
Interactive Time Series Exploration Powered by the
Marriage of Similarity Distances

Rodica Neamtu
Worcester Polytechnic Institute

Worcester, MA, USA
rneamtu@wpi.edu

Ramoza Ahsan
Worcester Polytechnic Institute

Worcester, MA, USA
rahsan@wpi.edu

Elke Rundensteiner
Worcester Polytechnic Institute

Worcester, MA, USA
rundenst@cs.wpi.edu

Gabor Sarkozy
Worcester Polytechnic Institute

Worcester, MA, USA
gsarkozy@cs.wpi.edu

ABSTRACT
Finding similar trends among time series data is critical for
applications ranging from financial planning to policy mak-
ing. The detection of these multifaceted relationships, es-
pecially time warped matching of time series of different
lengths and alignments is prohibitively expensive to com-
pute. To achieve real time responsiveness on large time se-
ries datasets, we propose a novel paradigm called Online
Exploration of Time Series (ONEX) employing a powerful
one-time preprocessing step that encodes critical similarity
relationships to support subsequent rapid data exploration.
Since the encoding of a huge number of pairwise similarity
relationships for all variable lengths time series segments is
not feasible, our work rests on the important insight that
clustering with inexpensive point-to-point distances such as
the Euclidean Distance can support subsequent time warped
matching. Our ONEX framework overcomes the prohibitive
computational costs associated with a more robust elastic
distance namely the DTW by applying it over the surpris-
ingly compact knowledge base instead of the raw data. Our
comparative study reveals that ONEX is up to 19% more
accurate and several times faster than the state-of-the-art.
Beyond being a highly accurate and fast domain indepen-
dent solution, ONEX offers a truly interactive exploration
experience supporting novel time series operations.

1. INTRODUCTION

1.1 Motivation
1In applications ranging from finance, business, medicine

to meteorology [14],[24], time series data is prevalent, pre-
sented as stock fluctuations, ECG, rainfall amounts, etc.

1First two authors equally contributed to the work
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Motivating example. Let’s consider a real life example
revealing challenges involved in finding and leveraging data
similarities for decision making. In 2013 in Massachusetts,
organizations set out to repeal the Sales and Use Tax on
computer and software services, perceived as potentially hav-
ing a negative impact on the economic health of the state.
Data-driven evidence was analyzed to show similarities be-
tween tax rates over time and fluctuations of social and eco-
nomic factors, all modeled as time series, obtained from a
large spectrum of public governmental websites. Many diffi-
culties were encountered, chief among them being the time
to find and interpret the similarities between economic in-
dicators represented as time series.

(1) The presence of data from different domains reported
over specific intervals requires the comparison of time series
of different lengths and alignments, as the impact of a tax
change might take different durations to become apparent.
Such time-aware comparisons must be performed using ro-
bust distances like Dynamic Time Warping (DTW) [5]. The
“power” of these measures, beneficial in terms of accuracy, is
shadowed by their computational complexity and thus slow
time responsiveness even for medium size datasets.

(2) During this process analysts used specific indicators,
like the growth rate, to evaluate the potential impact of in-
troducing a new tax. For example, they “designed” a sample
growth rate time line indicative of a positive impact of the
tax and searched for matches among all states. In such sce-
nario, it is possible that the sequence may or may not exist
in the dataset. Perfect matches, if found, reflect similar im-
pacts in those specific states while close matches indicate
slightly different impacts in specific states. Thus analysts
need to have the ability to explore large time series data by
using sample sequences that might or might not be present
in these datasets.

(3) Analysts had to answer complex questions that were
not necessarily based on finding the best match sequence.
For example, they searched for recurring similarity patterns
such as the growth rate of a state over a few years as well as
similar growth rates and other economic indicators in dif-
ferent states over specific time lengths, indicating similar
“short-term” impacts.

(4) Data from diverse domains requires the use of differ-
ent parameter settings such as similarity thresholds, leading
to repeated and redundant computations for each parame-
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ter setting. For example, the most suitable thresholds for
studying similarity of demographic data are different than
the ones used for growth rates.

1.2 Research Challenges and Limitations of
the State-of-the-Art

1. High data cardinality leading to decreased res-
ponsiveness. Time series datasets like financial records or
collections of ECG data tend to be huge. Worse yet, the need
for accommodating different temporal granularities requires
us to consider time series of different lengths. For a dataset
containing N time series, each of length n, the total number
of subsequences to consider is Nn(n − 1)/2. For example,
a benchmark dataset like StarLightCurves from the UCR
Time Series Data Mining Archive2 with 9236 time series,
each of length 1024, is composed of 4.83e9 subsequences.
Real-world datasets tend to be orders of magnitude larger
than this3. Performing similarity comparisons for all these
subsequences is clearly impractical.

Many state-of-the-art techniques try to address this lack
of instantaneous responsiveness. Lag in responsiveness
risks losing an analyst’s attention during the exploration
process. The state-of-the-art is faced with the trade-off be-
tween accuracy and time response, especially in exploring
very large datasets. Some systems provide an exact or a
highly accurate solution [1], [19], [26] at the expense of a
timely response. This could be detrimental for applications
in medicine and finances that depend on immediate answers
to act on. Others [2] use a preprocessing step to improve the
timely responsiveness. However, their requirement for set-
ting many different parameters limits their efficiency [22].
2. Supporting comparisons of sequences of differ-
ent lengths and alignments. To compare sequences of
different lengths and alignments, robust distances such as
DTW [5] must be used. To precompute, store and explore
the huge number of pairwise similarity comparisons between
sequences using DTW is not feasible even for datasets that
are not very large. Many systems resort to either accept-
ing increased time responses or settling for using faster-to-
compute distances, at the expense of decreased accuracy.

The state-of-the-art has been wrestling with the com-
promise between the choice of similarity distance and
time responsiveness. Many applications rely on the use of
fast-to-compute distances like the Euclidean Distance [12],
[16], [31] to achieve a fast response time. As a consequence
they cannot handle sequences that are not aligned or have
different lengths. Yet the use of time-warping distances like
DTW is overshadowed by their computational complexity
[7], leading to slow responsiveness and poor scaling as data
grows. Applications thus have to make a difficult choice be-
tween the ability to perform powerful comparisons and the
resulting time delays and storage demands.
3. Offering rich classes of exploratory queries. As
shown in our motivating example, getting insights into data
involves not just finding the best match for a sequence, but
also discovering similarity patterns. Thus, such requirement
compounds the previous challenges.

For this reason, most state-of-the-art systems suffer from
lack of flexibility in exploring similarity and focus only

2 www.cs.ucr.edu/ eamonn/time series data/
3https://followthedata.wordpress.com/2014/06/24/data-
size-estimates/

on finding the best match for a sequence [22], [12], [18]. An-
alysts would benefit from having the opportunity to answer
other complex questions related to similarity, including find-
ing patterns using the same system. This would help them
to better understand the datasets.
4. Supporting guided similarity exploration and the
use of varying similarity thresholds. Analysts in dif-
ferent domains interpret similarity differently and need to
use different parameter settings like similarity thresholds.
Keeping the result set for each possible similarity parame-
ter is inefficient, resulting in large storage and repeated com-
putation. Many state-of-the-art systems can not overcome
the difficulty of supporting varying similarity param-
eters. Understanding the way similarity between time lines
changes when using different parameter values is critical for
analysts. Unfortunately, most existing systems [19], [22],
[26] do not support flexible similarity insights.

Most state-of-the-art systems suffer from the lack of pa-
rameter recommendations. Analysts may not know the
precise parameter settings that would result in the most in-
teresting similarity results. It might take many successive
trial-and-error interactions using different parameter values
to get insights from the data. Existing exploratory sys-
tems [2], [12], [17] tend to be “black boxes” that provide
no suggestions for parameter settings. A system that makes
recommendations for parameter tuning would help analysts
in finding similarities using fewer trial-and-error attempts.
include the well-known Euclidean distance (ED) [12], Dy-
namic Time Warping (DTW) [5],[18] and distances based
on Longest Common Subsequence (LCSS) [29]. They all
involve trade-offs between the choice of distance which is
connected to the ability to perform time warping and the
time response.

In summary, it is very difficult to build interactive systems
for the efficient exploration of time series. Such systems
might compromise between the choice of similarity distance
and time responsiveness. Even the most promising solutions
focus on a specific class of queries, still leaving room for im-
provement in the area of answering richer classes of queries.

1.3 Our ONEX Approach
ONEX offers a viable answer to the trade-off between the

need for real time responsiveness and the high computa-
tional complexity due to the use of non-metric distances
for comparing sequences with different lengths and align-
ments. Because it is prohibitively expensive to use DTW,
we solve this problem by employing two distances: while we
use the computationally inexpensive Euclidean Distance to
construct compact similarity groups for specific lengths, we
are able to support the exploration of these groups using a
robust time-warping method: DTW [5]. This unique combi-
nation yields very accurate results at much reduced response
time rates, as DTW is successfully applied over the compact
ONEX base instead of the raw data.
Contributions:

1. We formally prove a triangle inequality between ED
and DTW that builds a conceptual bridge between
the offline construction of the ONEX base and its on-
line exploration. Our solution offers a viable answer to
the trade-off dilemma between the use of complex time
warped distances and timely responsiveness. (Sec. 3.2).

2. We precompute critical similarity relationships between
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subsequences and preserve them in the form of “sim-
ilarity groups” and their representatives (Sec. 3.1).
The resulting ONEX base plays a key role in achiev-
ing interactive responsiveness.

3. Our query strategies enable analysts to get insights
into datasets by exploring similarity and its recurring
patterns. ONEX also provides analysts with param-
eter tuning guidance to give a better intuition of the
major changes in similarity. (Sec. 5.1)

4. Our experimental performance shows that ONEX is
several times faster than the fastest known method
[22] and many orders of magnitude faster than [19] and
[26]. In addition, ONEX is up to 19% more accurate
than [22] for traditional similarity queries (Sec. 6).

2. KEY CONCEPTS USED IN ONEX
A time series X = (x1, x2, ..., xn) is a sequence of n real

values. A dataset D = {X1, X2, ..., XN} is a collection of N
such time series.

Definition 1. The subsequence of a time series Xp,
denoted (Xp)ij, is a time series of length i starting at position
j where 1 ≤ i ≤ n and 0 ≤ j ≤ n− 1.

We discuss in this paper the Euclidean Distance (ED) and
Dynamic Time Warping (DTW)[5].

Definition 2. Given two time series of equal length X =
(x1, ..., xn) and Y = (y1, ...yn), their Euclidean distance
(ED) is defined as:

ED(X,Y ) =

√√√√ n∑
i=1

(xi − yi)
2 (1)

Unfortunately, two time series can be similar while having
a large ED when they are not aligned. Thus the distance
measure Dynamic Time Warping (DTW) [5] that solves this
problem has been developed. DTW allows for one-to-many
alignment between points from the two to-be-compared time
series to support both time shifting as well as sequences of
distinct lengths. ED, which corresponds to a one-to-one
mapping of the pairs of points composing the time series,
can be seen as a special case of DTW.
Dynamic Time Warping. Suppose we have two time se-
ries X = (x1, x2, ..., xn) and Y = (y1, y2, ..., ym). To align
these sequences using DTW, an n ×m matrix M(X,Y ) is
constructed, where the (i, j)th element of the matrix is the
Euclidean Distance between xi and yj , i.e., wi,j = ED(xi, yj).
Then a warping path P is a set of elements that forms a
path in the matrix from (1, 1) to (n,m). The tth element
of P denoted as pt = (it, jt) refers to the indices it, jt of
(xit , yjt) of this matrix element in the path. Thus a path
P is P = (p1, p2, . . . , pt, . . . , pT ), where n ≤ T ≤ 2n − 1,
p1 = (1, 1) and pT = (n,m).

Definition 3. Given two time series X = (x1, ..., xn)
and Y = (y1, ..., ym), the weight of the warping path P is
defined as:

w(P ) =

√√√√ T∑
t=1

w2
it,jt

(2)

The DTW distance between X and Y, or DTW(X,Y), is
defined to be the weight of the path P with the minimum
weight among all possible warping paths. (minP (w(P )).

This path can be calculated using dynamic programming
[25]. More details can be found in [20, 22].

Definition 4. Two time series X and Y are similar if
the chosen distance such as ED or DTW between them is
within the given similarity threshold ST , or Dist(X,Y ) ≤
ST where Dist ∈ {ED,DTW}.

The following normalized distances are crucial for establish-
ing our theoretical foundation of time-warped retrieval.

Definition 5. Given two time series X and Y , we define
their Normalized Euclidean distance as:

ED(X,Y ) = ED(X,Y )/
√
n =

√√√√1/n

n∑
i=1

(xi − yi)
2 (3)

with ED(X,Y ) as defined in Def. 2.

Definition 6. Given two time series X and Y , with m ≤
n, their Normalized DTW distance DTW is defined as

DTW (X,Y ) = DTW (X,Y )/2n (4)

with DTW (X,Y ) as defined in Def. 3.

Without loss of generality, we use m ≤ n, but m and n are
interchangeable.

3. THEORETICAL FOUNDATION OF ONEX
FRAMEWORK

Here we establish a formal foundation for our ONEX frame-
work. As core, we prove a triangle inequality between ED
and DTW, which is conceptually similar to the well-known
triangle inequality for ED. This allows us to build a compact
space of representative sequences, called the ONEX base,
based on the ED distance, and then to process DTW-based
queries against this compact space instead of raw time series
- while still guaranteeing the quality of the retrieval process.

3.1 ONEX Similarity Groups
Our ONEX base compactly encodes similarity relation-

ships between all subsequences of the time series in D. As
foundation, we group subsequences of the same length that
are similar according to Def. 4 using the ubiquitous and
inexpensive ED distance into so called “ONEX similarity
groups” and then summarize these groups by a carefully
chosen representative, as further described below.

Definition 7. Given a group S of time series of equal
length i, then the representative Ri

k of S is defined as the
point-wise average of the sequences in the set S [10]. That
is, Ri

k = avg((Xp)ij), for all (Xp)ij ∈ S.

We now introduce the notion of ONEX similarity groups
that encode similarity relationships between subsequences
by imposing several key requirements that, as we prove in
Sec. 3.2, assure that these groups instead of the raw data
can be safely explored through their representatives.

Definition 8. Given the set T of all possible subsequences
(Xp)ij of the time series of dataset D, assume these subse-

quences (Xp)ij ∈ T are grouped into similarity groups with

their respective representatives Ri
k, such that all subsequences

(Xp)ij ∈ T are in one and only one group Gi
k. These simi-

larity groups are defined to be ONEX similarity groups,
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denoted by Gi
k, if the following three properties hold:

(1) all subsequences (Xp)ij in a group Gi
k must have the same

length i,
(2) ED between any (Xp)ij in Gi

k and the representative

Ri
k of this group Gi

k is smaller than half of the similarity
threshold ST used by the system, that is ED((Xp)ij , R

i
k)) ≤

ST/2, ∀i, j ∈ [1, n]∀p ∈ [1, N ].
(3) ED between the subsequence (Xp)ij and the represen-

tative Ri
k of the group Gi

k is the smallest compared to ED
of (Xp)ij and all other representatives Ri

l of the same length i

defined over D, or ED((Xp)ij , R
i
k)) ≤ ED((Xp)ij , R

i
l))(∀i, j ∈

[1, n])(∀p ∈ [1, N ])(∀l ∈ [1, g]), where g denotes the number
of representatives of length i.

The key requirements for placing sequences into the same
ONEX similarity group are two-fold. First, ED of the se-
quences to the representative of the group must be the small-
est compared to the ED to any other representative, and
second, it is also smaller than ST/2.

Lemma 1. For any two subsequences X and Y belong-
ing to the same group Gi

k, with Gi
k defined in Def. 8, the

ED(X,Y) defined in Def. 5 is within the threshold ST, that
is, ED(X,Y ) ≤ ST , for all X, Y ∈ Gi

k.

Proof. Let X = (xi...xj) and Y = (yi...yj) be two time
series in the same similarity group Gi

k and R = (ri...rj) be
the representative of that group. According to Def. 8, we
have: ED(X,R) ≤ ST/2 and ED(Y,R) ≤ ST/2
Using Def. 5, this means:√√√√ j∑

k=i

(xk − rk)2 ≤ ST/2 (5)

√√√√ j∑
k=i

(yk − rk)2 ≤ ST/2, (6)

We want to prove that: ED(X,Y ) ≤ ST which means:√√√√ j∑
k=i

(xk − yk)2 ≤ ST, (7)

Squaring Equations (5) and (6), we get:

ED2(X,R) =

j∑
k=i

(xk − rk)2 ≤ ST 2

4
. (8)

ED2(Y,R) =

j∑
k=i

(yk − rk)2 ≤ ST 2

4
. (9)

We have:

xk − yk = xk − rk + rk − yk = (xk − rk) + (rk − yk).

Using the Cauchy-Schwarz inequality [27], we get:

(xk − yk)2 ≤ 2(xk − rk)2 + 2(rk − yk)2.

Then using this and Def. 5 and (5), (6), we get:

j∑
k=i

(xk − yk)2 ≤ 2

j∑
k=i

(xk − rk)2 + 2

j∑
k=i

(yk − rk)2

≤ 2(ST 2)/4 + 2(ST 2)/4 = ST 2.

(10)

Extracting the square root we proved that (7) is true. 2

We “represent” each group constructed over a dataset D
by only one single sequence, namely, the group’s representa-
tive. We collect the representatives for all groups over G into
a collection, called the Representative Space (R-Space).

Definition 9. Given a a data set D and a collection of
mutually exclusive groups {Gi

k} covering all sequences of all
lengths i ∈ L, then the set of representatives, with {Ri

k} the
representative of {Gi

k}, along with their associated subse-
quences (Xp)ij in {Gi

k}, is called the Representative space.

Lastly, we compute the pairwise Inter-Representative Dis-
tances between all pairs of representatives.

Definition 10. Given the collection of representatives in
D, i.e., the R-Space, then the Inter-Representative Dis-
tance Dc between two representatives Ri

k and Ri
l of the same

length i of R-Space is defined by Dcikl=ED(Ri
k, Ri

l).

This distance plays a central role in dealing with variable
similarity thresholds, as shown in Sec. 4.2.

3.2 Time-warped Retrieval based on ED-DTW
Triangle Inequality

The cornerstone of our ONEX time-warped retrieval frame-
work is this unique conceptual solution based on proving a
triangle inequality between ED and DTW. We prove that
the similarity between a sample sequence seq provided by
the user and the representative of an ONEX similarity group
as defined in Def. 8 “extends” to all the subsequences in
that group. This empowers ONEX to perform time warped
comparisons of the sample sequence over the compacted R−
Space instead of the entire dataset.

More specifically, if DTW between the seq and the rep-
resentative Ri

k is smaller than ST/2, then we can guarantee
that all sequences in that group Gi

k are similar to this se-
quence seq and that DTW between seq and any of these
sequences is within the similarity threshold ST .

Lemma 2. Given Y ′ = (y′1, . . . , y
′
n) an arbitrary sequence

of length n in any group as per Def. 8), with the repre-
sentative of the group Y = (y1, . . . , yn) and a sample se-
quence X = (x1, . . . , xm), then the following is true: If
ED(Y, Y ′) ≤ ST/2 and DTW (X,Y ) ≤ ST/2 then we have
DTW (X,Y ′) ≤ ST .

Proof. (Case: subsequences of same length:). We
know from Def. 1, Lemma 1 and assumptions of Lemma 2:

ED(Y, Y ′) =

√√√√ n∑
i=1

(yi − y′i)
2 ≤
√
n
ST

2
.

Squaring this we get:

ED2(Y, Y ′) =

n∑
i=1

(yi − y′i)
2 ≤ n

ST 2

4
. (11)

We define matrices M(X,Y ) and M(X,Y ′) as in Section
3. Given the assumptions related to this case we know that
there is a warping path P in M(X,Y ) from (1, 1) to (n, n)
with the DTW weight at most 2nST

2
= nST . We now have

to show that there is a warping path from (1, 1) to (n, n)
in M(X,Y ′) with weight at most 2nST . In fact we will
show that the same warping path P from M(X,Y ) will be
good. Let P be P = (p1, p2, . . . , pt, . . . , pT ), where n ≤ T ≤
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2n − 1, p1 = (1, 1), pT = (n, n), pt = (it, jt). Then from

the assumptions of Lemma 2, we have

√√√√ T∑
t=1

(xit − yit)
2 ≤

2nST
2

= nST. Squaring this, we get:

T∑
t=1

(xit − yit)
2 ≤ n2ST 2. (12)

We want to prove that

T∑
t=1

(xit − y′it)
2 ≤ 4n2ST 2. (13)

We have:

xi − y′i = xi − yi + yi − y′i = (xi − yi) + (yi − y′i)

Using the Cauchy-Schwarz inequality [27], we get:

(xi − y′i)
2 ≤ 2(xi − yi)

2 + 2(yi − y′i)
2.

Then using this and (12), we get:

T∑
t=1

(xit − y′it)
2 ≤ 2

T∑
t=1

(xit − yit)
2 + 2

T∑
t=1

(yit − y′it)
2

≤ 2n2ST 2 + 2

T∑
t=1

(yit − y′it)
2.

(14)

We estimate the second terms as
∑n

i=1(yi − y′i)
2 with some

of the terms repeated. The total number of repetitions is at
most n, since the length of the warping path is at most 2n.
Each fixed term is repeated at most n− 1 times. Thus from
Equations (11) and (14), we have:

T∑
t=1

(xit − y′it)
2 ≤

2n2ST 2 + 2n

n∑
i=1

(yi − y′i)
2 ≤ 2n2ST 2 +

2nnST 2

4
.

(15)

Thus Equation (13) will be true, if we have:

nnST 2

2
≤ 2n2ST 2.

This in turn is true if n2 ≤ 4n2, which is always true. 2

Proof sketch (Case: subsequences of different length)
For Y and Y ′ subsequences of length n where Y is the repre-
sentative of the group, Y ‘ an arbitrary sequence in the group
and X a query sequence of length m, with m ≤ n, without
loss of generality we consider here the case of m ≤ n but
the proof is very similar for n ≤ m. In the DTW defined
in Def. 6 we divide by 2n because the warping path may
have length up to m + n ≤ 2n. Then the matrix M(X,Y )
is an m× n matrix and the warping path connects (1, 1) to
(m,n). Other than this, the proof for sequences of different
lengths and the proof for sequences of the same length are
the same.

4. THE ONEX BASE

4.1 Strategies for ONEX Base Construction
The algorithm for building the ONEX Base, namely, for

finding the groups for specific length subsequences and then

computing their representatives is illustrated in Algo. 1.
As first step, we decompose the existing time series in the
dataset D into subsequences of all possible lengths. We then
randomize the order of subsequences of each length using
the well-known RANDOMIZE-IN-PLACE method [8] to re-
move data-related bias (Lines 1-5). In lines 7-10, we con-
struct the first group by randomly selecting a subsequence
and designating it as the representative of this first group.
Choosing the first representative randomly ensures that the
groups are not biased by the order in which subsequences
are supplied [4]. In lines 12-20, a new randomly chosen
subsequence of the same length is compared with previous
representatives. Among all representatives for which their
ED is smaller than ST/2, the one group with the minimum
distance ED is chosen. Then the subsequence is placed into
this group. Otherwise it will be placed in a new group and
designated as the representative of the new group. We re-
peat this until all subsequences of each specific length are
placed into a similarity group. Lastly, the representative for
each group is determined. The final result is a panorama of
all groups Gi

k and their representatives Ri
k for all possible

lengths. The complexity of the R-Space construction

Algorithm 1: Construction of Similarity Groups and
Representatives for Subsequences of Equal Length

Input: Similaritythreshold ST , TimeSeries {X}, Length L
Output: Representatives {R}, Groups {G}

1 begin
2 {G} = ∅, {R} = ∅
3 Randomized IN Place(X);
4 {X}= all subsequences of length L
5 minSM=0, mink=0
6 for Xp ∈ X do
7 if (G = ∅) then
8 G← G1

9 Gk ← Xp

10 R← Xp

11 else
12 for k = 1 to Representative.count do
13 minSM=closest Representative distance
14 mink=Representative index

15 if (minSM ≤ (sqrt(L) ∗ ST/2)) then
16 Gmink ← Xp

17 update Rmink

18 else
19 G← GK+1 //new Group
20 Rk+1 ← Xp

is O(nl2g) where l is the number of distinct lengths that
each time series is decomposed into, g the total number of
groups and n the number of time series in the dataset. Typ-
ically, n is much larger than l. Certainly l does not tend
to go towards infinity since our initial time series are of a
fixed length, and we furthermore divide them into smaller
numbers. This is in contrast to n which tends to grow with
the size of the dataset. Thus, we can treat l as a constant
in regards to n. The complexity now can be summarized as
O(ng). Regarding g, let’s examine the following probabilis-
tic argument. Suppose we have k groups at some point and
a new time series X comes in. There are (k+1) events that
can happen, X either belongs to the one of the k groups or X
starts a new group. Let‘s make the assumption that these
events are all equally likely. Then the probability that X
starts a new group is 1/(k + 1). How many expected trials
do we need until we get a new group? This is a geometric
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distribution with expected value 1/p so 1/(1/(k+1)) = k+1
[23]. Thus

∑g
k=1(k+1) = n; the expected number of groups

is O(
√
n). Then the complexity becomes O(n3/2), which is

much better than O(n3). Additional discussions related to
the ONEX base can be found in our Tech Report.

4.2 Handling Multiple Similarity Parameters
As described above, our R-Space is constructed using a

specific user-supplied ST. However, analysts might want to
use different thresholds ST ′ to customize their notion of sim-
ilarity based on the application. We thus extend the ONEX
base to incorporate different values for ST, as desired by an-
alysts. More precisely, during the construction of groups we
identify similarity threshold values corresponding to specific
lengths for which the groups of that length change signif-
icantly and incorporate them into a Similarity Parameter
Space (SP-Space).

Definition 11. The SP-Space is a conceptual space with
length L and similarity threshold ST as its dimensions.

We build an SP-Space for each specific length based on es-
tablishing relevant values for similarity thresholds. These
could be SThalf and STfinal indicating when a half and
respectively all precomputed groups of subsequences of a
specific length merge – resulting in major differences in the
result set. In general, two groups merge for a new similar-
ity threshold ST ′, if ST ′ ≥ ST + Dc where Dc is defined
in Def. 10. In Fig. 1 we showcase three specific lengths
and the thresholds for which half and respectively all the
groups of that length merge. For example, for length i we
have SThalf = 0.5 and STfinal = 0.78. This means that
for this specific length half of the groups merge if the ana-
lyst selects a new threshold ST ′ = 0.5 and all groups merge
if ST ′ = 0.78 or higher. These “local” critical thresholds
specific to each length can be combined to find the global
similarity threshold values for which half and respectively
all the groups across all lengths merge. We compute these
“global” critical thresholds SThalf and STfinal by selecting
the maximum of the local values of each length as depicted
with dashed lines in Fig. 1. Choosing the maximum of all
“local” STfinal values to be the “global” STfinal value en-
sures that all the groups of that length merge for a threshold
ST ′ >= STfinal. We use the local and global threshold val-

Figure 1: Similarity Parameter Space

ues to offer guidance in exploring similarity as shown later
in Sec. 5.1. We now introduce the concept of similarity
degree for our system:
S=Strict, where ST ≤ SThalf

M=Medium, where ST in [SThalf , STfinal]
L=Loose, where ST ≥ STfinal.

For the example illustrated in Fig. 1, if an analyst asks
for a recommendation for similarity thresholds ranges for
‘’Strict” similarity, the recommended values are in the range
[0, 0.6]. Any value chosen by the analyst in this interval re-
turns results with “strict similarity”. Lower values chosen in
this interval lead to “stricter” similarity translated in smaller
distances between the similar sequences.

4.3 Storage and Indexing of ONEX Base
ONEX uses in-memory structures that achieve indexing

in linear or constant time. We first construct a Global
Time Index (GTI) as an array indexed by length for quick
retrieval of the set of groups for each specific length. Each
entry in GTI is composed of:

• a vector Vi(k) containing the identifiers k for the groups
Gi

k of a specific length i. They are used to retrieve the
groups associated with that length.

• a two-dimensional array Di(k, j) containing the pairwise
Inter-Representative distances (Dc) between groups Gi

k

and Gi
j of length i. They help refine the results for dif-

ferent user-provided similarity thresholds. (Sec. 5.2)

• an array Si(k, sumk) containing the representatives’ iden-
tifiers and their associated sums of the pairwise Inter-
Representative distances Dc for length i. We sort this
array based on the sum of the distances to optimize
the online search of representatives based on a given
sample sequence.(Sec. 5.3).

• similarity threshold values SThalf and STfinal for length
each i (Sec. 4.2) for local parameter recommendations.

For each group Gi
k, we maintain a Local Sequence Index

(LSI) with the following elements:

• a two-dimensional array EDk(m,EDm) containing the
subsequence identifiers m in the group and their ED
to the representative of the group. Each subsequence
m in the group is a subsequence (Xp)ij further iden-
tified by the time series identifier p and its starting
position j. We sort this array based on the ED to
the representative to optimize the online retrieval of
sequences inside a “selected” group.

• vector containing the representative Ri
k of the group Gi

k.

• array containing the envelopes around each representa-
tive Ri

k using LB(Keogh) [22], which is a well-known
lower bound for pruning unpromising candidates.

5. ONEX ONLINE QUERY PROCESSOR

5.1 ONEX Queries Classes
User-driven analytics in ONEX allow analysts to control

the exploration by providing a target sample sequence seq.
The data-driven analytics provide insights into the dataset
without the user giving a sample sequence as a target match.
Class I: Similarity queries fall into the user-driven query
class. They return time series most similar to a user-supplied
sample sequence seq. If “Match=Any” then sequences of
every possible length are searched, otherwise only sequences
of length l indicated by the sample are considered.
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Q1 OUTPUT Xk

FROM D

WHERE Sim <= min| ST, seq = q

MATCH = Exact(L)|Any

Use Case: A financial analyst may want to retrieve the
stock similar to the stock fluctuations of the Apple Stock
for a specific time period. If the length is not specified, a
similar stock of any length is retrieved. This illustrates the
case when the sample sequence is a sequence present in the
dataset. Alternatively, an analyst can “design” the desired
stock fluctuation of interest and search for the best match
for that sample sequence in the dataset. Such sequence is
likely not to exist in the dataset, but rather the closest match
sequence will be retrieved. Alternatively, referring back to
our motivating example, similar economic indicators, like
economic growth, can be found over specific time intervals
or any time intervals.
Class II: Seasonal similarity queries allow the analyst to
gain insights into the dataset by identifying similarity pat-
terns. In the user-driven class, for example, queries like Q2,
given a sample time series, return the “recurring” similar-
ity by retrieving all similar subsequences of a specific length
that belong to this sample time series. In the data-driven
class, the analyst explores the dataset without a sample
query, by just providing a specific length. The result consists
of groups of similar sequences of the specified length.

Q2: OUTPUT SeasonalSim {Xp}
FROM D

WHERE seq=Xp | NULL

MATCH = Exact(L)

Use Case: For the user-driven class, in the Stock Mar-
ket application, an analyst can find all 30 days long sub-
sequences of the Apple stock having similar prices. In the
data-driven class an analyst can retrieve all the stocks whose
prices were similar to each other over any 30 days periods.
Class III: Similarity threshold recommendations help
the user better understand the dataset by transforming the
intuition of “loose, medium or strict similarity” (introduced
in Sec. 4.2) into actual parameter values. These terms are
connected to the interpretations of similarity based on user
and application domains.

Q3 OUTPUT ST

FROM D

WHERE simDegree=NULL|L|M|S

MATCH = Exact(L)|Any

Use case: Sometimes a user submits mining requests us-
ing different similarity thresholds, yet ends up receiving the
same or very similar results. In such situations Q3 saves
time and effort by allowing the user to make use of simi-
larity thresholds that will cause a difference in the output.
For example, if a user is not sure what value to use for a
similarity threshold, then when prompted for the similar-
ity strength they are interested in, they can enter “S” for
strict similarity. The system will return a range of simi-
larity thresholds for which the subsequences returned have
very small similarity distances. We later explain in Sec. 5.2
how varying similarity thresholds can be managed without
re-constructing the entire knowledge base.

5.2 Query Processing over ONEX Base
Based upon our solid formal foundation (Sec. 3.2), our

query processor (Algo. 2) now applies time-warped strate-
gies on the compact ED-based ONEX base. ONEX handles
similarity queries by first exploring the R-Space using a
three-step process. In Lines 4-7, we use GTI (Sec. 4.3) to
retrieve groups of specific lengths. Then the processor uses
LSI (Sec. 4.3) to find the representative with the minimum
DTW to the sample sequence, the so-called the best match-
ing representative. Third, we use the LSI to find the best
match sequence inside the selected group.

Algorithm 2: Online Time Series Exploration

2.A: Similarity Queries
Input: Query Q,k, L, match
Output: Sequences {X}

1 begin
2 {X} ←− ∅;
3 switch match do
4 case exact

5 {Gi
k} = GTI.getgroups(L);

6 minGp =

LSI.compareRep(Q,Gi
k.Representatives);

7 X ←− LSI.getKSim(minGp);

8 case Any
9 for each L do

10 {Gi
k} = GTI.getgroups(L);

11 minGp =

LSI.compareRep(Q,Gi
k.Representatives);

12 {X} ←− LSI.getKSim(minGp);

13

14 2.B Seasonal Similarity Queries
Input: queryType,TimeSeries (Xp, Xq), Length L
Output: Subsequences X

15 begin
16 {Gi

k} = GTI.getgroups(L);

17 for each G ∈ Gi
k do

18 switch queryType do
19 case Single
20 if Xp ∈ G then
21 {X} ←− LSI.getSubsequences(Xp)

22 case NULL
23 for each Xp ∈ G & Xq ∈ G do
24 {X} ←− LSI.getSubsequences(Xp, Xq)

25

26 2.C Varying Similarity thresholds

Input: Similaritythreshold ST ′,
Inter − Representativedistance Dc

Output: Groups {G′}
27 begin
28 G′ ←− ∅;
29 if ST ′ == ST then
30 G′ = G //return precomputed computed groups

31 else if ST ′ < ST then
32 split groups G

33 else
34 if ST ′ < Dc then
35 merge pair of groups with this condition

36 else if ST ′ ≥ Dc then
37 if ST ′ − ST ≥ Dc then
38 merge groups with this condition

39 else if ST ′ < ST then
40 G′ = G //return precomputed computed groups

Processing costs for this class include: Cost(getGroups),
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Cost(compareRep) and Cost(getKSim). The complexity of
Cost(getGroups) is constant for each specific length. The
Cost(compareRep) is O(g) where g denotes the number of
groups. The cost for finding the best matching representa-
tive is Cost(getKSim) which is O(m) where m is the number
of subsequences in the best matching group. Thus the total
complexity is O(g) + O(m).

For seasonal similarity queries we distinguish two sce-
narios. In the first scenario (Lines 19-21), the analyst pro-
vides a sample time series seq and a specific length. ONEX
explores the R-Space first using GTI (Sec. 4.3) to retrieve
the groups of that specific length. After the groups are re-
trieved, they are explored using LSI (Sec. 4.3) based on the
identifier of the sample time series. ONEX returns only the
sequences in each group having the same sequence identifier
as the sample seq. In the second scenario (Lines 22-24), if
no sample sequence is provided, ONEX retrieves the groups
of similar sequences of the length specified by the analyst.

Processing costs for this class include: Cost(getGroups)
and Cost(getSubsequences). As shown in Sec. 4.3, we main-
tain the sequence identifiers for each group. So we can re-
trieve all subsequences in O(1). The complexity of
Cost(getGroups) is constant for each specific length. The
cost for finding sequences Cost(getSubsequencess) is O(n)
where n is the number of subsequences in the group. The
complexity for scenario two is O(ng), where n is the number
of time series in each group and g is the number of groups.
The complexity for scenario one, seasonal similarity using a
sample time series, is O(g). In both scenarios there is no
additional storage overhead because all needed information
is already contained in the index structures.

The complexity of the similarity threshold recom-
mendations is highly dependent on the dataset, as the rec-
ommendations are based on the computations of the local
and global similarity thresholds. We reduce this computa-
tion by re-using the pre-computed results for a specific ST
and adapt them to newly provided ST ′ thresholds. For the
construction of similarity groups (Sec. 3.1), we use a spe-
cific threshold value ST . In practice the optimal threshold
varies from dataset to dataset. Such threshold offers the best
trade-off between the accuracy of the results and the time
response. We discuss in Sec. 6 how to empirically find these
thresholds and we use them for our experiments. However,
analysts might be interested in using a different domain-
specific ST ′ in their queries. In such situations, the R-Space
does not have to be re-constructed from scratch. Instead,
we provide an efficient strategy to “refine” the similarity
groups based on pre-computed information. We distinguish
the following scenarios:

1. ST ′ = ST . In this case, the ST matches the one pro-
vided by the analyst. So the precomputed groups are used
“as is” to find the best match.

2. ST ′ < ST . In this case, the precomputed groups con-
tain similar sequences, but they must be refined. The intu-
ition behind the refinement is that sequences that are similar
for the threshold ST remain similar for a smaller threshold
ST’. Groups are split in ”smaller” similarity groups so no
possible answer is missed. Assuming without loss of gener-
ality ST/ST ′ = k where k ∈ N, each precomputed group is
now split into k groups. We use the same methodology for
constructing these smaller groups as we originally used to
construct the groups for specific lengths (Sec. 3.1).

3. ST ′ > ST . This is the more complex case, as some

pairs of groups may merge, depending on the value of the
Inter-Representative Distances (Dc) defined in Sec. 3.1.

3.1. ST ′ < Dc. In this case, all precomputed pairs of
groups for which this condition is true are used to find the
best match sequence. The intuition is that groups whose
representatives are farther from each other by more than
the given similarity threshold ST ′ can’t merge. The rest of
the groups will be processed as follows:

3.2. ST ′ ≥ Dc. we distinguish two scenarios:
3.2a. ST ′ − ST ≥ Dc. The pairs of precomputed groups

for which this condition is true are merged and used to find
the best match seq. The intuition is that a higher simi-
larity threshold allows more sequences to be similar. The
remaining groups are returned without any action. If the
case that the same group could be merged with more than
one group arises, we randomly choose a pair of qualifying
groups and perform the merge. We then compute the Inter-
Representative distance between the newly formed group
and the remaining groups to determine if any additional
mergers are needed. This process repeats in a cascading
manner as long as the above condition holds.

3.2b. ST ′ − ST < Dc. In this case the precomputed
groups are used “as is” to find the best match sequence.

5.3 Optimizations for Processing Queries.
To efficiently retrieve the best match for a given sample

sequence seq, we adopt optimizations for retrieving the best
group representative and the best-match sequence within
this group. The optimizations include the early abandoning
of DTW [22] and stop the calculation if the lower bound ex-
ceeds the best-so-far distance, and pruning of the represen-
tatives. We combine these with the re-ordering of the early
abandoning. Finally, we take advantage of the cascading
lower bounds to prune unpromising candidates, a method
also popular with DTW [11]. In addition, we develop the
following optimizing strategies specific to ONEX:

• For a given sample sequence of length L, we start the
search for the best match representative with the ones
of the same length as the query. If we don’t find
the “best match” representative for this length (the
one with DTW to seq within ST/2), we continue by
searching the representatives in decreasing order of
their length until we reach the smallest length, fol-
lowed by the search in increasing order of the length.

• Our strategy to find the “best match” representative of
a specific length is optimized as well. We use the or-
dered array Si(k, sumk) in GTI (Sec. 4.3) containing
the sums of pairwise Inter-Representative distances.
We find the “median representative” or the one whose
sum is “in the middle” of this list and start our search
with this representative. We follow up by alternately
checking the closest representatives to its left and then
right in the index, until we reach the representative
with the min and respectively the max sum.

• The search inside the particular group with the best
match representative could be optimized as follows:
using the ordered array EDk(p,EDp) containing the
ED of the sequences in the group to the representa-
tives (Sec. 4.3), we search for the “best match” se-
quence to seq. This is the sequence in the group whose
ED to the representative has the closest value to the
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Figure 2: Time Response for similarity queries

DTW between the seq and the representative. We
follow up if needed by checking the neighboring se-
quences with smaller and respectively larger distances
alternatively until we find the best match sequence.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Experiments are conducted on a Windows machine with

3.35 GHz Intel Core i5 processor and 64GB GB of RAM.
Alternative State-of-the-Art Techniques. We com-
pare ONEX with three methods: the Standard DTW
which is an exact brute-force method computing all pairwise
distances and guaranteeing the best match, PAA (Piece-
wise Aggregate Approximation) [19] which finds an approx-
imate solution by reducing the dimensionality of the data us-
ing an average approximation, and Trillion[22] which uses
Lower Bounds and early abandoning steps to retrieve sim-
ilar sequences. Trillion exhibits the fastest known-to-date
response time. Their experiments show faster times than
EBSM [2] for similarity queries [22] and many other com-
petitors. For this and other reasons detailed in the Related
Work section, we do not compare with EBSM, but rather
with Trillion. The ONEX system and alternate methods
PAA [19] and the standard DTW are implemented in C++
using Qt Creator with Clang 64-bit compiler. Trillion code
is downloaded from the UCRsuite4.
Datasets: We select our datasets from the UCR time-
series collection5, the largest collection of public datasets.
Statistics of our datasets can be found in our Tech Report.
To make meaningful comparisons between time series, they
need to be normalized [22]. We normalize each sequence
based on the maximum (max) and minimum (min) values
in each dataset. For any sequence X = (x1...xn), we com-
pute the normalized values for each point xi as xi−min

max−min
.

Performance Statistics. Our experimental evaluation is
geared towards illustrating that ONEX is an interactive sys-
tem offering results within less than one second for all datasets
tested while yielding highly accurate results. The online
query processing time and accuracy are reported for
queries averaged over multiple runs (Sec.6.2). We evaluate
the ONEX base by measuring the size and the prepro-
cessing time of our pregenerated information when vary-
ing both datasets and similarity threshold ranges (Sec.6.3).

4 www.cs.ucr.edu/ ∼ eamonn/UCRsuite.html
5 www.cs.ucr.edu/ ∼ eamonn/time series data
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Figure 3: Time Response for Similarity queries vary-
ing the number of time series in the dataset

6.2 Evaluation of Query Processing Time and
Accuracy

6.2.1 Similarity Queries
This class retrieves the sequence closest to a given query

sample seq. Standard DTW compares the query sample
with all sequences in the dataset. PAA compares the query
sample with the sequences in the dimensionality-reduced
dataset. Trillion computes the lower bound of the query
sample first and then uses the early abandoning optimiza-
tion to find the best match of the same length as the query.

In our experiment we vary the length of the query se-
quence to cover a wide range of lengths. We compute the av-
erage response time for each system using 20 queries of dif-
ferent lengths chosen to cover a wide range from the smallest
to the largest length. Further, our aim is to experiment both
with query sequences are present and sequences that might
not be present in the dataset. As our use cases motivate, it
is important to find the best match for a query, regardless if
the sequence is present or not in the dataset. In both cases
we look to find the best match, namely the solution with
the closest DTW to the query sequence. First we randomly
select 10 subsequences of different lengths from each dataset
and “promote” them to become query sequences. This is our
query “in the dataset” part of the experiment. Then we
adopt the methodology proposed in [13], where a random
subsequence is chosen from each dataset to act as the query
and is taken out from that dataset instead. We do this for
10 different subsequences. This is our query “outside of
the dataset” part of the experiment. For each of them we
run each individual query in the specific dataset 5 times and
average the time response per query. We then compute the
average time response for the 20 queries for each dataset.

As shown in Fig. 2, ONEX consistently outperforms both
Standard DTW and PAA by several orders of magnitude
and exhibits better running times than Trillion. The chart
in Fig. 2a displays values multiplied by 100 on a logarith-
mic scale, while Fig. 2b zooms into the comparison of ONEX
and Trillion. Although for small datasets ONEX and Trillion
have fairly close response times, as the dataset size increases
ONEX becomes on average 1.8 times faster than Trillion.

Furthermore, ONEX is highly accurate returning the best
match for a query, regardless of the length of the match.
Since Trillion only returns the best match of the same length
as the query sequence, we designed an additional experiment
by adjusting ONEX to only search for the best match of the
same length as the query. We found that in this restricted
situation the ONEX time response further improves, becom-
ing on average 3.8 times faster than Trillion. The results for
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Figure 4: Time response for Seasonal Similarity

this particular experiment are displayed in Table 1, where
ONEX-S denotes our ONEX returning the solution with the
same length as the query similar to Trillion.

Next we evaluate scalability i.e., the impact of increas-

Table 1: Time response similarity solution same length
as query

Italy
Power

ECG Face Wafer Symbols Two
Pat-
tern

ONEX-S 0.01 0.024 0.028 0.042 0.176 0.109
Trillion 0.04 0.063 0.11 0.189 0.439 0.585
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Figure 6: Number of Representatives

ing the number of time series on the running time for the
StarLightCurves dataset. We randomly take subsets con-
taining time series of length 100. The number of time series
varies between 1000 and 5000 in increments of 1000. We em-
ploy the same methodology described above using query se-
quences both present and not present in the dataset. ONEX
and Trillion’s running times are close in magnitude and thus
superimposed in Fig. 3a. As depicted in Figure 3a, the run-
ning times for Standard DTW and PAA increase drastically
as the number of time series increases, while the time in-
crease for ONEX and Trillion “seems” nearly constant. In
reality, in Fig. 3b the zoomed detail shows that the Trillion

Table 2: Accuracy for similarity solution of same length
as query

Italy
Power

ECG Face Wafer Symbols Two
Pat-
tern

ONEX-S 97.77 99.48 97.82 97.87 97.2 99.2
Trillion 82.97 74.58 71.87 87.67 96.99 88.04

Table 3: Accuracy for similarity solution for any length

Italy
Power

ECG Face Wafer Symbols Two
Pat-
tern

ONEX 99.47 99.81 98.74 99.48 98.28 98.54
Trillion 82.97 74.58 71.87 87.67 96.99 88.05

PAA 92.99 96.36 96.547 99.21 99.65 99.25

time response is up to 4 times slower than ONEX.
Solution Accuracy. We measure the accuracy of the

solution as follows: we retrieve the DTW between the solu-
tion and the query sequence for ONEX, PAA and Trillion.
We compute the error in retrieving each individual solution
for each system as the difference between the distance com-
puted by that system and the exact solution as provided by
the brute force Standard DTW. We take the average of the
error for each individual system and compute the accuracy
as (1−average(error))∗100. We use the same 20 queries as
in the above experiment for similarity queries. The average
accuracy for each system is displayed in Table 3. Since the
brute-force always retrieves the best match possible and it
is used as “accurate”, we omit its results from the table.

As shown in Table 3, the ONEX accuracy is superior by
an average of 19.5% to Trillion and 2% to PAA. While PAA
is closer in accuracy with ONEX, the difference in the time
response renders PAA impractical, that is, ONEX is 3 to 4
orders of magnitude faster than PAA. It is interesting to ob-
serve that Trillion has a high accuracy if the query sequence
is “in the dataset”, as it is the case for the first 10 queries
used. That is due to the fact that Trillion, as described by
its authors, performs an “exact search”. However, the ac-
curacy drops significantly for queries that do not exist in
the dataset, i.e., the last 10 queries used. As before we also
conduct a separate experiment restricting ONEX to retrieve
the solution of the same length as the query sequence. In
this experiment shown in Table 2 ONEX shows increased
accuracy by an average of 12.6% compared to Trillion.

6.2.2 Seasonal Similarity Queries
This class returns the similar subsequences of a specific

length that belong to a sample time series. Neither Stan-
dard DTW or PAA have been designed to search for this
kind of similarity, thus we omit them from this experiment.
Trillion is omitted because its optimizations solve the prob-
lem of finding only one closest sequence of the same length
as the sample and cannot be applied to find subsequences
whose similarity recurs. Since the length is specified by the
analyst, we cover a wide range of lengths from the smallest
to the largest. For the user-driven case we randomly select 5
time series from each dataset and we use 5 different lengths
for each sample. For each sample time series, we run 5 times
the seasonal similarity query for each chosen specific length
and compute the average response time per length. We then
average those response times for each sample time series.
We repeat the experiment for each dataset and report the
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average running times in Fig. 4. For the data-driven case
we select 5 random lengths for each dataset and retrieve the
groups with similar sequences of that length. We run 5 times
for each length and compute the average time for retrieving
the groups for that specific length. The average response
times are reported in Fig. 4. We display an additional vi-
sual results in our Tech Report.

6.3 Evaluation of Preprocessing Performance
Since Standard DTW, PAA and Trillion don’t involve a

preprocessing phase, we display the preprocessing times and
the size of the ONEX base for all datasets and for varying
similarity thresholds. Fig. 5 displays the ONEX offline
construction time for our datasets while varying the sim-
ilarity threshold ST. As expected, for low similarity thresh-
olds the construction time is higher because many groups
are created. As the similarity threshold increases, fewer
groups are created and thus more subsequences are grouped
together. After a certain threshold the construction time
remains constant. In Fig. 6 we display the size of the
pregenerated information in ONEX in terms of number
of representatives for varying similarity thresholds. Table 4
displays the number of representatives, the total number of
subsequences highlighting the reduction in data cardinalty
for all datasets and the index sizes. The index sizes (in
MB) correspond to the number of representatives with the
average space required per representative. The larger the
similarity threshold, the smaller the number of representa-
tives stored in the representative space (as depicted in Fig.
6). For example in the ItalyPower dataset the total number
of representatives is 1228 for ST=0.2. The average space
for the indexes in ItalyPower dataset is 1.14 MB. GTI uses
0.83 MB (0.11 MB for the group identifiers vector, 0.718
MB for the array containing inter-representative distances
and 0.0004 MB for STfinal and SThalf ). LSI needs 0.305
MB (0.28 MB for the sequence identifiers, 0.0046 MB for
the representative vectors and 0.018 MB for the upper and
lower bound envelopes for each representative). As observed

Table 4: No. of Representatives, total no. of subse-
quences and size in MB for specific datasets

DataSet Representatives Subsequences Size in MB
ItalyPower 1228 18492 1.14

ECG 3532 931200 21.53
Face 4896 4768400 86.75

Wafer 3489 11476000 183.02
Symbols 3424 78607985 1210.32

Two Pattern 3961 33024000 513.41

in the four charts in Figures 7 & 8, each dataset has a par-
ticular similarity threshold for which the size of the pregen-
erated information and the construction time are best “bal-
anced”. We use this in combination with the observation of
the best “trade-off” between accuracy and time to choose
the most appropriate ST for specific datasets. For exam-
ple, for most of our datasets these similarity thresholds are
around 0.2. We indeed used these thresholds for our exper-
iments reported in this paper. Due to space constraints we
only showcase the results for four datasets.

7. RELATED WORK
Many data representation techniques have been used

for time series mining. Although the Euclidean Distance is
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Figure 7: Tradeoff accuracy vs time varying ST
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Figure 8: Tradeoff accuracy vs time varying ST

known to be sensitive to distortion along the time axis[7],
[19], it remains the most frequently used distances [12],[16],[31].
Its ubiquity is due to its ease of implementation and its time
and space efficiency. The problem of time distortion is ad-
dressed by other distances including Dynamic Time Warping
(DTW)[5], Longest Common Subsequence (LCSS)[15], Edit
Distance with real penalty (ERP) [6].

To reduce the DTW time response, indexing techniques
[12], [18], [31] and other optimizations like early abandoning
of DTW [22], cascading lower bounds to prune unpromising
candidates [11], and reversing the query/data role by cre-
ating an envelope around the query sequence instead of the
data [22] were developed. These techniques are orthogonal
to our work, and we indeed leverage them in our system.

Dimensionality reduction techniques include Discrete
Fourier Transformation (DFT) [1], Single Value Decomposi-
tion (SVD) [30] and Piece Aggregate Approximation (PAA)
[17]. Such techniques typically focus on guaranteeing no
false dismissal and precision rather than tackling efficiency
as their main goal. Some [1] are indexable, while others [17]
are not, making them not scalable for large datasets.

Like ONEX, [2] uses a preprocessing phase for convert-
ing subsequence matching to vector matching using an em-
bedding based on DTW. However, numerous parameters
have to be supplied, such as the number of reference se-
quences and the number of split points.

Range searches and nearest neighbor searches [1] remain
target queries for time series data. [11] answers such queries
by finding representatives for groups of objects. Methods
like the nearest centroid classifier [28] and k-means cluster-
ing generalize the nearest neighbor classifier by replacing
the set of neighbors with their centroid. Conceptually sim-
ilar, [4] and [14] reduce the data cardinality by group-
ing similar time series. [14] represents time series as tra-
jectories in a multidimensional space and compares their
structural similarity using multiscale comparison. A more
recent warping-invariant-averaging condensation framework
[21] creates a classifier based on DTW leading to improve-
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ments in accuracy and reduced computation at run time.
This method uses cluster centers based on ‘DTW-average’
of the sequences, while ONEX uses ED for clustering and
a point-wise average sequence for representatives. [21] does
data editing to make its classifier faster and more accurate,
while we have to keep the original data to support accurate
similarity searches and return actual sequence results. [3]
introduces clusters constructed using DTW and a modified
Density Peaks algorithm to improve the clustering perfor-
mance. Using upper and lower bounds of DTW, TADPole
can prune unnecessary computations. However its goal is
clustering, not similarity search, which is our task at hand.

While ONEX adopts the general idea of finding repre-
sentatives for groups of objects from [14] and [9], its so-
lution for exploring similarity groups is unique, combining
two well-known distances and showing to be highly effective
compared to the state-of-the-art techniques.

Due to space constraints we provide additional general
background information and notations, as well as discus-
sions about alternative clustering methods, maintenance of
ONEX base, general query syntax and seasonal similarity
experiments at:
https : //github.com/onexAdditional/ONEX Additional

8. CONCLUSION
ONEX emerges as a truly interactive time series explo-

ration system. Our unique approach based on the combi-
nation of two similarity distances leads to improvements in
accuracy of up to 19% and up to 3.8 times shorter time
responses compared to the fastest known state-of-the-art
method. ONEX renders more practical the exploration of
large time series datasets and helps analysts better under-
stand similarity by supporting novel classes of operations.
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