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ABSTRACT
In this paper, we propose a data structure, a quadruple neighbor

list (QN-list, for short), to support real time queries of all longest
increasing subsequence (LIS) and LIS with constraints over se-
quential data streams. The QN-List built by our algorithm requires
O(w) space, where w is the time window size. The running time for
building the initial QN-List takes O(w log w) time. Applying the
QN-List, insertion of the new item takes O(log w) time and dele-
tion of the first item takes O(w) time. To the best of our knowledge,
this is the first work to support both LIS enumeration and LIS with
constraints computation by using a single uniform data structure
for real time sequential data streams. Our method outperforms the
state-of-the-art methods in both time and space cost, not only theo-
retically, but also empirically.

1. INTRODUCTION
Sequential data is a time series consisting of a sequence of data

points, which are obtained by successive measurements made over
a period of time. Lots of technical issues have been studied over
sequential data, such as (approximate) pattern-matching query [9,
17], clustering [18]. Among these, computing the Longest Increas-
ing Subsequence (LIS) over sequential data is a classical problem.
Let’s see the definition of LIS as follows.

Definition 1. (Longest Increasing Subsequence). Let α = {a1,
a2, · · · , an} be a sequence, an increasing1 subsequence s of α is
a subsequence of α whose elements are sorted in order from the
smallest to the biggest. An increasing subsequence s of α is called
a Longest Increasing Subsequence (LIS) if there is no other increas-
ing subsequence s′ with |s| < |s′|. A sequence α may contain multi-
ple LIS, all of which have the same length. We denote the set of LIS
of α by LIS (α).

1Increasing subsequence in this paper is not required to be strictly mono-
tone increasing and all items in α can also be arbitrary numerical value.
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Besides the static model (i.e., computing LIS over a given se-
quence α), computing LIS has been considered in the streaming
model [3, 6]. Given an infinite time-evolving sequence α∞ = {a1, ...,
a∞} (ai ∈ R), we continuously compute LIS over the subsequence
induced by the time window {ai−(w−1), ai−(w−2),..., ai}. The size of the
time window is the number of the items it spans in the data stream.
Consider the sequence α = {3, 9, 6, 2, 8, 5, 7} under window W in
Figure 1. There are four LIS in α: {3, 6, 7}, {3, 6, 8}, {2,5,7} and
{3, 5, 7}. Besides LIS enumeration, we introduce two important
features of LIS, i.e., gap and weight and compute LIS with various
constraints, where “gap” measures the value difference between the
tail and the head item of LIS and “weight” measures the sum of all
items in LIS (formally defined in Definitions 3-4). Figure 1 shows
LIS with various specified constraints. In the following, we demon-
strate the usefulness of LIS in different applications.

3 9 6 2 8 5 7
a1 a2 a3 a4 a5 a6 a7

Time Window

LIS with Maximum Weight {a1 = 3,a3 = 6, a5 = 8}
LIS with Minimum Weight {a4 = 2,a6 = 5, a7 = 7}
LIS with Maximum Gap {a1 = 3,a3 = 6, a5 = 8},{a4 = 2,a6 = 5, a7 = 7}
LIS with Minimum Gap {a1 = 3,a6 = 5, a7 = 7},{a1 = 3,a3 = 6, a7 = 7}

Figure 1: Computing LIS with constraints in data stream model

Example 1: Realtime Stock Price Trend Detection. LIS is
a classical measure for sortedness and trend analysis [11]. As we
know, a company’s stock price forms a time-evolving sequence and
the real-time measuring the stock trend is significant to the stock
analysis. Given a sequence α of the stock prices within a period, an
LIS of α measures an uptrend of the prices. We can see that price
sequence with a long LIS always shows obvious upward tendency
for the stock price even if there are some price fluctuations.

Although the LIS length can be used to measure the uptrend sta-
bility, LIS with different gaps indicate different growth intensity.
For example, Figure 2 presents the stock prices sequences of two
company: A and B. Although both sequences of A and B have the
same LIS length (5), growth intensity of A’s stock obvious domi-
nates that of B, which is easily observed from the different gaps in
LIS in A and B. Therefore, besides LIS length, gap is another fea-
ture of LIS that weights the growth intensity. We consider that the
computation of LIS with extreme gap that is more likely chosen as
measurement of growth intensity than a random LIS. Furthermore,
this paper also considers other constraints for LIS, such as weight
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(see Definition 3) and study how to compute LIS with constraints
directly rather than using post-processing technique.
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Figure 2: LIS with different gaps of stock price sequence

Example 2: Biological Sequence Query. LIS is also used in
biological sequence matching [3, 24]. For example, Zhang [24]
designed a two-step algorithm (BLAST+LIS) to locate a transcript
or protein sequence in the human genome map. The BLAST (Basic
Local Alignment Search Tool) [4] algorithm is to identify high-
scoring segment pairs (HSPs) between query transcript sequence Q
and a long genomic sequence L. Figure 3 visualizes the outputs
of BLAST. The segments with the same color (number) denote the
HSPs. For example, segment 2 (the red one) has two matches in
the genomic sequence L, denoted as 21 and 22. To obtain a global
alignment, the matches of segments 1, 2, 3 in the genomic sequence
L should coincide with the segment order in query sequence Q,
which constitutes exactly the LIS (in L) that are listed in Figure 3.
For example, LIS {1, 21, 31} represents a global alignment of Q over
sequence L. Actually, there are three different LIS in L as shown in
Figure 3, which correspond to three different alignments between
query transcript/protein Q and genomic sequence L. Obviously,
outputting only a single LIS may miss some important findings.
Therefore, we should study LIS enumeration problem.

We extend the above LIS enumeration application into the slid-
ing window model [13]. In fact, the range of the whole alignment
result of Q over L should not be too long. Thus, we can introduce
a threshold length |w| to discover all LIS that span no more than
|w| items, i.e, all LIS in each time window with size |w|. This is
analogous to our problem definition in this paper.

Query transcript/protein Q

Genomic sequence L

1 2 3

1 21 31 22 32

{1, 21, 31}
{1, 21, 32}
{1, 22, 32}

Figure 3: Biological Sequence Alignment

Although LIS has received considerable attention from the the-
oretical computer science community [6, 7, 16, 22], none of the
existing approaches support both LIS enumeration and constrained
LIS enumeration simultaneously. The method presented in [6] sup-
ports LIS enumeration, but fails to compute constrained LIS. In [7]
and [22], the method can be used to compute constrained LIS, but
not to enumerate all LIS. More importantly, many works are based
on static sequences and techniques developed in these works cannot
handle updates which are essential in the context of data streams.
To the best of our knowledge, there are only three research arti-
cles that addressed the problem of computing LIS over data stream
model [3, 6, 8]. None of them computes constrained LIS. Litera-
ture review and the comparative studies of our method against other
related work are given in Section 2 and Section 7, respectively.

1.1 Our Contributions
Observed from the above examples, we propose a novel solu-

tion in this paper that studies both LIS enumeration and comput-
ing LIS with constraints with a uniform method under the data
stream model. We propose a novel data structure to efficiently
support both LIS enumeration and LIS with constraints. Further-
more, we design an efficient update algorithm for the maintenance
of our data structure so that our approach can be applied to the data
stream model. Theoretical analysis of our algorithm proves that
our method outperforms the state-of-the-arts work (see Section 7.1
for details). We prove that the space complexity of our data struc-
ture is O(w), while the algorithm proposed in [6] needs a space
of size O(w2). Time complexities of our data structure construc-
tion and update algorithms are also better than [6]. For example,
[6] needs O(w2) time for the data structure construction, while our
method needs O(w log w) time. Besides, we prove that both our LIS
enumeration and LIS with constraints query algorithms are optimal
output-sensitive algorithms2. Comprehensive comparative study of
our results against previous results is given in Section 7. We use
real and synthetic datasets to experimentally evaluate our approach
against the state-of-the-arts work. Experimental results also con-
firm that our algorithms outperform existing algorithms. Experi-
mental codes and datasets are available at Github [1].

We summarize our major contributions in the following:
1. We are the first to consider the computation of both LIS with

constraints and LIS enumeration in the data stream model.
2. We introduce a novel data structure to handle both LIS enu-

meration and computation of LIS with constraints uniformly.
3. Our data structure is scalable under data stream model be-

cause of the linear update algorithm and linear space cost.
4. Extensive experiments confirm the superiority of our method.

2. RELATED WORK
LIS-related problems have received considerable attention in the

literature. We give a briefly review of the related work from the
perspectives of the solution and problem definition, respectively.

2.1 Solution Perspective
Generally, existing LIS computation approaches can be divided

into following three categories:
1. Dynamic Programming-based. Dynamic programming is a

classical method to compute the length of LIS. Given a sequence
α, assuming that αi denotes the prefix sequence consisting of the
first i items of α, then the dynamic programming-based method is
to compute the LIS of αi+1 after computing the LIS of αi. However,
dynamic programming-based method costs O(w2) time where n de-
notes the length of the sequence α. Dynamic programming-based
method can be easily extended to enumerate all LIS in a sequence
which costs O(w2) space.

2. Young’s tableau-based. [20] proposes a Young’s tableau-
based solution to compute LIS in O(w log w) time. The width of the
first row of Young’s tableau built over a sequence α is exactly the
length of LIS in α. Albert et al.[3] followed the Young’s tableau-
based work to compute the LIS length in sliding window. They
maintained the first row of Young’s tableau, called principle row,
when window slides. For a sequence α in a window, there are n =

|α| suffix subsequences and the prime idea in [3] is to compress all
principle rows of these suffix subsequence into an array, which can
be updated in O(w) time when update happens. Besides, they can
output an LIS with a tree data structure which costs O(w2) space.

3. Partition-based. There are also some work computing LIS by
partitioning items in the sequence [6, 7, 8, 22]. They classify items
2The algorithm time complexity is linear to the corresponding output size.
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into l partitions: P1,P2...,Pl, where l is the length of LIS of the se-
quence. For each item a in Pk (k = 1, ..., l), the maximum length of
the increasing subsequence ending with a is exactly k. Thus, when
partition is built, we can start from items in Pl and then scan items
in Pl−k (1 ≤ k < l) to construct an LIS. The partition is called differ-
ent names in different approaches, such as greedy-cover in [7, 8],
antichain in [6]. Note that [7] and [22] conduct the partition over
a static sequence to efficiently compute LIS with constraints. [8]
use partition-based method as subprogram to find out the largest
LIS length among n − w windows where w is the size of the slid-
ing window over a sequence α of size n. Their core idea is to avoid
constructing partition on the windows whose LIS length is less than
those previously found. In fact, they re-compute the greedy-cover
in each of the windows that are not filtered from scratch. None
of the partition-based solutions address the data structure mainte-
nance issues expect for [6]. [6] is the only one to study the LIS
enumeration in streaming model. Both of their insertion and dele-
tion algorithms cost O(w) time [6]. Besides, they assign each item
with O(w) pointers and thus their method costs O(w2) space.

Our approach belongs to the partition-based solution, where each
horizontal list(see Definition 10) is a partition. While, with up/down
neighbors in QN-list (see Definition 9 and 11), our data structure
costs only O(w) space. Besides, the insertion and deletion time
of our method is O(log w) and O(w), respectively, which makes it
suitable in the streaming context. Furthermore, our data structure
supports both LIS enumeration and LIS with various constraints.

2.2 Problem Perspective
We briefly position our problem in existing work on LIS com-

putation in computing task and computing model. Note that LIS
can also be used to compute LCS (longest common subsequence)
between two sequences [12], but that is not our focus in this pa-
per. First, there are three categories of LIS computing tasks. The
first is to compute the length of LIS and output a single LIS (not
enumerate all) in sequence α [3, 8, 10, 19, 20]. The second is LIS
enumeration, which finds all LIS in a sequence α [5, 6]. [5] com-
putes LIS enumeration only on the sequence that is required to be
a permutation of {1,2,...,n} rather than a general sequence (such as
{3, 9, 6, 2, 8, 5, 7} in the running example). The last computing
task studies LIS with constraints, such as gap and weight [7, 22].
On the other hand, there are two computing models for LIS. One
is the static model assuming that the sequence α is given without
changes. For example, [7, 20, 21, 22] are based on the static model.
These methods cannot be applied to the streaming context directly
except re-computing LIS from scratch in each time window. The
other model is the data stream model, which has been considered
in some recent work[3, 6].

Table 1 illustrates the existing works from two perspectives:
computing task and computing model. There are two observations
from the table. First, there is no existing uniform solution for all
LIS-related problems, such as LIS length, LIS enumeration and
LIS with constraints. Note that any algorithm for computing LIS
enumeration and LIS with constraints can be applied to computing
LIS length directly. Thus, we only consider LIS enumeration and
LIS with constraints in the later discussion. Second, no algorithm
supports computing LIS with constraints in the streaming context.
Therefore, the major contribution of our work lies in that we pro-
pose a uniform solution (the same data structure and computing
framework) for all LIS-related issues in the streaming context. Ta-
ble 1 properly positions our method with regard to existing works.

None of the existing work can be easily extended to support all
LIS-related problems in the data steam model except for LISSET
[6], which is originally proposed to address LIS enumeration in

the sliding window model. Also, LISSET can compute LIS with
constraints using post-process technique (denoted as LISSET-post
in Figure 11). So, we compare our method with LISSET not only
theoretically, but also empirically in Section 7. LISSET requires
O(w2) space while our method only uses O(w) space, where w is
the size of the input sequence. Experiments show that our method
outperforms LISSET significantly, especially computing LIS with
constraints (see Figures 11f-11i).

Computing Task Static only Stream
LIS length(outputting a single LIS) [5][7][20][21][22] [3][6][8], Our Method
LIS Enumeration [5]3 [6], Our Method
LIS with constraints [7][22] Our Method

Table 1: Our Method VS. Existing Works on Computing LIS(s)

3. PROBLEM FORMULATION
Given a sequence α = {a1, a2, · · · , an}, the set of increasing

subsequences of α is denoted as IS (α). For a sequence s, the head
and tail item of s is denoted as sh and st, respectively. We use |s| to
denote the length of s.

Consider an infinite time-evolving sequence α∞ = {a1, ..., a∞}
(ai ∈ R). In the sequence α∞, each ai has a unique position i
and ai occurs at a corresponding time point ti, where ti < t j when
0 < i < j. We exploit the tuple-basis sliding window model [13] in
this work. There is an internal position to tuples based on their ar-
rival order to the system, ensuring that an input tuple is processed
as far as possible before another input tuple with a higher posi-
tion. A sliding window W contains a consecutive block of items
in {a1, · · · , a∞}, and W slides a single unit of position per move to-
wards a∞ continually. We denote the size of the window W by w,
which is the number of items within the window. During the time
[ti, ti+1), items of α within the sliding time window W induce the
sequence {ai−(w−1),ai−(w−2),...,ai}, which will be denoted by α(W, i).
Note that, in the sliding window model, as the time window contin-
ually shifts towards a∞, at a pace of one unit per move, the sequence
formed and the corresponding set of all its LIS will also change ac-
cordingly. In the remainder of the paper, all LIS-related problems
considered are in the data stream model with sliding windows.

Definition 2. (LIS-enumeration). Given a time-evolving se-
quence α∞ = {a1, ..., a∞} and a sliding time window W of size w,
LIS-enumeration is to report LIS (α(W, i)) (i.e., all LIS within the
sliding time W) continually as the window W slides. All LIS in the
same time window have the same length.

As mentioned in Introduction, some applications are interested
in computing LIS with constraints instead of simply enumerating
all of them. Hence, we study the following constraints over the
LIS’s weight (Definition 3) and gap (Definition 4), after which we
define several problems computing LIS with various constraints
(Definition 5) 4 .

Definition 3. (Weight). Let α be a sequence, s be an LIS in
LIS (α). The weight of s is defined as

∑
ai∈s ai, i.e., the sum of all

the items in s, we denote it by weight(s).

Definition 4. (Gap). Let α be a sequence, s be an LIS in LIS (α).
The gap of s is defined as gap(s) = st − sh, i.e., the difference be-
tween the tail st and the head sh of s.

3[5] computes LIS enumeration only on the sequence that is required to be
a permutation of {1,2,...,n}.
4So far, eight kinds of constraints for LIS were proposed in the literature [7,
22, 23]. Due to the space limit, we only study four of them (i.e., max/min
weight/gap) in this paper. However, our method can also easily support the
other four constraints, which are provided in Appendix H of the full version
of this paper [2] .
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Definition 5. (Computing LIS with Constraint). Given a time-
evolving sequence α∞ = {a1, ..., a∞} and a sliding window W, each
of the following problems is to report all the LIS subject to its own
specified constraint within a time window continually as the win-
dow slides. For s ∈ LIS (α(W, ti)):

s is an LIS with Maximum Weight if

∀s′ ∈ LIS (α(W, ti)),weight(s) ≥ weight(s′)
s is an LIS with Minimum Weight if

∀s′ ∈ LIS (α(W, ti)),weight(s) ≤ weight(s′)
s is an LIS with Maximum Gap if

∀s′ ∈ LIS (α(W, ti)), gap(s) ≥ gap(s′)
s is an LIS with Minimum Gap if

∀s′ ∈ LIS (α(W, ti)), gap(s) ≤ gap(s′)
A running example that is used throughout the paper is given in

Figure 1, which shows a time-evolving sequence α∞ and its first
time window W.

4. QUADRUPLE NEIGHBOR LIST Lα
In this section, we propose a data structure, a quadruple neighbor

list (QN-list for short), denoted as Lα, for a sequence α ={a1,a2,...,
aw}, which is induced from α∞ by a time window W of size w.
Some important properties and the construction of Lα are discussed
in Section 4.2 and Section 4.3, respectively. In Section 4.4, we
present an efficient algorithm over Lα to enumerate all LIS in α. In
the following two sections, we will discuss how to update the QN-
List efficiently in data stream scenario (Section 5) and compute LIS
with constraints (Section 6).

4.1 Lα—Background and Definition
For the easy of the presentation, we introduce some concepts

of LIS before we formally define the quadruple neighbor list (QN-
List, for short). Note that two concepts (rising length and horizon-
tal list) are analogous to the counterpart in the existing work. We
explicitly state the connection between them as follows.

Definition 6. (Compatible pair) Let α = {a1 , a2, ..., aw} be a
sequence. ai is compatible with a j if i < j and ai ≤ a j in α. We

denote it by ai
α
4 a j.

Definition 7. (Rising Length) [6] 5 Given a sequence α = {a1

, a2, ..., aw} and ai ∈ α, we use IS α(ai) to denote the set of all in-
creasing subsequences of α that ends with ai.

The rising length RLα(ai) of ai is defined as the maximum length
of subsequences in IS α(ai), namely,

RLα(ai) = max { |s| | s ∈ IS α(ai)}
5Rising length in this paper is the same as height defined in [6]. We don’t
use height here to avoid confusion because height is also defined as the
difference between the head item and tail item of an LIS in [22].

For example, consider the sequence α = {a1 = 3, a2 = 9, a3 =

6, a4 = 2, a5 = 8, a6 = 5, a7 = 7} in Figure 1. Consider a5 = 8.
There are four increasing subsequences{a1 = 3, a5 = 8}, {a3 = 6,
a5 = 8}, {a4 = 2, a5 = 8}, {a1 = 3, a3 = 6, a5 = 8} that end with
a5

6. The maximum length of these increasing subsequences is 3.
Hence, RLα(a5) = 3.

Definition 8. (Predecessor). Given a sequence α and ai ∈ α,
for some item a j, a j is a predecessor of ai if

a j
α
4 ai AND RLα(a j) = RLα(ai) − 1

and the set of predecessors of ai is denoted as Predα(ai).

In the running example in Figure 1, a3 is a predecessor of a5

since a3
α
4 a5 and RLα(a3)(= 2) = RLα(a5)(= 3) − 1. Analogously,

a1 is also a predecessor of a3.
With the above definitions, we introduce four neighbours for

each item ai as follows:

Definition 9. (Neighbors of an item). Given a sequence α and
ai ∈ α, ai has up to four neighbors.

1. left neighbor lnα(ai): lnα(ai) = a j if a j is the nearest item
before ai such that RLα(ai) = RLα(a j).

2. right neighbor rnα(ai): rnα(ai) = a j if a j is the nearest item
after ai such that RLα(ai) = RLα(a j).

3. up neighbor unα(ai): unα(ai) = a j if a j is the nearest item
before ai such that RLα(a j) = RLα(ai) − 1.

4. down neighbor dnα(ai): dnα(ai) = a j if a j is the nearest item
before ai such that RLα(a j) = RLα(ai) + 1.

Apparently, if ai = lnα(a j) then a j = rnα(ai). Besides, we know
that left neighbor(Also right neighbor) of item ai has the same ris-
ing length as ai and naturally, items linked according to their left
and right neighbor relationship forms a horizontal list, which is for-
mally defined in Definition 10. The horizontal lists of α is presented
in Figure 4a.

Definition 10. (Horizontal list). Given a sequence α, consider
the subsequence consisting of all items whose rising lengths are
k: sk = {ai1 , ai2 ,...,aik }, i1 < i2,...,< ik. We know that for 1 ≤
k′ < k, aik′ = lnα(aik′+1

) and aik′+1
= rnα(aik′ ). We define the list

formed by linking items in sk together with left and right neighbor
relationships as a horizontal list, denoted as Lk

α.

Recall the partition-based solutions mentioned in Section 2. Each
horizontal list is essentially a partition, which is the same as a
greedy-cover in [8] and antichain in [6]. Based on the horizontal
list, we define our data structure QN-list (Definition 11) as follows.

6Strictly speaking, {a5} is also an increasing subsequence with length 1.
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Figure 7: Example of the quadruple neighbor list construction on sequence: {a1 = 3, a2 = 9, a3 = 6, a4 = 2, a5 = 8, a6 = 5, a7 = 7}.

Definition 11. (Quadruple Neighbor List (QN-List)). Given a
sequence α = {a1, ..., aw}, the quadruple neighbor list over α (de-
noted as Lα) is a data structure containing all horizontal lists (See
Definition 10) of α and each item ai in Lα is also linked directly to
its up neighbor and down neighbor. In essence, Lα is constructed
by linking all items in α with their four kinds of neighbor relation-
ship. Specifically, |Lα| denotes the number of horizontal lists in Lα.

Figure 4b presents the QN-List Lα of running example sequence
α (in Figure 1) and the horizontal curve arrows indicate the left
and right neighbor relationship while the vertical straight arrows
indicate the up and down neighbor relationship.

Theorem 1. Given a sequence α = {a1, ..., aw}, the data struc-
ture Lα defined in Definition 11 uses O(w) space 7.

4.2 Lα—Properties
Next, we discuss some properties of the QN-List Lα. These

properties will be used in the maintenance algorithm in Section 5
and various Lα-based algorithms in Section 6.

LEMMA 1. Let α = {a1 , a2, ..., aw} be a sequence. Consider two
items ai and a j in a horizontal list Lt

α (see Definition 10).
1. If t = 1, ai has no predecessor. If t > 1 then ai has at least one

predecessor and all predecessors of ai are located in Lt−1
α .

2. If rnα(a j) = ai, then i > j and ai < a j. If lnα(a j) = ai, then i <
j and ai > a j. Items in a horizontal list Lt

α (t = 1, · · · ,m) are
monotonically decreasing while their subscripts (i.e., their
original position in α) are monotonically increasing from the
left to the right. And no item is compatible with any other
item in the same list.

3. ∀ai ∈ α, all predecessors of ai form a nonempty consecutive
block in Lt−1

α (t > 1).

4. unα(ai) is the rightmost predecessor of ai in Lt−1
α (t > 1).

Figure 5 shows that all predecessors of ai ∈ Lt
α form a consecu-

tive block from unα(ai) to the left in Lt−1
α , i.e., Lemma 1(3).

LEMMA 2. Given sequence α and its Lα, ∀ ai ∈ Lt
α (1 ≤ t ≤ m).

1. RLα(ai) = t if and only if ai ∈ Lt
α. In addition, the length of

LIS in α is exactly the number of horizontal lists in Lα.

2. unα(ai)(if exists) is the rightmost item in Lt−1
α which is before

ai in sequence α.

3. dnα(ai)(if exists) is the rightmost item in Lt+1
α which is before

ai in sequence α. Besides, dnα(ai) > ai.

LEMMA 3. Given sequence α and its Lα, for 1 ≤ i, j ≤ |Lα|
Tail(Li

α) ≤ Tail(L j
α)↔ i ≤ j

where Tail(Li
α) denotes the last item in list Li

α.
7Due to space limits, all proofs for theorems and lemmas are given in Ap-
pendix B of the full version of this paper [2] .

4.3 Lα—Construction
The construction of Lα over sequence α lies in the determination

of the four neighbors of each item in α. We discuss the construction
of Lα as follows. Figure 7 visualizes the steps of constructing Lα
for a given sequence α.

Building QN-List Lα.
1. Initially, four neighbours of each item ai are set NULL;

2. At step 1, L1
α is created in Lα and a1 is added into L1

α
8;

3. At step 2, if a2 < a1, it means RLα(a2) = RLα(a1) = 1. Thus,
we append a2 to L1

α. Since a2 comes after a1 in sequence α,
we set rnα(a1) = a2 and lnα(a2) = a1 respectively.

If a2 ≥ a1, we can find an increasing subsequence {a1, a2}, i.e,
RLα(a2) = 2. Thus, we create the second horizontal list L2

α

and add a2 to L2
α. Furthermore, it is straightforward to know

a1 is the nearest predecessor of a2; So, we set unα(a2) = a1;

4. (By the induction method) At step i, assume that the first i−1
items have been correctly added into the QN-List (in essence,
the QN-List over the subsequence of the first (i − 1) items of
α is built), let’s consider how to add the i-th item ai into the
data structure. Let m denote the number of horizontal lists in
the current Lα. Before adding ai into Lα, let’s first figure out
the rising length of ai. Consider a horizontal list Lt

α, we have
the following two conclusions9:

(a) If Tail(Lt
α) > ai, then RLα(ai) ≤ t. Assume that RLα(ai)

> t. It means that there exits at least one item a j (∈ Lt
α)

such that a j
α
4 ai, i.e., a j is a predecessor (or recursive

predecessor) of ai. As we know Tail(Lt
α) is the mini-

mum item in Lt
α (see Lemma 2). Tail(Lt

α) > ai means
that all items in Lt

α are larger than ai. That is contra-

dicted to a j
α
4 ai ∧ a j ∈ Lt

α. Thus, RLα(ai) ≤ t.
(b) If Tail(Lt

α) ≤ ai, then RLα(ai) > t. Since Tail(Lt
α) is

before ai in α and Tail(Lt
α) ≤ ai, Tail(Lt

α) is compatible
ai. Let us consider an increasing subseqeunce s ending
with Tail(Lt

α), whose length is t since Tail(Lt
α)’s rising

length is t. Obviously, s′ = s ⊕ ai is a length-(t+1)
increasing subsequence ending with ai. In other words,
the rising length of ai is at least t + 1, i.e, RLα(ai) > t.

Besides, we know that Tail(Lt
α) ≥ Tail(Lt′

α ) if t ≥ t′(see
Lemma 3). Thus, we need to find the first list Lt

α whose
tail Tail(Lt

α) is larger than ai. Then, we append ai to the list.
Since all tail items are increasing, we can perform the binary
search (Lines 4-14 in Algorithm 1) that needs O(log m) time.
If there is no such list, i.e., Tail(Lm

α ) ≤ ai, we create a new
empty list Tail(Lm+1

α ) and insert ai into Tail(Lm+1
α ).

8We also record the position i of each item ai in Lα besides the item value.
9Readers can skip the following paragraphs (a) and (b) if they only care
about the construction steps.
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According to Lemma 1, it is easy to know ai can only be
appended to the end of Lt

α, i.e., rnα(Tail(Lt
α)) = ai and lnα(ai)

= Tail(Lt
α). Besides, according to Lemma 2(2), we know

that unα(ai) is the rightmost item in Lt−1
α which is before ai in

α, then we set unα(ai) = Tail(Lt−1
α ) (if exists). Analogously,

we set dnα(ai) = Tail(Lt+1
α ) (if exists).

So far, we correctly determine the four neighbors of ai. We
can repeat the above steps until all items are inserted to Lα.

We divide the above building process into two pieces of pseudo
codes. Algorithm 1 presents pseudo codes for inserting one ele-
ment into the current QN-List Lα, while Algorithm 2 loops on Al-
gorithm 1 to insert all items in α one by one to build the QN-List
Lα. Initially, Lα = ∅. The QN-List Lα obtained in Algorithm 2 will
be called the corresponding data structure of α.

Algorithm 1: Insert an element into Lα
Input: ai, an element to be inserted
Output: the updated QN-List Lα

1 Let m = |Lα |
2 Since the sequence {Tail(L1

α), Tail(L2
α),...,Tail(Lm

α )} is increasing
(Lemma 3), we can conduct a binary search to determine minimum k
where Tail(Lk

α) > ai.
3 if (Lk

α exists) then
4 a∗ = Tail(Lk

α);
5 /*append ai to the list Lk

α*/
6 rnα(a∗) = ai; lnα(ai) = a∗;
7 If k > 1, then let unα(a∗) = Tail(Lk−1

α );
8 If k<|Lα |, then let dnα(a∗) = Tail(Lk+1

α );
9 else

10 Create list Lm+1
α in Lα and add ai into Lm+1

α
11 RETURN Lα

Algorithm 2: Building Lα for a sequence α = {a1, ..., aw}
Input: a sequence α = {a1, ..., aw}
Output: the corresponding data structure Lα of α

1 for each item ai in α do
2 Call Algorithm 1 to insert ai into Lα.
3 RETURN Lα;

Theorem 2. Let α = {a1, a2, ..., aw} be a sequence with w items.
Then we have the following:

1. The time complexity of Algorithm 1 is O(log w).
2. The time complexity of Algorithm 2 is O(w log w).

4.4 LIS Enumeration
Let’s discuss how to enumerate all LIS of sequence α based on

the QN-List Lα. Consider an LIS of α : s = {ai1 , ai2 ,...,aim }. Ac-
cording to Lemma 2(1), aim ∈ Lm

α . In fact, the last item of each LIS
must be located at the last horizontal list of Lα and we can enumer-
ate all LIS of α by enumerating all |Lα| long increasing subsequence
ending with items in L|Lα |α . For convenience, we use MIS α(ai) to
denote the set of all RLα(ai) long increasing subsequences ending
with ai. Formally, MIS α(ai) is defined as follows:

MIS α(ai) = {s | s ∈ IS α(ai) ∧ |s| = RLα(ai)}
Consider each item ai in the last list L|Lα |α . We can compute all

LIS of α ending with ai by iteratively searching for predecessors of
ai in the above list from the bottom to up until reaching the first list
L1
α. This is the basic idea of our LIS enumeration algorithm.

For brevity, we virtually create a directed acyclic graph (DAG)
to more intuitively discuss the LIS enumeration on Lα. The DAG
is defined based on the predecessor relationships between items in
α. Each vertex in the DAG corresponds to an item in α. A directed
edge is inserted from ai to a j if a j is a predecessor of ai (ai and a j

is also called parent and child respectively).

Definition 12. (DAG G(α)). Given a sequence α, the directed
graph G is denoted as G(α) = (V, E), where the vertex set V and
the edge set E are defined as follows:

V = {ai|ai ∈ α}; E = {(ai, a j)|a j is a predecessor o f ai}
The G(α) over the sequence α = {3, 9, 6, 2, 8, 5, 7} is presented

in Figure 6. We can see that each path with length |Lα| in G(α)
corresponds to an LIS. For example, we can find a path a5 = 8 →
a3 = 6 → a1 = 3, which is the reverse order of LIS {3,6,8}. Thus,
we can easily design a DFS-like traverse starting from items in L|Lα |α

to output all path with length |Lα| in G(α).
Note that we do not actually need to build the DAG in our al-

gorithm since we can equivalently conduct the DFS-like traverse
on Lα. Firstly, we can easily access all items in Lα which are the
starting vertexes of the traverse. Secondly, the key operation in the
DFS-like traverse is to get all predecessors of a vertex. In fact, ac-
cording to Lemma 1 which is demonstrated in Figure 5, we can
find all predecessors of ai by searching Lt−1

α from unα(ai) to the left
until meeting an item a∗ that is not compatible with ai. All touched
items (a∗ excluded) during the search are predecessors of ai.

We construct LIS s from each item aim in Lm
α (i.e., the last list)

as follows. aim is first pushed into the bottom of an initially empty
stack. At each iteration, the up neighbor of the top item is pushed
into the stack. The algorithm continues until it pushes an item in
L1
α into the stack and output items in the stack since this is when the

stack holds an LIS. Then the algorithm starts to pop top item from
the stack and push another predecessor of the current top item into
stack. It is easy to see that this algorithm is very similar to depth-
first search (DFS) (where the function call stack is implicitly used
as the stack) and more specifically, this algorithm outputs all LIS
as follows: (1) every item in Lm

α is pushed into stack; (2) at each
iteration, every predecessor (which can be scanned on a horizontal
list from the up neighbor to left until discovering an incompatible
item) of the current topmost item in the stack is pushed in the stack;
(3) the stack content is printed when it is full (i.e., an LIS is in it).

Theorem 3. The time complexity of our LIS enumeration algo-
rithm is O(OUTPUT), where OUTPUT is the total size of all LIS.

Pseudo code for LIS enumeration is presented in Appendix C
of the full version of this paper [2] .

5. MAINTENANCE
When time window slides, a1 is deleted and a new item aw+1 is

appended to the end of α. It is easy to see that the quadruple neigh-
bor list maintenance consists of two operations: deletion of the first
item a1 and insertion of aw+1 to the end. Algorithm 1 in Section 4.3
takes care of the insertion already. Thus we only consider “dele-
tion” in this section. The sequence {a2, · · · , aw} formed by deleting
a1 from α is denoted as α−. We divide the discussion of the quadru-
ple neighbor list maintenance into two parts: the horizontal update
for updating left and right neighbors and the vertical update for up
and down neighbors.

5.1 Horizontal Update
This section studies the horizontal update. We first introduce

“k-hop up neighbor” that will be used in latter discussions.
Definition 13. (k-Hop Up Neighbor). Let α = {a1 , a2, ..., aw}

be a sequence and Lα be its corresponding quadruple neighbor list.
For ∀ai ∈ α, the k-hop up neighbor unk

α(ai) is defined as follows:

unk
α(ai) =

ai k = 0
unα(unk−1

α (ai)) k ≥ 1

To better understand our method, we first illustrate the main idea
and the algorithm’s sketch using a running example. More analysis
and algorithm details are given afterward.
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Running example and intuition. Figure 8(a) shows the corre-
sponding QN-list Lα for the sequence α in the running example.
After deleting a1, some items in Lt

α (1 ≤ t ≤ m) should be promoted
to the above list Lt−1

α and the others are still in Lt
α. The following

Theorem 4 tells us how to distinguish them. In a nutshell, given an
item a ∈ Lt

α (1 < t ≤ m), if its (t−1)-hop up neighbor is a1 (the item
to be deleted), a should be promoted to the above list; otherwise, a
is still in the same list.

For example, Figure 8(a) and 8(b) show the QN-lists before and
after deleting a1. {a2, a3} are in L2

α and their 1-hop up neighbors
are a1 (the item to be deleted), thus, they are promoted to the first
list of Lα− . Also, {a4} is in L3

α, whose 2-hop up neighbor is also
a1. It is also promoted to L2

α− . More interesting, for each horizontal
list Lt

α (1 ≤ t ≤ m), the items that need to be promoted are on
the left part of Lt

α, denoted as Le f t(Lt
α), which are the shaded ones

in Figure 8(a). Note that Le f t(L1
α) = {a1}. The right(remaining)

part of Lt
α is denoted as Right(Lt

α). The horizontal update is to
couple Le f t(Lt+1

α ) with Right(Lt
α) into a new horizontal list Lt

α− .
For example, Le f t(L2

α) = {a2, a3} plus Right(L1
α) = {a4} to form

L1
α− = {a2, a3, a4}, as shown in Figure 8(b). Furthermore, the red

bold line in Figure 8(a) denotes the separatrix between the left and
the right part, which starts from a1. Algorithm 3 studies how to
find the separatrix to divide each horizontal list Lt

α− into two parts
efficiently.
Analysis and Algorithm. Lemma 4 tells us that the up neighbour
relations of the two items in the same list do not cross, which is
used in the proof of Theorem 4.

LEMMA 4. Let α = {a1, ..., aw} be a sequence and Lα be its
corresponding quadruple neighbor list. Let m be the number of
horizontal lists in Lα. Let ai and a j be two items in Lt

α, t ≥ 1. If
ai is on the left of a j, unk

α(ai) = unk
α(a j) or unk

α(ai) is on the left of
unk

α(a j), for every 0 ≤ k < t.

Theorem 4. Given a sequence α = {a1, a2, · · · , aw} and Lα. Let
m = |Lα|. Let α− = {a2, · · · , aw} be obtained from α by deleting a1.
Then for any ai, 2 ≤ i ≤ m ∈ Lt

α, 1 ≤ t ≤ m, we have the following:

1. If unt−1
α (ai) is a1, then RLα− (ai) = RLα(ai) − 1.

2. If unt−1
α (ai) is not a1, then RLα− (ai) = RLα(ai).

Naive method. With Theorem 4, the straightforward method to
update horizontal lists is to compute unt−1

α (ai) for each ai in Lt
α. If

unt−1
α (ai) is a1, promote ai into Lt−1

α . After grouping items into the
correct horizontal lists, we sort the items of each horizontal list in
the decreasing order of their values. According to Theorem 4 and
Lemma 1(2) (which states that the horizontal list is in decreasing
order), we can easily know that the horizontal lists obtained by the
above process is the same as re-building Lα− for sequence α− (i.e.,
the sequence after deleting a1).

Optimized method. For each item ai in Lt
α (1 ≤ t ≤ m) in the

running example, we report its (t−1)-hop up neighbor in Figure 8a.
The shaded vertices denote the items whose (t−1)-hop up neighbors
are a1 in L1

α; and the others are in the white vertices. Interestingly,
the two categories of items of a list form two consecutive blocks.
The shaded one is on the left and the other on the right.

Let us recall Lemma 4, which says that the up neighbour rela-
tions of the two items in the same list do not cross. In fact, after
deleting a1, for each ai ∈ Lt

α, if unt−1
α (ai) is a1, then for any item a j

at the left side of ai in Lt
α, unt−1

α (ai) is also a1. While, if unt−1
α (ai)

is not a1, then for any item ak at the right side of ai in Lt
α, unt−1

α (ai)
is not a1. The two claims can be proven by Lemma 4. This is the
reason why two categories of items form two consecutive blocks,
as shown in Figure 8a.

After deleting a1, we can divide each list Lt
α into two sublists:

Le f t(Lt
α) and Right(Lt

α). For any item a j ∈ Le f t(Lt
α), unt−1

α (a j) is

a1 while for any item ak ∈ Right(Lt
α), unt−1

α (ak) is not a1. Instead of
computing the (t− 1)-hop up neighbor of each item, we propose an
efficient algorithm (Algorithm 3) to divide each horizontal list Lt

α

into two sublists: Le f t(Lt
α) and Right(Lt

α).

a1

a2 a3

a4

a5

a6

a7

un0
α(a1) = a1

un1
α(a2) = a1

un1
α(a3) = a1
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un1
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α(a7) = a4
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(a) Division.
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un1
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un2
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(b) After Deletion.
Figure 8: Maintenance

Let’s consider the division of each horizontal list of Lα. In fact,
in our division algorithm, the division of Lt

α depends on that of
Lt−1
α . We first divide L1

α. Apparently, Le f t(L1
α) = {a1} and Right(L1

α)
= {L1

α} − {a1}. Recursively, assuming that we have finished the
division of Lt

α, 1 ≤ t < m, there are three cases to divide Lt+1
α . Note

that for each item ai ∈ Le f t(Lt
α), unt−1

α (ai) = a1; while for each item
ai ∈ Right(Lt

α), unt−1
α (ai) , a1.

1. If Right(Lt
α) = NULL, for any item a j ∈ Lt+1

α , we have unα(a j)
∈ Le f t(Lt

α), thus, unt
α(a j) is exactly a1. Thus, all below lists

are set to be the left part. Specifically, for any t′ > t, we set
Le f t(Lt′

α ) = Lt′
α and Right(Lt′

α ) = NULL.

2. If Right(Lt
α) , NULL and the head item of Right(Lt

α) is ak:

(a) if dnα(ak) does not exist, namely, Lt+1
α is empty at the

time when ak is inserted into Lt
α, then all items in Lt+1

α

come after ak and their up neighbors are either ak or
item at the right side of ak, thus, the t-hop up neighbor
of each item in Lt+1

α cannot be a1. Actually, all below
lists are set to be the right part. Specifically, for any
t′ > t, we set Le f t(Lt′

α ) = NULL and Right(Lt′
α ) = Lt′

α .

(b) if dnα(ak) exists, then dnα(ak) and items at its left side
come before ak and their up neighbors can only be at
the left side of ak (i.e., Le f t(Lt

α)), thus, the t-hop up
neighbor of dnα(ak) or items on the left of dnα(ak) must
be a1. Besides, items at the right side of dnα(ak) come
after ak, and their up neighbors is either ak or item at
the right side of ak, thus, the t-hop up neighbor of each
item on the right of dnα cannot be a1. Generally, we set
Le f t(Lt+1

α ) as the induced sublist from the head of Lt+1
α

to dnα(ak)(included) and set Right(Lt+1
α ) as the remain-

der, namely, Right(Lt+1
α ) = Lt+1

α −Le f t(Lt+1
α ). We iterate

the above process for the remaining lists.

Finally, for any 1 ≤ t ≤ m, the left sublist Le f t(Lt
α) should

be promoted to the above list; and Right(Lt
α) is still in the t-th

list. Specifically, Lt
α− = Le f t(Lt+1

α− ) + Right(Lt
α− ), i.e., append-

ing Right(Lt
α− ) to Le f t(Lt+1

α− ) to form Lt
α− . In the running exam-

ple, we append Right(L1
α) = {a2, a3} to Le f t(L2

α) = {a4} to form
L1
α− = {a2, a3, a4}, as shown in Figure 8b.

Theorem 5. The list that is formed by appending Right(Lt
α) to

Le f t(Lt+1
α ) is monotonic decreasing from the left to the right.

According to Theorem 4 and Lemma 2(1), we can prove that
the list formed by appending Right(Lt

α) to Le f t(Lt+1
α ), denoted as

L, contains the same set of items as Lt
α− does. Besides, according

to Lemma 1(2) and Theorem 5, both L and Lt
α− are monotonic de-

creasing, thus, we can know that L is equivalent to Lt
α− and we can

derive that the horizontal list adjustment method is correct.
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Algorithm 3: Divide each horizontal list after deletion
Input: Lα: the quadruple neighbor list for α.
Input: a1: the item to be deleted.
Output: Le f t(Lt

α) and Right(Lt
α) for each Lt

α, 1 ≤ t ≤ m.
1 m = |Lα |
2 Le f t(L1

α) = {a1}
3 Right(L1

α) = L1
α/{a1}

4 for t ← 1 to m − 1 do
5 if Right(Lt

α) = NULL then
6 for t′ ← (t + 1) to m do
7 Le f t(Lt′

α ) = Lt′
α

8 Right(Lt′
α ) = NULL

9 RETURN
10 ak = Head(Right(Lt

α))
11 if dnα(ak) = NULL then
12 for t′ ← (t + 1) to m do
13 Le f t(Lt′

α ) = NULL
14 Right(Lt′

α ) = Lt′
α

15 RETURN
16 Set Le f t(Lt+1

α ) to be the part at the left side of dnα(ak) in Lt+1
α ,

including dnα(ak) itself.
17 Right(Lt+1

α ) = Lt+1
α − Le f t(Lt+1

α )
18 RETURN

5.2 Vertical Update
Besides adjusting the horizontal lists, we also need to update

the vertical neighbor relationship in the quadruple neighbor list to
finish the transformation from Lα to Lα− . Before presenting our
method, we recall Lemma 2(2), which says, for item ai ∈ Lt

α,
unα(ai)(if exists) is the rightmost item in Lt−1

α who is before ai in
sequence α; while, dnα(ai)(if exists) is the rightmost item in Lt+1

α

who is before ai in sequence α.
Running example and intuition. Let us recall Figure 8. After
adjusting the horizontal lists, we need to handle updates of vertical
neighbors. The following Lemma 6 tells us which vertical relations
will remain when transforming Lα into Lα− . Generally, when we
promote Le f t(Lt

α) to the above level, we need to change their up
neighbors but not down neighbors. While, Right(Lt

α) is still in the
same level after the horizontal update. We need to change their
down neighbors but not up neighbors.

For example, Le f t(L3
α) = {a5} is promoted to the L2

α− . In Lα,
unα(a5) is a3, but we change it to unα− (a5) = a4, i.e., the right-
most item in L1

α− who is before a5 in sequence α−. Analogously,
Right(L2

α) = {a6} is still at the second level of Lα− . dnα(a6) is a5,
but we change it to null (i.e., dnα− (a6) = null), since there is no item
in L3

α− who is before a6. We give the formal analysis and algorithm
description of the vertical update as follows.
Analysis and Algorithm.

LEMMA 5. Given a sequence α and Lα, for any 1 ≤ t ≤ m:

1. ∀ai ∈ Le f t(Lt
α), dnα(ai) (if exists) ∈ Le f t(Lt+1

α ).

2. ∀ai ∈ Right(Lt+1
α ), unα(ai) (if exists) ∈ Right(Lt

α).

LEMMA 6. Let α = {a1, a2, · · · , aw) be a sequence. Let Lα be its
corresponding quadruple neighbor list and m be the total number
of horizontal lists in Lα. Let α− = {a2, · · · , aw} be obtained from
α by deleting a1. Consider an item ai ∈ Lt

α− , where 1 ≤ t ≤ m.
According to the horizontal list adjustment, there are two cases for
ai: ai is from Le f t(Lt+1

α ) or ai is from Right(Lt
α). Then, the following

claims hold:

1. Assuming ai is from Le f t(Lt+1
α )

(a) dnα− (ai) = dnα(ai) (i.e., the down neighbor remains).

(b) Let x be the rightmost item of Le f t(Lt
α). If unα(ai) , x,

then unα− (ai) = unα(ai) (i.e., the up neighbor remains).

2. Assuming ai is from Right(Lt
α)

(a) unα− (ai) = unα(ai) (i.e., the up neighbor do not change).

(b) Let y be the rightmost item of Le f t(Lt+1
α ). If dnα(ai) , y,

dnα− (ai) = dnα(ai) (i.e., the down neighbor remains)

With Lemma 6, for an item ai ∈ Lt
α− , there are only two cases

that we need to update the vertical neighbor relations of ai.
1. Case 1: ai is from Le f t(Lt+1

α ). Let x be the rightmost item of
Le f t(Lt

α). We need to update the up neighbor of ai in Lα− if
unα(ai) = x. Figure 9 demonstrates this case.

2. Case 2: ai is from Right(Lt
α). Let y be the rightmost item of

Le f t(Lt+1
α ). We need to update the down neighbor of ai in

Lα− if dnα(ai) = y. Figure 10 demonstrates this case.

Le f t(Lt+1
α )

Le f t(Lt
α) Right(Lt

α)

Right(Lt−1
α )Le f t(Lt−1

α )
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α )
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α)
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α)

Right(Lt−1
α )

Lt-1
α

Lt
α

Lt+1
α

Lt-1
α−

Lt
α−

(a) Before Deletion (b) After Deletion
Figure 9: Case 1: updating up neighbors

Case 1: Consider all items in Le f t(Lt+1
α ). According to the hori-

zontal adjustment, Le f t(Lt+1
α ) will be promoted into the list Lt

α− .
Let ai be the rightmost item of Le f t(Lt+1

α ) and x = Tail(Le f t(Lt
α)),

namely, x is the rightmost item in Le f t(Lt
α). According to Lemma

6(1.b), if unα(ai) , x, then unα(ai) = unα− (ai). It is easy to prove
that: If unα(ai) , x then unα(a j) , x, where a j is on the left of ai

in Le f t(Lt+1
α ). In other words, all items in Le f t(Lt+1

α ) do not change
the vertical relations (see Lines 6-8 in Algorithm 4).

Now, we consider the case that unα(ai) = x (Lines 8-8 in Algo-
rithm 4). Then can scan Le f t(Lt+1

α ) from ai to the left until finding
the leftmost item ai′ , where unα(ai′ ) is also x. The up neighbors of
the items in the consecutive block from ai′ to ai (included both) are
all x in Lα (note that x is the rightmost item in Le f t(Lt

α) ), as shown
in Figure 9(a). These items’ up neighbors need to be adjusted in
Lα− . We work as follows: First, we adjust the up neighbor of ai′

in Lα− . Initially, we set a∗ = unα(ai′ ) = x. Then, we move a∗ to
the right step by step in Lt−1

α− until finding the rightmost item whose
position is before ai′ in sequence α−. Finally, we set unα− (ai′ ) = a∗

(see Lines 14 in Algorithm 4).
In the running example, when deleting a1 in Figure 8a, Le f t(L3

α)
= {a5}, and unα(a5) is exactly the tail item a3 of Le f t(L2

α), since L1
α−

is {a2 = 9, a3 = 6, a4 = 2}, formed by appending Right(L1
α)({a2 =

9, a3 = 6}) to Le f t(L2
α) ({a4 = 2}), and a4 is the rightmost item

in L1
α− who is before a5 in α−, then we set unα− (a5) as a4 = 2, as

shown in Figure 8b.
Iteratively, we consider the items on the right of ai′ . Actually,

the adjustment of the next item’s up neighbor can begin from the
current position of a∗ (Line 13). It is straightforward to know the
time complexity of Algorithm 4 is O(|Lt−1

α− |), since each item in Lt−1
α−

is scanned at most one time.
Case 2: Consider all items in Right(Lt

α). According to the horizon-
tal adjustment, the down neighbors of items in Right(Lt

α) are the tail
item (i.e., the rightmost item) of Le f t(Lt+1

α ) or items in Right(Lt+1
α ).

Actually, Case 2 is symmetric to Case 1. We highlight some
important steps as follows. Let ai be the leftmost item in Right(Lt

α)
and let y be Tail(Le f t(Lt+1

α )), namely, y is the rightmost item in
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Le f t(Lt+1
α ). Obviously, dnα(ai) = y (Algorithm 3). Then we scan

Right(Lt
α) from ai to the rightmost item ai′ where dnα(ai′ ) is y. The

up neighbors of the items in the consecutive block from ai to ai′

(included both) are all y (see Figure 10(a)). Items on the right of ai′

need no changes in their down neighbors, since their down neigh-
bors in Lα are not y (see Lemma 6(2.b)).

Le f t(Lt+2
α )

Le f t(Lt+1
α ) Right(Lt+1

α )

Right(Lt
α)Le f t(Lt

α)

Right(Lt+2
α )
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y

ai′ai

dnα−(ai′)
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α )

Right(Lt+1
α )
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α

Lt+1
α

Lt+2
α

Lt
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Lt+1
α−

(a) Before Deletion (b) After Deletion
Figure 10: Case 2: updating down neighbors

Algorithm 4: Update up neighbors of items in Le f t(Lt+1
α )

Input: Le f t(Lt+1
α ))

Output: the updated Le f t(Lt+1
α )

1 if Le f t(Lt+1
α ) = NULL then

2 RETURN
3 if t = 1 then
4 Set unα− (ai) = NULL for each ai ∈ Le f t(Lt+1

α )
5 RETURN
6 Let ai = Tail(Le f t(Lt+1

α )) and x = Tail(Le f t(Lt
α))

7 if unα(ai) is not x then
8 RETURN
9 Scan Le f t(Lt+1

α ) from right to left and find the leftmost item whose up
neighbor is x, denoted as ai′

10 a∗ = x
11 while ai′ ≥ ai do
12 while rnα− (a∗) is before ai′ do
13 a∗ = rnα− (a∗)
14 unα− (ai′ ) = a∗
15 ai′ = rnα− (ai′ )
16 RETURN

Algorithm 5: Update down neighbors of items in Right(Lt
α)

Input: Right(Lt
α))

Output: the updated Right(Lt
α)

1 if t ≥ m − 1 OR Right(Lt
α) = NULL then

2 RETURN
3 Let ai = Head(Right(Lt

α)) and y = dnα(ai)
4 Scan Right(Lt

α) from left to right and find the rightmost item whose
down neighbor is y, denoted as ai′

5 a∗ = Tail(Le f t(Lt+1
α ))

6 while ai′ ≤ ai do
7 if a∗ = NULL OR a∗ is before ai′ then
8 dnα− (ai′ ) = a∗
9 ai′ = lnα− (ai′ )

10 else
11 a∗ = lnα− (a∗)
12 RETURN

We only consider the consecutive block from ai to ai′ (see Figure
10) as follows. First, we adjust the down neighbor of ai′ in Lα− .
Initially, we set a∗ = Tail(Le f t(Lt+1

α )), i.e., the rightmost item of
Le f t(Lt+1

α ). Then, we move a∗ to the left step by step in Lt+1
α− until

finding the rightmost item whose position is before ai′ . Finally, we
set dnα− (ai′ ) = a∗ (see Lines 8 in Algorithm 5).

In the running example, when deleting a1 = 3, Right(L1
α) is

{a4 = 2} whose head item is a4. And dnα(a4) is a3 = 6 that is
the tail item of Le f t(L2

α). Then, initially, we set dnα− (a4) as the tail
item of Le f t(L3

α), namely, dnα− (a4) = a5 and scan L2
α− from the

right to the left until finding a rightmost item who is before a4 in
α−. Since there is no such item in L2

α− , we set dnα− (a4) as NULL.

Iteratively, we consider the items on the left of ai′ . Actually,
the adjustment of the down neighbor can begin from the current
position of a∗ (Line 11 in Algorithm 5). Thus, the time complexity
of Algorithm 5 is O(|Lt+1

α− |), since Lt+1
α− is scanned at most twice.

5.3 Putting It All Together
Finally, we can see that solution to handle the deletion of the

head item a1 in sequence α consists two main phrase. The first
phrase is to divides each list Lt

α (1 ≤ t ≤ m) using Algorithm 3
and then finishes the horizontal update by appending Right(Lt

α) to
Le f t(Lt+1

α ) . In the second phrase, we can call Algorithms 4 and
5 for vertical update. Pseudo codes of algorithm handling deletion
are presented in Appendix D of the full version of this paper [2] .

Theorem 6. The time complexity of our deletion algorithm is
O(w), where w denotes the time window size.

6. COMPUTING LIS WITH CONSTRAINTS
As noted earlier in Section 1, some applications are more in-

terested in computing LIS with certain constraints. In this sec-
tion, we consider four kinds of constraints (maximum/minimum
weight/gap) that are defined in Section 3.

In Section 4.4, we define the DAG (Definition 12) based on the
predecessor (Definition 8). Each length-m path in DAG denotes
a LIS. Considering the equivalence between DAG and Lα, we il-
lustrate our algorithm using DAG for the ease of the presentation.
These algorithm steps can be easily mapped to those in Lα. Accord-
ing to Lemma 1(2), items in Lt

α (1 ≤ t ≤ m) decrease from the left
to the right. Thus, the leftmost length-m path in DAG denotes the
LIS with the maximum weight; while, the rightmost length-m path
denotes the LIS with the minimum weight. Formally, we define the
leftmost child as follows.

Definition 14. (Leftmost child). Given an item ai ∈ Lt
α (1 ≤

t ≤ m), the leftmost child of ai, denoted as lmα(ai), is the leftmost
predecessor (see Definition 8) of ai in Lt−1

α .
Recall Figure 6. a3 is the leftmost child of a7, denoted as a3 =

lmα(a7). Similar to the recursive definition of k-hop up neighbor
unk

α(ai) for ai, we recursively define lmk
α(ai) = lmα(lmk−1

α (ai)) (k ≥
1) for any k < t, where lm0

α(ai) = ai. Obviously, given an item ai ∈
Lm
α (i.e., the last list), (lmm−1

α (ai), lmm−2
α (ai), ..., lm0

α(ai) = ai) forms
the leftmost path ending with ai in the DAG. It is easy to know that
the leftmost path (lmm−1

α (ai), lmm−2
α (ai), ..., lm0

α(ai) = ai) in the DAG
is the LIS ending with ai with maximum weight and minimum gap;
while the rightmost path (unm−1

α (ai), unm−2
α (ai), ..., un0

α(ai) = ai) in
the DAG is the LIS ending with ai with minimum weight and max-
imum gap. Formally, we have the following theorem that is the
central to our constraint-based LIS computation.

Theorem 7. Given a sequence α = {a1, ..., aw} and Lα. Let m =

|Lα| and DAG Gα be the corresponding DAG created from Lα.
1. Given ai, a j ∈ Lt

α where ai < a j. then for every 1 ≤ k <
t, lmk

α(ai), lmk
α(a j), unk

α(ai) and unk
α(a j) are all in Lt−k

α , and
lmk

α(ai) ≤ lmk
α(a j), unk

α(ai) ≤ unk
α(a j).

2. Given ai ∈ Lt
α. Consider an LIS β ending with ai: β =

{ait−1 , · · · , aik , · · · , ai0 = ai}. Then ∀ k ∈ [0, t − 1], lmk
α(ai),

aik , and unk
α(ai) are all in Lt−k

α . Also lmk
α(ai) ≥ aik ≥ unk

α(ai).

3. Given ai ∈ Lm
α (the last list). Among all LIS ending with ai,

{lmm−1
α (ai), · · · ,lm0

α(ai)} has maximum weight and minimum
gap, while {unm−1

α (ai), · · · ,un0
α(ai)} has the minimum weight

and maximum gap.

4. Let am
h and am

t be the head and tail of Lm
α respectively. Then

the LIS {lmm−1
α (am

h ), · · · ,lm0
α(am

h )} has the maximum weight.
The LIS {unm−1

α (am
t ), · · · , un0

α(am
t )} has the minimum weight.
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LIS with maximum/minimum weight. Based on Theorem
7(4), we can design algorithms to compute the unique LIS with
maximum weight and the unique LIS with minimum weight, re-
spectively (Pseudo codes are in Appendix F of the full version
[2]) . Generally speaking, it searches for the leftmost path and the
rightmost path in the DAG and both algorithms cost O(w) time.

LIS with maximum/minimum gap. For the maximum gap
(minimum gap, respectively) problem, there may be numerous LIS
with maximum gap (minimum gap, respectively). In the running
example, LIS with the maximum gap are {a1 = 3,a3 = 6,a5 = 8}
and {a4 = 2,a6 = 5,a7 = 7}; while LIS with the minimum gap
are {a1 = 3,a6 = 5,a7 = 7} and {a1 = 3,a3 = 6,a7 = 7},
as shown in Figure 1. According to Theorem 7, it is obviously
that if β = {aim−1 , aim−2 , ..., ai0 } is a LIS with the maximum gap,
aim−1 = unm−1

α (ai0 ); while, if β is a LIS with the minimum gap,
aim−1 = lmm−1

α (ai0 ). Note that, there may be multiple LIS sharing
the same head and tail items. For example, {a1 = 3,a6 = 5,a7 = 7}
and {a1 = 3,a3 = 6,a7 = 7} are both LIS with minimum gap, but
they share the same head and tail items. Since computing LIS with
the minimum gap is analogous to LIS with the maximum gap, we
only consider LIS with the maximum gap as follows.

For the maximum gap problem, one could compute {unm−1
α (ai),

· · · , un0
α(ai)} for all ai ∈ Lm

α first, and then figure out the maximum
gap θmax . We design a sweeping algorithm with O(w) time to
compute unt−1

α (ai) for each item ai ∈ Lt
α, 1 ≤ t ≤ m. We will return

back to the sweeping algorithm at the end of this subsection. Here,
we assume that unm−1

α (ai) has been computed for each item ai ∈ Lα.
Assume that ai − unm−1

α (ai) = θmax for some ai ∈ Lm
α . To enu-

merate LIS starting with unm−1(ai) ending with ai, we only need to
slightly modify the LIS enumeration algorithm : Initially, we push
ai into the stack. If a j ∈ Lt

α is a predecessor of top element in the
stack, we push a j into the stack if and only if unt−1

α (a j) =unm−1
α (ai) .

To compute unt−1
α (ai) for each ai ∈ Lt

α, 1 ≤ t ≤ m, we design a
sweeping algorithm from L2

α to Lm
α and once we figure out unt−1

α (a j)
for each a j in Lt

α, then for any ai ∈ Lt+1
α , unt

α(ai) is unt−1
α (unα(ai)).

Apparently, this sweeping algorithm takes Θ(w) time.

Theorem 8. The time complexity of our algorithm for LIS with
maximum gap is O(w+OUTPUT), where w denotes the window size
and OUTPUT is the total length of all LIS with maximal gap.

Computing LIS with minimum gap is analogous to that of LIS
with maximum gap by computing lmt−1

α (ai) instead of unt−1
α (ai). We

also design a sweeping algorithm from L2
α to Lm

α to figure out
lmt−1

α (ai) for each ai ∈ Lt
α, 1 ≤ t ≤ m (Pseudo codes are presented

in the Appendix E of the full version of this paper [2]) .

7. COMPARATIVE STUDY
To the best of our knowledge, there is no existing work that

studies both LIS enumeration and LIS with constraints in the data
stream model. We compare our method with five related algo-
rithms, four of which are state-of-the-art LIS algorithms, i.e., LIS-
SET [6], MHLIS [22], VARIANT [7] and LISone [3], and the last
one is the classical dynamic program (DP) algorithm. None of
them covers either the same computing model or the same com-
puting task with our approach. Table 2 summarizes the differences
between our approach with other comparative ones.

LISSET [6] is the only one which proposed LIS enumeration in
the context of “stream model”. It enumerates all LIS in each sliding
window but it fails to compute LIS with different constraints, such
as LIS with extreme gaps and LIS with extreme weights. To enable
the comparison in constraint-based LIS, we first compute all LIS
followed by filtering using constraints to figure out constraint-based
LIS, which is denoted as “LISSET-Post” in our experiments.

MHLIS [22] is to find LIS with the minimum gap but it does
not work in the context of data stream model. The data struc-
ture in MHLIS does not consider the maintenance issue. To enable
the comparison, we implement two streaming version of MHLIS:
MHLIS+Rebuild and MHLIS+Ins/Del where MHLIS+Rebuild is
to re-compute LIS from scratch in each time window and MH-
LIS+Ins/Del is to apply our update method in MHLIS.

A family of static algorithms was proposed in [7] including LIS
of minimal/maximal weight/gap (denoted as VARIANT). For the
comparison, we implement two stream version of VARIANT: VARI-
ANT+Rebuild and VARIANT+Ins/Del where VARIANT+Rebuild
is to re-compute LIS from scratch in each time window and VARI-
ANT+Ins/Del is to apply our update method in VARIANT.

We include the classical dynamic programming (denoted as DP)
algorithm in the comparative study. The standard DP algorithm
only computes the LIS length and a single LIS. To enumerate all
LIS, we save all predecessors of each item when determining the
maximum length of the increasing subsequence ending with it.

LISone[3] computed LIS length and output an LIS in the sliding
model. They maintained the first row of Young’s Tableaux when
update happened. The length of the first row is exactly the LIS
length of the sequence in the window.

Methods
Stream
Model

LIS Enu-
meration

LIS with extreme
weight

LIS with
extreme gap

LIS
length

Our Method 3 3 3 3 3
LISSET 3 3 7 7 3
MHLIS 7 7 7 3 3

VARIANT 7 7 3 3 3
DP 7 3 7 7 3

LISone 3 7 7 7 3

Table 2: Compaison on supported computing task

7.1 Theoretical Analysis
Data Structure Comparison. We compare the space, construction
time and update time of our data structure against those of other
works (Table 410) . Note that the data structures in the comparative
approaches cannot support all LIS-related problems, while our data
structure can support both LIS enumeration and constraint-based
LIS problems (Table 2) in a uniform manner.

Since MHLIS, VARIANT or DP does not address data structure
maintenance issue, we re-construct the data structure in each time
window and the time complexity of the maintenance in MHLIS,
VARIANT and DP are the same with their construction time.

Table 4 shows that our approach is better or not worse than any
comparative work on any metric. Our data structure is better than
LISSET on both space and the construction time complexity. Fur-
thermore, the insertion time O(log w) in our method is also better
than the time complexity O(w) in LISSET. Also, none of MHLIS,
VARIANT or DP addresses the data structure update issue. Thus,
they need O(w log w) (O(w2) for DP) time to re-build data structure
in each time window. Obviously, ours is better than theirs.
Online Query Algorithm Comparison. Table 3 shows online
query time complexities of different approaches. The online query
response time in the data stream model consists of online query
time and the update time. Since the data structure maintenance time
has been presented in Table 4, we only show the online query al-
gorithm’ time complexities in Table 3. We can see that, our online
query time complexities are the same with the comparative ones.
However, the data structure update time complexity in our method
is better than others. Therefore, our overall query response time is
better than the comparative ones from the theoretical perspective.

10The time complexities in Table 4 are based on the worst case analysis.
We also studies the time complexity of our method over sorted sequence in
Appendix G of the full version of this paper [2] .
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Method LIS
Enumeration

LIS with
max Weight

LIS with
min Weight

LIS with
max Gap

LIS with
min Gap

LIS
Length

Our Method O(OUT PUT ) O(OUT PUT )O(OUT PUT )O(w + OUT PUT )O(w + OUT PUT )O(OUT PUT )
LISSET O(OUT PUT ) – – – – O(OUT PUT )
MHLIS – – – – O(w + OUT PUT )O(OUT PUT )
VARIANT – O(OUT PUT )O(OUT PUT )O(w + OUT PUT )O(w + OUT PUT )O(OUT PUT )
DP O(OUT PUT ) – – – – O(OUT PUT )
LISone – – – – – O(OUT PUT )

Table 3: Theoretical Comparison on Online Query

Methods Space
Complexity

Time Complexity
Construction Insert Delete

Our Method O(w) O(w log w) O(log w) O(w)

LISSET O(w2) O(w2) O(w) O(w)

MHLIS O(w) O(w log w) – –

VARIANT O(w) O(w log w) – –

DP O(w2) O(w2) – –

LISone O(w2) O(w2) O(w) O(w)

Table 4: Data Structure Comparison

7.2 Experimental Evaluation
We evaluate our solution against the comparative approaches.

All methods, including comparative methods, are implemented by
C++ and compiled by g++(5.2.0) under default settings. Each com-
parative method are implemented according the corresponding pa-
per with our best effort. The experiments are conducted in Window
8.1 (Intel(R) i7-4790 3.6GHz, 8G). All codes, including those for
comparative methods are provided in Github [1].
Dataset. We use four datasets in our experiments: real-world stock
data, gene sequence datasets, power usage data and synthetic data.
The stock data is about the historical open prices of Microsoft Co-
operation in the past two decades11, up to 7400 days. The gene
datasets is a sequence of 4,525 matching positions, which are com-
puted over the BLAST output of mRNA sequences12 against a gene
dataset13 according to the process in [24]. The power usage dataset14

is a public power demand dataset used in [14]. It contains 35,040
power usage value. The synthetic dataset 15 is a time series bench-
mark [15] that contains one million data points(See [15] for the de-
tails of data generation). Due to the space limits, we only present
the experimental results over stock dataset in this section and the
counterparts over the other three datasets are available in Appendix
A of the full version of this paper [2] .
Data Structure Comparison. Evaluation of the data structures
focuses on three aspects: space, construction time and update time.

The space cost of each method is presented in Figure 11a. Our
method costs much less memory than LISSET, DP and LISone
while slightly more than that of MHLIS and VARIANT, which re-
sults from the extra cost in our QN-List to support efficient main-
tenance and computing LIS with constraints. Note that none of the
comparative methods can support both LIS enumeration and LIS
with constraints; but our QN-List can support all these LIS-related
problems in a uniform manner (see Table 2).

We construct each data structure five times and present their
average constuction time in Figure 11b. Similarly, our method runs
much faster than that of LISSET, DP and LISone, since our con-
struction time is linear but LISSET , DP and LISone have the square
time complexity (see Table 4). Our construction time is slightly
slower than VARIANT and faster than MHLIS, since they have the
same construction time complexity (Table 4).

None of MHLIS, VARIANT or DP addresses maintenance is-
sue. To enable comparison, we implement two stream versions
of MHLIS and VARIANT. The first is to rebuild the data struc-
ture in each time window(MHLIS+Rebuild, VARIANT+Rebuild).
The second is to apply our update idea into MHLIS and VARIANT

11http://finance.yahoo.com/q/hp?s=MSFT&d=8&e=13&f=
2015&g=d&a=2&b=13&c=1986&z=66&y=66

12ftp://ftp.ncbi.nih.gov/refseq/B_taurus/mRNA_Prot/
13ftp://ftp.ncbi.nlm.nih.gov/genbank/
14http://www.cs.ucr.edu/~eamonn/discords/power_
data.txt

15https://archive.ics.uci.edu/ml/datasets/Pseudo+
Periodic+Synthetic+Time+Series
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Figure 11: Evaluation on stock data
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(MHLIS+Ins/Del, VARIANT+ Ins/Del). The update efficiency is
measured by the throughput, i.e., the number of items handled per
second without answering any query. Figure 11c shows that our
method is obviously faster than comparative approaches on data
structure update performance.
LIS Enumeration. We compare our method on LIS Enumeration
with LISSET and DP, where LISSET is the only previous work that
can be used to enumerate LIS under the sliding window model.
We report the average query response time in Figure 11d. In the
context of data stream, the overall query response time includes two
parts, i.e., the data structure update time and online query time. Our
method is faster than both LISSET and DP, and with the increasing
of time window size, the performance advantage is more obvious.
LIS with Max/Min Weight. VARIANT [7] is the only previous
work on LIS with maximum/minimum weight. Figures 11g and
11f confirms the superiority of our method with regard to VARI-
ANT(VARIANT+Rebuild and VARIANT+Ins/Del).
LIS with Max/Min Gap. VARIANT [7] computes the LIS with
maximum and minimum gap while MHLIS [22] only computes LIS
with the minimum gap. The average running time in each window
of different methods are in Figures 11h and 11i. We can see that
our method outperforms other methods significantly.
LIS length (Output a single LIS). We compare our method with
LISone [3] on outputting an LIS (The length comes out directly).
We also add other comparative works into comparison they can
easily support outputting an LIS. Figure 11e shows that our method
is much more efficient than comparative methods on computing
LIS length and output a single LIS.

8. CONCLUSIONS
In this paper, we propose a uniform data structure to support

enumerating all LIS and LIS with specific constraints over sequen-
tial data stream. The data structure built by our algorithm only
takes linear space and can be updated only in linear time, which
make our approach practical in handling high-speed sequential data
streams. To the best of our knowledge, our work is the first to pro-
poses a uniform solution (the same data structure and computing
framework) to address all LIS-related issues in the data stream sce-
nario. Our method outperforms the state-of-the-art work not only
theoretically, but also empirically in both time and space cost.
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