilled, the bits representing the reclaimed memory are
flipped and the newly created page descriptor is appended
to the corresponding free list.

For relational database use-cases, it is beneficial if the
storage nodes can differentiate between data belonging to
one table, a set of tables, and others. This way, the cost
of scan operations, for instance, are not influenced by the
size of other tables. The allocator module has support for
tablespaces but, in our experiments, by default a single ta-
blespace is used given that the prototype platform has less
DRAM than a real system would. A tablespace is defined as
a set of keys that belong to the same logical collection and
is encoded in the high order bits of the key. They are imple-
mented by extending the “written” bitmap to contain more
than one bit per entry, signifying to which tablespace the
data belongs to. This does not affect insert/delete perfor-
mance because these operations access the bitmap at 64 B
granularity. As for scan performance, larger bitmaps natu-
rally take longer to scan but, as shown in Section [6.4] the
cost of bitmap traversal is much less than that of processing
the actual values. For high selectivity performance is always
bottlenecked on network bandwidth.

4.5 Data Structure Sizes in Memory

Table[I]depicts how much memory each management data
structure uses, the largest portion being taken up by the
hash table. We use Xilinx VC709 Evaluation boards to build
Caribou equipped with two 4 GB DDR3 SODIMMs. We
collocated the hash table and the data area (value storage)
on one of the SODIMMSs, while the TCP buffers, bitmaps,
pointers and replication log overflow reside on the other one.
This partitioning is a limitation on our current evaluation
platform and should not be needed on future systems. In our
evaluation setup the management data structures use less
than 8% of the memory space, and even if the expected size
of values would be halved, effectively doubling the number
of required hash table entries, the management overhead
would still amount to less than one fifth of the memory.

S. PROCESSING: SELECTION OFFLOAD

In Caribou, storage and management capabilities are ex-
tended to support selection predicates on data before send-
ing it to the processing nodes. One important requirement
for selection is that the circuit has to be able to adapt
quickly to each different query. We have borrowed ideas
from related work [28} |55] and our previous work [20, 50| to
implement the operations inside the FPGA in such a way
that they require no reprogramming. Instead, client requests
parametrize the underlying circuits at runtime.

The benefit of specialized hardware when it comes to pro-
cessing near the data is that it can execute operations in
parallel without degrading performance. Both low and high
compute complexity operations can take advantage of this
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Table 1: The overhead for engine data structures is small.

[ Type [ MBs [ % of total |
Space for data 3840 93%
“Reclaimable” bitmap 8 0.2%
“Written bitmap” (one tablesp.) 8 0.2%
“Written bitmap” (seven tablespaces) 32 0.8%
Pointer lists (1+4 classes) 25 0.6%
Hash table (1Mio. @ 75%) 21.3 0.5%
Hash table (12Mio. @ 75%) 256 6.2%

[ Total overhead for engine [ 297 ] 7.2% |
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Figure 6: Exploiting parallelism: for adding complexity
in a pipeline, or for increasing the throughput of compute-
intensive operations

property, though in different ways. Operators that are com-
putationally cheap can be combined in deep pipelines to pro-
vide more sophisticated predicates (Figure @ Computa-
tionally costly operations can be replicated in a data-parallel
fashion to increase overall throughput (Figure .

In the following we describe the implementation of three
operators: First, we present how simple selection predicates
such as those present in most SQL queries are expressed as
comparisons. While these are cheap to execute in software,
when multiple of them are combined they can become com-
pute bound. Second, we investigate a compute-intensive se-
lection predicate involving substring matching to illustrate
how hardware can speed up operations that are compute-
bound in software [20|. Third, as another example of a
computationally costly operator, we look at decompression
of values before executing one of the previously described
selection predicates.

5.1 Comparison-based Selection

The simple selection predicate compares a 32 bit word at
a specific offset of the value to a constant. The comparison
can be done using different functions. We have implemented
, =, < and >, but this could be easily extended. The
unit is pipelined, so multiple conditions at different offsets
can be combined. In the current prototype, we allow for
up to 8 conditions on the same value, and these are com-
bined into a single boolean value, by ANDing them together.
Only values matching all conditions will be sent out over the
network. Figure[6a]shows how the individual condition eval-
uators are assembled into a pipeline, all of them working in
parallel on different parts of a value, or different values.

The pipeline is parametrized at runtime with a Condi-
tional Read or Scan Query request. This takes one clock cy-
cle and does not degrade performance, even if every lookup



uses predicates. These requests encode the predicate for
each comparator unit as a triplet: 1) a byte offset in the
value representing the start of the column, 2) a comparison
function, and 3) a 32bit value that is evaluated against the
value at the given offset with the given function. To give
an example a predicate definition corresponding to where
c012=123 and co0l3<4 and cold=’a’ would result in three
triplets sent with the Conditional Read request, with the off-
sets of each column depending on the schema of the table.

5.2 Substring-based Selection

This selection predicate matches substrings in the value,
separated by wildcards (e.g., in the LIKE clause of SQL
queries). This unit is based on earlier work [50] with which
it shares its internal design, but it has a modified interface.
Just as the regular expression matchers presented in [20} |50],
it is composed of a series of comparators with small register
memories into which the bytes of the strings are loaded in
parallel. The circuit is provisioned with 20 characters and
the position of the wildcard can be chosen with an extra
parameter. This selection predicate is useful if the data
stored in memory is unstructured or semi-structured.

Instead of pipelining, in the case of this module, there are
multiple parallel units that match on one input value each.
This is because the string has to be searched for one byte
at a time in the input, which translates to 156 MB/s perfor-
mance per matcher — when 32 of them are deployed in paral-
lel on the other hand, the aggregate processing throughput
reaches close to 5GB/s, i.e., four times the 10Gbps network
bandwidth (1.25GB/s). This is important for low selectiv-
ity scans because, as opposed to high selectivity ones that
are bottlenecked by the network, these achieve speedup due
to the additional internal bandwidth.

Figure [6D] depicts the way different values are sent to in-
dependent string matchers using a round-robin order, where
they are buffered in small on-chip memories while the string-
matching is performed. The output is gathered using the
same round-robin order. This layout trades chip space for
higher performance and is a standard technique in hardware
design to achieve the desired performance of inherently it-
erative computational units.

5.3 Decompression

Another form of processing in storage that we explore is
decompression. Since in many modern systems compres-
sion is used as a way of fitting more data into the available
storage, or to optimize data movement across the storage hi-
erarchy and network we implement a decompression module
to make it possible to evaluate selections even if the data is
stored in a compressed format in memory.

We implement LZ77 [68] as proof of concept, because it
is a basic building block for more complex decompression
solutions and works well for text data. Since the decoding
works at the granularity of bytes, this module in hardware
can produce one byte of output per clock cycle.

To achieve higher rates, multiple of these units are de-
ployed on the chip in a data-parallel architecture . They
add latency linearly with the length of the decompressed
data (e.g., 256 clock cycles at 156 MHz for a 256 B value)
but do not impact throughput. We deploy 8 units to reach
10Gbps network bandwidth. While reaching higher output
rates is possible, on our current platform we are bound by

clocking and space constraints. However, these are not fun-
damental limitations and would not apply on larger FPGAs.

6. EVALUATION

6.1 Platform and Experimental Setup

Our prototype platform for Caribou is composed of five
Xilinx VC709 Evaluation boardd?] with Virtex-7 VX690T
FPGAs and 8 GBs of DDR3 memory. They are connected
to a conventional 10Gbps switch. We use one node as the
leader (master copy) and the others are replicas. Measure-
ments are performed either with the leader only, or by repli-
cating to two (R3) or four (R5) other nodes. We use up to
twelve load generating machines, with dual Xeon E5-2630
v3 CPUs (8 physical cores running at 2.4 GHz) and an In-
tel 82599ES 10Gbps network adapter per machine, with the
standard ixgbe drivers. All machines are connected to the
same 10Gbps switch as Caribou.

For load generation we used clients written in Go, based
on the memcached client librar Each machine is able to
generate more than a million requests/s when simulating
64 clients, which allows us to measure 10Gbps performance
even for small values on a single instance of Caribou. Un-
less otherwise stated, we read and write to a single node
(master copy), with replicated requests then being trans-
mitted transparently to the replica nodes. The key size is
always 8 B (simulating 64 bit row IDs) and values contain
2 B of extra metadata encoding their length. By default we
deploy Caribou with 8 comparison-based selection modules
and store uncompressed data. Response time is measured
at the client, so it contains the network round-trip time.
Throughput numbers are reported as averages of 10 repeti-
tions although we have seen no significant standard devia-
tion in our experiments. Whenever we show “10Gbps limit”
on graphs, we compute it by adding 54 B of TCP/IP head-
ers and 12B of interframe gap to the average size of the
response packets. This number is slightly optimistic as it
does not account for any retransmissions, but we find it a
good enough approximation of the achievable line-rate.

6.2 Micro-benchmarks

As a first baseline we establish the response times for var-
ious operations performed on Caribou. We measure them
by running a single client issuing requests and reporting the
median of the time taken per operation (Figures and
I7b)). The measurements taken at the client contain not only
the hardware cost of the operations but the overhead of
traversing the software stack and NIC in the client. We
approximate this cost with the ping time between the client
machines and Caribou: 17-18us depending on packet size
(marked as a line on response time graphs). Decompression,
when enabled, adds as many cycles latency as the uncom-
pressed value size (e.g. 1.6us for 256 Bs). When compared
to the total response time, these overheads are acceptable.

Overall Caribou has low latency with no large differences
between operation types, as long as they are local to the
master node. Replication introduces a 6us overhead but this
is less significant the larger the values get. The difference
between replicating to two (R3) or four other nodes (R5)

6https ://www.xilinx.com/products/boards-and-kits
7https ://github.com/bradfitz/gomemcache
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Figure 8: Throughput is mostly limited by the network for
read-heavy operation mixes

is not visible from the client because proposal sending is
pipelined and reaching majority is quickly achieved.

If we compare the latency of Caribou as measured at the
nodes to other FPGA-based systems |7, 21, 53] and OS-
bypassed software solutions (e.g., MICA [35]) the numbers
are in the same range, even though Caribou implements ad-
ditional functionality (Table [3).

6.3 Read/Write effects

To test the throughput of Caribou under a more realis-
tic mix of operations [4] we start experiments with a pre-
populated store and issue reads and updates from the clients.
Figureshows that performance stays close to the maximum
read-only throughput achievable over 10Gbps Ethernet and
TCP/IP. For small response packets, the system does not
achieve the theoretical maximum but it is close to 90% of
it. As the value size increases, the theoretical maximum
can be achieved and the system becomes network bound.
With more updates, the average size of a response packet
decreases, which in turn increases the achievable through-
put over the network link. Performance with replication on
the master node is as high as 70% of the non-replicated one,
and this amount of overhead is expected as both the repli-
cation logic and the TCP/IP stack has to issue and receive
additional messages for each replication round. From the
perspective of replicas, the overhead of replicated writes is
very close to that of local writes. Overall, the performance
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of Caribou is close to be network bound for reads and up-
dates which means that it is able to handle the load that
can be received over a 10Gbps Ethernet link.

Inserts and deletes do more work than reads and updates
because they also modify the bitmaps and pointers in mem-
ory. Even though their response times are low, they cannot
be executed at the same rate as read requests. The maxi-
mum rate at which inserts can be performed in our current
implementation is capped at 2M Ops./s by memory access
latency. Regardless of value size, the “written” bitmap up-
dating operations incur a full memory access latency. While
this can be optimized in principle, it requires additional data
structures for temporal caching of bitmaps. We defer such
an optimization to future work as the current maximum rate
is fast enough for most workloads. Delete operations access
two bitmaps but these are pipelined so only a single memory
access latency is incurred. Therefore the delete performance
is equal to insert performance on average.

To show the trend of response times as a function of
throughput, we ran the system with a single threaded client
machine to measure the response time and the rest of the
machines as load generators. The issued operations are 50%
reads and 50% updates. Figure shows that both me-
dian and 99th percentile response times are stable up until
reaching maximum throughput. If we put more load on
the system the input link to the FPGA would get congested
leading to dropped packets. This in turn would trigger TCP
retransmissions, lowering the achievable throughput.

The hardware pipeline handles locking and concurrency
differently from software. In software multi-threaded access
to data structures can lead to contention, especially in the
presence of hot-spots. Conversely, in hardware there is a
single logical execution thread that is not impacted by access
skew. To illustrate this point we ran a 90% read 10% update
experiment where an increasingly small percentage of the
key-set is accessed. Figure [] shows that even when this
set is as small as 128 keys, the performance stays virtually
identical to the uniform access pattern case (the throughput
variation is <1% over the points in the figure).

6.4 Scan Performance

Scans and conditional reads are very similar in Caribou,
the main difference being the amount of data passed through
the selection operators per request. For a conditional read
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operation the throughput is limited not by the selection per-
formance but by the network. The request has to encode
both the key to lookup and the parameters for the selection
computation (48 B both for the string matcher and the 8
conditional expressions), hence for small values the system
could become bottlenecked on the input bandwidth. The
output becomes a bottleneck if selectivity is high. For low
selectivity the “non-match” responses are smaller than the
requests (16 B) making the input the main limiting element.
Figure[TI]depicts the maximum selection rate inside the pro-
cessing pipeline, and the best achievable throughput both on
the input and on the output side for increasing value sizes.

The selection operators are best utilized for predicate eval-
uation when the client initiates a scan query. This way a
large number of values can be streamed through the pro-
cessing units with minimal overhead. The result of a scan
query only contains the matching values, other values are
discarded from the result set. As a consequence, for low se-
lectivity queries the outgoing network link is less likely to
become the bottleneck. Of course, if many values fulfill the
predicate, the network link will become the bottleneck. Fig-
ure[I2]depicts the rate at which the data area can be scanned
given the selectivity and different value sizes. The trend in
the graph is expected because, regardless of the choice of se-
lection types, the processing pipeline of the FPGA is bound
at 5GB/s throughput, which translates to lower tuple/s
rate with larger values. For low selectivity this limits the
throughput, while for high selectivity the network and the
client’s capacity to ingest data dominates. The overhead for
scanning the bitmaps which determine what memory lines
to retrieve amounts to 400us for each GB of value storage.
This should not impact performance unless the tablespace
is very sparsely populated. To counter these cases, in the
future these bitmaps could be augmented with pointers to
skip over non-allocated areas.
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Figure 11: When combining single-value reads and selec-
tion, network is the limiting factor. Internal bandwidth is
clearly over-provisioned

108

—<— 64B Value
—o— 128B Value
256B Value

Scan rate
[Values/s]
3,

50
Selectivity [%]

—
S
=2

o
—
o
o

Figure 12: Scan performance is limited by selection (close
to 5GB/s, regardless of type) for low selectivity, and by the
network (at most 1.25GB/s) for high selectivity

6.5 Scalability

In our current setup we are constrained by the number of
load generators, that are unable to saturate multiple FPGAs
for small values, but given our measurements on the 3 and
5 node setup, it is possible to extrapolate for larger deploy-
ments of Caribou. We assume the presence of an external
transaction/commit manager that maps the database-level
transaction identifiers to the lower level consensus rounds.
This enables the clients to read from all nodes, provided that
they contain the updates that have to be visible to a specific
transaction. As a result, the projected read-only through-
put increases linearly with the number of nodes. Writes
have to go through the master copy (leader in consensus
terms), which can be a limiting factor for write-heavy work-
loads. For write-only workloads the leader can sustain 2.2M
and 1.1M requests/s for RS resp. RS for 64 B values. Fig-
ure [10[ sums up these numbers and projects the aggregated
throughput of Caribou nodes for larger deployments. The
decline in performance with more writes is explained by the
bottleneck on the leader’s output bandwidth and is typical
for systems replicating from a single master copy . In
larger deployments it could be beneficial to partition the
data among multiple smaller groups of Caribou nodes, in-
stead of treating it as one logical unit. This way both high
performance and fault tolerance could be achieved, even in
the presence of write-intensive workloads.

6.6 Effect of Complexity on Software

In hardware it is possible to add processing stages to the
global pipeline without reducing performance, whereas in
software, once the execution becomes compute bound, any
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Figure 13: Impact on adding more processing to Caribou
and MemC3 has different effects. Throughput is normalized
to the platform-specific maximum.

added functionality decreases performance. We illustrate
this effect with a simple experiment for which we use a mod-
ified version of MemC3 . We chose it because it has good
performance (almost 4.5MRPS for a 16 thread setup), and
is easy to benchmark and extend. We augmented the code
performing a GET operation so that it would a) check for a
hardcoded array of bytes in the value (“Cond. match” using
strstr), b) check for a string search with wildcards (“Sub-
string match” using GNU C Regexp) and combined these
with the same decompression as in hardware (using the zlib
library). We ran the server on a single thread and used 8
machines with 8 threads each to generate load. The key
is 16 B and the uncompressed values are 512 B. Figure
shows the relative performance degradation with more fea-
tures added (100% amounts to 310k read requests/s). Fig-
ure illustrates how Caribou delivers network-bound, or
close to network bound throughput with or without added
features (the workload has 8B keys and 512B values with
100% selectivity, and results are normalized to 1.99MRPS).
The main purpose of this experiment is not to focus on the
absolute numbers but to illustrate that in software “there
is no free lunch”. Unfortunately it also does not exist in
hardware with the trade-off being in terms of chip space vs.
complexity rather than performance vs. complexity.

6.7 Resource Utilization

In hardware the cost for complexity is real estate, which
translates into power consumption. However, the power
drawn by an FPGA is an order of magnitude lower than
that of a server-grade CPU, even when fully utilized. Addi-
tionally, with increased chip-area usage, placing and routing
of the logic elements on the chip becomes more difficult. In
Table [2] we list the real estate requirements of each mod-
ule in our system, divided into “logic” and “memory” cat-
egories. The former is a measure for how many logic slices
(a subdivision of the FPGA area) the module uses, while
the second one expresses how many blocks of 36 Kb on-chip
memory it requires for its operation. These are mostly used
for buffers and various caching structures. As depicted in
Table 2] all modules have fairly modest requirements on the
prototype FPGA, and there is space left for implementing
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Table 2: Resource consumption of each module in Caribou.

Module Logic slices (%) | BRAMs (%)
DRAM Controller 25k (23%) 128 (9%)
Networking 11k (10%) 151 (10%)
Replication 3.5k (3.2%) 65 (4.4%)
Memory allocation 2.9k (2.7%) 8 (<1%)
Hashtable 3.0k (4.4%) 119 (3%)

[ Total w/o processing | 46.3k (42.9%) [ 471 (32%) |
Pred. Eval: 8 Conditions 4.8k (4.4%) 78 (5.3%)
Pred. Eval: Substring 16.4k (15.2%) 240 (16%)
Decompression 4.5k (4.2%) 64 (4.4%)

Available on device

[

108k (100%)

[ 1470 (100%) |

additional functionality. The memory controller is one of the
largest modules because it is responsible both for accessing
memory and acting as an arbiter for many concurrent access
channels. Newer FPGA devices have hardened memory con-
trollers that are faster and would not require real estate on
the programmable fabric. The string matcher unit has high
real estate requirements because it is a combination of 32
smaller units, and the BRAM memories are used as FIFOs
for distributing and collecting work. Other modules, such as
the hash table or the memory allocator, have more complex
logic than the previously mentioned ones but, since they
have narrower internal buses, they consume less resources
overall. To sum up, even when one would deploy all the
features we implemented in the same system, there would
be chip space left to add more functionality to Caribou.

7. RELATED WORK

7.1 High-performance Key-value Stores

There is a growing body of performance-oriented key-
value stores built in software and hardware. Software ap-
proaches focus on two main aspects, 1) reducing
the overhead of networking by exploiting user-space net-
work stacks and RDMA, 2) adapting data structures for
multi-core scalability and make them aware of the underly-
ing hardware. On the hardware side, novel solutions based
on dataflow architectures have been proposed .
The goal is to implement complete processing pipelines in
hardware which operate at a high-bandwidth and are able
to hide the memory access latency.

MemC3 optimizes memcached with algorithmic and
data structure improvements by replacing the original hash
table with a cuckoo-hash based structure to reduce lock-
ing conflicts. To achieve even higher throughput in software
it is necessary to “specialize” the whole software stack to
the key-value store workload. In MICA , for in-
stance, Intel’s DPDK library is used to access the network
from user-space, thereby removing the overhead of the op-
erating system’s network stack and reducing latencies. To
reduce the overhead of networking further, MICA uses UDP
for client-server communication. While this stateless proto-
col increases throughput, it is less robust than TCP. The
results of this work are very promising: the complete sys-
tem demonstrates 120 MRPS over four 40Gbps NICs in a
single machine. It achieves its high access rate through a
combination of lossy and lossless data structures. On the
downside, in MICA clients perform some of the server’s
tasks (e.g. hashing the key) and skewed workloads expe-
rience slowdowns due to the partitioned nature of the data
structures. In Caribou there is a single data structure and



Table 3: Comparison of representative hardware and software key-value store designs

System Type Properties Ops/s Per Node Min. Latency | Power Per Node
Tanaka et al. [53] | FPGA Single node, UDP 20M (on 20Gbps) 4us 15W 4 100W
Blott et al. |7, [19] | FPGA Single node, UDP 13M 4.5us 26W

BlueCache [67] FPGA Custom dedicated network 4M >20us 40W*
MemC3 [16] SW Single node, TCP 4.4M >20ust >120WT

MICA [34] SW Single node, UDP 120M (on 4x40Gbps) <20us 317TW
FARM |[15] SW Replicated, Transactions, RDMA >10M (on 40Gbps) <10us >230W T

Caribou FPGA | Replicated, Data processing, TCP 11M 10-20us 20W*

Legend: *— includes power drawn by DRAM, not only processing; T lower bound, the thermal design power (TDP) of the processor

used for the original evaluation; { — our measurement

key-access skew inside a node has no negative effect on per-
formance (Section Figure [9).

Another way of addressing the networking overhead in the
traditional stack is to use RDMA [15] |40} [44]. In (one-sided)
RDMA the CPU is not involved in the data movement lead-
ing to a drastic reduction in latency. In FARM |[15], the
authors implement a distributed key-value storage designed
for large, scale-out workloads. Replication and offloading is
built into the nodes and per node mixed-workload through-
put surpasses 10 MRPS. These systems are however not able
to fully saturate the underlying network (Infiniband QDR
and 40GbE). For small request sizes they are limited by the
packet rate. This illustrates that for software based solutions
there is a fixed overhead per packet which would continue
to increase when adding further functionality.

Recent work by Xilinx [8] extends the hardware-based
caching-KVS design with flash-based storage for more ca-
pacity. The work by Tanaka et. al [53] is a memcached
replacement with flash storage attached to the FPGA for
higher capacity. It uses a hash table design similar to the
one in Caribou, but lacks near-storage processing. Caribou
would benefit from a higher storage capacity, as it is cur-
rently limited by the DDR memory available on the FPGA
board. The techniques used in the previously mentioned
works could be used to extend its storage capacity with flash.

BlueCache [67] is a flash-based key-value store for caching.
The nodes are connected through a special purpose dedi-
cated network. The performance of a single node reaches up
to 4M operations/s demonstrating that flash-based FPGA
designs can achieve excellent performance. In contrast to
Caribou, BlueCache nodes are not stand-alone and offer no
built-in replication or processing. While the dedicated net-
work delivers excellent latency and eliminates virtually all
packet loss, we consider TCP a more flexible method of con-
necting multiple nodes together. This applies even more if
we want to provision regular servers and specialized nodes
separately inside a rack.

7.2 Near-data Processing

The idea of performing near-data computation is not new,
and has been explored both in the context of main memory
(active memory |2, |17} 139} 66]) and persistent storage (active
disk |1} |14} [23] 46]). What makes Caribou different is that
it targets distributed systems by design and combines pro-
cessing with high-level interfaces and fast networking. And
while network-attached HDDs and SSDs with key-value in-
terfaces are also available, e.g, from Toshiba and Seagate EI,
these do not implement application-specific processing. In
Caribou we demonstrate that it is possible to perform both

8ht‘cps ://www.openkinetic.org/technology
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data management and data processing in a single, small foot-
print device efficiently.

Examples of projects using specialized hardware are IBM’s
Netezza data warehouse applianceﬂ Ibex [64], and various
others |11} [24} [25, |61]. Thanks to the dataflow parallelism
of the devices, complex processing can be performed on the
storage side without slowing down data transmission. In
fact pre-processing, -selection, and -aggregation can lead to
a reduction in the amount of data that has to be transmit-
ted. A clear drawback of such devices is that they are less
flexible than traditional software solutions. Examples such
as the SmartSSD from UWisconsin [14] or the recent work
from Samsung [23] demonstrate the versatility of software,
but also show its limitations in compute complexity. In this
work we focus on computational capability first, but also try
to make the circuit as runtime-parameterizable as possible.

In the domain of databases, multiple distributed DRAM-
based storage solutions exist, such as RamCloud [40] or Tell-
Store [42]. Trivedi et al. [57] also explore a similar design,
targeting graph processing. Furthermore, various related
work explores how relations can be represented with a va-
riety of data structures optimized for low latency random
access |9, 13} |32, [33]. It is also becoming more common to
design relational engines with a more clear separation be-
tween processing and storage layer [5| 36| |40l [47]. We see
Caribou as a natural fit for these systems.

7.3 Query Processing on FPGAs

There is a significant interest in using specialized hard-
ware to increase the efficiency or performance of database
workloads. These works show promising results in either of-
floading sub-operators (e.g., partitioning [30, |59]) or whole
execution pipelines to hardware |12} [38] |45} 51}, 60].

Even though the above mentioned works are in the con-
text of accelerators near a CPU, the operator designs could
be ported to Caribou to offload for instance joins directly
to the storage. Furthermore, the body of related work im-
plementing statistics on FPGAs [22} |52} [56] could be used
to provide insights about the data to the processing layer at
no additional cost.

7.4 Performance Comparison

We compare Caribou to a set of representative designs in
more detail in Table The comparison includes functional-
ity, performance, and energy consumption. Our prototype
platform consumes 29 Ws, including 2 DDR3 SODIMMs.
While this device is not necessarily tailored to the intelligent
storage use-case, it provides an upper bound on how much

9http ://www.ibm.com/software/data/netezza/
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power an FPGA-based solution for this use-case would con-
sume (with more DRAM or Flash this would increase, but
these have the same power requirements in all systems).

The other FPGA-based solutions provide similar through-
put and latency but lack the functionalities provided by
Caribou. The throughput of software solutions is in the
same range as Caribou but they have higher latencies (with
the exception of MICA (34} [35]). MICA achieves an order
of magnitude higher throughput which makes it a very en-
ergy efficient system, demonstrating 378k RPS/Watt. This
number is comparable to our prototype which reaches as
high as 380k RPS/Watt. With replication it can achieve
267k RPS/Watt and this reduction is explained mostly by
the consensus messages consuming part of the network band-
width. It is however important to note that Caribou runs
general purpose TCP/IP while MICA uses UDP and mul-
tiple network cards in the same machine. It also pushes
complexity to the clients. In contrast, Caribou is able to
perform predicate evaluation operations or decompression
on the data without reducing performance. This shows the
different trade-offs that hardware and software face and why
we consider specialized hardware a viable way for managing
and computing on large disaggregated storage.

8. LESSONS LEARNED

Caribou is an exercise in near-data processing. Its internal
design is driven by the goal of keeping up with network line-
rate and this influenced the choice of data structures and
algorithms. For instance, even though some parts of the
hash table could have been run at a higher clock-rate than
the network or extended to a wider data-bus, making these
units faster would not change performance if it is already
limited by the network. The same applies for interfacing the
DRAM memory and selection operators. Such co-design also
applies to many high performance software key-value stores
but what makes hardware different is that there are less
“unknowns”. Everything between the network interface and
the memory controller is under the control of the hardware
designer. The circuit on the FPGA can be designed such
that it is neither over- nor under-provisioned. This leads to
predictable behavior, which is crucial for a storage service.
Conversely, in software there are many interacting layers
and caches that could introduce jitter in the behavior. This
holds even when using DPDK and other user-space libraries.

Another aspect to consider related to systems running on
specialized hardware is that while improvements over highly-
optimized software solutions might not be very large in in-
dividual dimensions, they are significant when considering
multiple dimensions at the same time (e.g., Caribou deliv-
ers lower response time and higher throughput, in an overall
lower energy footprint). In addition to the raw performance
numbers, specialized hardware will often provide more stable
and predictable response times, even when combined with
complex processing. In contrast to software, adding func-
tionality to a dataflow pipeline does not reduce throughput.
We illustrated this point with a comparison-based selection
operator and a string matcher, both working as pipelines at
the same rate. In the future, additional functionality such
as partial aggregation [64], statistics [22], complex event de-
tection [65], etc., could be added to the circuit.
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9. CONCLUSION

We presented Caribou, a hardware-managed distributed
storage solution with near-data computation. Its design is
based on and extends our earlier work |19} 21} 50| 64], and
fills gaps that currently exist in similar solutions (such as
memory allocation). Thanks to the dataflow parallelism of
hardware, Caribou delivers competitive performance while
also providing rich function offloading and both point-lookup
and scan-based access methods. We benchmark the system
and demonstrate up to 11MRPS performance even for small
value sizes. Response time is low (tens of us end-to-end), a
significant part of which is the software overhead in clients.
The ideas in this paper can be used as a starting point for
porting or building database engines on top of disaggregated
storage that has a small energy footprint, and as a result can
scale wider.
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