
Mostly-Optimistic Concurrency Control for Highly
Contended Dynamic Workloads on a Thousand Cores

Tianzheng Wang
University of Toronto

tzwang@cs.toronto.edu

Hideaki Kimura
Hewlett Packard Labs

hideaki.kimura@hpe.com

ABSTRACT
Future servers will be equipped with thousands of CPU cores and
deep memory hierarchies. Traditional concurrency control (CC)
schemes—both optimistic and pessimistic—slow down orders of
magnitude in such environments for highly contended workloads.
Optimistic CC (OCC) scales the best for workloads with few con-
flicts, but suffers from clobbered reads for high conflict workloads.
Although pessimistic locking can protect reads, it floods cache-
coherence backbones in deep memory hierarchies and can also
cause numerous deadlock aborts.

This paper proposes a new CC scheme, mostly-optimistic concur-
rency control (MOCC), to address these problems. MOCC achieves
orders of magnitude higher performance for dynamic workloads on
modern servers. The key objective of MOCC is to avoid clobbered
reads for high conflict workloads, without any centralized mecha-
nisms or heavyweight interthread communication. To satisfy such
needs, we devise a native, cancellable reader-writer spinlock and a
serializable protocol that can acquire, release and re-acquire locks
in any order without expensive interthread communication. For
low conflict workloads, MOCC maintains OCC’s high performance
without taking read locks.

Our experiments with high conflict YCSB workloads on a 288-
core server reveal that MOCC performs 8× and 23× faster than
OCC and pessimistic locking, respectively. It achieves 17 million
TPS for TPC-C and more than 110 million TPS for YCSB without
conflicts, 170× faster than pessimistic methods.

1. INTRODUCTION
Core counts in modern database servers range into the hundreds

today [10, 38] and are expected to grow into the range of thousands
soon [11] . Despite such advances, emerging software systems are
struggling to utilize such modern hardware to generate, analyze,
and store an exponentially growing amount of data. For example,
GraphLab [27] parallelizes a graph query by internally splitting
up the work into billions of ACID transactions that often contain
read-write conflicts between cores. Other examples of growing
concurrency demands include security monitoring, high frequency
trading, and smart grid management.
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Existing databases, however, cannot scale up to thousands of
cores, especially when the workload is highly contended. Most
databases today employ either pessimistic two phase locking (2PL)
or optimistic concurrency control (OCC) to guarantee serializability.
As we shall see, critical scalability bottlenecks slow down both 2PL
and OCC by orders of magnitude in modern servers.

OCC has low overhead and scales up nicely on manycore servers
for low-conflict/contention workloads. When the workload contains
frequent read-write conflicts, however, OCC can exhibit high abort
rates that strongly limit throughput [8, 16] . 2PL exhibits two scala-
bility issues. First, pessimistic read locks severely limit scalability
due to expensive cache-coherence traffic on deep memory hierar-
chies. Second, somewhat ironically, 2PL does not necessarily reduce
aborts. Especially when record accesses are highly contended and
in a random order, even 2PL causes massive aborts due to dead-
locks. Moreover, existing 2PL architectures necessitate unscalable
interthread communication.

In this paper, we propose mostly-optimistic concurrency control
(MOCC), a new concurrency control scheme that addresses these
problems and scales up to thousands of cores. MOCC dramatically
reduces the abort ratio and guarantees robust progress even when the
workload has extremely frequent read-write conflicts. Yet, MOCC
has extremely low overhead, performing orders of magnitude faster
than 2PL and as fast as the state-of-the-art OCC even in its best
case, low conflict workloads. Finally, MOCC dynamically and
autonomously optimizes itself to retain its high performance in
the most challenging yet common case, in which each transaction
involves multiple data sets of opposite nature: records that have
frequent read-write conflicts and records that are read-mostly.

MOCC is based on modern OCC that is highly decentralized.
There are two key reasons why we design MOCC based on OCC:
First, its decentralized architecture scales far better on modern
servers when the workload does not have too frequent conflicts.
It is adopted by state-of-the-art main-memory optimized systems,
such as FOEDUS [17] and Silo [41] . MOCC behaves the same as
FOEDUS for such workloads and retains its performance. Second,
we found that OCC’s commit protocol fits well with the non-2PL
protocol proposed in this paper, which must acquire and release
locks in arbitrary orders without violating serializability.

Like 2PL, MOCC incorporates pessimistic read locks to prevent
writers from clobbering readers. Unlike 2PL, however, an MOCC
transaction might release locks before commit, then re-acquire them
in a different order during pre-commit. Doing so allows MOCC
to effectively avoid aborts and deadlocks, without relying on any
unscalable component such as a centralized lock manager. Section 3
describes the MOCC protocol in detail, including how MOCC dy-
namically and selectively adds pessimistic locking onto OCC and
how MOCC avoids deadlocks.
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Figure 1: Read-only, highly contended YCSB. OCC scales bet-
ter than 2PL on a deep memory hierarchy, which augments
every single scalability issue to an unprecedented degree.

Another key technique to enable MOCC is the MOCC Queuing
Lock (MQL), a reader-writer queue lock that allows parallel, asyn-
chronous locking and cancelling. Compared to the lock algorithm in
traditional databases, MQL scales far better on deep memory hierar-
chies and also supports modes that MOCC exploits: reader/writer
and unconditional/try/asynchronous locking. Section 4 describes
MQL and how MOCC exploits it.

The experiments in Section 5 show that MOCC achieves orders
of magnitude higher performance than existing approaches on a
modern 288-core machine serving high contention workloads.

2. KEY CHALLENGES AND PRINCIPLES
Scalability tradeoffs surrounding both optimistic and pessimistic

concurrency control have been studied extensively, as reviewed in
Section 6. This section highlights the key challenges that we face
and the principles that differentiate our work from prior research.

2.1 Not Your Father’s Hardware!
Compared with today’s hardware, emerging servers will contain

far more CPU cores and a deeper, more complex memory hierar-
chy to interconnect them. Figures 1 and 2 illustrate the shocking
consequences for performance.

This experiment uses FOEDUS [17] , a manycore optimized
database that uses modern decentralized OCC. We added a new
2PL variant to it and ran highly contended (50 records) YCSB
benchmarks. We tested on various machines, ranging from a single-
socket dual-core laptop to a modern server with 16 sockets and 288
cores. We present the details of this experiment in Section 5 and
summarize the main observations here.

Extremely High Contention: Figure 1 shows a read-only work-
load where 2PL performs more slowly than OCC due to its overhead
to take read locks, which is expected. Nonetheless, it is surprising
to observe that the read lock overhead is not merely a nuisance,
but an abyss [46] , slowing down the seemingly easy read-only
workload by 170× in a modern server. The slowdown quickly
grows with the number of cores and the depth of the memory hier-
archy due to physical lock contention even though all of the locks
are logically compatible. Prior literature has studied physical lock
contention [12, 18] , but none has observed this much effect (e.g.,
Johnson et. al [12] report up to 15% slowdown on 64 threads) or
designed a system for such a high level of contention.

We also observed several other scalability issues in a far larger
degree than prior studies, such as the ever growing cost of remote
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Figure 2: Read-write, highly contended YCSB. OCC is vulner-
able to aborts under high conflict. In an extreme case, it makes
almost no progress.

NUMA access and atomic operations. To the best of our knowl-
edge, the only empirical performance studies at similar scales, ex-
cept simulation-based [46] , were found outside of the context of
databases, such as those in the locking community [7, 42] .

At this scale, we found that strict 2PL is not a viable choice be-
cause it causes severe cacheline ping-pong in the already moribund
cache-coherence backbone.

Extremely High Conflict: OCC scales well under low conflict,
but it suffers a different drawback: high abort ratio under high
conflict. Figure 2 varies the number of writes from zero (read-only)
to 10 (read-modify-write only). The extremely high concurrency in
hardware brings extremely high read-write conflicts that severely
degrade performance. With just one write per transaction, more than
80% of transactions abort in OCC’s commit phase due to clobbered
reads. With 10 writes, as many as 98% of transactions abort. Many
transactional applications have some hot spot that receives high
conflict accesses. Such a high abort ratio can completely stifle
the performance of OCC. Furthermore, somewhat ironically, even
pessimistic protocols have a high abort ratio due to deadlocks.

2.2 Issues in Existing Databases
Emerging server hardware demands a departure from previous

database architectures that contain the following bottlenecks.
Page Latches: Most existing databases use page latches, or a

lock to protect a physical page rather than logical records. Even
some databases that use OCC for individual records take read latches
for pages. Furthermore, read latches must be coupled to guarantee
consistent page traversals [28] . Although previous work at smaller
scales did not find physical contention on page latches as a central
bottleneck, it severely stifles performance on thousands of cores.

Reads become Writes: Some prior OCC-based systems (e.g.,
the BwTree [23] in Hekaton [6] ) maintain a readers count to deter
writers from clobbering reads. Although such schemes ameliorates
aborts in OCC, a read operation must write to a contended location,
limiting scalability and performance.

Expensive Interthread Communication: Traditional architec-
tures, whether OCC, 2PL, or multi-versioned, require interthread
communication that limits scalability in modern servers. One exam-
ple is the tracking of anti-dependencies to guarantee serializability
on top of snapshot isolation, where reads should leave notes in
shared locations for other threads to detect possible serializability
violations [2] . Another instance is interthread communication to
detect and resolve deadlocks, which we discuss next.
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Frequent Deadlocks and Aborts: Aborts are the main scalabil-
ity issue in OCC for highly contended workloads. However, even
2PL significantly slows down for these workloads due to aborts
caused by deadlocks [34] . Using strict discipline, it is possible for
a developer to design and implement a simple application where all
record accesses strictly follow the same order to prevent deadlocks.
However, this is impractical for database applications because of the
complexity and hidden object accesses, such as secondary indexes
and foreign key constraints. Hence, the high concurrency on modern
servers often results in a large number of deadlocks and aborts. To
make things even worse, due to the repetitive nature of transactional
workloads, deadlocks will keep occurring in the same contended
place, continually aggravating the issues described above.

2.3 Key Principles of MOCC
The above observations constitute our key principles:
• MOCC must be based on an architecture without page latches

for reads, like pure OCC does.
• To scale better, the only mechanism that kicks in for the ma-

jority of reads must be OCC without any writes to contended
memory locations.
• On top of OCC, MOCC must selectively acquire read locks

on records that would cause an abort without locks.
• MOCC must avoid deadlocks without any unscalable in-

terthread coordination.

3. MOSTLY-OPTIMISTIC CC
Figure 3 gives a high level overview of MOCC. MOCC is based

on a modern decentralized OCC without page latches for reads.
Section 3.1 recaps the relevant aspects of OCC.

MOCC employs pessimistic read locks to overcome the drawback
of OCC, aborts during read verification. However, if MOCC issues
read locks for all reads, its scalability will degenerate to that of 2PL.
MOCC thus maintains temperatures to selectively issue read locks
only to reads that will likely cause read-write conflicts (Section 3.2).

Although it sounds trivial to acquire read locks, doing so naively
could revive all the bottlenecks and complexities that OCC avoided
to achieve high scalability. The crux of implementing MOCC lies in
the locking and commit protocol to avoid deadlocks caused by the
additional locks taken before the commit phase. Section 3.3 covers
the details of the MOCC protocol.

3.1 Recap: Decentralized OCC
MOCC inherits several ideas from decentralized OCC-based sys-

tems, most notably the following.
No Page Latching for Reads: Same as FOEDUS [17] , MOCC

avoids acquiring page latches for reads. For example, FOEDUS
employs a variant of Masstree [29] that is not only cache-friendly,
but also has a performance advantage on manycore servers because it
does not require page latches for read operations. Masstree employs
RCU (read-copy-update) to create a new version of a page and
atomically switches a pointer to it. Hence, a read operation does
not need any page latch to safely access a page. In MOCC, other
storage representations (e.g., lock-free hash tables) do not require
page latches for reads, either.

Apply-after-Commit: One key principle in modern OCC is to
decentralize its transactional processing as much as possible for
higher scalability. Each worker thread maintains its own log buffer
and merely appends its uncommitted write operations to the log
buffer. The thread does not apply the writes to data pages until the
transaction is guaranteed to commit. The log buffers are completely
thread private, hence threads synchronize with each other only when
there is a potential conflict in their data accesses or an epoch-based
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Figure 3: MOCC overview and paper outline.

group commit happens. Another important aspect of this design is
the redo-only protocol that has no uncommitted data in pages even
when a transaction aborts. This enables the non-2PL yet serializable
lock/unlock protocol MOCC employs.

Deadlock-free Verification Protocol: All OCC variants, such
as Silo and FOEDUS, verify reads at transaction commit time to
guarantee serializability. Each transaction remembers the state of
records as of reading and compares it with the current state at the
commit procedure. If any of the reads observes a different state, the
transaction aborts and either retries or returns an error to the client.

An OCC transaction finalizes the order it is serialized by locking
all records it will modify (its write set) before it verifies the reads
and determines the serialization order from its read/write set.

Most importantly, this protocol is completely deadlock-free. The
locking happens during the commit phase when the transaction
already knows all of its read/write set. As a result, we can lock
the write set in any globally consistent order (e.g., by tuple virtual
addresses), thus guaranteeing deadlock freedom and serializability
without any interthread communication or relying on a centralized
lock manager. Assuming this property, we can unconditionally
take each lock, meaning the transaction indefinitely waits for lock
acquisition.

Missing Read Locks: The above property perfectly satisfies our
goal if we do not take any read locks. However, a transaction must
take read locks to prevent read-clobber aborts, and it must take them
as of the read operations to be protected, at which point the full
footprint is unknown. This breaks the deadlock-free property, and
the existing solution is to revive heavyweight, unscalable interthread
communication, falling back to the scalability of 2PL. This is exactly
why adding read locks to OCC, albeit apparently straightforward, is
the crux of implementing MOCC.

3.2 Temperature Statistics
MOCC maintains temperature statistics, illustrated at the top of

Figure 3, to predict how likely a read on a record will be clobbered by
concurrent transactions. MOCC takes read locks on records whose
temperature is above some threshold. Such records are likely to be
updated by concurrent transactions, causing aborts. The temperature
statistics track the number of aborts due to verification failures.
To reduce space overhead, we maintain the statistics at page level,
instead of in each record. Verification failures will increase the
temperature of affected pages containing the clobbered records.
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Since all the records belonging to the same page share the same
temperature statistic, frequent writes to it might cause physical con-
tention, defeating our purpose. To solve this problem, we maintain
page temperature (i.e., number of aborts) using a variant of approxi-
mate counters [33] . Each page p maintains a temperature tempp,
which probabilistically implies that there were about 2tempp aborts
in the page. Whenever a transaction is aborted due to a verification
failure on a record in p, it checks the current value of tempp and
increments it with probability 2−tempp . Upon observing an abort, a
page that has had frequent aborts (hot page) is likely to have a higher
value in tempp, significantly lowering the probability of cacheline
invalidation due to frequent writes to a centralized location.

3.3 MOCC Protocols
Guided by the temperature statistics, MOCC takes pessimistic

locks on hot records as described in Algorithm 1. Lines 9–10 and
15–16 show how we check the temperature statistics and trigger
pessimistic locking. The OCC protocol is no longer deadlock-free
as soon as we take locks during transaction execution in addition to
taking locks at commit time. To avoid deadlocks and repeated aborts
due to pessimistic locking, MOCC follows a non-2PL approach,
described next.

3.3.1 Canonical Mode
Central to the entire protocol is the concept of canonical lock

acquisition. The idea is a generalization of the consistent sorting of
write sets in Silo and FOEDUS, such as the virtual address order
and lock ID order. Let lm < ln mean that the lock lm is ordered
before the lock ln in some universally consistent order.

Let CLL be the list of locks the transaction has taken so far.
Suppose the transaction now tries to acquire a set of new locks
NL. The transaction is said to be in canonical mode if and only if
lc < ln : ∀ln ∈ NL, lc ∈ CLL.

When a transaction is in canonical mode, there is no risk of
deadlock. Thus, the transaction can unconditionally take the locks
just like FOEDUS or Silo does. Unconditionally taking a lock is
the most desirable way of acquiring locks especially in queue-based
locks as Section 4 describes later.

When MOCC does not take any read locks, it is always in canoni-
cal mode because the only locking happens in commit phase with
an empty CLL and NL being the write set. Read locks, however,
can cause the transaction to leave canonical mode. In short, the
MOCC protocol is designed to: (1) keep transactions in canonical
mode as much as possible, (2) restore canonical mode when not in
canonical mode, and (3) try taking locks as efficiently as possible
without risking deadlocks when canonical mode is not attainable.

3.3.2 Acquiring and Releasing Locks
In traditional 2PL architectures, there is not much one can do to

reach the above goals because locks must be held in two phases; the
growing phase takes locks and the shrinking phase releases locks. If
a transaction releases a lock before commit and then takes another
lock, the execution could be non-serializable.

However, MOCC is based on OCC, which gives far more flex-
ibility in this regard. MOCC verifies reads at commit, hence seri-
alizability is guaranteed no matter whether it holds a read lock or
not. MOCC, like the original OCC protocol, determines the seri-
alization order and verifies/applies the read/write set only after it
takes all write locks. Hence, until MOCC finalizes the transaction in
commit phase, MOCC can safely acquire, release, or re-acquire
arbitrary locks in an arbitrary order. MOCC fully exploits this
flexibility, which is one reason why MOCC is based on OCC.

Algorithm 1 MOCC Protocols.

1 class MoccTransaction:
const H # Temperature Threshold

3 R := {} # Read Set
W := {} # Write Set

5 RLL := {} # Retrospective Lock List
CLL := {} # Current Lock List

7
def read(t: Record):

9 if temp(t) >= H or t in RLL:
lock(t, max(preferred mode in RLL, R-mode))

11 R.add(t, t.TID)
Read t

13
def read_write(t: Record):

15 if temp(t) >= H or t in RLL:
lock(t, W-mode)

17 R.add(t, t.TID)
Read t

19 Construct log in private buffer
W.add(t, log)

21 # Blind-write, same as in OCC

23 def lock(t: Record, m: Mode):
if CLL already has t in mode m or stronger:

25 return
violations := {l ∈ CLL, l.mode 6= null, l ≥ t}

27 if too many violations:
alternative_lock(t, m) # See Section 4

29 return or abort
elif violations not empty:

31 # Not in canonical mode. Restore.
CLL.unlock({violations})

33
# Unconditional lock in canonical mode.

35 CLL.unconditional_lock({l ∈ RLL, l < t})
CLL.unconditional_lock(t, m)

37
def construct_rll(): # Invoked on abort

39 RLL := {}
for w in W:

41 RLL.add(w, W-mode)
for r in R:

43 if r not in RLL:
if temp(r) >= H or r failed verification:

45 RLL.add(r, R-mode)
RLL.sort()

47
def commit():

49 W.sort()
for w in W:

51 lock(w, W-mode)
for r in R:

53 if r.observed_tid not equal r.tid:
temp(r).hotter() # See Section 3.2

55 abort
# Committed

57 Determine TID and apply/publish W # Silo/FOEDUS protocol
CLL.unlock_all()

59 RLL, CLL, R, W := {}

61 def on_abort():
CLL.unlock_all()

63 if user will retry the transaction:
construct_rll()

65 else
RLL := {}

67 CLL, R, W := {}

For example, in line 26 of Algorithm 1, suppose the transaction
has a current lock list CLL : {l1, l2, l4} and intends to take a read
lock t = l3. Since the transaction is already holding l4, taking a
lock ordered before it will leave the transaction in non-canonical
mode. MOCC can restore canonical mode by releasing l4 first
(lines 30–32), then unconditionally take l3 (lines 35–36). We do
not re-take the released locks unless it is explicitly requested later.
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This does not violate serializability because MOCC verifies reads at
commit time (same as in OCC). There is only a slightly higher risk
of verification failure, but correctness is never compromised. The
same technique applies to write locks during the commit phase, too.
Whenever we take write locks in non-canonical mode, for example
when the record is moved [17] to a different page and the sort order
of its write set we initially assumed has changed, we can safely
release some of the locks to restore canonical mode.

The restoration of canonical mode is a powerful tool in MOCC to
avoid deadlocks without any heavyweight modules or interthread
communication. However, releasing too many locks is also costly.
In the above example, if CLL also contains l5, l6, ...l1000, the cost
to release and re-acquire a large number of locks is fairly high. In
such a case (lines 27–28), MOCC tries to take l3 in non-canonical
mode without releasing the affected locks.

Implementing the canonical mode requires a cancellable lock
interface discussed in Section 4. When the lock cannot be granted
immediately, the acquiring thread can choose to abort and retry
because long lock acquire delays might indicate a deadlock (line 29).
If the lock is requested in read mode (thus not a mandatory acquisi-
tion), then one can ignore the lock request and move on. For write
locks, however, a long delay might demand an immediate abort be-
cause acquiring the lock is mandatory for determining serialization
order.

3.3.3 Retrospective Lock List
Whenever a transaction in MOCC aborts, due to either the afore-

mentioned conservative aborts in non-canonical mode or simply a
read verification failure, MOCC instantiates a Retrospective Lock
List (RLL) for the transaction. An RLL is a sorted list of locks
with their preferred lock modes that will likely be required when
the thread retries the aborted transaction. The RLL keeps the retried
transaction in canonical mode for most cases.

Constructing RLL: Function construct rll() in Algorithm 1
shows how MOCC constructs RLL from the read/write set of the
aborted transaction and the temperature statistics. All records in the
write set are added to RLL in write mode (lines 40–41). Records in
the read set that caused verification failures or in hot pages are added
to RLL in read mode (lines 42–45). When a record is both in the
read set and write set, which happens often, RLL maintains a single
entry for the record in write mode. At the end of the construction,
MOCC sorts entries in RLL for the next run.

Using RLL: Function read()/read write() in Algorithm 1
is invoked whenever a transaction accesses a record. The transaction
checks the temperature statistics and queries the RLL. When either
of them implies that a pessimistic lock on the record is beneficial,
we immediately take all locks in RLL ordered before the requested
lock. The transaction also respects the recommended lock mode in
the RLL. In other words, the preferred lock mode in RLL overrides
the requested lock mode. It takes a write lock instead of read lock
when the requested lock itself exists in RLL. Even if the transaction
does not see a high temperature of the page, it takes a read lock on
the record when RLL advises so, which means the previous run was
aborted due to a conflict on the record despite low temperature.

RLL often keeps the retried transaction in canonical mode, mak-
ing the transaction completely free of deadlocks and aborts because
all the contended reads are protected with read locks. As we verify
in Section 5, RLL achieves significantly more robust progress even
for the most contented transactions than either OCC or 2PL.

However, there are a few cases where even RLL might not prevent
aborts. First, the user code might have non-determinism that changes
its behavior in another run and accesses a different set of records.
Such applications exist, but removing non-determinism is relatively

easy for most applications and will provide additional opportunities
to improve performance [36] . Second, even when the user code is
logically deterministic, it might access different physical records due
to various structural modification operations (SMOs), such as page
splits. When these cases occur, MOCC falls back to the behavior
in non-canonical mode regarding the particular record that violates
canonical mode. It might cause another abort, but it is unlikely for
the same thread to keep observing an SMO for the same page.

3.3.4 Commit Protocol
An MOCC transaction invokes commit() and abort() functions

in Algorithm 1 when it commits. Like OCC, MOCC verifies reads
after taking write locks.

We verify all reads no matter whether they are protected by read
locks. There are two practical reasons for us to take this approach.
First, even if the record is already being protected by a read lock, it
might not be acquired at the point this tuple was first read during the
transaction because MOCC eagerly releases and re-acquires locks.
Second, once we have acquired a read lock, no other transactions
can modify the record’s version number, which should be cached by
the CPU, making the verification process cheap.

When verification fails due to clobbered reads, MOCC updates
the temperature statistics of the corresponding page. MOCC then
constructs an RLL from the now-complete read/write sets. MOCC
uses RLL only when the previous run aborts and the client chooses
to retry the same transaction.

3.4 Discussion
Temperature Statistics: Temperature statistics can be either

per-page or per-record. Per-record statistics would be more accurate
to predict verification failures on individual records, but it requires a
larger footprint for the statistics. Our current implementation chose
per-page statistics because in many cases RLL can recommend read
locks on individual records that caused aborts, which overrides what
the (low) page temperature recommends.

The MOCC protocol is not sensitive to the threshold unless it is
an extremely low (e.g., 0) or high (e.g., 20) as shown in Section 5.
Highly conflicting pages, by definition, quickly reach the threshold
and trigger read locks. In most cases, we recommend setting the
threshold to 10.

The counter must be either reset or decremented because the
nature of the page might change over time. Our experiments in
Section 5 occasionally reset the value of the counter to zero. The
statistics will be inaccurate immediately after the reset, but the value
quickly becomes large again if the page still is hot. MOCC can also
use alternative approaches, such as occasionally decrementing the
counter when the read lock turns out to be unnecessary by checking
the state of lock queues at commit time.

Consistent Ordering: The ordering scheme can be anything so
long as it is universally consistent among all threads as discussed
in [41] , and we follow the same principle. We note, however, that
the order based on virtual addresses does not work in some situa-
tions. FOEDUS, like most major databases, run multiple processes
using multiple shared memory segments. The order of virtual ad-
dress is not consistent among processes in such an environment.
For instance, shared memory segments A and B might be ordered
A < B in process-1’s virtual address space while they might be
ordered B < A in process-2. Furthermore, even in a single process,
memory-mapping APIs, such as shmat and mmap, give aliases to the
same physical memory, leading to inconsistent order and deadlocks.
We thus use a logical identifier of each lock, which consists of a
shared memory segment ID and an offset of the lock object from
the beginning of the memory segment.
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4. MOCC QUEUING LOCK
In this section, we propose the MOCC Queuing Lock (MQL)

to realize MOCC without the prohibitive overheads incurred by
traditional locking. MQL is a scalable, queue-based reader-writer
lock with flexible interfaces and cancellation support. This section
focuses on describing:
• Why MOCC demands yet another lock (Section 4.1);
• A high level summary of MQL (Section 4.2);
• How MOCC uses MQL (Section 4.3).

4.1 Background
Native Locks: MQL must be a native lock. Traditional databases

use record locking that supports reader-writer modes and cancella-
tion. But, they often use two levels of synchronization primitives:
(1) an exclusive spinlock to protect the lock state itself, and (2) a
logical lock to protect a record in various modes.

Traditional lock managers often use basic, centralized spinlocks
(e.g., test-and-set and ticket locks) for (1) and sleep-wait (e.g.,
pthread mutex) for (2). Lock managers typically employ a hash-
partitioned lock table [13] to manage locks. Any access to lock state
must be protected by a spinlock in the corresponding partition. A
transaction must acquire the spinlock every time no matter whether
it merely checks lock compatibility or inserts a new request queue.
Because all accesses to the lock state are serialized, the database
can easily provide various lock modes and support cancellation.

This approach works well enough in disk-based databases with a
few CPU cores, but recent databases optimized for main memory and
manycore servers observed bottlenecks in two-tier locking. Thus,
recent systems have started to employ low-level synchronization
primitives directly as record locks. For example, FOEDUS places a
spinlock in each record header. Transactions directly synchronize
with each other using spinlocks. We call this approach “native
locking”. MOCC demands a native lock to scale up to 1000 cores.

Queue-based Locks: In deep memory hierarchies, queue-based
locks (e.g., MCS locks [30]) exhibit much better scalability than
centralized locks. For example, prior work [42] on a 240-core
server observed that the MCS lock has two orders of magnitude
better performance than centralized spinlocks. However, existing
native queue-based locks have limited functionality and cannot fully
replace logical locks found in traditional databases.

For example, FOEDUS uses the MCS lock for records. The
reason it could do so is because its commit protocol needs only
exclusive and unconditional record locking. MOCC needs to issue
read locks, which inherently demands reader-writer modes. MOCC
also requires the cancellation (timeout) functionality to avoid dead-
locks. Existing queue-based lock algorithms [15, 22, 31, 37, 42]
can only partially satisfy MOCC’s requirements: they lack either the
needed functionality or performance. For instance, exclusive-only
locks would lower concurrency while non-cancellable locks would
cause unrecoverable deadlocks. We thus develop MQL to support
both cancellation and reader-writer modes.

4.2 Summary of MQL
Key Challenge: The key challenge, which makes the full al-

gorithm complex, is the increased amount of lock states. Reader-
writer [31] and cancellation [37] features fundamentally necessitate
more lock states. To achieve both, MQL maintains three variables
in the lock, a doubly-linked list of requesters, and five additional
variables in each queue node (qnode) that represents a requester.

MQL uses a collection of lock-free protocols to carefully coordi-
nate reads and writes on these lock states and to handshake between
threads. MQL follows the lock-free principle because it defeats
the whole purpose to take a lock within a scalable lock. MQL is

... Rn

tail: pointernreaders: # of readersLock word:

QueueNode {

type : enum { Reader, Writer }

prev : pointer to predecessor

granted: bool

busy : bool

stype : enum { None, Reader, Writer }

status : enum { Waiting, Granted, Leaving }

next : pointer to successor

}

Interact with predecessor

Interact 

with 

successor

R1 R2Requesters:

next_writer

Figure 4: MQL data structures. Requesters form a doubly-
linked list of qnodes to handle cancellation.

complex because the complexity of lock-free programming, unfortu-
nately, is often superlinear to the complexity of shared information.
It must carefully handle data races that lead to incorrect concurrency,
deadlocks, dangling pointers, and/or corrupted lock states.

We now present the data structures of MQL and how MQL uses
them to support reader-writer modes and cancellation. We omit
details here, such as required memory barriers in each shared ac-
cess. Interested readers may refer to the extended version of this
paper [44] for the full MQL algorithm.

Data Structures: MQL’s data structures are based on the fair
variant of the reader-writer MCS lock [31] . If a read requester R
is queued up after a writer W, whose predecessor is another active
reader holding the lock, R still has to wait until W hands over the lock.
This property ensures that MOCC treats reads and writes fairly.

As Figure 4 shows, tail always points to the last requester (if
any). The nreaders field records the number of readers currently
holding the lock, and next writer points to the qnode of the up-
coming writer waiting for the lock. In qnode, type and granted

indicate the qnode owner’s type (reader or writer), and whether it
has acquired the lock, respectively. In addition to the next field
found in the MCS lock’s qnode, MQL’s qnode records more infor-
mation to support concurrent readers: stype records the successor’s
type (if any) and a reader requester can get the lock immediately if
its predecessor is an active reader (described later).

Supporting cancellation essentially requires a doubly-linked list
of qnodes. Each qnode contains an additional prev field to track
the predecessor and support cancellation, similar to the design of
the MCS lock with timeout [37] . The granted and prev fields are
used to interact with the predecessor, whereas the last four fields (in
green color in Figure 4) are for interacting with the successor.

Supporting Readers and Writers: Without cancellation, MQL
works similarly to the fair reader-writer variant of the MCS lock. A
requester (reader or writer) R brings a qnode and joins the queue
using the wait-free doorway [21] : R issues an atomic-swap (XCHG)
instruction to install a pointer to its qnode on lock.tail, after
initializing its qnode with the proper values shown in Figure 4. The
XCHG will return a pointer to the predecessor P, if any.

If P conflicts with R (i.e., any of them is a writer), R must wait
for its predecessor to wake it up. If both P and R are readers, R can
enter the critical section if the lock is free or P is also a reader and
is holding the lock. As shown in Figure 5, R should handle two
principal cases: (1) P is also waiting for the lock and (2) P has ac-
quired the lock. In case 1, R must wait for the predecessor to awaken
it; in case 2, R should be granted the lock immediately because P

is compatible with R (both readers). Note that P might be going
through the same process and have its status changed to Granted

at any time. Therefore, R must use a compare-and-swap (CAS) in-
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… other fields …

stype: None status: Waiting

… other fields …

stype: None status: Granted

Case 1: predecessor is waiting

Case 2: predecessor holds the lock

stype: Reader status: Waiting

CAS (successful)

CAS (failed)

Requester 1

Requester 2

Predecessor

Figure 5: The two principal cases a reader requester should
handle if it has a reader predecessor.

struction to try “registering” itself on P’s stype field, by changing
the composite of [busy, stype, status] from [False, None,

Waiting] to [False, Reader, Waiting]. If the CAS succeeds,
R will continue to spin on its granted field until it is toggled by P,
which should check if it has any immediate reader successor waiting
to be waken up once granted the lock. Failing the CAS indicates
P has already acquired the lock, so R should toggle its granted

field and is granted the lock immediately. These three fields must fit
within the same 8-byte word to be used with CAS. The busy field is
used to indicate whether the qnode owner is open to state change
made by the successor. We omit it in Figure 5 for clarity.

Supporting Cancellation: Cancelling a lock request introduces
additional races: the predecessor, successor, or both might be trying
to cancel.In MQL, we use the prev field in the qnode as a channel
to coordinate with the predecessor, and the next and status fields
to coordinate with the successor. We next explain how MQL handles
cancellation of a reader-lock request with a reader predecessor. The
other cases (e.g., cancelling a writer-lock request) work similarly.

To cancel, a reader R must: (1) notify the predecessor about
the leaving, (2) give the predecessor a new successor (if any),
and (3) tell the successor that it has a new predecessor (if any).
We devise a handshake protocol for (1) and (2) to work: when a
reader predecessor P is granted the lock and trying to pass the
lock to R, P must CAS R.prev from a pointer to P’s qnode to
a sentinel value Acquired and retries if the CAS failed. To can-
cel, R atomically installs NULL on R.prev using XCHG. If the XCHG
returns Acquire, then R is granted the lock. Otherwise, R con-
tinues by trying to change the composite field of [busy, stype,

status, next] in P’s qnode from [False, Reader, Waiting,

R] to [False, Reader, Waiting, SuccessorLeaving] using
a CAS. SuccessorLeaving is a sentinel value indicating the suc-
cessor is cancelling. If the CAS succeeded, then R has successfully
marked its departure and can proceed to step 3; if the CAS failed,
R must check the current value of the composite field and decide
how to proceed. For example, if the predecessor’s status is now
Granted, then R can be granted the lock as well.

After marking the departing status in the predecessor’s qnode,
R must ensure its successor S is stable before making S visible to
S. R accomplishes this by setting its status to Leaving. Recall
that a cancelling successor must CAS the predecessor’s composite
field including status. Thus, this state change can be an atomic
write, and it ensures S will not leave the queue until R finishes its
operations. R then links its predecessor and successor using a series
of atomic operations before it leaves.

4.3 Using MQL in MOCC
Table 1 summarizes how MOCC uses MQL in various situations.

MOCC requests either a read lock or write lock depending on the
type of the record access. The primary way to acquire locks in
MOCC is the unconditional mode because it is the most performant

Table 1: Using MQL in MOCC.
Mode Description Use in MOCC
Read/-
Write

Allows concurrent read-
ers. Write is exclusive.

All cases

Uncond-
itional

Indefinitely wait until ac-
quisition.

Canonical mode.

Try Instantaneously gives up.
Does not leave qnode.

Non-canonical mode.
Record access.

Asynch-
ronous

Leaves qnode for later
check. Allows multiple
requests in parallel.

Non-canonical mode.
Record access and pre-
commit (write set).

code path; it simply waits on the qnode’s granted field.
When a transaction is not in canonical mode, however, we might

need to use the cancellation functionality. Specifically, a transaction
issues a lock request in either try or asynchronous mode. Both of
them push the qnode into the requesters list. The try mode then
instantaneously gives up and removes the queue node when the lock
is not immediately acquirable. The asynchronous mode, on the other
hand, leaves the queue node in the case so that we can later check
whether we acquired the lock.

5. EVALUATION
We have implemented MOCC with MQL in FOEDUS [17] . We

empirically compare the performance of MOCC with other methods
on a variety of workloads. In particular, we confirm that:
• MOCC keeps OCC’s low overhead in low contention work-

loads (Section 5.2);
• MOCC’s selective locking achieves high scalability in high

contention, low conflict workloads (Section 5.3);
• MOCC with MQL achieves significantly lower abort ratio

and higher performance than both OCC and pessimistic CC
in high contention, high conflict workloads (Section 5.4);
• MOCC can autonomously and quickly adjust itself in more

realistic, dynamically shifting workloads on multiple tables
with different nature (Section 5.5).
• MOCC is especially beneficial for long-running transactions

(e.g., scan) with high conflict operations (Section 5.6).

5.1 Setup
We run experiments on machines listed in Table 2. Most experi-

ments use the largest server, GryphonHawk, which is equipped with
16 Intel Xeon E7-8890 processors, each with 18 physical cores. In
total the server has 288 physical cores and 12 TB of main memory.
The processor has 256 KB of L2 cache per core and 45 MB of L3
cache shared among all cores in each socket. For all experiments,
we fit the whole database in memory. Each run lasts for 10 seconds,
and is repeated for 3 (YCSB) or 10 (TPC-C) times.

Table 2: Hardware for Experiments.
HP Model EB840 Z820 DL580 GryphonHawk

Sockets 1 2 4 16
Cores (w/HT) 2 (4) 16 (32) 60 (120) 288 (576)
CPU [GHz] 1.90 3.40 2.80 2.50

DRAM DDR3 DDR4

5.1.1 CC schemes and systems
We compare MOCC with a variety of CC schemes and systems.

All the systems used in our experiments are serializable embedded
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databases. The user writes transactions directly using the system-
provided APIs without the overhead to interpret SQL queries over
the network. SQL-based systems (e.g., MySQL) could perform or-
ders of magnitude slower due to these overheads, hence we conduct
experiments on embedded databases for fair comparison.1

MOCC/OCC: Throughout this section, FOEDUS denotes
the original FOEDUS to represent the performance of pure OCC.
MOCC denotes the modified version of FOEDUS that implements
the MOCC protocol with MQL. We use per-page temperature and
H=10 as the temperature threshold unless noted otherwise.

PCC/Dreadlock/WaitDie/BlindDie: To compare with pessimistic
approaches and implementations, we evaluate a few pessimistic
schemes, one in FOEDUS and others in Orthrus [34] , a recent sys-
tem that targets high contention workloads. PCC denotes a 2PL
variant we implemented in FOEDUS. Dreadlock/WaitDie/Blind-
Die denote 2PL variants in Orthrus. They take locks before every
access to guarantee serializability. All of them avoid deadlocks by
aborting threads that see themselves potentially risking deadlock.

PCC uses MQL’s try interface to opportunistically take locks. If
the lock cannot be granted immediately, the transaction will continue
executing without taking the lock, thus is deadlock-free. At commit
time, PCC tries to acquire write locks for records in the write set,
but aborts if the lock cannot be granted immediately.

WaitDie is a traditional deadlock avoidance protocol where a lock-
waiting transaction with older timestamp is immediately aborted.
BlindDie is a simplistic variant of WaitDie where the transaction is
aborted regardless of timestamp. Dreadlock [19] detects potential
deadlocks by maintaining and spreading bitmaps that summarize
recursive dependencies between waiting threads. When a thread
finds its own fingerprint in the bitmap, Dreadlock predicts a risk of
deadlock. Dreadlock might have false positives, but has no false
negatives after sufficient cycles of checking and spreading bitmaps.

Orthrus: We also compare MOCC with Orthrus [34] , a recent
proposal that separates CC and transaction worker threads for high
contention scenarios. We configured Orthrus on our hardware with
the kind help from the authors and verified its performance results
with them. We set the ratio of CC:executor threads to 1:4. Section 6
discusses Orthrus in more detail.

ERMIA: Serializable MVCC is a popular choice in recent
main-memory systems because of its read-friendliness [6, 16, 24] .
ERMIA [16] is based on snapshot isolation and uses the serial
safety net (SSN) [43] to guarantee serializability. We use ERMIA
as a representative for both certification and MVCC based systems.

5.1.2 Workloads
Experiments in this paper use the following benchmarks.
TPC-C: TPC-C is arguably the most widely used OLTP bench-

mark. It involves six tables and five transactions that generate moder-
ate read-write conflicts. We place the same number of warehouses as
the number of threads. About 10% transactions access remote ware-
houses, following the TPC-C specification. The workload is known
to be relatively easy to partition such that most records are either
read-only or read/written only by the owner of the partition [5] .

YCSB: YCSB has only one table and simple, short transactions.
Unlike TPC-C, it has no locality, thus no partitioning makes sense.
We have implemented YCSB in FOEDUS and ERMIA. We also
modified the YCSB implementation in ERMIA and Orthrus (the
“microbenchmark”) to be equivalent to ours.

1All the source code and experimental results of MOCC presented
in this paper are available at https://github.com/hkimura/
foedus. We downloaded the latest version of ERMIA source code
from https://github.com/ermia-db/ermia. The authors of
Orthrus kindly shared their latest source code with us.

Table 3: TPC-C throughput (low contention, low conflict) on
GryphonHawk. MOCC behaves like OCC. PCC has a moder-
ate overhead for read locks. ERMIA is slower due to frequent
and costly interthread communication.

Scheme Throughput [MTPS+Stdev] Abort Ratio
MOCC 16.9±0.13 0.12%

FOEDUS 16.9±0.14 0.12%
PCC 9.1±0.37 0.07%

ERMIA 3.9±0.4 0.01%

5.2 TPC-C: Low Contention, Low Conflict
We run TPC-C under MOCC, FOEDUS, PCC, and ERMIA. We

have not tested TPC-C in Orthrus because its current implementation
lacks support for range queries. Table 3 shows the results.

TPC-C has low contention. It contains some read-write conflicts,
such as remote-warehouse accesses in payment and neworder, but
still there are on average a very small number of threads touching
the same records concurrently. Hence, even FOEDUS experiences
only one in thousand aborts.2 MOCC behaves exactly the same as
OCC because the temperature statistics of almost all data pages are
below the threshold, rarely triggering read locks.

For such low contention, low conflict workloads, PCC adds un-
wanted overhead of read locks for only slight reduction in abort ratio.
However, PCC, unlike the experiments that follow, is only ∼2×
slower than FOEDUS/MOCC. The reason is TPC-C does not have
much physical contention, thus locks are not heavily contended.

ERMIA performs the lowest (∼3.9 MTPS) among the four sys-
tems we tested for TPC-C, due to its centralized design. It frequently
issues atomic instructions such as CAS on centralized memory loca-
tions to manage resources (e.g., transaction IDs). To guarantee seri-
alizability, ERMIA needs to stamp most of the tuples read, making
reads become writes. The experiments confirm that having frequent
interthread communication prevents the system from scaling up to
hundreds of cores, even for low-contention workloads.

In summary, avoiding frequent interthread communication allows
scaling up low contention/conflict workloads easily. Pessimistic
schemes might incur additional overheads of read locks, but this is
a fixed overhead rather than a scalability bottleneck.

5.3 High Contention, No Conflict YCSB
The rest of the experiments focus on high contention cases: a

large number of concurrent threads touch a small number of records.
There are two kinds of highly contended workloads: low read-write
conflict and high read-write conflict. This section evaluates the
performance under the former type of workloads.

To show the effect of contention, we vary the scale of the hard-
ware ranging from a laptop (HP EB840) to GryphonHawk as listed
in Table 2. Part of this experiment was shown in Figure 1. In this
section, we also show additional throughput numbers for the other
systems. Figure 6 plots the throughput of a read-only YCSB work-
load where each transaction reads 10 records randomly from 50
records. Both MOCC and FOEDUS scale up perfectly because they
do not cause any interthread communication.

Pessimistic approaches—PCC and Dreadlock—are again slower
than MOCC/FOEDUS, but this time they are 170× slower because a
huge number of concurrent threads must take read locks on the same
record, causing severe physical contention. Furthermore, Dreadlock

2The table does not count deliberate 1% aborts in neworder defined
in the TPC-C spec because they are not race aborts.
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Figure 6: Throughput of a read-only YCSB workload with
high contention and no conflict on four machines with different
scales. MOCC adds no overhead to FOEDUS (OCC), perform-
ing orders of magnitude faster than the other CC schemes.

adds one more scalability bottleneck: frequent interthread commu-
nication to check and disseminate thread fingerprints. It is not a
significant overhead on machines with up to two sockets, but it
causes expensive cache-coherence communication on deep memory
hierarchies that interconnect hundreds of cores. In the remaining
experiments, we observed orders of magnitude slower performance
on Dreadlock for this reason. This result clearly shows the limitation
of pessimistic approaches under highly contended workloads.

Orthrus scales better than PCC, but it still needs frequent in-
terthread communication between the execution threads and CC-
threads. YCSB accesses a completely random set of records per
transaction with no locality whatsoever, which means that the num-
ber of lock manager threads involved in each transaction will be
approximately equal to the number of records accessed. This rep-
resents the worst case scenario in Orthrus, since the number of
messages sent per transaction is linear to the number of lock man-
ager threads involved in that transaction. For this workload without
any read-write conflicts, execution threads can quickly saturate CC
threads, limiting the throughput to 2 MTPS. We also varied the
fraction of executor and CC threads, but the throughput is not com-
parable to that of FOEDUS/MOCC (> 100 MTPS).

On smaller scales with at most two sockets, ERMIA is only slower
than FOEDUS and MOCC. As we move to larger machines, ER-
MIA’s throughput drops significantly: from 3.5 MTPS (2 sockets) to
0.23 MTPS (16 sockets). But it is still much faster than Dreadlock
for all cases. On large machines such as GryphonHawk, ERMIA’s
centralized thread registration mechanism used by SSN (for guar-
anteeing serializability) becomes a major bottleneck, although it is
not necessary for this workload. Without SSN, ERMIA can achieve
as high as ∼4.6 MTPS for the same workload on GryphonHawk
under snapshot isolation. Interthread communication required by
the other centralized mechanisms (e.g., transaction ID management)
prevented ERMIA from scaling further.

Although we omit the details due to limited space, we observed
similar effects on our partial implementation of TPC-E [40] . TPC-E
contains frequent writes, but they usually occur in less contended
records. Instead, small read-mostly/read-only dimension tables,
such as TRADE TYPE, receive highly contended reads as above.

5.4 High Contention, High Conflict YCSB
The next experiment also uses YCSB under high contention, but

also includes read-modify-write (RMW) operations that can cause
frequent read-write conflicts. Again we use a table of 50 records
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Figure 7: Read-write YCSB on GryphonHawk with high con-
tention and/or high conflict. MOCC achieves dramatically
lower abort ratio than OCC and even PCC, while maintaining
robust and the highest throughput for all cases.

and let each transaction access 10 records. We vary the amount
of RMWs between 0 and 10; the rest operations are pure reads.
We access records in random order to evaluate how pessimistic
approaches handle deadlocks.

Figure 7 shows the throughput and abort ratio of each CC scheme.
As expected, FOEDUS’s throughput significantly drops due to mas-
sive aborts: as many as 98% of transactions abort on the highest
conflict level. Somewhat ironically, although the pessimistic variants
(PCC, Dreadlock, WaitDie, and BlindDie) protect reads using read
locks, their performance still drops due to aborts caused by dead-
locks. The workload accesses records in a random order. Therefore,
traditional pessimistic approaches also suffer. Further, although
the abort ratio of PCC is slightly lower than FOEDUS, each retry
in PCC takes significantly longer than in FOEDUS, mostly busy-
waiting for the lock. Thus, PCC’s throughput is a few times lower
than FOEDUS except with one RMW where pessimistic waiting
significantly lowers aborts. Again, ERMIA’s centralized design does
not work well on large machines. With more writes, its performance
gradually converges to PCC’s and becomes worse than it as the
workload becomes write dominant with more than 5 RMWs. Most
aborts are caused by write-write conflicts (instead of serializability
violations), which abort at least one of the participating transactions.

MOCC and Orthrus sustain high performance in this workload.
MOCC dramatically reduces aborts without adding noticeable over-
head, resulting in orders of magnitude higher throughput than FOE-
DUS and PCC. Although Orthrus has zero deadlocks, MOCC is an
order of magnitude faster than Orthrus for transactions with up to
one RMW because Orthrus needs frequent interthread communica-
tion between executor and CC threads. For transactions with two or
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Figure 8: Throughput (top) and abort ratio (bottom) of the
multi-table, shifting workload on GryphonHawk. The work-
load changes its access pattern on a contended table every 0.1
second. Larger thresholds take longer to learn new hot spots.

more RMWs, the maximal concurrency of the workload becomes
fundamentally low. This shrinks the difference between MOCC
and Orthrus to less than 2×, but still MOCC is consistently faster.
Interestingly, the performance of Orthrus increases from 1 RMW
to 2 RMWs because contention on the lock manager/CC queues
decreases, leading to faster interthread communication.

5.5 Multi-table, Shifting Workloads
Multi-table Environment: Real-world transactions often ac-

cess many tables of varying sizes and read-write patterns. Most
workloads access large tables without high contention or conflict.
Nevertheless, they also involve highly contended tables, either small
tables or tables that receive skewed accesses. A monolithic scheme
that works well for one might not for another.

To test MOCC in more realistic situations, we devise a two-table
experiment. The first table contains one record, while the other
contains one million. In each transaction, we issue one operation
(initially a read) to the small table and 20 reads to the large table.

Shifting Workload: Real workloads are also often dynamic, i.e.,
the contention level and access patterns change over time. Hence,
this experiment also dynamically switches the nature of the small
table every 0.1 second, issuing an RMW instead of a read. During
the first 0.1 second the small table is highly contented but has no
conflict, hence the optimal behavior is expected to be similar to
what we have shown in Section 5.3. During the next 0.1 second it
receives frequent conflicts, hence the optimal behavior is like the
one in Section 5.4. We keep switching between the two states.

Figure 8 shows the throughput and abort ratio of MOCC over
time with different temperature thresholds (H) for MOCC to trigger

Table 4: Long Scan Workload on GryphonHawk.
Scheme Throughput [kTPS+Stdev] Abort Ratio
MOCC 199.6±3.1 0.4%

FOEDUS 10.5±0.0 99.55%
PCC 25.7±1.7 0%

Thomasian 20.8±1.5 50.1%

pessimistic locking. We periodically reset the temperature counters.
During the no-conflict period, all threshold values perform the

same except H = 0. H = 0 is significantly (24×) slower because
it always takes read locks like pessimistic schemes. We emphasize
that the transaction issues most (20 out of 21) operations on the
low-contention table. A monolithic, pessimistic scheme slows down
for 24× due to the single operation on the high-contention table.
This is very similar to our observations in TPC-E’s TRADE TYPE

table, which contains only five records and is very frequently read.
Real workloads often contain such tables.

After switching to high conflict cases (at 0.3, 0.5, 0.7 seconds), all
thresholds except H = 0 observed aborts. Lower thresholds (4, 8,
10) result in quicker learning and the abort ratio immediately drops
to zero. Extremely large thresholds keep causing aborts and unstable
throughputs. For example, H = 20 requires 220 ≈ 1, 000, 000
aborts to trigger read locks, which is virtually a monolithic OCC. A
monolithic scheme, again, does not work well due to a single high
conflict operation, which is not rare in real workloads.

We observe that as long as the threshold is reasonably small, all
MOCC runs autonomously adjust their behaviors to converge to the
same robust throughput. When the threshold is too small, however,
MOCC can be confused by just a small number of sporadic aborts,
leading to lower performance. Hence, we recommend setting H to
5–10, depending on the scheme to reset/decrement the counter and
on whether the counter is per-page or per-record.

5.6 Long Scan Workloads
Combining OLAP and OLTP: Real workloads often contain

both analytic accesses (e.g., a long cursor scan) and transactional
updates. The last experiment evaluates MOCC’s benefits on such
hybrid transactions. Every transaction reads one record in the small
table of the previous experiment, scans 1,000 records in the larger
table, then updates the record in the small table. This time, we also
compare with a hybrid OCC method proposed by Thomasian [39] ,
which switches from pure OCC to pure 2PL after an abort. We
implemented the algorithm on FOEDUS’s codebase.

Table 4 shows the result. The long running transaction with high
read-write conflict is especially challenging for pure OCC. FOEDUS
aborts more than 99.5% of the time, being the worst among all
schemes. PCC completely avoids aborts and performs faster, but
it incurs unwanted locking overheads for scanning. Thomasian’s
method [39] sits exactly in-between. It aborts the initial OCC run
(thus exactly 50% abort ratio) and pessimistically locks all records
in read/write sets in the second run. MOCC performs an order of
magnitude better than all others because of its temperature statistics.
Rather than statically switching from pure OCC to pure 2PL, all runs
in MOCC are hybrid, taking beneficial read locks within an OCC
transaction. The result verifies that MOCC is especially beneficial
for long-running transactions in real workloads.

6. RELATED WORK
Scalable Locks: Efficient lock algorithm is crucial on many-

core servers. Mellor-Crummey and Scott [30] invented the MCS
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lock, which scales far better than centralized locks. MCSg [42]
allows certain code paths to use the MCS lock without qnodes. The
CLH lock [4] is similar to the MCS lock. Each requester spins on
its predecessor’s qnode. Cohort locks [7] combine two different
synchronization protocols for further scalability. All these locks
are queue-based because scalability is fundamentally limited when
multiple threads modifies a central, contended memory location.

Locking in Databases: Many existing databases use 2PL, which
acquires a read or write lock before every data access. To guarantee
serializability, no locks can be acquired after the transaction starts to
release any lock. Additional locks (e.g., next-key locks [32] and gap
locks [26] ) prevent phantoms. Compared to 2PL, MOCC allows a
transaction to acquire and release locks in an arbitrary order. The
validation phase at pre-commit guarantees serializability.

Traditional databases usually use a centralized lock manager [9] ,
which gradually becomes a bottleneck under high parallelism. Spec-
ulative lock inheritance [12] alleviates this problem by passing hot
locks between transactions without going through the lock manager.
Early lock release [14] allows a transaction to release all its locks
without waiting for log flush, thus shrinking the size of the critical
section. Like very lightweight locking [35] , MOCC eliminates the
centralized lock manager and co-locates the locks with records.

Optimistic CC: OCC is lightweight and reduces cache line in-
validation, so it is especially attractive for parallel hardware. After
formulated by Kung et al. [20] , OCC has been adopted by databases
for manycore servers [17, 41] . TicToc [47] avoid centralized times-
tamp allocation and can commit certain transactions that would be
aborted by traditional timestamp ordering schemes. OCC is vulner-
able to aborts under high conflict. MOCC solves this problem by
selectively using pessimistic locking to protect reads.

MVCC: MVCC maintains multiple versions of each tuple and
determines whether a transaction can access a version by compar-
ing its begin timestamp and the version’s timestamp. MVCC has
been widely adopted in recent main-memory systems [6, 16, 24] .
However, a straightforward implementation of MVCC, such as
snapshot isolation (SI), is not serializable [1] . Most recent efforts
on adding serializability to SI are certification-based. Serializable
SI [2] tracks and avoids the “dangerous structures” that will appear
in non-serializable executions. ERMIA [16] adopts the serial safety
net [43] , which can add serializability to both SI and read commit-
ted. Lomet et al. [25] manage a range of possible timestamps that
capture conflicts to allow high concurrency. BOHM [8] analyzes
transactions before execution to determine serializable schedules.

Hybrid Approaches: There is prior work that combines locking
and OCC. Static and dynamic OCC [45] switch from OCC to lock-
ing when retrying a transaction that was aborted under OCC. Static
OCC acquires all locks before rerun, while dynamic OCC acquires
locks upon data access. Thomasian [39] proposes to lock both
reads and writes before the global validation in distributed OCC.
Locks are retained and re-used should the validation fail. Despite
their similarity to MOCC, most prior approaches are designed for
disk-based or distributed systems, instead of modern main-memory
systems. For instance, a committing transaction under OCC with
broadcast during rerun [45] aborts conflicting rerun transactions
but allows first-run transactions to run to completion so that all data
are brought from disk to main memory. Compared to MOCC, prior
hybrid approaches require a transaction use either pure locking or
OCC, without considering data temperature.

Among recent systems, Hekaton [6] supports pessimistic locking
on top of its MVCC protocol. Ziv et al. [49] formalize the theory
of composing computations over multiple data structures using
different CC schemes. Cao et al. [3] use OCC and pessimistic CC
to handle low and high conflict accesses, respectively. It focuses on

single entry accesses, instead of serializable executions over multiple
operations. Contrary to traditional pessimistic and optimistic CC
methods characterized by whether there will be conflicts among
transactions, LarkTM [48] combines pessimistic and optimistic
methods that are characterized by whether a lock will be “required”
by the same reader or writer. LarkTM operates on the granularity of
objects and gives serializability over multiple operations.

Orthrus: Although based on a completely different architecture,
Orthrus [34] is an intriguing, closely related approach. Orthrus com-
pletely avoids deadlocks and alleviates the overhead to dynamically
coordinate between executor threads by handing off the coordina-
tion to CC threads via message passing and ordering locks in a
consistent order like Silo and MOCC. Section 5 reproduced the very
stable throughputs even against the highest read/write conflict as
[34] observed, but at the same time we observed a few limitations.

First, although executor threads themselves do not have to coordi-
nate with each other, they have to communicate with CC threads. In
some sense, Orthrus shifts the issue of contentious communication
to another place. In high throughput experiments where MOCC
observes 100 MTPS or more, Orthrus is limited to around 2 MTPS
because of the interthread communication. We varied several set-
tings (e.g., the fraction of CC/executor threads and database size),
but did not find cases where Orthrus exceeds 10 MTPS throughput.

Second, Orthrus is a static approach on assigning CC threads.
To benefit from physical partitioning, the workload must have a
partitionable locality, and the user must know it beforehand. For
totally random workloads, Orthrus’ applicability is limited without
oracles. Such totally random workloads (e.g., those represented by
the YCSB workloads in Section 5) are the worst case for Orthrus.

7. CONCLUSIONS
We have proposed mostly-optimistic concurrency control (MOCC)

to enhance OCC for highly contended dynamic workloads, by ju-
diciously using pessimistic locking for suitable records. The main
challenge is to add read locks as of the read with minimal overhead.
Acquiring locks during forward processing breaks OCC’s deadlock-
free property. To handle locking and deadlocks efficiently, we
advocate native locking, which employs synchronization primitives
directly as database locks. We have devised the MOCC Queuing
Lock (MQL), a cancellable, queue-based reader-writer lock that
works well on massively parallel machines, especially those with
deep memory hierarchies. MOCC and MQL handle deadlocks with-
out discarding OCC’s simplicity and scalability. MOCC incurs
negligible overhead over OCC and achieves robust performance
for a broad spectrum of workloads, including highly contended,
conflicting, dynamically shifting ones. MOCC does not require any
new modules or controller threads (such as those in Orthrus), thus is
simple and easy to incorporate in various OCC databases. The core
of our MOCC implementation adds fewer than 1000 LoC on top of
the base system, which has more than 100k LoC in total.
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