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ABSTRACT
Query reverse engineering seeks to re-generate the SQL query that
produced a given query output table from a given database. In
this paper, we solve this problem for OLAP queries with group-by
and aggregation. We develop a novel three-phase algorithm named
REGAL 1 for this problem. First, based on a lattice graph struc-
ture, we identify a set of group-by candidates for the desired query.
Second, we apply a set of aggregation constraints that are derived
from the properties of aggregate operators at both the table-level
and the group-level to discover candidate combinations of group-by
columns and aggregations that are consistent with the given query
output table. Finally, we find a multi-dimensional filter, i.e., a con-
junction of selection predicates over the base table attributes, that is
needed to generate the exact query output table. We conduct an ex-
tensive experimental study over the TPC-H dataset to demonstrate
the effectiveness and efficiency of our proposal.

1. INTRODUCTION
The ability to reverse engineer SQL queries has been established

as one way of improving database usability and simplifying the
interaction between humans and databases. The most common use
case is when a user, Alice, has access to some historical reports
(or query results) that were generated by an employee who may
have left the organization, or by an application that is no longer
in-use or maintained, and hence the actual queries used to generate
those results are not available anymore. If Alice needs to re-run
those queries to get a fresher version of the reports, or just get a
better understanding of why the values in the reports look the way
they do, then she needs a tool that can reverse engineer the results
to infer the most plausible queries generating them from a given
database instance.

This is a real-world scenario that has been referred to in sev-
eral previous works (e.g., [4, 14, 15, 16]). Other use cases include
getting alternative characterizations for a query result, answering
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why-not questions (or identifying the changes that need to be ap-
plied to a query for its result to include a given missing tuple), and
even database security applications [14, 15].

Given the prevalence of OLAP-style aggregation queries in data
analytics and visualization applications running on databases and
data warehouses, consisting of a wide variety of possible query ex-
pressions (with multiple group by columns, aggregates, and selec-
tion conditions), it is useful to have general and efficient techniques
to reverse engineer this important class of queries. This need con-
stitutes the motivation for our work.

Previous work on query reverse engineering has mainly focused
on SPJ queries [4, 14, 15, 16], and did not give as much attention to
OLAP-style aggregation queries. The few works [8, 15] that con-
sidered aggregation queries offered only basic solutions to limited
versions of the problem. PALEO [8] focused on top-k queries with
an aggregate used as a ranking criterion. The QRE system [15]
considered union (SPJU) and aggregation (SPJA) queries. How-
ever, both works are restricted in scope to query output tables with
a single group-by column and a single aggregate column. Even
though QRE [15] had initiated reverse engineering of queries that
contain group-bys and aggregations, there are many limitations in
their work, as we discuss next.

First, their search space for discovering queries is determined by
the schema complexity, the number of selection predicates and the
set of attributes used to generate the selection predicates. To reduce
complexity, they use control knobs for each possible determinant.
For example, the number of relations is controlled such that the
schema subgraphs would not be too large and complex.

Second, they do not propose any efficient pruning strategy for
aggregation candidates. A column in the query output table may
relate to many different aggregate functions especially when there
are some selection predicates applied. For instance, a MAX over a
small subset of tuples is also likely to be equal to the MIN, SUM,
or AVG over another subset of tuples in certain groups. The prob-
lem is compounded when there are aggregate functions associated
with multiple output columns. Hence, the candidate aggregation
query generation could be more effective if an aggregation con-
straint pruning strategy is used effectively.

Third, their data classification method TALOS [14, 15] uses a
decision tree to find the suitable selection predicates and does not
guarantee that the complexity of returned queries is minimum. In-
tuitively, the number of leaf nodes in a decision tree reflects the
number of selection predicates and the node splits are computed
based on the class label assignments for the tuples in the joined re-
lations. In addition, the node splits depend on the set of attributes
used for the decision tree construction, and hence the aggregation
queries that are generated might have more complex selection con-
ditions than necessary.
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Finally, due to the above limitations, the query output table used
by [15] only contains two columns, of which one represents the
group-by column while the other is an aggregation column. In con-
trast, we want to solve the general problem by allowing a query
output table with many columns, some of which are grouping at-
tributes while the others are aggregations.

1.1 Contributions
In this paper, we propose an efficient algorithm to reverse engi-

neer group-by and aggregation queries. To focus on the novel chal-
lenges that group-by and aggregation imposes on query reverse en-
gineering, we do not consider SQL queries with joins, and instead
we assume we are given a single base table B and a query output
tableOut which is generated from B by an SQL query with group-
by, aggregation and optionally certain selection predicates as filters.
The goal is to reconstruct a query that can produce the same table
Out from B. We return the queries with the smallest complexity in
terms of the dimensionality of the filters, among all group-by and
aggregation queries that can produce the table Out. We make the
following key contributions to achieve this goal.

• First, we propose a lattice exploration strategy that can dis-
cover group-by candidates by efficiently pruning the invalid
candidates in the lattice.
• Second, we present a set of effective rules at both the table-

and group-level for quickly invalidating incorrect aggrega-
tion candidates. We also identify relationships between ag-
gregation functions that could help quickly prune invalid com-
binations of aggregations.
• Third, we design an efficient algorithm to find the selection

conditions (if any) by searching for fuzzy bounding boxes
in multi-dimensional matrices, whose dimensions are drawn
from the base attributes. Each matrix corresponds to a spe-
cific group and a specific aggregation function where all tu-
ples found in the fuzzy bounding box (to be generated) will
generate the aggregation result that corresponds to the group.
As there could be multiple groups and aggregation functions
in one query, we develop a cross validation strategy to prune
the invalid fuzzy bounding boxes and refine the remaining
candidates until the filter is found.
• Finally, we run experiments on the TPC-H benchmark. We

compare our algorithm with the existing QRE solution. Be-
sides, we carefully study each phase of our algorithm by in-
vestigating different alternatives. We empirically show that
our algorithm is efficient and effective in practice.

1.2 Related Work
The notion of reverse engineering for SQL queries is inspired by

QBO [14], VDP [5] and QRE [15]. The Query by Output (QBO)
approach [14] discovers a set of instance-equivalent queries (IEQs)
for SPJ (select-project-join) queries where the IEQ’s output will
be equivalent to the given input query at the tuple-instance level.
On the other hand, the view definition problem (VDP) [5] focuses
on the succinctness of the discovered queries. These discovered
queries can have more general selection conditions in order to aug-
ment the quality of query reconstruction. The Query Reverse En-
gineering (QRE) approach [15] considers more alternatives in the
initial problem setting of QBO [14]. First, the input query is set to
be unknown so that finding IEQs is only dependent on the query
output table and the source database. Second, instead of simple
SPJ queries, QRE discovers IEQs for more classes of SQL queries
which include unions, group-bys and aggregations. Moreover, the
source database can be varied as it will be updated from time to
time and stored in different versions. Therefore, it is essential for

the users to know the exact database version to discover all possible
IEQs. Zhang et al. [16] propose a solution to reverse engineer com-
plex join queries with arbitrary join graphs, but without group-by
and aggregations.

PALEO [8] discovers top-k SQL queries based on the given ranked
query output table. Each discovered top-k query should contain a
group-by clause with an order-by clause which is a single aggre-
gation. The follow-up work [9] to PALEO improves their origi-
nal approach by only requiring the users to input the top-k entities
without the corresponding values. These works consider group-by,
aggregation and selection conditions. However, both works have
serious practical limitations such as being limited to query output
tables with a single group-by column and a single aggregate col-
umn. Also, PALEO relies on external sources (wikipedia tables)
and probabilistic models to reduce the search space, making the as-
sumption that the database vocabulary strongly overlaps with the
tables in wikipedia. Further, the attributes used for selection condi-
tions must be categorical and without duplicate values, and the can-
didate predicates are a conjunction of equality predicates. In con-
trast, without such strong assumptions, our work provides a more
general and more efficient solution to discovering the aggregation
queries in a much larger search space.

The problem of query discovery by using examples in an RDBMS
has been considered extensively in the literature. First, Query by
Example (QBE) [17] converts a user’s example elements into SQL
format. QBE provides ease of querying for those users who are not
familiar with SQL queries. However, they must know the database
schema in order to pose a proper example to construct the queries.
To relax this constraint of having to have an understanding of the
schema, several works on keyword search over relational databases
have been developed such as DISCOVER [6], DBXplorer [3] and
many others. The basic idea of these systems is to provide a set
of keywords; tuples that contain at least one keyword are intercon-
nected to form a joining network that depicts the foreign/primary
key relationships among them which is considered a potential an-
swer. Further, keyword search is extended into user-input sample
instances, so that schema mappings, in the form of project-join
queries over the source database, can be discovered through the
sample-driven schema mapping system by Qian et al. [11]. This
approach is later extended by Shen et al. [13], which takes an exam-
ple table that consists of a few tuples (either completely or partially
filled) in lieu of using a sample tuple, and the system will return the
minimal project-join queries as output.

Since query reverse engineering approaches such as QBO [14]
return a set of candidate queries, Query from Examples (QFE) [7]
offers an interactive approach to look for the desired query wherein
a user can interactively determine her target query by checking
modified database-result pairs; this feedback from the user is es-
sential for the system to minimize the number of iterations.

Learning join queries from user examples [4] demonstrates the
framework of inference of joins through user interactions by la-
belling tuples without accessing the integrity constraints. Instead
of a complete query output table from an original unknown query,
users only need to label some tuples as they may want them to
be either included or excluded in the query output table. Since the
work is based on user interaction, it is imperative to develop a strat-
egy that proposes the informative tuples for users to minimize their
efforts to label tuples in order to find their intended join queries.

Related to query reverse engineering, relational learning [10] is
a research direction that uses machine learning techniques to learn
different schemas under the same data set. Relational learning aims
to yield schema independence for databases to return the same out-
puts under different schemas. In relational learning, given input
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SELECT shipmode AS	Out1,	MIN(supp)	AS	Out2,	
MAX(discount)	AS	Out3,
MAX(tax)	AS	Out4,	COUNT(*)	AS	Out5

FROM	 basetable
WHERE	 discount	<	0.08	AND	supp	>	10
GROUP	BY	shipmode

Base	 table,	B

Query	output	table,	Out

(1)	group-by	discovery
(3)	filter	discovery

(2)	grouping	and	aggregates	
pruning

shipmode supp discount tax
fob 18 0.02 0.04
mail 56 0.08 0.07
mail 9 0.00 0.06
mail 99 0.04 0.03
ship 38 0.01 0.01
fob 69 0.06 0.01
fob 6 0.02 0.05
mail 68 0.00 0.00
ship 67 0.04 0.05
air 23 0.00 0.06
rail 95 0.10 0.00
mail 42 0.05 0.07
mail 37 0.06 0.04

Out1 Out2 Out3 Out4 Out5
air 23 0.00 0.06 1
fob 18 0.06 0.04 2
mail 37 0.06 0.07 4
ship 38 0.04 0.05 2

Table 1: Multi-column and multi-row table
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Figure 1: An illustrative example with base table, query output table and
SQL query.

training data which contains positive and negative examples, back-
ground knowledge and a target relation, the algorithm will learn
a hypothesis that is consistent with the background knowledge, to
generate the target relation.

1.3 Paper Organization
The remainder of the paper is organized as follows. Section 2

provides a motivating example. Section 3 discusses the preliminar-
ies of our algorithm. Section 4 describes the details and the opti-
mizations of each phase in our algorithm. Experimental evaluation
is discussed in Section 5. We conclude our work in Section 6.

2. MOTIVATING EXAMPLE
Consider the base table and query output table in Figure 1. It is

easy to see the query output table cannot be generated by a simple
select-project query since the values in Out5 are not present in any
base column, but are more like a count aggregate. The search space
must then be extended to queries with group-by and aggregations.
Further, one query attribute can be mapped to many possible base
table attributes and many query attributes can be mapped to the
same possible base table attribute. For instance, Out3 can be from
either tax or discount, and bothOut3 andOut4 can be mapped to
tax. This makes the problem of resolving the relationship between
the base table and query output table very challenging.

In order to identify the SQL query where we expect that both
group-by and aggregations exist, the first problem is to identify
what groups are present in the query output table. We notice that
the cardinality of the query output table indicates the number of
groups, and the group-by attributes (as the group identifier) in the
query output table should be unique and contained in the base ta-
ble. Therefore, with the prerequisites above, other than Out5, all
the other projected columns and their unique combinations have the
possibility to be the group identifier of the query output table. For
example, to examine whether the set of projected attributes {Out1,
Out2, Out3, Out4} can be considered as a group identifier, we first
notice that all its tuples in query output table Out are unique but it
could not be the group identifier because the tuple (fob, 18, 0.06,
0.04) is not contained in the base table. Based on this observa-
tion, we perform keyness and containment checkings to identify
the valid group-by candidates. Specifically, to reduce the checking
times, we construct a lattice graph where the root node consists of
the maximum number of possible group-by attributes, and an edge
from parent to child node indicates the superset-subset relationship.

Once the lattice graph is constructed, the group-by key candidates
for the query can be discovered through keyness and containment
checkings. Novel lattice traversal algorithms are designed to speed
up the discovery process.

The next critical step is to determine the possible aggregations
that are used to produce the query output table w.r.t. the group-by
attributes generated from the previous step. However, determining
a potential valid aggregation for a projected column is not easy be-
cause there are too many possibilities. The complex mapping struc-
ture is one of the contributing factors for the problem. For instance,
we could not resolve whether the mapped base attribute for Out3
is tax or discount. Therefore, it is likely we will have more false
positive aggregations for Out3 compared to those query attributes
with unique mappings such asOut2 which is only mapped to supp.
Hence, we exploit the properties of aggregation constraints in order
to quickly validate a candidate aggregation. In addition, these ag-
gregation constraints are not only applied for single columns, but
also for combinations of columns. Given a pair of columns, e.g.
Out3 and Out4, we can scan through their pairwise tuples to un-
cover whether there is a constant relationship between them, e.g. if
the values in Out3 are always larger than those in Out4.

Another factor that impacts the possibilities of candidate aggre-
gations is the existence of selection conditions. Therefore, we need
to determine a subset of tuples that can produce all the aggregate
values in the query output table. For instance, only four out of six
base tuples, which contain the value mail are used to compute the
value of Out5 corresponding to mail which is equal to 4. The
same applies for other aggregate values in the query output table.
We use a matrix structure to solve the problem. Starting from a sin-
gle base attribute as dimension, we build matrices for every group
and aggregate in the query output table. Two search algorithms are
designed to find feasible regions (represented as fuzzy bounding
boxes) in the matrices. The generated regions are then validated
across different groups and aggregation candidates. The algorithm
will search for possible regions in a higher dimension if no feasible
solutions are found in lower dimensions. In this way, we return the
query with the smallest complexity of the selection conditions.

3. PRELIMINARIES
In this paper we assume we are given a single base table B and a

query output table Out which is generated from B by an aggrega-
tion query. The focus is to discover the group-by and aggregation
components with the possibility that certain selection conditions
are applied. For the queries that involve joins and the projected
columns are from multiple tables, we can apply the prior work from
Zhang et al. [16] on these projected columns in Out during a pre-
processing phase to discover the join path so that a single base table
could be generated as the input to this work. Optimizations could
also be investigated which we leave for future work.

Aggregation query. Let Q be the aggregation query that will
produce query output table Out from base table B. Let A denote
the set of base attributes whereA = schema(B). The aggregation
queryQ can be expressed in the SQL form:

SELECT A1 AS Out1 , ... , Ak AS Outk,
F1 AS Outk+1 , ... , Fm AS Outk+m

FROM B
WHERE C1 ∧ ... ∧ C`
GROUP BY A1, ..., Ak

where Outi, i ∈ [1, k] are the group-by attributes in the query out-
put table generated fromAi, i ∈ [1, k], andOuti, i ∈ [k+1, k+m]
are the aggregation attributes that are computed by Fi, i ∈ [1,m].
Each aggregation function Fi = AGG(A) is built from a single
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Algorithm 1: REGAL Algorithm
input : B: base table,Out: query output table, φ: mapping table
output:Q: aggregation query

//Phase 1: Group-by discovery
G(V, E)← LatticeConstruction(φ)
foreach mapping φ do

set of nodes {V} = ∅
{V}← KeynessChecking(G)
{V}← ContainmentChecking(G)

update (φ, {V})
//Phase 2: Grouping and aggregates pruning
foreach column λ ∈ Out do

set of aggregations {F} = ∅
{F}← TableConstraints(λ, φ)

update (λ, {F})
foreach mapping φ do

map< V, F >= ∅
foreach node V do

set of aggregations {F}← GroupConstraints(V, λ, {F})
< V , F >←Multi-ColumnConstraints(λ, {F})

update(φ,< V, F >)
//Phase 3: Filter discovery
initialize set of predicates {C} = ∅ and
dimensionalityN = 1
while {C} 6= ∅ do

foreach dimensions ofA1, ..., AN ∈ A do
set of matricesM←Matrix(φ,< V, F >)
set of bounding boxes {Ω} ← FilterGeneration(M1)
while i < |M| do

update {Ω} ← CrossValidation(Mi)

{C} ← {Ω}
N++

QueriesQ ← update(φ,< V, F >, {C})

aggregate operator AGG, i.e. COUNT, SUM, AVG, MAX, and MIN,
associated with any attribute A ∈ A. The selection condition of
the queryQ is a conjunction of predicates C1 ∧ ...∧C`, where each
Cj , j ∈ [1, `] is expressed as A op X , a predicate involving a base
attribute A, a comparison operator op, and a constant value X . In
the experiment, we only select the numerical attributes with some
basic comparison operators like “≤”, “<”, “>” and “≥” for selec-
tion predicates. However, our work can be naturally extended to
categorical attributes and other comparison operators.

Mapping Table. As a preprocessing step, we construct a column-
mapping table φ, which indicates for each output column,Outi, i ∈
[1, k + m] whether its distinct values can be mapped to the dis-
tinct values of any base attribute(s), denoted as φ(Outi) ⊆ A. An
output column can be mapped to zero, one, or more attributes in
the base table and vice versa. Table 1 describes the many-to-many
mapping relationships between the base table and the query output
table in Figure 1. The output column Out5 is not mapped to any
attributes in A, hence φ(Out5) is a null value.

4. QUERY CONSTRUCTION
This section describes our three-phase algorithm that discov-

ers aggregation queries. The overall algorithm is shown in Algo-
rithm 1. The first phase generates the set of potential grouping
attributes that characterizes the GROUP BY clause. The second
phase yields combinations of grouping attributes with aggregations
that potentially match the SELECT clause in the query. The third
phase returns a set of selection predicates that form the WHERE
clause in the query.

4.1 Phase 1: Group-by Discovery
In order to discover the set of candidates that can be used as

grouping attributes in the query, we build a lattice graph G(V, E)
that consists of all possible group-by candidates, and then develop
discovery algorithms based on the properties of group-by keys.

Table 1: Mapping table

Outi Out1 Out2 Out3 Out4 Out5
φ(Outi) shipmode supp tax,discount tax null

4.1.1 Lattice Construction
Lattice. Let G = (V, E) denote the lattice graph, where each

node V ∈ V is a group-by candidate and each edge E ∈ E from
parent to child node indicates the superset- subset relationship. Fig-
ure 2 illustrates the lattice graph built for the example in Figure 1.
To construct the lattice graph G, we first identify the maximum set
of query columns that can be potential group-by attributes. This
maximum set will be used as the lattice root. The rest of lattice
nodes can then be created subsequently, according to the superset-
subset relationship. We notice that the basic requirement for a col-
umn to be part of a group-by key is that the values in that col-
umn must be contained in the base column. Given the mapping
table φ, we could easily identify which query columns are con-
tained in the base table. For instance, based on the mapping table
in Table 1, all columns except Out5 have a mapping column in the
base table. Thus, the maximum set of possible group-by attributes
is {Out1, Out2, Out3, Out4}. A lattice rooted at {Out1, Out2,
Out3, Out4} will be built, and the rest of nodes can be created
accordingly. Then, keyness and containment checks are to be
done over the lattice to validate the group-by candidates, as dis-
cussed below.

4.1.2 Keyness Checking
For a given node V in the lattice, keyness is defined as the re-

quirement that the values of the attributes in V in the query out-
put table are all unique. A valid group-by candidate must pass
the keyness checking. In other words, a column (or a combina-
tion of columns) containing duplicate values cannot be a group-by
key. Considering the example in Figure 1, Out1 is a valid group-
by candidate since it contains four unique values, whereas Out3 is
invalid as two 0.06 values are present. To check the keyness for
every lattice node, two traversal methods can be deployed.

Top-down keyness checking. Starting the keyness checking
from the lattice root, if there is a parent node that did not pass the
keyness checking, its children nodes can also be pruned safely. For
instance, if the parent node has the tuple set {(a, b), (b, c), (a, b)},
which contains a duplicate (a, b), its children nodes would have tu-
ple sets {a, b, a} and {b, c, b} respectively. The individual keyness
checking for them will be unnecessary since the duplicates in the
parent node will yield duplicates in the children nodes for sure.

Bottom-up keyness checking. Starting with the leaf node in the
lattice graph, if the child node passes the keyness checking, its par-
ent nodes will also be passed automatically without any additional
checking, which can save a lot of checking time. Conversely, a
parent node needs to be checked only when all its children nodes
fail. For instance, we never check the parent node of {a, b, c} and
{c, c, d} since any attribute combining with unique set {a, b, c} is
guaranteed to be unique. We check only when both child nodes,
e.g., {c, d, c} and {c, c, d}, fail. Their common parent node with
the tuple set {(c, c), (d, c), (c, d)} needs to be checked in this case.

Out1,Out2,Out3,Out4

Out1,Out2,Out3 Out1,Out2,Out4 Out1,Out3,Out4 Out2,Out3,Out4

Out1,Out2 Out1,Out3 Out1,Out4 Out2,Out3 Out2,Out4 Out3,Out4

{}

Out1 Out2 Out3 Out4

Figure 2: Lattice graph example
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4.1.3 Containment Checking
For a given node V in the lattice, containment is defined as all

the values of the attributes in V in the query output table should
be contained in the base table. If V consists of multiple attributes,
the combination of the values should be contained. Considering
the example in Figure 1, {Out1, Out2} with values (air, 23),
(fob, 18), (mail, 37) and (ship, 38) is considered as
a valid group-by key candidate since all the value combinations can
be found in {shipmode, supp} in the base table, whereas {Out2,
Out3} is invalid as some values, e.g. (18, 0.06), are not con-
tained in the base table, even though each individual column is con-
tained. Similar to keyness checking, there are two possible methods
to traverse the lattice for containment checking.

Top-down containment checking. Starting from the lattice root,
if a tuple from the corresponding attributes in base table makes a
parent node pass the containment checking, its children nodes will
also be passed by the same tuple. Therefore, checking time can
be saved. Consider our running example in Figure 1. Knowing
(air, 23, 0.00, 0.06) is contained at node {Out1,Out2,
Out3, Out4} w.r.t. {shipmode, supp, discount, tax}, checks at
the children nodes can be saved as any subset of values will also be
contained in the corresponding base columns. In contrast, if a tuple
makes the parent node fail the containment checking, it can be used
to check on its children nodes for pruning purpose. We denote such
tuples as witness tuples. For instance, the tuple in the query out-
put table (fob, 18, 0.06) is not contained in the base table
with mapped attributes {shipmode, supp, discount}. It becomes
a witness tuple for checking the containment at the children nodes
such as {Out1, Out2}, {Out1, Out3} and {Out2, Out3}.

Bottom-up containment checking. Here, containment check-
ing starts from the parents of the leaf nodes. This is because the
way that we construct the lattice has ensured that all the tuples from
leaf nodes are contained in their respective base attributes. If there
is a child node whose tuple is not contained, its parent node will be
pruned immediately since a superset of a witness tuple will also be
a witness. For instance, since the tuple (0.06, 0.08) in node
{Out3,Out4} is not contained in the corresponding base attributes
{discount, tax} in the base table, this witness tuple would prune
the parent nodes such as {Out1, Out3, Out4} and {Out2, Out3,
Out4} automatically.

4.1.4 Optimizations
There are several optimizations for reducing the computation

cost of finding all the group-by key candidates.
Bottom-up and top-down strategies. Among all kinds of lattice

traversal for keyness and containment checking, we identify that
the combination of bottom-up keyness and top-down containment
checking is the most effective lattice exploration technique to re-
duce the number of nodes checked. By starting the keyness check-
ing from leaf nodes, the number of nodes to be checked can be
significantly reduced when the leaf nodes have a unique tuple set,
in which case the checking for their ancestor nodes can be saved.
Further, a node is checked for keyness only when all its children
nodes fail the keyness checking. Compared to bottom-up strategy,
top-down keyness checking is less effective. First, checking a node
at upper level is more expensive then checking a node at lower level
since more attributes are involved at upper level. Second, the upper
nodes have higher chances to pass the keyness checking. However,
we can prune children nodes only when the parent node fails the
checking. Therefore, top-down keyness will result in more check-
ing. This is validated in our experiments.

In contrast, containment checking should start from the lattice
root. Any witness tuple that is retrieved from the parent node in the

Out1,Out2,Out3,Out4

Out1,Out2,Out3 Out1,Out2,Out4 Out1,Out3,Out4 Out2,Out3,Out4
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(b) Lattice 2
Figure 3: Optimizations in group-by discovery. (a) Group-by candidate
nodes in Lattice 1 that are outlined in red are pruned by containment check-
ing while the node outlined in black is pruned by keyness checking. (b)
Lattice nodes that are needed for containment checking in Lattice 2 where
the dotted nodes are propagated by the failure nodes in Lattice 1 and the
crossed out nodes are pruned by overlapped mapping columns.

query output table and not matched with the respective attributes
in the base table can be used to prune its children nodes by doing
the containment checking on them. Otherwise, the containment
checking on the children nodes can be saved for non-witness tuples.
In contrast, bottom-up containment checking requires the ancestor
nodes to be checked again even when the child node passes the
check. Parent nodes can be pruned only when the child node fails
the containment checking. However, the containment checking at
lower nodes has higher chances to be successful, which makes the
pruning less effective.

Propagation of pruned nodes. When the number of mappings
between the query output table and base table increases, the num-
ber of checks for containment in the lattice graph would also be
increased since containment checking requires each tuple of the lat-
tice nodes in the query output table to be checked with its particular
mapped base attributes. However, redundant computations may be
performed when some similar nodes exist among two mappings.
This redundancy can be minimized by propagating the results of
the checked nodes into other mappings.

First, for one-to-many and many-to-many mappings, where the
query column maps to more than one base attribute, we can avoid
the redundant checking on similar nodes that exist in different map-
pings. Figure 3 shows the lattice root {Out1, Out2, Out3, Out4}
in the query output table can be mapped to {shipmode, supp,
discount, tax} and {shipmode, supp, tax, tax} respectively.
It is a many-to-many mapping as Out3 can be mapped to either
discount or tax and tax can map to both Out3 and Out4. Since
onlyOut3 is different between the two lattice graphs, therefore any
lattice nodes that exhibit the same mapping columns can be prop-
agated from the mapping {shipmode, supp, discount, tax} to
the mapping {shipmode, supp, tax, tax} except the node Out3
and all its ancestors. All propagated lattice nodes will be exempted
from containment checking, thus are not shown in Figure 3(b).

Second, the impact of the failure nodes can be propagated as
well. A node that is deemed as not a group-by key after being in-
validated by keyness checking will be exempted from containment
checking even if the query column in that node happened to have
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a different base attribute mapping. For instance, Out3 fails in the
keyness checking so it is not needed for containment checking no
matter whether its mapping attribute is discount or tax. Besides,
the pruning effect of a child node that fails containment checking
can also be propagated to its ancestor nodes. For example, the node
{Out2, Out4} which maps to {supp, tax} will cause its ancestor
nodes {Out2, Out3, Out4} and {Out1, Out2, Out3, Out4} to
be pruned regardless of the mappings of node Out3.

Overlapped mapping columns. There might be cases where a
mapping contains multiple instances of the same base column. For
example, for mapping {shipmode, supp, tax, tax} in Figure 3,
the nodes Out3 and Out4 are mapped to the same base attribute
tax. However, according to the properties of a group-by key, the
set of output values will be the same if we project the group-by
column twice. Therefore, the values in Out3 and Out4 should be
exactly the same, otherwise this is not a valid group-by candidate.
And since they are indeed different in our running example, these
nodes and their parents are pruned. As shown in Figure 3(b), there
are only three remaining lattice nodes left for containment checking
out of eight lattice nodes.

4.2 Phase 2: Grouping & Aggregates Pruning
As a consequence of group-by discovery, we judiciously deter-

mine candidate sets of base attributes as possible grouping columns
in the query output tableOut. For each choice of grouping columns
obtained from the group-by discovery phase, the next step is to de-
termine the remainingm-combinations of aggregate columns in the
query output table Out as {F1, ...,Fm}. Thus, we can complete
the formation of the SELECT clause in the to-be-generated SQL
query Q. One can imagine a brute-force approach to find these
combinations of aggregations. For each group-by candidate, each
non-grouping attribute in the query output table has the possibility
to be any of the five aggregate operators over any base attribute A.
To save cost and minimize the possibilities, we carefully define a
series of effective constraint rules based on the properties of each
aggregate function.

We divide the constraints we check into single column aggrega-
tion constraints and multi-column aggregation constraints. Single
column aggregation constraints are further divided into table-level
and group-level where group-level constraints will chunk the base
table B into partitions by the already-selected group-by candidate.
Similar to column analysis in database profiling [2], the seman-
tic relationship between a query column λ and a base attribute A
can be revealed by analyzing their metadata, cardinalities and dis-
tinct values. For efficiency, we build an index structure offline (as
pre-processing), which captures this type of analysis for each base
column to help speed up the checking of aggregation constraints.

4.2.1 Table-level Aggregation Constraints
According to Algorithm 1, for each column λ in query output

table Out, each of its column values Λ ∈ λ is an aggregate value
where a valid aggregation F should be able to return all these col-
umn values.

Before we discuss each unique aggregation constraint, we note
that the data type of a column can reveal which constraints are ap-
plicable to it. For example, the aggregationAGG ∈ {MAX, MIN}
is compatible with all data types. It requires, however, every aggre-
gate value Λ ∈ λ to be present in the base attribute A for it to
be a valid candidate. In contrast, the aggregation AGG ∈ {SUM,
AVG, COUNT} is only compatible with numeric data types, and it
requires that every aggregate value Λ ∈ λ to fall within a certain
numeric range for aggregation AGG(A) to be valid. The COUNT
aggregate can be treated as SUM aggregate by computing the sum-
mation on a special attribute for each tuple with a value of 1.

Table 2: Table-level aggregation constraints

AGG Constraint Rules
COUNT If λ is COUNT(∗), then (1) ∀Λ ∈ λ, Λ ∈ N

(2) SUM(Λ) ≤ num rows(B)
MAX/MIN If λ is MAX(A)/MIN(A) whereA ∈ φ(λ), then ∀Λ ∈ λ,

num occurrences(λ.Λ) ≤ num occurrences(A.Λ)
AVG If λ is AVG(A), then ∀Λ ∈ λ,

(1) MIN(A) ≤ Λ ≤ MAX(A)
(2) If Λ = MAX(A), num occurrences(λ.Λ) ≤

num occurrences(A.Λ)
(3) If Λ = MIN(A), num occurrences(λ.Λ) ≤

num occurrences(A.Λ)

SUM GivenA = A+ ∪A− whereA+ = {a ∈ A : a > 0} and
A− = {a ∈ A : a < 0}
If λ is SUM(A), then ∀Λ ∈ λ,
(1) IfA+ 6= ∅ andA− 6= ∅, SUM(A−) ≤ Λ ≤ SUM(A+)

(2) IfA− = ∅, MIN(A) ≤ Λ ≤ SUM(A)

(3) IfA+ = ∅, SUM(A) ≤ Λ ≤ MAX(A)

Given base table B and query output table where its column
λ ∈ Out, we discuss each aggregation constraint in Table 2. Ta-
ble 3 shows all the possible aggregations for each projected col-
umn after applying the table-level aggregation constraints (ignore
the color labelling for now). For example, Out5 can be a count ag-
gregate since its values {1,2,4,2} are all natural numbers and its
sum value is less than the number of rows in the base table. More-
over, since Out3 is mapped to either discount or tax, and the
duplicate value 0.06 also exists in these attributes exactly, there-
fore the MAX and MIN aggregates are valid for them. For an exam-
ple of AVG aggregate, Out2 whose column values are in the range
of [18,38], is matched with base attribute supp whose attribute
values are in the interval of [9,99]. Out4 has the candidate ag-
gregations such as SUM(tax) and SUM(discount) as it satisfies the
constraint rule (2) for SUM aggregate that is stated in Table 2.

4.2.2 Group-level Aggregation Constraints
The purpose of the group-level aggregation constraints is to scru-

tinize the set of possible aggregations {F} by associating the group-
by candidates (k-grouping column) in order to finalize a set of
combinations of group-by key-aggregation pair < V,F > where
V = {A1, ..., Ak} and F = {F1, ...,Fm} that can be used in
the SELECT clause in the query Q. Given each V , the total num-
ber of possible < V,F > pairs will be |V | × |F | where |F | =
|F1| × ... × |Fm|. However, the overall computational cost will
be exacerbated as these resulting pairs are all needed for finding
suitable predicate(s). Therefore, the group-level aggregation con-
straints play a crucial role for reducing such intermediate costs.

First, to reduce each |Fi|, i ∈ [1,m], for each group-by can-
didate V , we split the base table based on the tuples found in the
k-grouping column of the query output table Out. For instance,
given φ(Out1) = shipmode is the group-by candidate, the base
table will be grouped into partitions by all Out1’s values, namely
air, fob, mail and ship. The aggregation constraints in Ta-
ble 2 can be used to prune the invalid aggregations in each set of
possible aggregations {F} for each column λ ∈ Out by changing
the original base table into each base table partition accordingly.

In addition, if there was an aggregate value Λ that did not sat-
isfy any of the aggregation constraints, and hence could not be ex-
plained by any type of aggregation, then we can prune the group-
by candidate directly. A heuristic approach to efficiently prune the
group-by candidate is to test the aggregate values with the small-
est set of possible aggregations {F} first. For example, given
group-by candidate φ(Out1, Out2) = {shipmode, supp} and
the Out5’s aggregate value for group-by tuple (ship, 38) is
equal to Λ = 2, the count value for its partitioned base table vi-
olates the aggregation constraint for COUNT aggregate. Thus, the
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Table 3: Possible aggregations for every column in query output table.
Blue corresponds to aggregations pruned by group-level single column con-
straints, and red indicates pruning by multi-column constraints. Black is for
no pruning. (Aggregations pruned by table-level single-column constraints
are not shown.)

λ Set of possible aggregations {F}
Out1 MAX(shipmode), MIN(shipmode)
Out2 MAX(supp), MIN(supp), AVG(supp), SUM(supp)
Out3 MAX(discount), MIN(discount), AVG(discount),

SUM(discount), MAX(tax), MIN(tax), AVG(tax), SUM(tax)
Out4 AVG(discount), SUM(discount), MAX(tax), MIN(tax),

AVG(tax), SUM(tax)
Out5 COUNT(∗)

group-by candidate is invalid since there is only one possible ag-
gregation for Out5 in Table 3.

In order to distinguish the invalid aggregations pruned by the
group-level aggregation constraint, we label them as blue in Ta-
ble 3. Take note that all the pruned aggregations correspond to
the group-by candidate shipmode since other group-by candidates
will be pruned in this phase. For example, each aggregate value in
the tuple (air, 23, 0.00, 0.06, 1) will be tested against
the possible aggregations in Table 3 by its base table partition named
air. As a result, those possible aggregations associated with A =
tax are pruned in the set F for λ = Out3 because they are unable
to compute the aggregate value Λ = 0.00.

4.2.3 Multi-column Aggregation Constraints
Since the cost of computing group-level aggregation constraints

across multiple base table partitions is significant, we can apply
some additional constraints over multiple query output table columns
without the involvement of base table partitions [12]. By com-
paring two or more query output table columns that are similarly
mapped to a base attribute A, we identify the constraint rules to
validate the possible dependency between them through assess-
ing each tuple t ∈ Out as in Table 4. For instance, given tuple
(ship, 38, 0.04, 0.05, 2) and the base table partition
named ship, the remaining possible aggregation for output col-
umn Out3 is only MAX(discount) while the others are pruned by
the group-level aggregation constraints. Therefore, the possible ag-
gregations like AVG(discount) and SUM(discount) in Out4 can
be pruned by multi-column aggregation constraints; they are la-
belled as red in Table 3 because the λOut3 and λOut4 do not satisfy
any constraint rules in Table 4.

4.3 Phase 3: Filter Discovery
Once we have discovered the sets of candidates for both group-

bys and aggregations, we still need to find out all the possible sets
of selection predicates that can be used as the WHERE clause in the
to-be-generated queryQ.

Filter. In our work, we define a conjunction of selection pred-
icates, C = C1 ∧ ... ∧ C` as a filter. In order to generate the pos-
sible filters, we work backward from each aggregate value Λ in
the query output table Out to its relevant base table partition by

Table 4: Multi-column aggregation constraints

AGG Constraint rules
MIN, MAX If λ1 is MIN(A), λ2 is MAX(A), then

∀t(Λ1,Λ2) ∈ Out,Λ1 ≤ Λ2

MIN, AVG If λ1 is MIN(A), λ2 is AVG(A), then
∀t(Λ1,Λ2) ∈ Out,Λ1 ≤ Λ2

MAX, AVG If λ1 is MAX(A), λ2 is AVG(A), then
∀t(Λ1,Λ2) ∈ Out,Λ1 ≥ Λ2

SUM, AVG If λ1 is SUM(A), λ2 is AVG(A), then
∀t(Λ1,Λ2) ∈ Out, (1) |Λ1| ≥ |Λ2| and
(2) SIGN(Λ1) = SIGN(Λ2)

SUM, AVG,
COUNT

If λ1 is SUM(A), λ2 is AVG(A), λ3 is COUNT(∗), then
∀t(Λ1,Λ2,Λ3) ∈ Out,Λ1 = Λ2 ∗ Λ3

constructing its contained tuples into a matrix structure where each
matrix dimension is a base attribute A ∈ A. The filter is viewed
as a unique bounding box in an N -dimensional matrix over the
selected N base attribute(s), such that the tuples inside the box are
adequate to compute all the aggregate values in the query output ta-
ble Out. Each edge of this unique bounding box can be expressed
as a range or equality predicate in the form of A op X where op is
a comparison operator and X is an attribute value since each edge
represents a base attribute A.

Matrix. The tuples that are grouped in a base table partition
can be viewed as distinct points in the matrix. For example, to
construct a 2-dimensional matrix as shown in Figure 4, the base
attributes supp and discount act as the dimensions and the three
tuples in base table partition fob are positioned according to their
supp and discount values.

Bounding Box. Given an individual matrix, the goal is to find
all the possible subspaces in the matrix such that AGG(A) = Λ
where AGG is a candidate aggregation. One matrix can gener-
ate multiple bounding boxes, either overlapped or non-overlapped.
These matrix subspaces are called as fuzzy bounding boxes since a
fuzzy bounding box Ω is divided into inner bounding box Ωinner

and outer bounding box Ωouter where the inner one is a subset of
the outer one, Ωinner ⊆ Ωouter . The inner bounding box can yield
a minimal matrix subspace for an aggregate value while the outer
bounding box will find a maximal matrix subspace for an aggregate
value. To efficiently discover all fuzzy bounding boxes, we design
two different search algorithms for data exploration in the matrix.

Filter Discovery. To generate the filter with the lowest complex-
ity, we start our filter discovery by building the individual matrices
withN = 1 for the dimensionality. After testing with all the possi-
ble base attributesA, we increase the filter dimensionality toN+1
if no filter is found within the currentN .

4.3.1 Expansion Search Algorithm
Given an individual N -dimensional matrix that is built from a

single base table partition, the expansion search algorithm starts
from a single point, and it is expanded into 2N directions as initial
bounding boxes. For every initial bounding box, we will iteratively
expand it as long as it is within the feasible region. Different types
of aggregations may have different definitions for their feasible re-
gions according to the aggregation constraints. For example, the
feasible region for MAX aggregate cannot contain a tuple whose
value is greater than the aggregate value whereas the feasible re-
gion for SUM aggregate requires the total sum in the bounding box
should not be greater than the aggregate value. For any bound-
ing box that moves from infeasible to feasible, it is called as inner
bounding box. Conversely, it is called as outer bounding box when
the bounding box moves from feasible to infeasible again. In ex-
pansion search, we discover the inner bounding box first before the
outer bounding box.

Aggregations such as MIN and MAX benefit more from applying
the expansion search algorithm than others. This is because they
have the benefit of starting point assignment since the individual
matrix contains the tuple(s) whose value is equal to the particular
aggregate value. Besides, the starting point can be viewed as the in-
ner bounding box directly and be expanded until the outer bounding
boxes are found. On the contrary, it is costly for other aggregations
like COUNT, SUM and AVG, as the expansion search has to be tried
for all data points in order to find all fuzzy bounding boxes. The
expansion algorithm is shown in Algorithm 2.

4.3.2 Shrinking Search Algorithm
In contrast to the approach of expansion, the shrinking search

algorithm provides an alternative for finding the fuzzy bounding

1400



Algorithm 2: Expansion
input :N -dimensional matrix,M of size |α1| × ...× |αN |
output: A set of fuzzy bounding boxes, {Ω}
Initialize Ω? as selected point pα′1,...,α

′
N

if Ω? ⊆ feasible region then
UPDATE(Ωinner)

foreach αd ∈ α1, ..., αN do
Ωp

α′
d
+1
← expand pα′

d
+1 on Ω?

if Ωp
α′
d
+1
⊆ feasible region then

UPDATE(Ωinner)

while Ωp
α′
d
+1
⊆ feasible region do

foreach αd′ ∈ α1, ..., αd−1 do
expand pα′

d′
+1 and pα′

d′
−1 on Ωp

α′
d
+1

iteratively

expand pα′
d
+1 on Ωpαd+1

iteratively

UPDATE(Ωouter)

Ωp
α′
d
−1
← expand pα′

d
−1 on Ω?

if Ωp
α′
d
−1
⊆ feasible region then

UPDATE(Ωinner)

while Ωp
α′
d
−1
⊆ feasible region do

foreach αd′ ∈ α1, ..., αd do
expand pα′

d′
+1 and pα′

d′
−1 on Ωp

α′
d
−1

iteratively

UPDATE(Ωouter)

{Ω} ←MERGE(Ωinner,Ωouter)

boxes. Given the same individualN -dimensional matrix as expan-
sion search, instead of creating the initial bounding boxes from the
starting point(s), the edges of the matrix are shrunk from 2N direc-
tions separately to generate the initial bounding boxes. Any initial
bounding box that first moves into the feasible region is assigned
as the outer bounding box and it is eligible to be shrunk before the
infeasible region is reached, while the bounding box that is before
the infeasible region is assigned as the inner bounding box.

Differently from the expansion search, the shrinking search is
very useful for COUNT, SUM and AVG aggregates. This is because
the fuzzy bounding boxes can be found faster once the feasible re-
gions are reached. Hence, the cost can be reduced significantly.
The algorithm for shrinking search is shown in Algorithm 3.

4.3.3 Filter Generation and Cross Validation
Given multiple fuzzy bounding boxes, one for each of the indi-

vidual matrices w.r.t. the candidate aggregations, the next step is to
integrate them as a unique bounding box.

Filter Generation. As our goal is to discover a unique bounding
box for the entire query, the naive approach is to take the inter-
section of the fuzzy bounding boxes, Ωfinal = Ω1 ∩ ... ∩ Ωtot

where tot is the total number of fuzzy bounding boxes for all in-
dividual matrices w.r.t. candidate aggregations. The cross-group
intersection is taken among all the individual matrices whereas the
cross-aggregation intersection takes place for all the candidate ag-
gregations within an individual matrix. To intersect two overlapped
fuzzy bounding boxes, the original inner boxes are merged through
union into a larger inner bounding box while the original outer
boxes are merged through intersection into a smaller outer bound-
ing box with the condition that the inner bounding box is still con-
tained within the outer bounding box. However, the cost of inter-
secting fuzzy bounding boxes will significantly increase as their
number increases.

Cross Validation. One of the disadvantages of the filter gener-
ation approach is that the fuzzy bounding boxes in each individual
matrix have to be generated first before the intersection takes place.
To reduce such generation cost, we propose the cross validation
method where we embed the fuzzy bounding boxes from one indi-

Algorithm 3: Shrinking
input :N -dimensional matrix,M of size |α1| × ...× |αN |
output: A set of bounding boxes, {Ω}
Initialize Ω? as given whole space (pmin(α1,...,αN ), pmax(α1,...,αN ))

if Ω? ⊆ feasible region then
UPDATE(Ωouter)

foreach αd ∈ α1, ..., αN do
Ωpmax(αd)−1

← shrink pmax(αd)−1 on Ω?

if Ω? ⊆ feasible region then
UPDATE(Ωouter)

while Ωpmax(αd)−1
6= infeasible region do

if Ωpmax(αd)−1
⊆ feasible region then

UPDATE(Ωouter)

foreach αd′ ∈ α1, ..., αd−1 do
shrink pmin(α

d′ )+1 and pmax(α
d′ )−1 on Ωpmax(αd)−1

iteratively

shrink pmax(αd)−1 on Ωpmax(αd)−1
iteratively

Ωpmin(αd)+1
← shrink pmin(αd)+1 on Ω?

if Ω? ⊆ feasible region then
UPDATE(Ωouter)

while Ωpmin(αd)+1
6= infeasible region do

if Ωpmin(αd)+1
⊆ feasible region then

UPDATE(Ωouter)

foreach αd′ ∈ α1, ..., αd do
shrink pmin(α

d′ )+1 and pmax(α
d′ )−1 on Ωpmin(αd)+1

iteratively

{Ω} ←MERGE(Ωinner,Ωouter)

vidual matrix into another individual matrix through refinement. A
fuzzy bounding box can be validated if it does not show any conflict
when it is embedded into a different individual matrix. However,
the fuzzy bounding box can be refined by expanding the original
inner box while shrinking the original outer box with the condition
that the resulting inner box should not go beyond the boundaries of
the resulting outer box. If the fuzzy bounding box does not match
for a different individual matrix, it can be eliminated. The fuzzy
bounding box that is sustained throughout all the individual ma-
trices w.r.t. the candidate aggregations can be used to infer the
resulting filter. We choose the resulting filter to be the one repre-
sented by the outer box, being the least constraining filter in the
fuzzy bounding box.

Example. Figure 4 shows the filter discovery example for base
table partition fob. The matrices on the left are used to find the pos-
sible fuzzy bounding boxes for aggregation MAX(tax) by using ex-
pansion search algorithm where the minimum bounding box is the
point with value 0.04. While on the other hand, the matrices on
the right are using the shrinking search algorithm to find the possi-
ble fuzzy bounding boxes for the aggregation COUNT(∗). We show
the filter generation approach in Figure 4(a) and the cross validation
approach in Figure 4(b). The matrix for aggregation COUNT(∗)
in Figure 4(a) yields three fuzzy bounding boxes when using fil-
ter generation approach. However, this cost can be reduced when
using cross validation approach, where the matrix for aggregation
COUNT(∗) yields one fuzzy bounding box as shown in Figure 4(b).

4.4 Efficiency and Discussion
As we previously mentioned, existing reverse engineering ap-

proaches [8, 9, 15] that handle group-by and aggregation queries
have no guarantee that they output the query with the least com-
plexity. The decision tree based method could generate complex
queries with a large number of selection predicates. Conversely,
our approach is able to generate the queries in order of increasing
complexity according to a user defined complexity function (e.g.,
number of group-by attributes, number of selection predicates etc.)
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(a) Filter Generation Approach
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(b) Cross Validation Approach
Figure 4: A filter discovery example for base table partition fob

if multiple feasible queries exist, or terminate the discovery process
earlier if certain criteria are met (e.g., the simplest query is found,
a complexity threshold is reached).

To analyse the time complexity of our algorithm, let T, t denote
the number of tuples in the base table and query output table re-
spectively, andK, k denote the number of columns in the base table
and query output table respectively. In Phase 1, the number of map-
pings is bounded by Kk; for each possible mapping, the size of the
lattice is bounded by 2k; keyness checking for a lattice node can be
done using sorting in timeO(t∗ log(t)); and similarly containment
checking can be done in timeO(t∗ log(t) +T ∗ log(T )). Thus the
total time complexity of Phase 1 is O(Kk ∗ 2k ∗ (t ∗ log(t) + T ∗
log(T ))). In Phase 2, inverted indexes need to be built for the base
table, partitioned according to the choice of grouping attributes,
which has a time cost of O(K ∗ T ). There are O(Kk) mappings
of aggregate columns; for each mapping, the table-level single-
column and multi-column aggregation constraints can be checked
in timeO(k ∗ (t+T )); and the group-level aggregation constraints
can be checked in time O(k ∗ t ∗ T ). Thus, the total complexity of
Phase 2 is O(Kk ∗ (K ∗ T + k ∗ t ∗ T )). In Phase 3, let V denote
the maximum number of distinct values of any base table column;
since a fuzzy bounding box is identified by at most 4 values in each
dimension, the number of bounding boxes in a matrix of dimen-
sionality d is bounded byO(V 4∗d); also, each bounding box needs
to include a distinct subset of tuples from the base table, providing
another upper bound of O(2T ) for the number of bounding boxes.
Since both expansion search and shrinking search explore the space
of possible bounding boxes, the overall time complexity of Phase
3 is O(k ∗ t ∗ min(2T , V 4∗K)). The total cost of the algorithm
is the sum of the costs of the three phrases. The time complexity
is analyzed based on worst-case scenario. As we show in the ex-
periment section, the proposed optimizations in each phase provide
substantial pruning in practice.

5. EXPERIMENTAL STUDY
We empirically evaluate the performance of our proposed al-

gorithm and discuss the experimental results. We first compare
the effectiveness of our three-phase algorithm called REGAL with
QRE [15]. Next, we look at the performance of each individual
phase in the algorithm, and then examine the overall algorithm per-
formance based on our considerations in each individual phase.

Implementations. We use the TPC-H benchmark dataset with
scale factor 1, which is 1GB in size. All the algorithms were
coded in Java and available at Github [1]. The experiments were
conducted on an Ubuntu Linux 12.04 machine with an Intel Xeon

2.40GHz CPU and 32GB RAM running MySQL. Each experiment
is run three times and we report the average timing over them.

Test Queries. In order to study the performance of different
phases in our algorithm, we generate the list of SQL queries shown
below where the group-by clause is abbreviated as G andFALL de-
notes the 5 basic aggregate operators. Symbols σoption, σselectivity ,
and σdimensionality represent the variations of selection predicates
in the particular test queries whereas πaggregation and πgroup rep-
resent the variations of aggregations and group-bys in the particular
test queries.
Q1 = πbrand,FALL(extendedprice)Gbrand

σtax>0.04(lineitem ./ part)
Q2 = πsuppkey,discount,MAX(orderkey),MAX(extendedprice)

Gsuppkey,discount(lineitem)
Q3 = πsuppkey,MAX(extendedprice),FALL(totalprice)

Gsuppkeyσoption(lineitem ./ orders)
Q4 = πshippriority,FALL(extendedprice)Gshippriority

σselectivity(lineitem ./ orders)
Q5 = πlinenumber,FALL(extendedprice)Glinenumber

σsuppkey>5000∧suppkey<9990(lineitem)
Q6 = πlinenumber,FALL(extendedprice)Glinenumber

σsize>24∧size<48(lineitem ./ part)
Q7 = πshipmode,SUM(quantity)Gshipmode

σdimensionality(lineitem)
Q8 = πlinenumber,tax,SUM(quantity)Glinenumber,tax

σquantity>10(lineitem)
Q9 = πlinestatus,aggregationGlinestatus

σtax>0.01∧tax<0.04∧discount>0.03(lineitem)
Q10 = πgroup,MAX(extendedprice)Ggroup

σquantity>9∧quantity<49(lineitem)
Q11 = πlinenumber,AV G(extendedprice)Glinenumber

σtax>0.04(lineitem)
Q12 = πlinenumber,MEDIAN(extendedprice)Glinenumber

σtax>0.04(lineitem)

5.1 Comparison with QRE
We compare our proposed 3-phase algorithm against QRE [15]

by adopting their solution to run the experiment. In QRE default
settings, the query output tableOut consists of 2 projected columns
that are joined from different relations and one column is assigned
for group-by clause whereas another column is assigned as an ag-
gregate. Therefore, to compare with QRE, we run test query Q1

against all basic aggregate operators. Based on the experiment re-
sult in Figure 5, we can see that our proposed algorithm consis-
tently outperforms QRE. This is because our algorithm is more
aggressive in its pruning strategies and starts by finding possible
filter predicates from a single dimension. Then, it only increases
dimensionality as needed until the query with the least complexity
is found, which is different from the TALOS approach of classify-
ing tuples by using decision trees.

5.2 Group-by Discovery
Figure 6 shows the performance of different lattice traversal strate-

gies for given test query Q2 in the phase of group-by discovery.
The group-by discovery has two main methods of checking, so we
start the lattice traversal with either keyness or containment check-
ing, in either top-down or bottom-up fashion. We assess both the
running times and the number of checked nodes for the experiment.
The running time of keyness checking is generally smaller than
that of containment checking, because the cost of running keyness
checking only involves the query output table which is rather small
while the cost of running containment checking is more since it in-
volves scanning both base and query output tables. Thus, it is better
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that keyness checking is started before containment checking in or-
der to reduce the number of checked nodes in containment check-
ing. Figure 6(a) shows that the running time of lattice traversal via
bottom-up keyness and top-down containment is the smallest as
compared with other alternatives even though it has checked more
nodes than other alternatives which can be shown in Figure 6(b).

5.3 Grouping and Aggregates Pruning
In order to assess the effectiveness of our pruning strategy, we

use test query Q3 for this experiment. We use all five basic ag-
gregate operators for attribute totalprice and combine each of
them with an invariant aggregation called MAX (extendedprice).
Both attributes extendedprice and totalprice have the same
data type, and the range of attribute extendedprice, [901.0,
104949.5], is a subset of the range of attribute totalprice. Fur-
ther, we alter the test query by putting an optional filter with either
(i) null, (ii) non-grouping attributes, or (iii) both grouping and non-
grouping attributes.

Generally, based on the performance in Figure 7, the time taken
by pruning phase is mainly influenced by group-level aggregation
constraints. This is because the base table needs to be scanned once
for table-level aggregation constraints which takes less than one
second. The test query Q3 with filter option (iii) takes the small-
est running time. This is because half the groups are filtered out,
and hence the number of base table partitions used for group-level
aggregation constraints is also halved. On the other hand, Q3 with
filter option (i), or no filter, takes smaller time than filter option (ii).
This is because the aggregation candidates are increased when there
is a filter on a non-grouping attribute applied. For example, the
test queryQ3 with MIN (totalprice) and filter option (ii), both
MAX (extendedprice) and MIN (totalprice) match to six
candidates by table-level aggregation constraints, and then two out
of three group-by candidates are pruned by group-level aggrega-
tion constraints where the remaining group-by candidate suppkey
will return totally 26 out of 36 combinations of aggregations for fil-
ter discovery to find the possible selection predicates. Meanwhile,
in the absence of the pruning phase altogether, for the test query
above, both MAX (extendedprice) and MIN (totalprice)
need to test for all possible candidates, which each contributes
eight candidates, i.e. MAX/MIN/SUM/AVG (extendedprice)
and MAX/MIN/SUM/AVG (totalprice). This ends up with 64
combinations of aggregations from their cross product for filter dis-
covery, which would significantly impact the running time of the
overall algorithm by three times or higher. However, regardless
of the filter option, aggregations such as AVG, SUM and COUNT
need smaller running time compared to MAX and MIN. This is be-
cause fewer candidates can be generated as their aggregation con-
straints are restricted by the number of tuples involved. For in-
stance, SUM (totalprice) can match to two candidates, namely
SUM (extendedprice) and itself.

5.4 Expansion Search vs. Shrinking Search
Figure 8 plots the running time of filter discovery from a sin-

gle one-dimensional individual matrix for test query Q4 with all
proposed aggregate operators. In order to distinguish the effective-
ness of our search algorithms, we vary the selectivity of the filter
to be discovered. The filter selectivity will impact the feasible re-
gion in a matrix to be selected as a filter. The higher the selec-
tivity value, the larger the feasible region which implies there are
huge amount of tuples contained in the filter. In the experiment,
we represent a selectivity by applying a specific range predicate on
attribute suppkey which contains 10000 distinct values. As Fig-
ure 8 shows, for the aggregations with MAX and MIN, the expansion
search algorithm is found useful especially when the selectivity is

extremely low. In contrast, the shrinking search algorithm is more
effective for the aggregations with COUNT, SUM and AVG espe-
cially when the selectivity value is extremely high. Since aggrega-
tion for AVG needs division, it runs slower than other aggregations.

5.5 Sparsity of an Individual Matrix
Figure 9 shows the running time of filter discovery for individ-

ual matrices in different levels of sparsity against test query Q5.
The sparsity of an individual matrix indicates the number of tu-
ples contained in the individual matrix where a sparser individual
matrix would have fewer tuples. Thus, given the test query Q5,
we select three base partitions with approximately 0.5M, 1.0M and
1.5M tuples respectively to run the experiment. From the experi-
ment result, it is clearly seen that the running time is smaller when
the individual matrix contains fewer tuples. This is because the
individual matrix will be constructed in a shorter time with fewer
feasible regions found as the matrix is sparser.

5.6 Filter Generation vs. Cross Validation
In order to integrate all the bounding boxes of all individual ma-

trices to discover the filter, we have proposed two main methods
which are known as filter generation and cross validation. To as-
sess their effectiveness, we run these two methods for the test query
Q6 by varying both the number of individual matrices used for filter
generation and cross validation to discover the filter. Furthermore,
as the sparsity of an individual matrix will also affect the running
time of finding fuzzy bounding boxes, we run the experiment for
test queryQ6 that is grouped by attribute linenumber where the
base partitions have a skewed distribution. To better understand
the performance, we run the experiment in both ascending and de-
scending orders of the base partition size. However, Figure 10
shows the ascending case only as we have found that processing the
groups in an ascending order of their sizes was consistently faster
than the descending order on average by 13% for all the cases in the
figure. Hence, we can conclude that keeping the smallest base table
partition for filter generation while leaving other larger base table
partitions for cross validation would be the most time-efficient.

5.7 Filter Dimensionality
Figure 11 depicts the running time of filter discovery for the test

query Q7 while the filter dimensionality is varied from N = 1
to N = 3. Table 5 shows the different selection predicates used
as filters for the test query Q7. Generally, the running time in-
creases significantly as the filter dimensionality is increased. Even
for the filters with similar dimensionality, such as S4, S5 and S6
with N = 2 in the experiment, their running time results are dif-
ferent due to the cost of constructing and searching fuzzy bounding
boxes in the individual matrices. As the attributes used for filters
have more domain values, their individual matrices will be larger
and thus more time is needed to explore them.

5.8 Number of Lattices
In TPC-H dataset, there are some attributes that share common

values. For instance, the attribute Linenumber (L) has com-
mon values with the attributes Suppkey (S), Partkey (P),

Table 5: Query Q7 with different selection predicates

Filter N Sel
S1 linenumber ≤ 5 1 0.89
S2 tax ≥ 0.01 1 0.89
S3 quantity < 46 1 0.89
S4 linenumber ≤ 5 ∧ tax ≥ 0.01 2 0.79
S5 linenumber ≤ 5 ∧ quantity < 46 2 0.80
S6 tax ≥ 0.01 ∧ quantity < 46 2 0.80
S7 linenumber ≤ 5 ∧ tax ≥ 0.01 ∧ quantity < 46 3 0.71
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Figure 6: Effect on lattice traversal strategy

and Orderkey (O) whereas the distinct values of Tax (T)
overlap with Discount (D). Therefore, multiple lattices will be
generated in the case of many-to-many mappings. In test query
Q8, we evaluate the overall algorithm by controlling the number of
lattices due to the mappings and the experiment result is shown in
Figure 12. As the number of lattices increases, the possible group-
by and aggregation candidates also increase, thus additional run-
ning time is needed to evaluate both phase 1 and phase 2. Besides,
the lattices may cause an increase in possible combinations of ag-
gregations in phase 2 where each of them is needed for filter dis-
covery. However, it is not that every combination will produce a
valid filter as some combinations are invalid candidates. Therefore,
we can restrict the attributes used for filter generation as well as
set the threshold such that the dimensionality of discovered filters
is at most three, N ≤ 3. Then, filter discovery for a false positive
combination of aggregations will be aborted when it doesn’t have
any filter that can be generated.

5.9 Precision and Recall
In order to investigate the accuracy of our algorithm, we measure

the precision and recall for the test queries (Q1-Q8) which we had
used in the experiments. Each test query is treated as true query
while any returned query candidate which is able to discover the
true query is considered as true candidate. Specifically, the true
candidate has the same aggregation combination and filter com-
plexity as the true query, and its fuzzy bounding box can subsume
the original bounding box in the true query. If the true candidate
was found, the recall is given as 1 whereas the precision is cal-
culated as the ratio of true candidate over all the returned query
candidates. Table 6 records the precision and recall for all the test
queries. Since all queries Q1−8 except Q4 contain enough infor-
mation in their query output table for the algorithm to find the true
candidate, both precision and recall are 1 because only the true can-
didate is returned. On the other hand, Q4 only provides one tuple
and two columns (one group-by, one aggregation), and the aggre-
gation is varied by FALL. For some aggregations, Q4 introduces
some ambiguity as the algorithm could find many possible query
candidates that produce the exact same query output table as Q4.
In the experiment, we list the parameter FALL of Q4 in different
variations while we put it as ∗ for other queries as their results in
different variations are the same. Besides the parameter FALL,
we set the other parameters in their default settings, e.g. we set
the σselectivity in Q4 as 0.5 with the range predicate suppkey in
the interval between 3000 and 8000. By looking at Q4, aggrega-
tions such as sum and avg can yield the specific values, hence the

Table 6: Precision and recall for all test queries

Query FALL #rows #cols Average Average
(min-max) (min-max) precision recall

Q4 min/max 1 2 1/20 1
sum/avg 1 2 1 1
count 1 2 ≈ 0 1

Q1−3,5−8 ∗ 7-110,000 2-4 1 1

Table 7: Precision and recall for Query Q9

Aggregation #cols Precision Recall k
MAX(extendedprice) 2 0/4 0 6
MAX(extendedprice),COUNT(∗) 3 1 1 1
MAX(extendedprice),COUNT(∗), 4 1 1 1
SUM(extendedprice)

precision and recall for both are 1. On the other hand, when aggre-
gations such as min, max and count are used, there can be many
selection predicates with the same filter complexity asQ4 that pro-
vide the same output tuple asQ4. The precision deteriorates as the
number of returned query candidates increases significantly, which
is especially true for count, where the precision is almost zero.

To further analyse this problem, we added Q9 and Q10 to in-
vestigate whether the increasing the number of columns in Q9 and
the number of rows/groups in Q10 will increase the precision and
recall. The experiment results are reported in Table 7 for Q9 and
Table 8 for Q10. As shown in Table 7, when the query output
table only contains two columns, both precision and recall are zero
because all four returned candidates are in the lowest filter com-
plexity (one-dimensional) while the true query itself has the fil-
ter complexity of two (tax and discount are used as selection
predicates). In order to guarantee the true candidate is returned, the
least number of candidates that are needed to be returned is k= 6.
On the other hand, when the number of columns is increased by
adding more aggregations, many invalid candidates will be pruned
as only the true candidate is returned, therefore both precision and
recall are 1. For the test query Q10, we control the number of
tuples in the query output table in order to measure the precision
and recall. A tuple in the query output table is actually same as a
group, hence adding an extra group-by attribute in the true query
is actually increasing the number of groups. The test query Q10

with Glinestatus will output two distinct rows whereas Q10 with
Glinestatus,returnflag will output four distinct rows. Table 8 shows
that as the number of rows in the query output table is increased, the
precision is also increased since the number of candidates is fewer
and the recall is always 1 since the true candidate is discovered.

5.10 Scalability
We use the scale factors, namely 0.01, 0.1 and 1 in logarithm

scale to represent the increase of TPC-H data size. As we use all
the test queries and since different queries take different times, we
normalize the time spent for each test query in scale factor 0.01 as
1 time-unit for other scales. After running all queries, we plot the
average and standard deviation for all other scales (i.e. 0.1 and 1).
Figure 13 shows that the execution time against the scalability of
dataset increases linearly in a log-log plot.

Table 8: Precision and recall for Query Q10

Group #rows Precision Recall
linestatus 2 1/4 1
linestatus, returnflag 4 1 1
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5.11 Extension to User-defined Functions
In our paper, we use five pre-defined basic aggregate functions

to discover the possible aggregations in the query output table. In
order to extend to additional user-defined functions, not only do
we have to design the particular constraint rules, but also their rela-
tionships with current pre-defined constraint rules. To illustrate, we
have taken the MEDIAN function as an example for extension in our
algorithm. For the phase of grouping and aggregates pruning, the
constraint rules for MEDIAN are similar to AVG since the median
values always lie between the MAX and MIN and those values are
not necessary the subset of the particular base table attribute val-
ues. Therefore, any candidate that is matched to AVG will be also
matched to MEDIAN simultaneously without adding new pruning
rules. For the phase of filter discovery, in order to find the bounding
boxes in a matrix, the values inside the selected region are sorted
before the MEDIAN is computed. The selected region is treated
as a bounding box when the median of the enclosed values is the
same as the input value. We use the test queriesQ11−12 to explore
the effect of adding MEDIAN into our algorithm. Figure 14 plots
the time spent for generating the bounding boxes before and after
adding the MEDIAN into our algorithm. Before adding MEDIAN,
the test query Q12 returned empty result since it did not match to
any selection predicate while the time spent in Phase 3 is used to
eliminate the possible candidates in Phase 2. After adding MEDIAN
in the algorithm, the time needed for Q12 is doubled as compared
toQ11. This is because additional sorting in each shrinking step in
needed to compute the median values as we determine the bounding
boxes. Besides, the time spent in Q11 after introducing MEDIAN
has increased since extra checks are needed in order to eliminate
the MEDIAN possibility.

6. CONCLUSION
In this paper, we proposed a novel algorithm for reverse en-

gineering aggregation queries. Our algorithm operates in three
phases: (a) to discover group-by attributes, (b) to prune combi-
nations of group-by and aggregate attributes, and (c) to identify the
selection filters. We perform an extensive experimental study over
TPC-H benchmark data to show the versatility and scalability of
our algorithm.
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