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ABSTRACT
We present LDA∗, a system that has been deployed in one of the
largest Internet companies to fulfil their requirements of “topic
modeling as an internal service”—relying on thousands of ma-
chines, engineers in different sectors submit their data, some are
as large as 1.8TB, to LDA∗ and get results back in hours. LDA∗ is
motivated by the observation that none of the existing topic mod-
eling systems is robust enough—Each of these existing systems is
designed for a specific point in the tradeoff space that can be sub-
optimal, sometimes by up to 10×, across workloads.

Our first contribution is a systematic study of all recently pro-
posed samplers: AliasLDA, F+LDA, LightLDA, and WarpLDA.
We discovered a novel system tradeoff among these samplers. Each
sampler has different sampling complexity and performs differ-
ently, sometimes by 5×, on documents with different lengths. Based
on this tradeoff, we further developed a hybrid sampler that uses
different samplers for different types of documents. This hybrid
approach works across a wide range of workloads and outperforms
the fastest sampler by up to 2×. We then focused on distributed en-
vironments in which thousands of workers, each with different per-
formance (due to virtualization and resource sharing), coordinate
to train a topic model. Our second contribution is an asymmetric
parameter server architecture that pushes some computation to the
parameter server side. This architecture is motivated by the skew of
the word frequency distribution and a novel tradeoff we discovered
between communication and computation. With this architecture,
we outperform the traditional, symmetric architecture by up to 2×.

With these two contributions, together with a carefully engi-
neered implementation, our system is able to outperform existing
systems by up to 10× and has already been running to provide topic
modeling services for more than six months.

1. INTRODUCTION
Bayesian inference and learning, a topic that has emerged since

1980s [18], has become relatively mature in recent years. The last
decade has witnessed a wide array of applications of such tech-
nique to applications such as information extraction [29], image
understanding [10], probabilistic databases [21]. In industry set-
tings, one implication of this level of maturity is that there are many
developers and engineers in the same company who need to run
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Bayesian inference and learning on daily basis. In this paper, we
are motivated by one question that our industry partner asked: Can
you build a “Bayesian Inference as a Service”-like infrastructure
to support all of our developers to run their inference and learning
task, with thousands of machines?

We find that, even if we scope ourselves to a specific type of tasks
such as running topic modeling with Latent Dirichlet Allocation
(LDA), this is a challenging question. Despite of the abundance of
existing systems, including LightLDA [28], Petuum [?], and Ya-
hooLDA [20], none of them is designed to deal with the diversity
and skew of workloads that we see from our industry partner. In this
paper, we ask How to design a single system to support a diverse
set of workloads for distributed topic modeling with thousands of
machines in a real-world production environment?

Painpoint & Challenge 1. One challenge in building such a sys-
tem roots from the diversity of workloads. In our use case, users
need to run topic modeling on documents of very different types
such as web corpus, user behaviours logs, and social network posts.
Therefore, the length of documents varies—the average length of
the NIPS dataset is about 1,000 tokens while it is only 90 for the
PubMED dataset. This diversity of input corpus causes different
systems to slow down on different datasets we were trying to sup-
port. Worse, there are no studies of this tradeoff available so far.

Painpoint & Challenge 2. One challenge in building a massively
scalable system for topic modeling is caused by (1) the skewness
of data, and (2) the symmetric architecture of traditional parame-
ter servers. The word frequency in most natural language corpus
follows a power law [15] distribution in which some words are or-
ders of magnitude more frequent than others. In state-of-the-art dis-
tributed topic modeling systems, the communication cost caused by
unpopular words are significantly higher than the others. However,
most of existing systems are not aware of such skewness. When
these systems are deployed on thousands of machines with non-
InfiniBand networks, we can often observe significant performance
degradation.

Motivated by these two challenges we faced while trying to de-
ploy existing systems, we decide to build LDA∗ with a design that
not only integrates the recent exciting advancement of distributed
topic modeling [20, 25, 28], but also keeps in mind the diversity in
datasets and infrastructure we saw from our industry partners. Our
approach is to systematically study the system tradeoff caused by
the diversity and skewness of the workloads, and design novel al-
gorithms and system architectures accordingly. As a result, LDA∗

can be up to 10× faster than existing systems.
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Overview of Technical Contributions. We describe our technical
contributions. We first present a short premier of Gibbs sampling
for topic modeling. Then we present a hybrid sampler, motivated
by our systematic study of recently proposed samplers, on a single
machine; and then an asymmetric parameter server infrastructure
to deal with the skewness of the data.

Gibbs Sampling: A Premier. Gibbs sampling is the de facto
algorithm to solve distributed topic modeling that has been used
intensively by previous work [5, 30, 26, 12, 27, 28, 2, 25, 20].
We define a corpus C = {D1, ..., Dn} as a set of documents, and
each document Di contains a set of tokens {tij}, and let T be the
set of all tokens. Let V be the vocabulary, a set of distinct words
that a token can take value from, and K be the number of topics,
which is usually a hyperparameter to the system. The goal of topic
modeling is to assign for each token tij a topic distribution—one
probability value for each of the K topics. The data structures in-
volved in topic modeling can be represented with two matrixes: (1)
Cw : V 7→ NK+ assigns each word to a topic distribution, and (2)
Cd : C 7→ NK+ assigns each document to a topic distribution. In
distributed setting, the standard parameter server architecture usu-
ally partitions the Cd matrix among workers while the Cw ma-
trix is stored among parameter servers. Inside each iteration, each
worker pulls the Cw matrix from parameter servers and pushes the
updates of Cw back after the sampling operations.

Contribution 1: Single Machine & Sampler Selection.
We first focus on a single machine and study the question that Out
of the four recently proposed Gibbs samplers, which one should we
select given a corpus? As we will see, a suboptimal selection of a
sampler can be 5× slower than the optimal strategy.

(An Anatomy of Samplers) We systematically study four samplers
AliasLDA, F+LDA, LightLDA, and WarpLDA [2, 28, 12, 27]:

Sparsity-Aware (SA) Samplers. AliasLDA, and F+LDA exploit
the sparse structure of Cw and Cd to reduce the sampling
complexity—O(Kd) for AliasLDA and F+LDA, where Kd =
|Cd(d)| is the number of topics ever picked by at least one token in
a document. When the length of documents is skewed, the perfor-
mance is dominated by the longest document.

Metropolis-Hastings (MH) Samplers. LightLDA and WarpLDA
use Metropolis-Hastings to achieve an O(1) sampling complexity.
The time complexity per token of an MH sampler is orthogonal to
the document length or the number of topic. However, MH sam-
plers usually require more than one samples for each token.

(Summary of the Tradeoff) We discover a tradeoff between SA
samplers and MH samplers. The distribution of document lengths
is the key—When the datasets containing many long documents,
SA samplers can be 2× slower than MH samplers; The perfor-
mance gap can become more significant when we increase the num-
ber of topics. On the other hand, MH samplers need more iterations
to converge to a comparable solution. For dataset with many short
documents, MH samplers can be 1.5-5× slower than SA samplers.
Similar phenomenon holds for the number of topics K.

(Hybrid Sampler) The study of the tradeoff space raises a natu-
ral question that Can we design a hybrid sampler that outperforms
both SA and MH samplers? The answer is yes. We propose a sim-
ple, but novel hybrid sampler based on F+LDA and WarpLDA, and
design a novel index structure to support the access pattern and par-
allelization strategies of both F+LDA and WarpLDA. The empirical
results in Section 6 show that the hybrid sampler can consistently
outperform all others over all of our datasets by up to 2×.

Contribution 2: Distributed Setting & Asymmetric Pa-
rameter Server. We observe that, when deploying existing sys-
tems to thousands of machines, each of which is shared and com-
peting with other online applications, the performance of these sys-
tems degrades significantly, especially when the network is not as
fast as InfiniBand. Our second contribution consists of three parts.

(Asymmetric Parameter Server) In traditional parameter server
architecture, the system is symmetric in the sense that all work-
ers conduct sampling and the parameter server is just treated as a
distributed shared memory storing Cw. In our architecture, both
workers and servers have the ability to perform computation, here,
the sampling operation. By pushing computation to the parameter
server, we take advantage of the skewness of words on each par-
tition to reduce communication cost (because they are sampled on
the parameter server directly), which has long been ignored by ex-
isting systems. In practice, when running topic modeling on a 1.8
TB dataset from our industry partner, our asymmetric architecture
reduces communication by 55% when scaling with 1000 workers.

(Skewness-aware Partition) We further notice that the skewness
in natural language corpus causes unbalanced partitioning results.
Therefore, we propose a skew-aware partitioning strategy for the
parameter servers to balance the communication, which achieves
50% improvement on performance.

(Fine-grained Synchronization) We also study different syn-
chronization strategies. Existing systems, such as Petuum and
LightLDA, require global barrier for updating the Cw matrix.
In our scenario, this introduces heavy overhead especially in the
presence of resource sharing. In our architecture, we introduce
a more finer-grained synchronization strategy that partitions Cw

into multiple synchronization units and only synchronize one unit
of Cw at a time. This allows us to hide the synchronization latency
along with computation of other units.

All these techniques together lead to 2-5× speed up over existing
systems. This holds robustly across a range of different infrastruc-
tures with different network speed.

Contribution 3: System Implementation and Empiri-
cal Evaluation. We develop LDA∗ based on the study of system
tradeoffs for both a single machine and multiple machines. Along
with the previous two technical contributions, we also describe en-
gineering considerations and design decisions involved in building
such a system. Our system has been running steadily over a real
production cluster of our industry partner for six months, and has
been used to support users from a diverse set of internal sectors on
a daily basis.

We evaluate our system and compare it with other systems on a
range of applications. On a dataset provided by our industry part-
ner, LDA∗ can train topic model over a 1.8 TB dataset with 308
billion tokens in about 4 hours by using 1,000 workers which are
allocated with only 8 GB memory. To the best of our knowledge,
no existing systems can achieve such performance for terabytes of
data. We also conduct experiments with a set of standard bench-
mark datasets—on these datasets, LDA∗ can be up to 10× faster
than the existing systems.

Overview. The rest of this paper is organized as follows. We
present our study of existing samplers in Section 3.1 and describe
the hybrid sampler in Section 3.2. We further describe our dis-
tributed architecture and system implementation in Section 4 and
Section 5 respectively. We show the experimental results in Sec-
tion 6 and discuss related work in Section 7.
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2. PRELIMINARIES
We present preliminary materials in this section. We start by

describing topic modeling with LDA and how to solve it with Gibbs
sampling. We then present background on the basics of Metroplis-
Hastings, a general case of Gibbs sampling that many state-of-the-
art algorithms used to further optimize their samplers.

2.1 Latent Dirichlet Allocation
LDA is a generative probabilistic model that runs over a collec-

tion of documents (or other discrete sets). A corpus C is a collec-
tion of M documents {D1, · · · , DM} and each document Di is a
sequence of Ni tokens denoted by Di = (t1, t2, · · · , tNi), where
each token tn is a word. Each word w is an item from a vocabulary
set V . Let K be the number of topics, LDA models each document
as random mixtures over latent topics. Formally, each document d
is represented as K-dim topic distribution θd while each topic k is
a V -dim word distribution φk, which follows a Dirichlet prior β.

To generate a document d, LDA first draws a K-dimensional
topic mixing distribution θd ∼ Dir(α), where α is a hyperparam-
eter. For each token tdn, it first draws a topic assignment zdn from a
multinomial distribution Mult(θd), then it draws a wordwdn ∈ V
from Mult(φzdn).

We further denote Z = {zd}Dd=1 as the topic assignments for all
tokens, where zd = {zdn}Ld

n=1, and Φ = [φ1 · · ·φV ] be the topic
word matrix with V × K dimensions. We use Θ = [θ1 · · · θD]
to denote the D × K document topic matrix. The inference pro-
cess of LDA is to obtain the posterior distribution of latent vari-
ables (Θ,Φ,Z) given observations C and hyperparameters α and
β. Collapsed Gibbs Sampling (CGS) integrates out (Θ,Φ) through
conjugacy and iteratively samples zdn for tokens from the follow-
ing full conditional distribution:

p(zdn = k|tdn = w,Z¬dn, C¬dn) ∝
C¬dnwk + β

C¬dnk + V β
(C¬dndk + α) (1)

where Cdk is the number of tokens that are assigned to topic k in
document d; Cwk is the times that word w is assigned to topic k;
Ck =

∑
w Cwk =

∑
d Cdk. The superscript or subscript ¬dn

represents that zdn or tdn is excluded from the count value or col-
lections. Moreover, we use Cw to represent the V × K matrix
formed by all Cwk and Cd to stand for the D ×K matrix formed
by all Cdk. Cw[w, ] and Cd[d, ] represent the particular rows in-
dexed by w and d. Figure 1 gives a simple example for a corpus
with three documents.

Core Operation. During the inference phase of LDA, CGS it-
eratively assigns topics for tokens in C. For one token, it calcu-
lates out all probabilities for K topics according to Eq. 1 and then
randomly picks a new one. We call this process the core opera-
tion. This induces anO(K) computation complexity per token and
is very inefficient for applications with massive tokens and large
value of K. For more details, readers can refer [4]. After burn-in,
CGS is able to generate samples that follow the posterior distribu-
tion p(Z|C, α, β). We can use these samples to estimate the distri-
bution of Z, Θ and Φ, which allow us to understand the semantic
information of documents and words.

Epoch. An epoch is one complete pass of dataset in which all to-
kens are sampled by the core operation once. The inference phase
contains tens, often hundreds, of epochs.

The process of Gibbs sampling is to run many, often tens or hun-
dreds, of epochs over the dataset. Each epoch executes the core
operation to sample its topic assignment for each token and esti-
mates the distribution of Z, Θ and Φ using the generated samples.

Doc 3

Doc 1

Doc 2

cars

petrol

Lamborgini

diesel

petrochemicals

Doc 1

Doc 2

Doc 3

topic1 topic2

Figure 1: An example for Corpus. The numbers in the parentheses
are the current topic of each token. Cw and Cd contain counts of
tokens that belong to a specific topic.

Algorithm 1: Metropolis-Hastings algorithm

Input : p(x), q(x), number of steps M
Initialize x(0) ∼ q(x)
for i← 1 to M do

Propose xcand ∼ q(x(i)|x(i−1))

Acceptance rate π = min{1, p(x
cand)q(x(i−1)|xcand)

p(x(i−1))q(xcand|x(i−1))
}

if Uniform(0,1) ≤ π then x(i) = xcand

else x(i) = x(i−1)

2.2 Metropolis-Hastings
Directly sampling from probability distribution of Eq.1 is expen-

sive. Here we describe an efficient method to reduce the sampling
complexity, which is called Metropolis-Hastings (MH) algorithm.

Let p(x) be the target distribution we want to draw samples from.
MH method constructs a Markov chain with an easy-to-sample
proposal distribution q(x). Starting with an arbitrary state x(0),
MH repeatedly generates samples from the proposal distribution
x(i) ∼ q(x(i)|x(i−1)) at each step i, and updates the current state
with the new sample with an acceptance rate

π = min

{
1,

p(x(i))q(x(i−1)|x(i))

p(x(i−1))q(x(i)|x(i−1))

}
.

Algorithm 1 presents the detail of Metropolis-Hastings. We call the
hyperparameterM an MH steps. Under certain technical condition,
q(x(i)) converges to p(x) as i→∞, regardless of x(0) [11]. Gibbs
sampling is a special case of Metropolis-Hastings.

3. SAMPLER SELECTION
We study the system tradeoff of different samplers and propose a

novel hybrid approach that automatically decides which sampler to
use for each document. We start by presenting a taxonomy of four
existing samplers, all of which were published recently.

3.1 Anatomy of Existing Samplers
Existing samplers can be classified into two categories accord-

ing to the optimizations they use to reduce the sampling complex-
ity: (1) SA samplers, including AliasLDA and F+LDA, exploit the
sparse structure of Cd; and (2) MH samplers, including LightLDA
and WarpLDA, use Metropolis-Hastings method to scale to a large
number of topics. We study their tradeoff with the following exper-
iment setup.

Settings. We implement all samplers under the same code base.
For fair comparison, we optimize all these techniques and they are
faster than all their original open-source implementations.1. All
experiment results that we report are on a single machine and all
samplers are parallelized with 16 threads.
1
https://github.com/Microsoft/LightLDA,http://bigdata.

ices.utexas.edu/software/nomad/,https://github.com/
thu-ml/warplda
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Figure 2: Effects of document length and K on the performance of samplers

Metrics. We measure the performance by the wall-clock time a
sampler requires to converge to a given log likelihood value. We
vary the number of topics and use datasets that have different char-
acteristics to measure each sampler’s performance.

Datasets. We use three different datasets to illustrate the trade-
off. One key characteristic turns out to be the length of a doc-
ument, and the document length distribution is showed in Figure
2(a). We see that these datasets have different length distribution—
the PubMED dataset consists of many short documents whose length
is less than 200, while the NYTimes dataset contains both short
documents and long documents whose length can vary from 100 to
2000. For the Tencent dataset (the one from our industry partner),
most of the tokens are from long documents with length larger than
1000—about 24% of documents have a length over 1000, which
contains more than 76% of all tokens.

3.1.1 Sparse-Aware (SA) Samplers
AliasLDA and F+LDA decompose the probability for each token

(Eq. 1) into two parts: Cdk Cwk+β
Ck+V β

and αCwk+β
Ck+V β

. When Cdk (Cd)
is sparse, the sampler can skip those with zero Cdk, thus lowering
the complexity. The difference between these two algorithms is the
different data structures they use to perform sampling—AliasLDA
uses the Alias table [23], while F+LDA uses the F+ tree.

Results. Figures 2(b), 2(c), and 2(d) show the results for different
number of topics K. We can see that F+LDA is consistently faster
than AliasLDA over all datasets and various values of K. The rel-
ative performances of AliasLDA and F+LDA are different across
different datasets. Specifically, the gap becomes larger on the Ten-
cent dataset, while it is much smaller on the other two datasets. This
is because AliasLDA requires both traversal access and random ac-
cess for Cd matrix, while F+LDA only requires traversal access.
Since Cd is stored in sparse format—which aims to reduce mem-
ory cost—the latency of random access increases with more items
in one document due to the increased conflicts in the hashtable.

3.1.2 Metropolis-Hastings (MH) Samplers
LightLDA and WarpLDA draw samples from two proposal dis-

tributions — qdoc ∝ Cdk+α and qword ∝ Cwk+β
Ck+β

— alternatively,
and accept their proposals based on the acceptance condition of
Metropolis-Hastings. These two samplers are different in their ac-
cess order for the in-memory data structures—WarpLDA separates
the access of tokens into two passes, where each pass only accesses
Cw or Cd, respectively, in order to reduce random access.

Results. Figures 2(b), 2(c), 2(d) show the results of MH Sam-
plers. We see that WarpLDA is consistently faster than LightLDA.
This is because WarpLDA effectively eliminates the amount of ran-
dom accesses. The performance gap is influenced by the size of the
vocabulary |V| — the more words the corpus has, the more ran-
dom accesses will be incurred by Cw. For the PubMED dataset,
which has the largest vocabulary, the performance gap between
WarpLDA and LightLDA is largest; on the other hand, since the
Tencent dataset only contains 88,916 distinct words in its vocabu-
lary, this performance gap is relatively small.

3.1.3 Tradeoff: SA vs. MH Samplers
We now describe the system tradeoff between SA and MH sam-

plers. Because in our experiments F+LDA and WarpLDA always
dominate others, we focus on the tradeoff between them. We first
describe the tradeoff we observed, and then analyze it.

Summary of the Tradeoff

1. Length of Document Ld. The length of documents turns
out to be an important axis in the tradeoff. On datasets with
many short documents, like PubMED, F+LDA is faster than
WarpLDA—by up to 2.8× when K = 16k; (2) On datasets
with many long documents, like Tencent, WarpLDA is faster
than F+LDA— by up to 1.7× when K = 16k.

2. Number of topicsK. The number of topics also plays a ma-
jor role in the tradeoff. When the number of topics increases—
e.g., from 1k to 16k on Tencent— WarpLDA becomes faster
compared with F+LDA; Similarly, when the number of top-
ics increases on PubMED, F+LDA becomes faster compared
with WarpLDA.

Analysis. The above tradeoff can be explained with the follow-
ing analytical model. To generate one sample in WarpLDA, the
Metropolis-Hastings sampler needs to decide whether to accept a
sample or not. Let π be the acceptance rate, WarpLDA requires, in
expectation, 1

π
samples for one sample to be accepted. On the other

hand, F+LDA does not have this overhead. However, to generate
each sample, the computational complexity of F+LDA is O(Kd),
where Kd, the number of non-zero elements of Cd is bound by the
number of topics K and the length of a document Ld. On the other
hand, WarpLDA incurs O(1) complexity to propose each sample.

We can now see the tradeoff—whenK andLd are small, WarpLDA
is slower because of its 1

π
overhead; otherwise, F+LDA is slower

due to its overhead in generating each sample.
The result we see in Figures 2(b), 2(c), 2(d) is the result of an

aggregation of the above analysis across the whole corpus. Fig-
ure 2(a) illustrates the distribution of the length of documents. For
the PubMED dataset, which consists of many documents with small
Ld, F+LDA is faster than WarpLDA. For the Tencent dataset, which
consists of documents with largeLd, WarpLDA is faster than F+LDA.
For smaller K, F+LDA is faster than WarpLDA on all datasets.

Figure 2(e) further provides a quantitative illustration of the trade-
off. We define a complexity ratio λ = Kdπ as the ratio between
the complexity of F+LDA and WarpLDA. As expected, on datasets
where F+LDA is faster, λ is smaller. This is consistent with the
empirical result illustrated in Figure 2(e).

3.2 Hybrid Sampler
The above tradeoff raises a natural question— Can we build

a hybrid sampler that marries both SA and MH sampler? Intu-
itively, this is trivial—just run “short” documents with F+LDA and
“long” documents with WarpLDA. In practice, however, there are
two technical questions: (1) how to decide which document is long
enough to “qualify” for WarpLDA; and (2) how to balance an MH
sampler and an SA sampler, which have different convergence speeds.
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For the first question, we developed a very simple rule-of-thumb
based on the study of our tradeoff. The second question is more
challenging and ties to an open question in the mixing theory of
two Markov chains. Inspired by classic statistical theory on a sim-
pler underlying model, we develop a simple heuristics that works
well across all of our datasets.

3.2.1 Sampler Selection
The first step is to design a rule-of-thumb to choose between two

samplers. We focus on the combination of F+LDA and WarpLDA,
as these two samplers dominate consistently faster than AliasLDA
and LightLDA in our tradeoff study.

Sampling Complexity. For F+LDA to generate one sample, it
needs to traverse the non-zero items in Cdk, whose size is bounded
by K and Ld. Thus, the sampling complexity of F+LDA is

Cf+ = O(min(Ld,K))

On the other hand, since Metropolis-Hastings method requires mix
time for each sample, the complexity of WarpLDA is

Cwarp = O(n)

where n is the steps to achieve mix.
The technical challenge is how to estimate n, whose value not

only depends on the input datasets, but also changes across iter-
ations. In theory, estimating the mixing time of the underlying
MCMC chain for general factor graphs is a problem that has been
around for decades. With this in mind, we resort to a simple heuris-
tics that is motivated by the empirical observation from our study.

Heuristics 1. Given a document dwith lengthLd and topic number
K, if K ≤ S or Ld ≤ S choosing F+LDA; otherwise, choosing
WarpLDA. S is a threshold value that depends on the implementa-
tion and properties of the dataset.

3.2.2 Balancing Two Chains
One surprising observation is that the above heuristics itself is

not enough for a hybrid sampler that outperforms both F+LDA and
WarpLDA. The fundamental reason is that two Markov chains un-
derlying F+LDA and WarpLDA do not converge with the same
speed. Specifically, all samples from F+LDA will be accepted,
however this is not the case for WarpLDA. Intuitively, this means
that a naive hybrid sampler would generate more samples for to-
kens belonging to F+LDA per epoch than WarpLDA.

Theoretical Understanding. The above observation raises a
fundamental question: What is the relationship between the mix-
ing time of a Gibbs sampler (F+LDA) and a Metropolis-Hastings
(WarpLDA) sampler for the same underlying distribution? If we
magically know the ratio between their mixing time, we could just
use this number to balance these two chains.

Unfortunately, a general treatment of this question has existed
for decades and is still under intensive study by the theoretical com-
puter science and mathematics community. However, there are the-
oretical results that can be used to inspire our practical heuristics.

We know that the mixing time of these two chains is not too
different, at least for Ising model:

LEMMA 3.1. [11](Levin, Peres, & Wilmer 2008, Example 13.18)
For a graph with vertex set V , let π be the Ising probability mea-
sure. Let γ be the spectral gap of the Gibbs chain and γ̃ be the
spectral gap of the Metropolis chain using the base chain, we have

γ ≤ γ̃ ≤ 2γ

where γ is related to the mixing time by the following lemma

Structures

For short docs 

word array

doc array

topic array

Apple  banana  apple  pear  banana

1           5             2           2           1
doc 

3 1 2

2 4 1

2 5 1

2 1 2

position

index

traversal

index

keys

values

Figure 3: data structures for short docs.

word array

topic array

mh array

Structures

For long docs doc array

Inverse 

index

Figure 4: data structures for long docs.
LEMMA 3.2. [11](Levin, Peres, & Wilmer 2008, Theorem 12.3)

Let P be the transition matrix of a reversable, irreducible Markov
chain with state space Ω, and π be the underlying probability mea-
sure. Let πmin = minx∈Ω π(x) and γ the absolute spectral gap
(equals to the spectral gap when the chain is “lazy”), we have the
mixing time

tmin(ε) ≤ log(
1

επmin
)
1

γ

The above two lemmas inspired the design in two ways. First,
we know, at least intuitively, whatever scheme we use to balance
these two chains, that scheme should not be “too extreme” (these
two chains are off by a constant factor anyway). Second, the mix-
ing time is likely to be linear (or inverse linear) to the constant that
we will use to balance these two chains. Inspired by these, our sim-
ple heuristics is as follows:

Heuristics 2. For each epoch, the MH steps for the WarpLDA is
set to d 1

π
e, where π is the acceptance rate for the last epoch.

The intuition behind this heuristics is simple—just use the em-
pirical acceptance rate 1/π as the proxy for the ratio of spectral gap
γ̃
γ

(In extreme cases where all MH samples are accepted (π = 1),
MH becomes Gibbs, and therefore γ̃

γ
= 1

π
in this extreme case.)

3.2.3 Implementation
We now present the implementation of our hybrid sampler. We

design different data structures for both F+LDA and WarpLDA
since they have different access patterns. Our implementation for
F+LDA is actually faster than the original F+LDA paper—in order
to obtainO(min(K,Ld)) complexity for F+LDA, the structure for
short documents requires careful design, since the cost for travers-
ing a hashmap is proportional to the size of it, which can be larger
than K or Ld. Therefore, we build an extra index to guarantee
achieving the theoretical complexity for F+LDA.

Structure for Short documents. Figure 3 shows the struc-
ture for short documents, which is constructed by the CSC for-
mat for accessing tokens and a set of hashmaps for accessing Cdk.
The index is built to accelerate the traversal of non-zero items for
each row of Cd, which can guarantee the complexity of F+LDA
is O(min(K,Ld)) rather than the size of a hashmap. Since Cdk
can be updated after each sampling operation, we allocate one more
“position array”, which records the position of each key in the in-
dex array, in order to obtain an O(1) maintenance complexity for
each update operation. To reduce the memory introduced by the
extra index, we use different data types to store these two arrays for
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Algorithm 2: Parallel Execution for Hybrid Sampler

Function Main()
ShortSet, LongSet← split through Heuristics 1
ShortDS, LongDS← build(ShortSet), build(LongSet)
mha = 2;mhg = 2
for iteration← 1 to I do

// Sampling short docs using F+LDA
for w ← 0 to V do

for token td,w belongs to w from ShortDS do
lock(d)
Perform sampling operation
unlock(d)

// Sampling long docs using WarpLDA
π ←Word pass on LongDS
mha = mhg ;mhg = d 1

π
e

π ← Doc pass on LongDS
mha = mhg ;mhg = d 1

π
e

different documents. Specifically, if Ld ≤ 256, we use the Byte
type to store them. Otherwise, the Short type is chosen.

Structure for Long documents. For long documents, the
structure is the same as WarpLDA, which is presented in Figure
4. Three arrays, including word array, doc array, and inverse index,
are allocated to support both the “document pass” and the “word
pass” for tokens. The topic array stores the topic assignment and
the MH array maintains the MH proposals for each token. The dif-
ference is that we employ this structure to visit tokens only from
long documents, while WarpLDA builds it to traverse all tokens.

Parallel Execution. Since the original F+LDA and WarpLDA
use different parallelization strategies, we combine them sequen-
tially in a coarse granularity—we first sample tokens from short
documents with F+LDA, then use WarpLDA to sample tokens from
long documents. Algorithm 2 shows the details.

At the start of training, we initialize two MH steps, including
mha and mhg , which indicate the MH steps for the proposal ac-
cepting phase and the MH steps for the proposal generating phase
in WarpLDA. We choose 2 as the default value for both of them
since π is always less than 1. For each iteration, we first visit
short documents through F+LDA in parallel and then sample to-
kens from long documents through WarpLDA. We parallelize the
training of F+LDA over word and lock on the access of Cd[d, ]
before the sampling operation. The lock operation aims to pre-
vent concurrent write operations for the same row of Cd. For
long documents, the parallelization is achieved by paralleling over
words in the word pass and paralleling over docs in the document
pass. After each pass, we calculate the value of π for it and change
mha = mhg,mhg = d 1

π
e.

4. DISTRIBUTED ARCHITECTURE
In this section, we describe our approach that leads to an asym-

metric parameter server architecture. Our architecture is motivated
by the pattern we observed in the production environment.

In many datasets that are related to natural language, the word
frequency is skew. In the distributed setting, the frequency of words
is also skew inside each data partition. In existing parameter server
systems, the communication cost is mainly induced by the pulling
Cw operation for the low-frequency words. Figure 5 shows the
frequency distribution of words for a randomly picked partition
and the communication cost generated by words with different fre-
quency.2 From this figure, we see that most of communication cost

2The topic number K is set to 8,000 and the number of partitions is 1,000.
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Figure 5: word frequency and cost per partition

Algorithm 3: Standard Parameter Server [25, 13, 28]

Function WorkerIteration()
for w ← 0 to V do

Cw[w, ]← Pulling w
Sampling tokens belongs to w
Pushing updates of Cw[w, ] to servers

is introduced by these unpopular words. Specifically, 85% of the
cost is introduced by words with frequency less than 100, while
only 6% of the tokens contribute to this.

4.1 Asymmetric Parameter Server
The above observation poses a fundamental challenge to the ex-

isting parameter server architecture for LDA, in which workers deal
with the computation and servers deal with the distribution of pa-
rameters. As long as the architecture is designed in this form, the
communication cost caused by unpopular words cannot be avoided.

This motivates us to design a new architecture— In order to re-
duce the communication cost introduced by low-frequency words,
we push the computation onto the servers. This results in an asym-
metric parameter server architecture in which servers also have
the ability to do computation rather than just distributed memory
storage. Pushing the computation of tokens to servers raises two
technical questions: (1) how to determine which word is unpop-
ular enough to be pushed to servers; and (2) how to design the
communication protocol between the workers and servers. We first
describe the execution model in our asymmetric architecture and
then present how we resolve these two questions.

4.1.1 Execution Model
Figure 6 illustrates the difference between an asymmetric archi-

tecture and the standard parameter server architecture. The differ-
ence in an asymmetric architecture is that a parameter server also
has the ability to conduct computation. By pushing some compu-
tation from workers to servers, we can achieve speed up over the
standard symmetric architecture. Moreover, the messages commu-
nicated through the network are also different. For the standard
architecture, only Cw and ∆Cw are transferred via network since
the sampling operation only happens on workers. However, for
an asymmetric architecture, although both Cw, Cd and ∆Cw and
∆Cd are transferred through network, the overall communication
cost is smaller.

With an asymmetric parameter server architecture, the computa-
tion logic of each iteration becomes more complicated than a tra-
ditional architecture. Algorithm 3 shows the logic of a traditional
parameter server, and Algorithm 4 shows the logic of our approach.
Stage 1: Pushing Cd and pulling Cw. At the start of one iteration,
each worker splits the words into two parts. Then it pushes the cor-
responding rows of Cd for tokens that will be sampled on servers
and pulls rows of Cw for tokens that will be sampled on workers.

Stage 2: Sampling. Server conducts sampling for tokens after the
receiving of Cd and worker conducts sampling after fetching Cw.
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Algorithm 4: Asymmetric Parameter Server

Function WorkerIteration()
Pullw , Pushw ← split words
Pushing requests for w ∈ Pushw
for w ∈ Pullw do

Cw[w, ]← Pulling w
Sampling tokens belongs to w
Pushing updates of Cw[w, ] to servers

Receiving pushing response and update Cd[d, ]

Function ServerIteration()
while receiving pushing request do

Sampling tokens
updates Cw

Pushing back topic assignments

worker2

Cd2

Cw1

server1

Cw2

server2

Cw3

server3

Cw1
Cw1

Cw3

Cw3

worker1

Cd1

worker1

Cd1

worker2

Cd2

(a) Asymmetric Parameter Server (b) Standard Parameter Server

Cw1

server1

Cw3

server2

Cw3

server3

Figure 6: Architecture of Asymmetric PS and Standard PS.

Stage 3: Updating. Server updates Cw and generates updates for
Cd, while worker updates Cd and generates updates for Cw.

Stage 4: Pushing the updates of Cd and Cw. The generated up-
dates of Cd are pushed back to workers and the updates of Cw are
pushed to servers from workers.

Deciding Low-Frequency Words. The challenge of deter-
mining which words are low-frequency to be sent to servers is that
the sizes of Cw and Cd keep changing during the running of the
algorithm. This requires a dynamically adjusting strategy to make
decisions. Therefore, we maintain a “size cache” that records the
exact size for each row of Cw on the worker side, which is updated
every iteration. For word w sampled on worker, we calculate the
size of Cw[w, ] from the response message of the pulling opera-
tion. For word w sampled on the server, its size is returned from
the server at stage 4.

Message Encoding. We find that we need to carefully encode
the pushing requests—naively attaching one row of Cd[d, ] for one
token td,n can still generate unnegligible pushing communication
cost. To reduce the cost of pushing requests, we only send one
pushing request for one server at each worker. The goal is to share
the Cd[d, ] for all tokens belonging to document d. Moreover, since
the sampling also requires the Ck matrix, which is only stored on
one server, we attach the value of Ck for one pushing request. The
pushing request is encoded in one array. We organize the tokens
and Cd document by document. For each document, we first write
the value of Cd[d, ] in the request and then write the topics as-
signments for tokens belonging to this document. In this way, the
sampling order on the server is organized through the document or-
der. Once we finish the sample on the document, the memory for
storing Cd[d, ] can be recycled to save memory.

Integrating with Hybrid Sampler. Our hybrid sampler can
be integrated with our asymmetric parameter server architecture.
There are two differences when compared to the single machine
setting. First, only F+LDA is employed on the server because (1)
building Alias table for each document is expensive on the server;
(2) only tokens from short documents will be pushed to server be-

cause pushing tokens from long documents will increase the push-
ing cost. Second, we build an extra Alias table to perform the sam-
pling operation on the word pass for WarpLDA, since the topic
assignments in one worker only contain a portion of tokens belong-
ing to one word. Directly deploying WarpLDA on each worker will
generate the wrong result.

4.2 Load Balancing
Other than decreasing the communication cost through the asym-

metric architecture, we also balance the load of server and worker
by taking into consideration the skewness of word frequency. Oth-
erwise, unbalanced partitioning will result in significantly more
memory consumption on the workhorse machine. We describe our
skew-aware partitioning strategy that tries to enforce a balanced
load across machines with a simple cost model.

Partitioning of Cw. Existing parameter server systems par-
tition Cw using either range partitioning [13] or hash partition-
ing [6]. Range partitioning can facilitate the sequential access of
Gibbs algorithm but it will generate unbalanced results, while Hash
partitioning incurs random access to the data structures since fetch-
ing rows of Cw is out of order. Here we adopt a two-level par-
tition algorithm that first partitions Cw into consecutive partitions
through range partitioning and then assigns each partition to servers.
To avoid generating unbalanced results, we vary the number of
words in each partition at the range partitioning phase, since we
can estimate the cost of each word. For a given word w, the com-
munication cost costw is the smaller value between pullw and
pushw, where pullw is the cost of pulling word w from server,
while pushw is the cost of pushing w to server.

costw = min(pullw, pushw)

= min(min(K, dw)×min(P, dw), dw × Ld)

where dw is the degree of wordw and P is the number of partitions.
Thus, the number of words in each partition can be adjusted to
generate partitions that incur approximately the same cost. Then
we traverse the generated partitions and assign them to servers one
by one. At each step, we choose the server with the minimum cost
to place a new partition.

Partitioning of Cd. The partitioning of Cd is determined by
the partitioning of documents. Since the distribution of document
length is more balanced than the frequency of word, we partition
the documents through hash partitioning. The detail of the imple-
mentation is described in Section 5.2.

Synchronization. Existing systems, such as YahooLDA, require
a global barrier to synchronize the multiple copies of Cw on dif-
ferent workers, which induces extra network waiting overhead. By
partitioning Cw into different partitions with each one contain-
ing consecutive words, we employ a fine-grained synchronization
mechanism to overlap the synchronization operation and computa-
tion. First, the sampling operations are divided into multiple small
units where each one is exactly one partition of Cw. Therefore,
after one worker finishes sampling one partition (both on workers
and servers), its updates for Cw are pushed to servers and synchro-
nization is started for this partition. Hence, the synchronization of
different partitions can take place at different times. Most times,
when the computation of one iteration is finished, the synchroniza-
tion operation can also be completed at the same time.

5. SYSTEM IMPLEMENTATION
In this section, we describe the implementation details of LDA∗.

We built LDA∗ with the architecture described in Section 4. Be-
sides workers and servers, we employ a master node to manage the
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Figure 7: push and pull message encoding
running states of them. Users submit their tasks and then LDA∗ is
launched on Yarn. LDA∗ reads data stored on HDFS and dumps
the model to HDFS after finishing. We use Netty and Protobuf to
construct the Remote Procure Call framework for LDA∗.

5.1 Encoding of Messages
To further reduce the network cost, we compress the network

messages according to the distribution of words and the sparsity
of Cw and Cd. The sparse property enables us to use different
formats to encode rows with different size. The skew distribution
of words indicates that the frequency of most words is small. Since∑
k Cwk = dw, the value of Cwk can be stored with Byte type for

all k if dw ≤ 256.
Figure 7 gives one example of our encoding method. There are

two rows in this example. The first element of each row is the
length value. If the length of this row equals to K, then this row is
encoded by dense format. Otherwise, this row is encoded in sparse
format. For each row, If the maximum value is less than 256, we
encode all the elements as Byte type. The second element is one
byte value, which indicates the data type of this row. For sparse
format, the key is required to be stored and its range is [0,K]. Usu-
ally, the number of topics to be inferred varies from 5000 to 10000.
Hence, we use Short type to store the key. This method of encoding
is easy to construct and can significantly reduce the communication
cost. This encoding format is used both for pushing Cd and pulling
Cw in each iteration.

5.2 Data and Parameter Partition
LDA∗ supports automatically partitioning both documents and

parameters. The partitioning happens at the start of training.

Partition of Documents. The goal of documents partitioning
is to avoid stragglers by generating balanced results. In produc-
tion clusters, the input data is stored as multiple files on HDFS (or
other types of distributed file system), and each file is splitted into
multiple blocks with each one stored on different nodes. Instead of
incurring an extra shuffle phase, here we employ the location and
meta information of each block to achieve balance. In the train-
ing process, the computation load is proportional to the number of
tokens. Therefore, we can balance the computation of workers by
balancing the size of each partition. So, we first collect the infor-
mation of all blocks from the NameNode of HDFS, including the
length of each block and the node locations. Then we can calculate
the upper bound of data size for each partition. We then employ a
heuristics algorithm, which assigns blocks to workers one by one.
At each step, we find out the worker which shares most blocks re-
siding on the same node of the current block. If the data size of
this worker is lower than the upper bound, we assign this block to
this worker. Otherwise, we assign this block to the worker with the
smallest computation load.

Partition of Parameters. To implement the algorithm described
in Section 4.2, we need the frequency distribution for the dataset,

which can be obtained by a sequential scan of the data. In practice,
we allocate another shared matrix on servers to derive the word
frequency distribution. Then, we can perform the partitioning op-
eration for Cw. LDA∗ enables users to create and allocate a shared
matrix during the running process. The partitioning phase will gen-
erate a list of partition keys, where each key contains the meta infor-
mation of the partition. Each server will fetch the partition keys be-
long to it from the master and the routing information which maps
the partition keys to the location of servers will be broadcasted to
all workers. After that, we can start training.

5.3 Fault Tolerance
Our system provides tolerance ability for errors and machine

failures. For network errors, there is a checking thread at worker
which periodically monitors all network requests. If any one is
timed out due to server errors or package loss, this thread will retry
the request. If this request still fails after a couple of repeated at-
tempts, worker reports the server failure to the master.

We provide mechanisms to handle failures for three main roles
in LDA∗, including master, server and worker. Since their compu-
tation and computation patterns are different, we design different
mechanisms. Since both Cw and Cd are just count matrices which
can be recomputed from the topic assignments of tokens, we only
take snapshots of topic arrays during execution.
Server: The failure of a server can be detected by the interruption
of heartbeat messages or the reports from workers. In case of server
crash, the master reallocates a container and starts a new server.
Then all workers recompute the partitions of Cw which belong to
the crashed server and then push them to the new one.
Worker: The failure of a worker can only be detected by the time-
out of heartbeat messages. Once a worker encounters any error, the
master starts a new worker. The new one reloads the documents
from HDFS. Furthermore, it loads the snapshot of topic arrays and
rebuilds the data structures required by the hybrid sampler. In order
to guarantee data consistency, we need to recompute Cw accord-
ing to the topic arrays. Therefore this worker cleans up the value of
Cw stored at servers through the interface of LDA∗. After that, all
workers recompute the values of Cw and push it to servers. After
the rebuilding of Cw, the computation can continue.
Master: The failure of master can be detected by the Resource
Manager (RM) of Yarn. The master maintains both static and dy-
namic informations of a running job. The static information in-
cludes the data partitioning and parameter partitioning information
while the dynamic information contains the running states of work-
ers and servers. The static information only needs to be dumped
once after the initialization of job while the dynamic information
requires to be written into HDFS periodically during the running
time. Once the master is crashed, the RM will kill all workers and
servers then restart a new master. The new master reloads both
static and dynamic informations from HDFS and launches workers
and servers. Each worker loads the snapshot of the topic assign-
ments from HDFS and rebuilds Cw and Cd. Then the values of
Cw will be pushed to servers and the training can be restarted.

5.4 Other Details
Aggregation Functions. We implement aggregation methods
for parameters to facilitate other computation operations. One ex-
ample is to calculate the summation of log likelihood value for
words. This calculation requires traversing each non-zero value
of Cw and deriving the summation of logGamma(Cwk + β) −
logGamma(β). Since Cw is stored on different servers, LDA∗

enables the acquisition of results by conducting the aggregation op-
erations on servers at the pull phase to avoid extra data fetching.
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Table 1: Dataset Statistics
dataset #docs #words #tokens average

doc length
sparse text
size

NYTimes 300K 102660 99M 331 1GB
PubMED 8.2M 141044 737M 90 4GB
Tencent 2.5M 88916 1.26B 504 5.6GB
BaiKe 2.8M 98234 418M 148 2.3GB

Production1 159M 3759618 19B 122 90GB
Production2 507M 5588297 60B 119 270GB
Production3 2.2B 3911813 308B 138 1.8TB

Network transfer control. To avoid OOM exception on servers
, we impose size limitations to the pull and push methods at the
worker side. First, we put a constraint on the overall size of network
requests. Second, we limit the total number of partition requests for
each server. The size of each partition is maintained at the worker
side to obtain a precise estimation for the response message of each
pull operation. The value in this size cache is periodically updated
through the aggregation method described above.

6. EVALUATION
We evaluate LDA∗ and compare it with state-of-the-art systems

for LDA. We also validate that both of our technical contributions,
including the hybrid sampler and asymmetric parameter server ar-
chitecture, significantly improve the performance of our system.

6.1 Experimental Setup
Datasets. Table 1 summarizes the datasets we used. We use
smaller datasets, including NYTimes, PubMED, Tencent, and BaiKe,
to evaluate the speed of samplers in a single machine and com-
pare the performance of different systems using larger datasets,
including Production1, Production2, Production3, to evaluate the
effects of LDA∗ in the production cluster. Compared with the other
three datasets, BaiKe is a dataset with many long documents as
well as many short documents. NYTimes and PubMED are public
datasets3, while the other datasets are from our industry partner.

Baseline Systems. We compare our system with Petuum [25]
and LightLDA [28]. Petuum is a distributed machine learning sys-
tem with parameter server architecture. It employs AliasLDA as its
sampler at each worker. The distributed implementation of LightLDA
also uses a standard parameter server architecture.

Experiment Setting. We conduct distributed experiments on
a shared cluster provided by our industry partner with 4600 ma-
chines, where each one has a 2.2GHz CPU with 12 cores, 64GB
memory and 12 × 2TB SATA hard disks. Most of the machines
are connected with 10Gbps network while a fraction of them are
connected with 1Gbps network. For the distributed settings, the
size of JVM heap for worker is 8GB, while it is 4GB for server.
Following prior arts, we set the hyperparameters α = 50.0

K
and

β = 0.01 for all the following experiments. We also compare with
existing systems on a smaller-scale cluster, such that all systems
can scale. This cluster contains 20 machines, each of which has a
2.2GHz CPU with 16 cores, 64GB memory and 12 × 2TB SATA
hard disks.

Metrics. We measure the quality of an LDA model by the log
joint likelihood, which can be calculated by

L = log p(W,Z|α, β) = log
∏
d

[
Γ(α)

Γ(α+ Ld)

∏
k

Γ(αk + Cdk)

Γ(αk)
]

∏
k

[
Γ(β)

Γ(β + Ck)

∏
w

Γ(β + Cwk)

Γ(β)
]

3https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

We count the wall-clock time for a method to reach a given loglike-
lihood value in order to compare their performance.

6.2 End-to-End Comparison
We validate that, when comparing end-to-end performance, LDA∗

is significantly faster than Petuum and LightLDA. We run over the
PubMED and Tencent datasets and set K = 1, 000. We use 20
workers for all systems.

Compared with Petuum. Figures 8(a), 8(b) show the perfor-
mance comparison between LDA∗ and Petuum. On the PubMED
dataset, to reach the log likelihood value of−6.6e9, LDA∗ requires
about 250 seconds, while Petuum spends 1240 seconds. Therefore,
LDA∗ is about 5× faster than Petuum. There are two reasons that
contribute to the improvement. The first one is our hybrid sampler,
which can outperform AliasLDA on the PubMED dataset. The sec-
ond one is that Petuum incurs a global synchronization operation
after each iteration, while our system avoids this global barrier by
partitioning it into many small synchronization units. For the Ten-
cent dataset, our system is about 9× faster than Petuum since this
dataset contains lots of long documents and AliasLDA performs
poorly on it.

Compared with LightLDA. Figures 8(c), 8(d) present the com-
parison between LDA∗ and LightLDA. On the PubMED dataset, to
achieve the log likelihood value of −6.72e9, LDA∗ needs 272 sec-
onds, while LightLDA needs 2835 seconds. Our system can be
10× faster than LightLDA in this evaluation. Our hybrid sampler
contributes to 5× of the speed increase (refer to the second row
of Table 2 for the evaluation of the contribution). For the Ten-
cent dataset, our system can still be 2.6× faster than LightLDA.
The main reason for the degradation of improvement is that the
hybrid sampler presents similar performance with LightLDA over
this dataset. Thus, the improvement is mostly contributed by our
distributed architecture and the careful system implementations.

Lesion Study. To understand the impact of our contribution, we
compare our system with a variant the disable all optimizations we
proposed in this paper. This allows us to make a breakdown for
the performance improvement of LDA∗. According to the results of
Section 6.4.1 and 6.4.3, our two main techniques both make contri-
butions to the performance improvement. Our hybrid samplers can
result a 2×-5× speed up on different datasets and our architecture
can also obtain a 2×-5× speed up under different settings. When
comparing with Petuum and LightLDA, the improvement can be
larger mainly due to our careful engineering efforts.

6.3 Results on Production Cluster
We now present the performance results of running LDA∗ in a

real production cluster to handle large datasets. We use Produc-
tion1, Production2, and Production3 to evaluate the scalability of
LDA∗. We fail to install both Petuum and LightLDA on the produc-
tion cluster, and therefore, we omit the comparison between them.
Figure 9 shows the results. The topic number for all these experi-
ments is set to 8, 000 and we run 100 iterations for all datasets. The
JVM heap size is set to 8 GB for each worker and 4 GB for each
server, while the direct memory size for each is set to 2 GB.

Figure 9(a) shows the speed on Production1. We can see that
LDA∗ can complete 100 iterations in about 110 minutes with 100
workers. When using more (200) workers, it further decreases to
58 minutes—a near linear speed up. Similar results can be seen in
Figure 9(b). One reason for the scalability of LDA∗ is that the net-
work waiting time is siginificantly reduced by our synchronization
method. Moreover, the skew-aware partitioning strategy generates
balanced results which avoids the communication bottleneck.
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Figure 8: Comparing LDA∗ with Petuum and LightLDA
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Figure 9: Results with three large datasets on Real Production Cluster.

Table 2: Wall-clock time (seconds) for samplers to reach the
same log likelihood.

dataset K& L F+ Alias Light Warp Hybrid

PubMED
1k&-6.6e9 2489 2865 11024 4400 2322
8k&-6.7e9 2851 3355 13045 7389 2212

16k&-6.8e9 3115 3580 15426 8957 2713

NYTimes
1k&-9.7e8 712 879 1600 750 431

8k&-1e9 706 781 1760 761 592
16k&-1e9 589 709 1377 554 403

Tencent
1k&-9e9 3500 5108 3564 3087 2142
8k&-9e9 7746 11839 7500 4747 4341

16k&-9e9 9910 14072 7800 5894 5773

BaiKe 8k&-3.6e9 1893 2505 3308 2045 1158
16k&-3.6e9 2763 3065 6930 3792 1779

Figure 9(c) shows the performance when training Production3
dataset. We use 1,000 workers and 1,000 servers to scale the train-
ing for this dataset, and it can complete in about 4 hours. These
experiments demonstrate that LDA∗ can train large datasets with
1,000 workers in a real production environment. Moreover, we can
obtain convergence in hours to satisfy the requirements of work-
loads in real world.

6.4 System Tradeoffs
We now validate that each of our contributions has significant

impact on our end-to-end performance.

6.4.1 Hybrid Samplers
Table 2 gives a summary of the performance for all samplers by

presenting their wall-clock time to a given value of loglikelihood.
We see that our hybrid sampler outperforms the fastest existing

samplers on all datasets. On NYTimes and BaiKe, which con-
tains both short documents and long documents, our sampler can
outperform both F+LDA and WarpLDA by 1.7-2.1×. This is be-
cause our sampler is able to choose the most appropriate sampler to
use. For PubMED dataset, our hybrid sampler is 2-3× faster than
WarpLDA, while having comparable performance to F+LDA. For
Tencent dataset, our hybrid sampler is 1.7× faster than WarpLDA
and is comparable with WarpLDA. For the detailed analysis of
other samplers, please refer to Section 3.1.

6.4.2 Tradeoff of K and Ld

We now validate that both Ld andK form a tradeoff between SA
and MH samplers.
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Figure 10: Tradeoff point of Ld and K
Tradeoff of Ld. To determine the tradeoff point of Ld, we con-
struct five datasets with different document lengths. The first dataset
consists of documents with Ld ∈ [0, 200), while the second one
contains documents with Ld ∈ [200, 400). The lengths of docu-
ments for the other three datasets are [400, 600), [600, 1, 200), and
[1, 200, 2, 000). We run F+LDA and WarpLDA with K = 8, 000
on these five datasets and their wall-clock time to reach the same
convergent loglikelihood are shown in Figure 10(a). From this fig-
ure, we can see that on dataset with Ld ∈ [0, 200), F+LDA is 2×
faster than WarpLDA, while F+LDA is 2× slower than WarpLDA
on the dataset with Ld ∈ [1, 200, 2, 000). For the dataset con-
taining documents with Ld ∈ [400, 600), F+LDA and WarpLDA
present nearly the same performance. Therefore, in our implemen-
tation of the hybrid sampler, we use F+LDA for documents with
length less than 600 and choose WarpLDA otherwise.

Tradeoff of K. To determine the tradeoff point of K, we eval-
uate both F+LDA and WarpLDA on the Tencent dataset with K
range from 100 to 1,000. The wall-clock time to reach the same
loglikelihood value is presented in Figure 10(b). We can see that
F+LDA can outperform WarpLDA whenK is small, while WarpLDA
is faster when K becomes larger. The cross point happens when
K ' 600 in our experiments. Therefore, in our implementation
of the hybrid sampler, we use F+LDA when K is less than 600;
otherwise we use WarpLDA.

6.4.3 Asymmetric Architecture
Overall Impact. Figure 11 shows the overall performance of
three different datasets, with and without our asymmetric architec-
ture and skew-aware partitioning, respectively. We run both for 100
iterations and set K = 1000. We also set K = 8000 for Produc-
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(d) Production2(K=8000)
Figure 11: Impact of Asymmetric Architecture and skew-aware partitioning
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Figure 12: Reduced communication cost

tion2. We see that on both PubMED and Production1, even with
only 20 machines, an asymmetric architecture and the skew-aware
partitioning strategy speed up our system by 2×. For the Produc-
tion2 dataset, we can obtain about 3× performance speed up when
K = 1000 since communication cost dominates the overall perfor-
mance when training with more words and more workers. When
K is set to 8000, the performance improvement can be increased to
5 times since larger K results in more communication costs.

Communication cost. Figure 12 shows the effects of the asym-
metric architecture on the communication cost. We use both Pro-
duction2 and Production3 to conduct this evaluation. The partition
number for Production2 (resp. Production3) is set to 300 (resp.
1,000). On Production2, an asymmetric architecture can reduce
about 45% of the communication cost for the first iteration and 34%
of costs for the first 30 iterations. On Production3, an asymmetric
architecture can save about 55% of the communication cost for the
first 30 iterations. Although the improvement decreased along with
the iterations—due to the decreased size of Cw— the reduced cost
for the first dozens of iterations can help improve the performance.

Effects of Partition Method. We now run experiments 4 on
Production1 with 100 workers and 100 servers to validate the im-
pact of our skew-aware partitioning method. We partition Cw into
3,000 partitions and assign them to servers. Figure 13(a) shows the
amount of data that gets pushed at the first iteration for two different
partition methods: (1) The Range and Hash method first partitions
Cw with range partitioning, using a balanced word count in each
partition, and then hashes each partition to servers; and (2) The
Skew-Aware method partitions the Cw as described in Section 4.2.
We see that the skew-aware method can generate balanced partition
results for each server. Figure 13(b) presents the convergence rate

4When running with other two large datasets, the Range and Hash method always
fails due to the OOM exception on the workhorse server.
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Figure 13: Effects of skew-aware partitioning.
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Figure 14: Effects of encoding method on Production2.

under these two partition methods. The skew-aware method can be
about 50% faster.

6.4.4 Effects of Compressed Encoding
We now validate the impact of the compressed encoding method

described in Section 5.1. We conduct the experiments on Produc-
tion2 with 300 workers and 300 servers. We measure the total
message size over all workers at each iteration. We compare our
method with the CSR format because the pulling response and the
pushing requests are sparse.

Figure 14(a) and Figure 14(b) show the amount of network mes-
sages through pulling and pushing in each iteration respectively.
We see that our encoding method can reduce the communication
cost by 2× to 4×. For the pushing request, our encoding method
can decrease the network communication from 80GB to 23GB at
the first 20 iterations. For the pulling operation, we can save more
than 500GB data at the start of training. Therefore, we can dramat-
ically reduce the communication cost through this method, which
saves a massive amount of communication cost and guarantees the
successful running of each worker and server.

7. RELATED WORK
Samplers for LDA. There are a range of Gibbs samplers that
have been proposed to reduce the sampling complexity of LDA.
SparseLDA [26] is the first to take advantage of the sparse struc-
ture of Cd and Cw to achieve O(Kd + Kw) sampling complex-
ity. However, for a large dataset, the value of Kw for popular
words equals to K—AliasLDA [12] and F+LDA [27] further re-
duces the complexity to O(Kd) by factorizing the posterior distri-
bution. LightLDA [28] proposes an O(1) method by alternately
sampling from two simple proposals through MH method, while
WarpLDA [2] reorders the sampling operations from these two pro-
posals to reduce random memory access. Although the complexity
for one sampling operation isO(1) for them, we find that they need
more sampling operations to generate one sample, since the MH
method requires mix time. FastLDA [19] uses the skew property of
Eq. 1 to calculate only a fraction of the K topic probabilities per
sampling operation.

Those samplers are all designed for a specific tradeoff space
which can lead to suboptimal solutions. We systematically study
the tradeoff space for Gibbs sampling algorithm and build a hybrid
sampler, which employs an automatic optimizer to choose one from
them according to the length of document and the value of topic.
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To our best knowledge, our study is the first one which explores the
tradeoff space and builds a novel sampler to acchieve speed up.

Distributed LDA. To scale up the training of LDA for large
datasets, different researchers have proposed different paralleliza-
tion methods. All parallelization methods partition documents into
multiple partitions and each worker conducts sampling operations.
AD-LDA [16] proposes an approximate sampling method where
each worker uses the stale version of the Cw matrix and requires
synchronization among all workers after each iteration. PLDA [24]
is an MPI and MapReduce implementation of AD-LDA. PLDA+ [14]
proposes to sample over word order at each worker and then utilize
the pipeline method to overlap the computation and communica-
tion. YahooLDA [20] proposes a distributed key-value cache to
share the Cw matrix among different workers. However, it sam-
ples tokens through document order and requires maintenance of
one copy of Cw at each worker. NomadLDA [27] utilizes the no-
mad token to perform asynchronous sampling while guaranteeing
there will be no update conflicts.

Parameter Server. A variety of systems [13, 8, 25, 9] em-
ploy the parameter server architecture for distributed ML. Parame-
terServer [13] employs 6,000 machines to train LDA with 5 million
distinct words and 2000 topics. However, it still takes more than 20
hours to reach convergence, while LDA∗ can obtain convergence in
about 4 hours for 8,000 topics. To avoid update conflicts to the Cw,
Petuum [25] employs a central scheduler to schedule the computa-
tion tasks of each epoch. However, this central scheduling imposes
a constraint to the scalability of Petuum and degrades its perfor-
mance. Jiang [8] proposed a heterogeneity-aware SGD algorithm
beyond a standard parameter server system, Angel [9], in order to
eliminate the impact of stragglers in production environment. But,
the dynamic learning rate schedule method from [8] cannot be ap-
plied to inference LDA since LDA is solved by Gibbs Sampling
rather than SGD. Therefore, LDA∗ employs an asymmetric archi-
tecture to decrease the communication cost and a skew-aware par-
titioning strategy to balance the loads of different servers.

Other Inference Algorithms. In this paper, we focus on sampling-
based approaches such as Gibbs sampling and Metropolis-Hastings.
Apart from these approaches, Variational Inference is another pop-
ular algorithm [22, 1], which finds a distribution to approximate
the posterior distribution of LDA. Although Collapsed Variational
Inference can be faster than traditional CGS algorithm, it is slower
than recent state-of-the-art samplers. Moreover, there is no research
on how to utilize the sparse property to reduce memory cost—it re-
quires storage of an array of length K for each token. Stochastic
learning method is another alternative to provide faster convergence
speed and lower memory cost. Related studies include stochastic
variational inference (SVI) [7], stochastic collapsed variational in-
ference [3], and stochastic gradient Riemann Langevin dynamics
(SGRLD) [17]. We hope our study can be used to speed up these
variational and stochastic algorithms in the future.

8. CONCLUSION
In this paper, we systematically studied the state-of-the-art sam-

plers for LDA and discoverd a tradeoff between the Sparse-Aware
sampler and Metropolis-Hastings samplers. Based on this tradeoff,
we developed a hybrid sampler that employs different samplers for
documents of different lengths. We further proposed an asymmetric
parameter server to achieve scalability in the distributed environ-
ment. We built a system, named LDA∗, to accelerate and scale the
training of LDA for large datasets in real-world clusters. LDA∗ has
been deployed in Tencent for various workloads of topic modeling.
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