
Efficient Denial Constraint Discovery with Hydra

Tobias Bleifuß
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2–3
14482 Potsdam, Germany

tobias.bleifuss@hpi.de

Sebastian Kruse
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2–3
14482 Potsdam, Germany

sebastian.kruse@hpi.de

Felix Naumann
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2–3
14482 Potsdam, Germany

felix.naumann@hpi.de

ABSTRACT

Denial constraints (DCs) are a generalization of many other
integrity constraints (ICs) widely used in databases, such
as key constraints, functional dependencies, or order depen-
dencies. Therefore, they can serve as a unified reasoning
framework for all of these ICs and express business rules that
cannot be expressed by the more restrictive IC types. The
process of formulating DCs by hand is difficult, because it
requires not only domain expertise but also database knowl-
edge, and due to DCs’ inherent complexity, this process is
tedious and error-prone. Hence, an automatic DC discovery
is highly desirable: we search for all valid denial constraints
in a given database instance. However, due to the large
search space, the problem of DC discovery is computation-
ally expensive.

We propose a new algorithm Hydra, which overcomes
the quadratic runtime complexity in the number of tuples of
state-of-the-art DC discovery methods. The new algorithm’s
experimentally determined runtime grows only linearly in
the number of tuples. This results in a speedup by orders
of magnitude, especially for datasets with a large number
of tuples. Hydra can deliver results in a matter of seconds
that to date took hours to compute.

PVLDB Reference Format:

Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient
Denial Constraint Discovery with Hydra. PVLDB, 11(3): xxxx-
323, 2017.
DOI: 10.14778/3157794.3157800

1. KILLING N BIRDS WITH ONE STONE
The research area of data profiling [1] has borne several

efficient algorithms to discover structural properties of data-
sets. In particular, the discovery of functional dependencies
(FDs) [13] and unique column combinations (UCCs) [8] have
attracted great attention. Lately, also order dependencies
(ODs) [15] have been in focus. Each of these integrity con-
straints (ICs) serves different applications, such as schema
normalization (FDs), key discovery (UCCs), and query op-
timization (ODs).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11.
DOI: 10.14778/3157794.3157800

However, this state of the art suffers from two major prob-
lems. First, each type of IC is of strongly limited expressive-
ness. The types of rules one can observe in actual datasets
are much greater, though, as we demonstrate later in this
section. This imbalance is accounted for by proposing new
IC types every now and then. Second, the different ICs
are logically isolated. That is, to reason on the interaction
among ICs, e.g., for data cleaning, one has to explicitly pro-
vide interaction rules. Not only is this unwieldy — it also
does not scale well with the number of considered IC types,
but DCs can bridge that gap [4, 7].
Then, why are there so many different ICs rather than

a single, general IC capable of avoiding such problems? A
major reason is plain efficiency. For that matter, discover-
ing FDs, UCCs, or ODs alone is already computationally
expensive and the respective discovery algorithms employ
highly specific data structures and pruning rules to operate
efficiently. That being said, being able to efficiently discover
more general ICs could solve aforementioned problems and
would thus be very valuable.
To this end, we propose Hydra, an efficient algorithm to

discover all valid denial constraints (DCs) in a given rela-
tional dataset. But let us first define DCs and show that
their expressiveness goes beyond UCCs, FDs, and ODs. In
few words, a DC defines a set of predicates on n tuples. A
relational instance satisfies that DC if for any n distinct tu-
ples of that instance at least one predicate is violated. In
the following, we set n = 2 and refer to the two involved
tuples as t and t′. As we show by examples below, DCs over
two tuples are sufficient to express all of the aforementioned
integrity constraints. For reasons of rapidly increasing com-
putational complexity for n > 2, as well as questionable
gains, related work applies the same restriction [3].

Definition 1 (Denial constraint). Let r be a rela-
tional instance with schema R(A1, . . . , An). A denial con-
straint ψ is a statement of the form

∀t, t′ : ¬
(

t
1[A1]φ1 u

1[B1] ∧ · · · ∧ tk[Ak]φk u
k[Bk]

)

with ti, ui ∈ {t, t′}, Ai, Bi ∈ {A1, . . . , An} and φi ∈ {=
, 6=, <,≤, >,≥}. The different clauses in the conjunction
are referred to as predicates. The instance r satisfies ψ
if and only if ψ is satisfied for any two distinct tuples t
and t′ ∈ r. A DC is trivial if it is valid for any possible
instance. Furthermore, a DC ψ is (set-)minimal, if no DC
whose predicates are a subset of ψ’s predicates is valid on r.

Let us demonstrate the expressiveness of DCs with the ex-
ample dataset from Table 1 in combination with some valid

311

311-

ψ1 : ∀t, t
′ : ¬

(

t[Name] = t′[Name] ∧ t[Hired] = t′[Hired]
)

ψ2 : ∀t, t
′ : ¬

(

t[Department] = t′[Department] ∧ t[D-Code] 6= t′[D-Code]
)

ψ3 : ∀t, t
′ : ¬

(

t[ID] ≤ t′[ID] ∧ t[Hired] > t′[Hired]
)

ψ4 : ∀t, t
′ : ¬

(

t[D-Code] = t′[D-Code] ∧ t[Hired] < t′[Hired] ∧ t[Salary] > t′[Salary]
)

Figure 1: A number of example DCs that hold in our example dataset (Table 1).

Table 1: Example dataset with staff data.

ID Name Department D-Code Hired Salary

t1 103 J. Miller Sales SAL 2008 3,200
t2 197 J. Miller Accounting ACT 2012 3,500
t3 338 P. Smith Sales SAL 2012 2,900
t4 631 S. Blake Accounting ACT 2016 3,200
t5 664 P. Dean Sales SAL 2016 2,700

DCs shown in Figure 1. Amongst others, Name and Hired
form a key candidate, i.e., a UCC. This fact is captured by
the DC ψ1. Further, we observe that Department determines
D-Code, that is, the FD Department → D-Code holds. This
FD is equivalent to the DC ψ2. As a third IC, we note that
the staff IDs reflect when an employee has been hired. Thus,
we have the OD ID→≤ Hired, which can be expressed as ψ3.
In addition, a closer look reveals a further, more intricate
constraint: For any two employees from the same depart-
ment, the newer employee should not earn more than the
older. While neither UCCs, nor FDs, nor ODs can express
this constraint, the DC ψ4 naturally captures it. This shows
the superiority of DCs over the specific IC types.

Problem statement. Nevertheless, automatically discov-
ering all DCs in a dataset is a highly challenging task: given
a relational instance r and a predicate space P , we want
to find all non-trivial, set-minimal DCs valid on r that can
be expressed using only predicates in P . At first, the num-
ber of candidate DCs grows extremely fast with the number
of attributes — in fact, super-exponential! Furthermore,
comparing all tuple pairs to verify DCs can be prohibitive:
Although, this is only of quadratic complexity w.r.t. the
number of tuples, there are usually orders of magnitudes
more tuples than attributes in a dataset. Our algorithm
Hydra mitigates these scalability traps. In fact, we make
the following major contributions:

1. We propose to first approximate the DCs for a dataset
and then correct any incorrect results (Section 3). This
avoids the comparison of all tuple pairs. In particular,
we prove this idea to be sound and complete (Sec-
tion 6.1).

2. We devise a technique to quickly approximate the DCs
in a dataset while looking only at a small fraction of all
tuple pairs. This comprises the careful choice of tuples
to compare (Section 4) and the efficient conversion of
comparison results to approximated DCs (Section 5).

3. We explain a proceeding to efficiently determine all
violations of a dataset w.r.t. the approximated DCs.
Combined with the above mentioned conversion algo-
rithm, we quickly turn the set of approximate DCs to
the set of actual DCs (Section 6).

4. Finally, we exhaustively evaluate the efficiency of Hy-
dra (Section 7).

In addition, we discuss related work in Section 2 and sum-
marize as well as conclude in Section 8.

2. RELATED WORK
Although the research area of data profiling has produced

various dependency discovery algorithms [1], the discovery
of denial constraints (DCs) has not received much attention
so far. Therefore, this section looks at related dependency
discovery algorithms in a broader sense.

DC discovery. The first and only other DC discovery al-
gorithm is FastDC [3], which is also our evaluation baseline.
It discovers DCs in two major phases: At first, all tuples in
a given dataset are compared pairwise to form the evidence
set. Then, by searching a minimal cover for this evidence
set, FastDC constructs DCs that are not violated by any
found evidence. This strategy is much slower than that of
Hydra for two reasons. First, the comparison of all tuple
pairs is very expensive. Second, Hydra proposes a novel,
more efficient algorithm to derive DCs from the evidence
set. Besides their basic approach, the authors of FastDC
provide two modifications of their algorithm. A-FastDC is
able to detect approximate DCs, which may be partially vio-
lated, and C-FastDC allows for constants in the predicates
of the DCs. We note that the modifications for C-FastDC
are compatible with Hydra. Furthermore, Hydra could
be in principle adapted to discover approximate DCs. We
outline the necessary changes in Section 8.

UCC/FD/OD discovery. As explained in Section 1,
DCs subsume various other integrity constraints, in partic-
ular UCCs, FDs, and ODs. Hence, Hydra is a valid substi-
tute for any of their discovery algorithms. Nonetheless, we
can identify commonalities of Hydra and those specifically
tailored algorithms. Generally speaking, Hydra belongs to
the class of algorithms that are based on pairwise tuple com-
parisons, which comprises, e.g., Gordian for UCC discov-
ery [14], and Fdep for FD discovery [6], but no known OD
discovery algorithm. In particular, the idea to approximate
ICs by repeatedly sampling tuple pairs has been successfully
applied for FDs [2, 13]. However, sampling for DCs is more
complex, because DCs involve inequality predicates. Also,
there is no equivalent for the completion strategy for FDs
via stripped partitions [9]. Hence, a completely new com-
pletion strategy is required. Another recent incentive for ef-
ficiency improvements are holistic profiling algorithms that
discover multiple IC types in a single run, thereby saving
overhead [5]. This property applies to Hydra, too.

3. OVERVIEW OF HYDRA
Many IC discovery algorithms compare all tuple pairs in a

dataset to collect every possible violation of their respective
IC type. From those violations, the actual ICs can then be
inferred [3, 6, 14]. However, those algorithms scale poorly
with the number of tuples — all tuple pairs incur quadratic
complexity. Hydra is specifically designed to not compare
all tuple pairs and, hence, to avoid this quadratic trap when
discovering all DCs.

312

Essentially, this leap is possible, because any two tuple
pairs that violate the exact same candidate DCs are redun-
dant and it suffices to consider only one of them. A tuple
pair is also redundant if all predicates that are fulfilled by
that pair are fulfilled by another pair (and possibly other
predicates), so only the maximum predicate sets are rele-
vant. Thus, we can improve performance considerably by
identifying a subset of tuple pairs from a dataset, such that
all other tuple pairs are redundant to this subset, and com-
pute the DCs from this subset only. While in theory it is pos-
sible that no pair is redundant (e.g., in a diagonal matrix),
our experiments show that in practice the vast majority of
tuple pairs is in fact redundant. In consequence, Hydra
adapts to the characteristics of the input data and rapidly
converges to the relevant area of the search space. In con-
trast, the non-adaptive FastDC always incurs a quadratic
runtime regardless of the input data.

Our general idea is to determine a preliminary set of DCs
on a sample of tuple pairs. Then, we need to spot all tuple
pairs violating the preliminary DCs. Eventually, the combi-
nation of sampled and violating tuple pairs — or rather their
implied violations — exactly determine all valid DCs. To
put this approach into practice, Hydra carefully employs
efficient algorithms and data structures in each step. In the
following, we describe Hydra’s workflow and components
in more detail.

Consider the overview in Figure 2 depicting Hydra’s ba-
sic steps. Hydra takes as input a relational table and a
predicate space, i.e., the set of predicates that can appear
in DCs of that table (see Definition 1). At first, Hydra
samples tuple pairs from the relational instance for the pre-
liminary DCs (Step (1)). For each tuple pair, an evidence
is computed, which captures all predicates in the predicate
space that are violated by the tuple pair. Because duplicate
evidences (which arise from redundant tuple pairs) do not
provide new information regarding the DCs, Hydra aims to
maximize the number of non-redundant tuple pairs in the
sample. As a result of its focused sampling stage, the algo-
rithm obtains a relatively complete evidence set from only
a fraction of all tuple pairs in the dataset. We describe the
sampling in detail in Section 4.

Sampling Evidence
Inversion

Dataset

Violation
Detection

(1) Tuple  
 pairs

(2) Preliminary  
 evidences

(3) Preliminary DCs
(3) Selec-

tivities

(3) Tuples

∀t,t’: …∀t,t’: …∀t,t’: …

∀t,t’: …

∀t,t’:
 …

∀t,t’:
 …

∀t,t’:
 …

(4) Complete  

evidences (5) Final

DCs

Figure 2: Overview of Hydra.

These preliminary evidences are then used to compute the
preliminary DCs using a novel, efficient evidence inversion
algorithm (Step (2)), as detailed in Section 5. The prelim-
inary DCs might of course be violated by tuple pairs that
were not included in the sample. Therefore, Hydra em-
ploys a highly efficient scheme to determine all tuple pairs

that violate the preliminary DCs (Step (3)). In particular,
Hydra tries to avoid duplicate work that arises from predi-
cates recurring in multiple DCs. Moreover, specific checking
operators detect the violating tuple pairs without comparing
all tuple pairs. Section 6 details this checking scheme.
Finally, the preliminary evidences are unioned with those

from the violating tuple pairs (Step (4)). From this com-
pleted evidence set, the evidence inversion can now compute
the final set of DCs (Step (5)) in exactly the same way as
for the preliminary evidences in Step (2) before.

4. SAMPLING
A key challenge of DC discovery is the quadratic complex-

ity w.r.t. the number of tuples in the profiled dataset: To
verify a DC, we must ensure that it is satisfied by all tu-
ple pairs. In related work, this is achieved by evaluating all
predicates of the predicate space on all tuple pairs [3]. Hy-
dra, in contrast, saves a lot of these predicate evaluations
by initially operating on only a sample of tuple pairs, as
we detail in this section. Because the resulting DCs might
be violated by an unseen tuple pair, though, Hydra sub-
sequently employs efficient strategies to discover all those
violating tuple pairs.

4.1 Evidence Set
Before explaining how we sample, let us describe more

thoroughly the output of the sampling component, namely
an evidence set [3]. Given a predicate space P , which is
merely a set of predicates as defined in Definition 1, an ev-
idence e(t, t′) ⊆ P is the subset of predicates that are
satisfied by the tuple pair (t, t′). For a given pair of tuples,
e(t, t′) is easy to calculate by evaluating each predicate in
P . An evidence set is, as the name gives away, a set of such
evidences. In particular, we refer to the full evidence set
Efull as the set of evidences for all tuple pairs in a data-
set. There are two things to note about this evidence set.
First, the full evidence set most likely contains fewer evi-
dences than the dataset has tuple pairs, because duplicate
evidences are eliminated. Second, the full evidence set im-
mediately determines the valid DCs in a dataset, as we show
in the following lemma.

Lemma 1. Assume a dataset r with predicate space P and
its full evidence set Efull. Then the DC ψ := ∀t, t′ : ¬

(

p1(t, t
′)

∧ · · · ∧ pn(t, t
′)
)

with predicates pi ∈ P is valid w.r.t. r, if
and only if 6 ∃e ∈ Efull : {p1, . . . , pn} ⊆ e.

Proof. The DC ψ is valid exactly when no tuple pair in
r satisfies all the pi occurring in ψ, which is equivalent to
the absence of an evidence containing all the pi.

Based on the insights presented above, we can now pre-
cisely state the goal of the sampling component: Given a
dataset r and its predicate space P , we want to determine
a preliminary evidence set Epre ⊆ Efull that approximates
the full evidence set. We observed that this can be achieved
by sampling only very few tuple pairs from r (compared to
all tuple pairs) and computing their evidences. Since string
comparisons are expensive, we employ a dictionary encoding
for strings during load to speed up the evidence generation:
we need only simple integer comparisons instead of opera-
tions on strings. In the remainder of this section, we present
Hydra’s complementary sampling stages, namely random
sampling and the subsequent focused sampling phase.

313

4.2 Random Sampling
Hydra starts by populating the preliminary evidence set

with evidences from randomly sampled tuple pairs. How-
ever, the main purpose of this sampling stage is to estimate
the selectivity of predicates, i.e., the number of tuple pairs
that satisfy the predicate. That is, given a random pair of
tuples, how likely is it to satisfy a certain predicate from
the predicate space? Hydra’s violation detection can em-
ploy the selectivities to optimize its efficiency (see Section 6).
While a focused sample is biased and, thus, not well-suited
to determine selectivities, we can directly extrapolate the
selectivities from a random sample.

To obtain the random sample, Hydra chooses for every
tuple in the dataset k other random tuples and calculates
the k associated evidences. Our experiments show that a
value of k = 20 is sufficient for a good selectivity estima-
tion (Section 7.5.1). Consequently, the sampling effort is
linear in the number of tuples — we retrieve k · |r| instead of
|r| · (|r| − 1) pairs. Recall that usually an evidence set does
not contain duplicate evidences. In case that two or more
randomly sampled tuples yield the same evidence, Hydra
also maintains a counter for that evidence to properly em-
ploy them for selectivity estimation.

4.3 Focused Sampling
The random sample might not yet be sufficient to obtain

a good approximation of the full evidence set. Hence, we
complement it with a focused sampling that tries to sam-
ple tuple pairs that yield unseen evidences. Similar focused
sampling strategies have been devised in the context of FD
discovery [2, 13]. However, those are not sufficient here, be-
cause — speaking in DC vocabulary — their evidences con-
sider only predicates of the form t[A] = t′[A] for some at-
tribute A. In contrast, DC discovery has to consider other
types of predicates, such as inequalities and comparisons
across attributes.

Therefore, we devise a new focused sampling algorithm
inspired by FD discovery. Its core idea is to maintain a set
of sampling foci, each of which is associated with a predi-
cate from the predicate space. Each sampling focus further
specifies a sampling strategy that samples only tuple pairs
satisfying that predicate. Now, we repeatedly sample ac-
cording to whatever sampling focus we currently believe to
have the highest chance of yielding an unseen evidence. At
some point, that belief falls below a certain threshold for
all sampling foci. At that point, we terminate the sampling
phase. In few words, the key points of this algorithm are to
(i) ensure that all predicates are considered by the sample
and (ii) making the sampling sensitive to the yield of the
different sampling foci. We now explain how to technically
realize this sampling.

Sampling strategies. Hydra defines four sampling strate-
gies: Within enforces predicates of the form t[A] = t′[A];
Other enforces predicates of the form t[A] 6= t′[A]; and
Back and Forth enforce predicates of the form t[A] > t′[A]
and t[A] < t′[A], respectively. Note that Within, Back,
and Forth are implicit strategies for the predicates with ≤
and ≥.
To efficiently sample according to these four strategies,

Hydra initially clusters tuples individually according to each
attribute. That is, for each attribute we obtain a set of clus-
ters, each of which is a set of references to tuples that share
the same value in the respective attribute. If the operators

< and > are defined on the considered attribute, the clusters
are further ordered according to the values they represent.
For instance, the attribute Salary from Table 1 defines the
ordered clustering ({t5}, {t3}, {t1, t4}, {t2}).
Given an attribute A with its clustering, we can now eas-

ily apply any sampling strategy: For each tuple index ti, we
pick a random partner tuple index tj (if any) from the same
(Within) or different clusters (Other, Back, Forth), re-
trieve the actual tuples for each (ti, tj), and calculate the ev-
idences. For instance, if we want to apply the Back strategy
to the attribute Salary and currently have ti = t4, then the
clustering tells us that we have to sample tj from the pre-
ceding clusters {t5} or {t3}. Assume, we sample t3, we then
need to calculate the evidence e(t4, t3). The reader might
have noticed that we do not define sampling strategies for
predicates that compare two distinct attributes A and B.
While technically this would need only a mapping of the
clusters of A to their position in the ordered cluster of B,
we omit it, simply because the sampling works sufficiently
well with the four presented strategies.� � � � � � � � � 	
 �� � � � �
 � � �
 �� ���� ������

� � � � � � � 	 � � � � � � � � � � � � � �� � � � � � 	 �� ! " #$ % & ' () * (% & #$ % & ' (+ , % & , -. � / � � � � � � � � � � 0� � �
 � � � � � � / � � � � � � � � �1 2 3 � � � 3 � � � 45 � � � �6 7 8 9: ; � � � �$ % & ' (� � � � � �) * (% &� � � � � �+ , % & , - � � � � � � � � � � �
5 � 	 3 � � �� � � � � � � � � � � <� =� >� ?� @A B C D D 0A B E D D 0F B A D D 0F B G D D 0H IJ I��

Figure 3: Overview of the focused sampling.

Sampling efficiency. Having explained sampling strate-
gies, we can precisely describe a sampling focus as a pair of
an attribute and a sampling strategy. As described above,
Hydra’s focused sampling phase repeatedly applies the most
promising sampling focus. We define this sampling efficiency
of a sampling focus as the number of previously unseen evi-
dences it has contributed (the growth in size of the distinct
evidence set), divided by the total number of evidence cal-
culations (as a measure of effort) during its last application.
To obtain an initial efficiency, we apply all sampling foci
once in the beginning, and then insert them into a prior-
ity queue that orders the sampling foci descending by their
sampling efficiency.
Now, we just poll a sampling focus from that priority

queue (for example Salary Within in Figure 3), apply it
(calculate for example e(t4, t1)), and obtain as a byprod-
uct a new efficiency value. If that value is below a certain
threshold (0.005), we discard the sampling focus — other-
wise we put it back into the priority queue. Note that this
threshold can influence only Hydra’s runtime, but never its
result quality. Additionally, the algorithm is quite robust for
the choice of this parameter, as shown in Section 7.5.1.

5. EVIDENCE INVERSION
An evidence set determines a set of valid DCs, as shown

in Lemma 1. However, actually computing those DCs is a
challenging problem, because even the output size can be

314

exponential in the number of attributes n. This is the case,
because the set of DCs generalizes the set of minimal keys,
and this set can be of size

(

n
n/2

)

[8]. What is more, Hy-

dra needs to perform such evidence inversion at two points
(cf. Figure 2): First, it needs to invert the preliminary evi-
dence set and, eventually, the full evidence set. It is there-
fore crucial to perform the inversion with a high efficiency.

Intuitively, Hydra achieves that goal as follows: Initially,
we assume the most basic DCs, which contain only a single
predicate, to be true. Then, we iterate over the evidence
set. For each evidence, we update all the DCs by adding
predicates, such that the evidence no longer violates the
DC. Once all evidences have been processed, the set of DCs
is valid and complete.

Algorithm 1 shows this proceeding in more detail. At first,
it initializes the basic candidate DCs (Line 1) and represents
them as the sets of their predicates. For instance for Table 1,
we have the candidate DC ∀t, t′ : ¬(t[Name] = t′[Name]) and
represent it as {p} (where p(t, t′) :≡ t[Name] = t′[Name]).
The function handleEvidence now iteratively updates the

tentative candidate DCs, so that they conform to the evi-
dence set (Line 3). The function begins by detecting all
candidate DCs ψ− ∈ Ψ− that are violated by the cur-
rent evidence e (Line 6). This is the case when e satis-
fies all predicates of ψ−. Our above example candidate
DC would be violated by, e.g., the evidence e(t1, t2), be-
cause t1 and t2 agree in the attribute Name. However, vio-
lated candidate DCs in Ψ− can be reconciled with e by sim-
ply adding a predicate that is not satisfied by e (Lines 9–
11). For instance, our example candidate DC can be ex-
tended to ∀t, t′ : ¬(t[Name] = t′[Name] ∧ t[Department] =
t′[Department]). Note that there are multiple ways to rec-
oncile the candidate DCs so that Ψ might eventually grow.
However, the reconciliation might yield redundant DC can-
didates, which is the case when there is a valid, more general
DC. For that matter, our reconciled candidate DC might be
subsumed by ∀t, t′ : ¬(t[Department] = t′[Department]) (as-
suming that we have not yet processed an evidence violating
it). Thus, our algorithm actively checks and removes such
redundant DC candidates (Line 10). Let us show that this
algorithm is sound and complete.

Theorem 1. Given a predicate space P and evidence set
E, Algorithm 1 determines a sound, complete, and minimal
set of DCs w.r.t. E.

Proof. (Sound) Suppose a DC ψ in the output is not
correct, i.e., an evidence ê ∈ E fulfills all of its predicates
(ψ ⊆ ê). handleEvidence exchanges only DCs in Ψ with su-
perset DCs, i.e., valid DCs can only grow due to an evidence,
never shrink. Thus, for ψ to be part of the result, a subset
of ψ must be present in Ψ at all times. However, each call
for handleEvidence ensures that no DC invalidated by the
current evidence e remains in Ψ by removing all subsets of
e from Ψ and only adding proper supersets of e. As ψ ⊆ ê,
the call for handleEvidence for e = ê removes all subsets of
ψ and therefore ψ cannot be part of the output.
(Complete) Throughout each iteration of the loop in Line 2

the following property holds: If a DC ψ is a valid, non-trivial
DC, Ψ always contains a DC whose predicates are a subset
of ψ. This property obviously holds at the initialization of
Ψ in Line 1. If, at some point, the last subset of ψ is re-
moved in Line 7, then a new subset of ψ would be added in
Line 11, as at least one superset must not be contradictory

Algorithm 1: Evidence inversion

Data: evidence set E, predicate space P
Result: the set of minimal, non-trivial DCs Ψ

1 Ψ← {{p} | p ∈ P}
2 for e ∈ E do
3 handleEvidence (e,Ψ, P)

4 return Ψ

5 Function handleEvidence(e,Ψ, P)
6 Ψ− ← {ψ− ∈ Ψ | ψ− ⊆ e}

7 Ψ← Ψ \Ψ−

8 for ψ− ∈ Ψ− do
9 for p ∈ (P \ e) do

10 if 6 ∃ψ ∈ Ψ: ψ ⊆ (ψ− ∪ {p}) then
11 Ψ← Ψ ∪ {ψ− ∪ {p}}

to e, otherwise ψ would not be valid. This property imme-
diately leads to completeness in the sense that all valid DCs
can be derived from the output.
(Minimal) Suppose the DC ψ1 is valid and minimal, but

the result contains ψ2, i.e., the predicate set of ψ1 is a subset
of ψ2’s predicate set and therefore ψ2 is not minimal. The
check in Line 10 ensures that Ψ contains no subsets of new
DCs before adding them to the result. The completeness
loop invariant guarantees that Ψ always contains a subset
of ψ1, so whenever ψ2 should be added to the result, this
subset check prevents it.

6. EVIDENCE SET COMPLETION
The output of the previous step – the preliminary DCs –

can contain DCs that are not valid on the entire relational
instance, because the evidence that violates them was not
included in the preliminary evidence set. Additionally, as
the inversion step outputs a minimal set of DCs, some DCs
that are actually correct can be missing in the output. This
can happen, because a more general, but in fact invalid DC
is present in the output and thus the missing DCs are not
considered minimal. In this section, we describe how to ar-
rive at all minimal DCs given the preliminary evidence set
and DCs. At first, we characterize which evidences the pre-
liminary evidence set lacks to entail the complete and correct
set of DCs (Section 6.1). Then, we show how to efficiently
collect exactly those missing evidences (Sections 6.2–6.4).
Applying once more the evidence inversion from Section 5 to
the preliminary and newly collected evidences finally gives
us the correct and complete set of DCs for the entire dataset.

6.1 The Delta Evidence Set
A delta evidence set E∆ is a set of evidences that entails

the correct and complete DCs of a dataset when combined
with the preliminary evidence set. That is, the delta evi-
dence set is precisely the set of evidences that are missing
from the preliminary set to make the result correct. Recall
that the preliminary evidence set itself entails a set of pre-
liminary DCs. Interestingly, the evidences for all tuple pairs
that violate any of the preliminary DCs form such a delta
evidence set.

Theorem 2. Assume a preliminary evidence set Epre and
its associated DCs Ψpre. Further assume an evidence set E∆

315

that contains the evidences for all tuple pairs that violate
Ψpre. Then an evidence inversion of Epre ∪ E∆ leads to the
complete and minimal set of denial constraints.

Proof. The evidence inversion’s result is unambiguously
determined by the maximal evidences emax, which are not a
subset of a further evidence in the same evidence set. This
is because any DC that is precluded by some e′ ⊆ emax

is also precluded by emax. Now, let Efull denote the full
evidence set and assume that some maximal evidence emax =
{p1, . . . , pn} is contained in Efull but not in Epre. In other
words, Efull precludes the DC ψ = ∀t, t′ : ¬(p1 ∧ · · · ∧ pn),
while Epre does not. Hence, there must be some DC ψpre ∈
Ψpre that comprises only predicates from emax. Because the
tuple pair yielding emax violates ψpre, emax is in E∆. So,
we can conclude that all maximal evidences from Efull are
either included in Epre or E∆. Therefore, Efull and Epre∪E∆

entail the same DC set.

Example 1. Let us assume that our sampling did not
compare t1 and t2. Therefore, we did not find any evidences
that contradict the DC ∀t, t′ : ¬t[Name] = t′[Name] and the
DC is thus contained in our preliminary DC set Ψpre. When
we check this DC, we discover that the tuple pairs (t1, t2)
and (t2, t1) violate that DC and we can add two new ele-
ments e(t1, t2) and e(t2, t1) to our evidence set. As shown
in the proof above, the evidence set is complete if we repeat
this process for every DC in Ψpre.

To employ Theorem 2 for DC discovery, we need to discover
E∆ and, hence, all tuple pairs that violate any of the pre-
liminary DCs in Ψpre. A näıve approach to discover all vio-
lating tuple pairs for some DC ψpre ∈ Ψpre (i) inspects each
tuple pair; (ii) determines, whether the tuple pair violates
ψpre; and, if so, (iii) saves this tuple pair for the calculation
of E∆. However, this approach has a runtime complexity
of O(|Ψpre| · |r|

2), where |r| is the number of tuples in the
dataset, and is clearly too inefficient.

Hydra tackles this challenging task to efficiently discover
E∆ on two levels. At first, it provides an efficient scheme
to discover the violating tuple pairs for a single DC, by em-
ploying specific data structures (Section 6.2) and dedicated
evaluation algorithms for the various predicate types (Sec-
tion 6.3). Second, Hydra optimizes the checking of multiple
DCs at once. This is possible, because DCs often share some
predicates, which might then need to be checked only once
(Section 6.4).

6.2 Checking a single DC
Assume a DC ψ = ∀t, t′ : ¬(p1 ∧ · · · ∧ pn) whose violating

tuple pairs we would like to determine. Intuitively, we can
attain this as follows: We initially assume that all tuple pairs
TP :=

{

(t, t′) ∈ r2 | t 6= t′
}

violate ψ. Then, we iterate the
predicates in ψ in some order and for each predicate pi, we
retain only those tuple pairs that satisfy pi using a refiner
function refpi(TP) :=

{

(t, t′) ∈ TP | (t, t′) satisfies pi
}

. Fi-
nally, we obtain all tuple pairs (refp1 ◦ · · · ◦ refpn)(TP) that
satisfy all predicates in ψ — these are exactly the violating
tuple pairs. We now explain how to efficiently implement
this proceeding.

Data Structures. Obviously, representing sets of tuple
pairs by explicitly materializing them all is neither memory
efficient nor allows for efficient processing. Instead, Hydra
uses three data structures to represent sets of tuple pairs: A

cluster is an unordered set of tuple indices. A cluster pair
is an ordered pair (c1, c2) of two clusters c1 and c2. It repre-
sents all tuple pairs (t, t′), such that t ∈ c1 and t′ ∈ c2 and
t 6= t′. As an example, the cluster pair ({t1, t2}, {t2, t3})
represents the tuple pairs (t1, t2), (t1, t3), (t2, t3). A parti-
tion is a set of cluster pairs, which represents all tuple pairs
contained in any of those cluster pairs.
The partition representation has the advantage that many

partitions can be represented using much less memory than
would be required by the enumeration of every tuple pair.
For instance, all possible (ordered) tuple pairs in a dataset
with |r| tuples, can be represented as one partition with only
one cluster pair, where each cluster contains all tuples. We
call this partition that represents the cross-product of all
tuples the full partition of r. This representation requires
only 2n integers – so only linear space, as opposed to to
n2−n tuple pairs for a materialization of the cross product.

Operations. Besides being a compact representation, par-
titions can be employed to efficiently implement the refine-
ment operation defined above. We extend the definition
above to a new operator called partition refiner, that takes
as input a set of cluster pairs and yields a set of cluster pairs
that represents all tuples pairs of the input cluster pair that
also satisfy a predicate pi. Again, the repeated application
for all predicates of a DC, starting with the full partition,
yields the set of all tuple pairs violating this DC. Thus, it
is of major importance for Hydra to efficiently execute the
refinement. The actually employed refinement strategies are
determined by the type of the processed predicate and are
described in detail in Section 6.3.

Pipelining. Although partitions are a compact represen-
tation of tuple pairs, they still can consume a considerable
amount of memory — in particular, when there are very
many very small cluster pairs. Hydra attenuates this fact
by pipelining: Instead of applying the partition refiner for
each predicate one after another, Hydra rather operates on
the granularity of cluster pairs. That is, as soon as a parti-
tion refiner yields a refined cluster pair, this cluster pair is
directly fed into the partition refiner of the next predicate.
As an example, consider the full partition for Table 1, which
we want to refine with the predicate t[Name] = t′[Name].
The refined partition would contain four cluster pairs, one
for each name. However, as soon as the partition refiner has
determined one of the cluster pairs, e.g.,

(

{t1, t2}, {t1, t2}
)

for J. Miller, this cluster pair can immediately be refined
further with other predicates (if any exist). Note that this
optimization technique is independent of the actual refine-
ment strategy.

6.3 Refinement strategies
Having explained the utility of partition refinement to dis-

cover the violating tuple pairs for a given DC, let us now dis-
cuss the actual refinement strategies. In brief, a refinement
strategy takes as input a predicate and a partition and out-
puts a refined partition that contains only tuple pairs that
satisfy the given predicate. A näıve solution to this problem
could be an algorithm that iterates over all tuple pairs in the
partition and adds each of them to the resulting partition
if the tuple pair satisfies the predicate. While this solution
would work correctly, it certainly is not efficient. As a mat-
ter of fact, this strategy would compare all tuple pairs – this
is exactly what Hydra attempts to avoid!

316

To solve this problem more efficiently, Hydra divides the
predicates into the following categories: filters, equi-join,
anti-join, and inequality joins. For each category we provide
an algorithm that, given a predicate of this category, solves
the problem by taking the nature of the predicate into ac-
count. All cluster pairs can be treated independently and,
consequently, the algorithm refines only individual cluster
pairs. If a partition is to be refined, the result is the union
of all results of the refinement operations for every cluster
pair. All of the presented algorithms take a cluster pair as
well as a predicate as input and yield new cluster pairs that
contain all tuple pairs included in the input cluster pair and
satisfy the predicate. Note that the refinement algorithms
may yield empty cluster pairs (that describe no tuple pairs),
which Hydra immediately discards.

Filters. Filters are all predicates that involve only one tu-
ple (either t or t′) and therefore are of the form t̂[A] θ t̂[B] for
θ ∈ {=, 6=, <,≤, >,≥}, any attributes A, B, and t̂ ∈ {t, t′}.
An example for a filter is t[Hired] = t[Salary]. To refine a
cluster pair by a filter on t (or t′, respectively), Hydra it-
erates over all tuples in the first (or second, respectively)
cluster and keeps only those tuples that satisfy the predi-
cate. The other cluster is not altered. Thus, the complexity
of processing filters is linear in the number of tuples of the
filtered cluster.

Equi-join. Equi-join predicates are all predicates of the
form t[A] = t′[B] for any attributes A and B (A and B can
be equal). Hydra processes them with a technique akin to
hash joins in relational databases. It splits the clusters by
the values of A and B, and then combines those clusters
that result from the same values. In contrast to a classical
hash-join algorithm, Hydra needs to build a hash map for
both sides of the join condition. The purpose is to output
cluster pairs instead of tuple pairs and, hence, to keep the
number of cluster pairs small.

Consider this example: given the predicate t[D-Code] =
t′[D-Code] and the cluster pair (c1, c2) = ({t1, t2, t3}, {t1, t2,
t5}), Hydra constructs a hash-map with D-Code as key:
D-Code: SAL→ {t1, t3},ACT→ {t2}. Then it constructs
the equivalent hash-map for c2: SAL → {t1, t5},ACT →
{t2}. Combining the clusters for SAL yields the cluster pair
({t1, t3}, {t1, t5}) and for ACT it would yield ({t2}, {t2}).
The latter can be ignored as it does not contain a pair of
distinct tuples. The complexity is O (|c1|+ |c2|), because
building the indexes is in O (|c1|) and O (|c2|) and iterating
over the second index is in O (|c2|).

Anti-join. Anti-join predicates are all predicates of the
form t[A] 6= t′[B] for any attributes A and B (where A and
B can be equal). Again, Hydra uses a hashing algorithm to
calculate the resulting cluster pairs. The overall approach is
similar to the algorithm for equi-join predicates, but instead
of combining clusters with equal values, Hydra removes
the tuples with equal values from the original clusters. A
special case are those tuples in the first cluster that lack a
join partner in the second cluster: all of these tuples can be
combined into one cluster pair, because they need no further
refinement.
Let the predicate t[Salary] 6= t′[Salary] and the cluster

pair (c1, c2) = ({t1, t2, t3}, {t4, t5}) serve as an example.
Constructing a hash-map for Table 1 with Salary as key
leads to 3,200 → {t1}, 3,500 → {t2}, 2,900 → {t3} and
3,200→ {t4}, 2,700→ {t5}. As {t1} has a corresponding

cluster {t4}, it can only be joined with c2\{t4}, which yields
the result ({t1}, {t5}). t2 and t3 do not have any join part-
ners so they can be combined with the whole c2 cluster:
({t2, t3}, {t4, t5}). The worst-case time complexity here is
O (|c1| · |c2|). If each tuple in c1 has a unique value for A
and for each there is one tuple in t2, such that t[A] = t′[B],
then a total of |c1| arrays of size |c2| − 1 need to be con-
structed.

Inequality Join. Inequality join predicates are all pred-
icates of the form t[A] θ t′[B] for θ ∈ {<,≤, >,≥}, any at-
tributes A and B (where A and B can be equal). To evaluate
single inequality joins, Hydra uses a variant of a sort-merge
join: Hydra first sorts both clusters according to the values
of the predicate’s attributes (the first cluster by A and the
second cluster by B). If θ ∈ {<,≤} the clusters are sorted
in ascending order, and in descending order otherwise. Be-
cause θ is transitive, these sorted arrays, denoted by a and
b, satisfy the following properties:

(i) if the tuple pair (ai, bj) satisfies the predicate, then all
tuple pairs (ai, bk) ∀k ≥ j also satisfy the predicate;

(ii) if for (ai, bj) the predicate is not satisfied, then it can-
not be satisfied for any (al, bj) ∀l ≥ i either.

As an example, consider the predicate t[Salary] ≥ t′[Salary]
along with the cluster pair (c1, c2) = ({t3, t4}, {t1, t2, t5}). In
this example, Hydra creates a = [t4, t3] and b = [t2, t1, t5].
Then, the algorithm iterates both a and b in a nested loop.
That is, in our example it starts by comparing t4 and t2,
for which the predicate evaluates to false. However, the
next tuple pair (t4, t1) does satisfy the predicate, so Hy-
dra can instantly yield the cluster pair ({t4}, {t1, t5}) due
to property (i) without any further checks. In the second
iteration of the outer loop, property (ii) allows the algo-
rithm to skip all tuples in the second cluster that did not
satisfy the predicate in the last iteration (so t2 in this case).
The check for (t3, t1) is without success and only the fi-
nal check returns the second result ({t3}, {t5}). Note that if
two subsequently yielded cluster pairs have identical “right”
clusters (which is not the case in our example), the two
can be merged into a single cluster pair to speed up subse-
quent refiners. The worst-case complexity of this algorithm
is O (|c1| · log |c1|+ |c2| · log |c2|+ |c1| · |c2|). The reason is
similar to that for the anti-join refinement, but in this case
the clusters additionally need to be sorted.

IEJoin. Inequality joins usually are computationally ex-
pensive and have a low selectivity, thereby putting a lot of
work to subsequent refiners. To attenuate this issue, Hy-
dra tries to evaluate inequality joins as pairs of two, when-
ever possible, using the more efficient IEJoin [10], which
evaluates two inequality predicates in a single pass. In this
section, we convey the basic idea of this join algorithm.
In contrast to the regular inequality join, both clusters

need to be sorted twice instead of only once (once for each
involved attribute). At first, IEJoin iterates over a sorted
version of the first cluster to find join partners that satisfy
the first predicate. As these join partners do not necessarily
also satisfy the second predicate, the join partners are not
generated immediately, but instead marked in a bitset that
is initially empty. Through the use of an index structure,
the algorithm determines the part of the bitset that also sat-
isfies the second predicate. Finally, the algorithm iterates
over that part, and for every marked bit the original version

317

would yield individual tuple pairs that satisfy both predi-
cates, but we show next how to obtain cluster pairs instead.
With similar arguments as for the previous algorithm, the
set bits in the bitset are valid for the next iterations as well.

As also shown in [10], the algorithm has a worst-case com-
plexity of O (|c1| · log |c1|+ |c2| · log |c2|+ |c1| · |c2|). How-
ever, because the original IEJoin yields tuples rather than
cluster pairs, a few optimizations are possible. When iter-
ating over the bitset (inner loop) to find join partners, the
modified algorithm collects all eligible tuples into one clus-
ter instead of yielding them all separately. Additionally, the
resulting cluster pair of the previous iteration in the outer
loop is saved and not yielded directly. If the next tuple has
the same join partners as the previous ones, then the current
tuple is added to the last cluster. Only if they do not match
or if the algorithm finishes, the last result is returned. Both
optimizations reduce the number of cluster pairs.

6.4 Checking many DCs
The fact that Hydra has to check many DCs at once al-

lows further optimizations. First, to reduce the number of
DCs that need to be checked, we use implication testing and
remove redundant DCs from Ψpre. Additionally, many par-
tition refinement operations can be combined by organizing
the predicates of the DCs in a tree. Finally, the number
of partition refinements can be further optimized by chang-
ing the shape of that tree through modifying the order of
predicates in the DCs.

Redundant DCs. Usually, Ψpre contains redundant DCs
in the sense that all tuple pairs that violate them also vi-
olate another DC, because they are implied by that other
DC. So checking these implied DCs does not augment the
evidence set and thereby incurs computational overhead: re-
moving them from Ψpre reduces the number of DCs that
need to be checked, and, hence, the number of necessary
refinement operations. For this purpose, Hydra artificially
extends all DCs ψ ∈ Ψpre to ψ∗ by adding implied predi-
cates that must be satisfied by any tuple pair that satisfies all
predicates of ψ. For example, the DC ψ = ∀t, t′ : ¬

(

t[Id] <

t′[Id]∧ t[Hired] > t′[Hired]
)

can be extended by the predicate
t[Id] ≤ t′[Id]. Note that ψ and ψ∗ are logically equivalent de-
spite their different notations, because any evidence e that
violates a DC ψ also violates ψ∗. We can further conclude
that any DC ψ′ ∈ Ψpre, if it comprises exclusively predi-
cates from ψ∗, logically implies ψ∗, i.e., ψ. For instance,
ψ3 in Figure 1 satisfies this condition, although it is not a
subset of ψ itself. As a result, to complete the evidence
set, it is sufficient to check only ψ′, which allows Hydra
to skip ψ. To calculate ψ∗, Hydra uses a set of sound
implication rules that are repeatedly applied until no new
predicates are found: general implications (i), transitivity
(ii), anti-symmetry (iii), and other rules (iv) and (v).

i) t[A] < t′[B] ⇒ t[A] ≤ t′[B], t[A] 6= t′[B]
ii) t[A] < t′[B] ∧ t′[B] < t[C] ⇒ t[A] < t[C]
iii) t[A] ≤ t′[B] ∧ t′[B] ≤ t[A] ⇒ t[A] = t′[B]
iv) t[A] 6= t′[B] ∧ t[A] ≤ t′[B] ⇒ t[A] < t′[B]
v) t[A] 6= t′[B] ∧ t′[B] = t′[C] ⇒ t[A] 6= t′[C]

Hydra reduces the number of DCs to be checked even
further by considering symmetry: for each DC ψ it calcu-
lates a symmetric DC ψsym by swapping t and t′. Any tuple
pair that violates ψ violates ψsym with inverse roles of t and
t′. Consider ∀t, t′ : ¬

(

t[Id] > t′[Id] ∧ t[Hired] < t′[Hired]
)

as

an example for the symmetric DC of ψ above. If ψsym is
redundant according to the rules above, Hydra removes ψ
from Ψpre in favor of the DC that makes it redundant, so in
our example ψ3. Instead of checking symmetrical DCs, Hy-
dra calculates both e(t, t′) and e(t′, t) for every discovered
violating tuple pair and adds them to E∆. As Hydra needs
to access both tuples t and t′ for the calculation of e(t, t′)
anyway, the calculation for inverse roles is very cheap, but
can save a high number of refinement operations.

Tree-based checking. Many DCs in the preliminary DC
set have predicates in common with some other DCs. If
they were each checked sequentially, many calculations for
these predicates would be repeated. Instead, Hydra per-
forms the DC checking in a depth-first tree traversal and
combines DCs that share a common prefix, for an example
see Figure 4. In the tree there is one path from root to leaf
for every DC and each of the path’s edges represents one
predicate in the DC. The construction starts in the root
node and the set of DCs is split by their first predicate (the
order of predicates is assumed random for now), so for ex-
ample t[Hired] = t′[Hired] and t[Name] = t′[Name]. For each
of the resulting DC sets one edge labeled by their shared
predicate and a node that represents the DC set is added.
Then, for each of the newly constructed nodes, the remain-
ing set of DCs is split by the second predicate and so on. In
our example only the first child (t[Hired] = t′[Hired]) needs
to be further split, as the second node already represents
the contained DC.

∀t, t′ : ¬(t[Name] = t′[Name])
t[Name] = t ′[Name]

∀t, t′ : ¬(t[Hired] = t′[Hired]∧
t[D-Code] = t′[D-Code])

t[D-Code] = t ′[D-Code]

∀t, t′ : ¬(t[Hired] = t′[Hired]∧
t[Salary] < t′[Salary])

t[Salar
y] < t

′ [Salary
]

t[Hire
d] = t

′ [Hired
]

Figure 4: Example tree for a set of three DCs.
Changing the order of predicates for one of the DCs
that contain the predicate t[Hired] = t′[Hired] would
result in larger tree, but depending on the selectiv-
ity estimates it may still pay off, if the intermediate
results are smaller.

Once the tree is constructed, Hydra uses it to find vi-
olations of each DC: cluster pairs traverse the tree in a
depth-first manner, starting with the full partition in the
root node. Whenever a cluster pair traverses an edge the
refiner for the predicate of this edge is applied to the cluster
pair. As soon as the refiner yields a new cluster pair, a new
cluster pair is added to the child node. Deeper nodes have a
higher priority and therefore this cluster pair is now further
refined before the evaluation of the first refiner is continued.
Once a cluster pair hits a leaf, all of its tuple pairs satisfy
all predicates in a DC and, hence, are violating tuple pairs
that can contribute to E∆.

Order of evaluation. Until now the order of predicates
was assumed to be random for the tree construction, but in
fact the order of evaluation has a high performance impact.
There are two aims that need to be considered: (i) the in-
termediate results should be as small as possible, because
the fewer tuple pairs a cluster pair contains, the cheaper are
subsequent refinement operations and the less memory is

318

used; (ii) the evaluation tree should be as small as possible,
so we can save on repeated refinement operations.

Aim (i) can be achieved by sorting the predicates by their
selectivity, so the refiners filter out more tuple pairs early.
Although the true value of the predicate selectivity remains
unknown, we obtain a good estimation in the random sam-
pling phase. To obtain these selectivity estimations, Hydra
counts the occurrences of any predicate as well as any pair
of inequality predicates in the sample evidence set. In con-
trast to that, a heuristic to attain a small tree of refinement
operations (Aim (ii)) is to split on frequent predicates in the
(approximate) DC set first. However, this strategy could
lead to large intermediate results, because it can pick pred-
icates with a low selectivity too early. Instead, to combine
both aims, Hydra maximizes the quotient of frequency and
selectivity. Thus, Hydra prefers refinement operations with
a high frequency and a low selectivity.

For IEJoin, inequality joins need to be combined into dis-
joint pairs of two. So for every DC that contains at least
three inequality predicates, Hydra needs to decide which of
them should be combined into one partition refiner. Here
however, the same considerations as for the predicate selec-
tion in general apply: Hydra maximizes the total frequency
divided by the total selectivity of these combined partition
refiners. The sample can also be used to estimate the se-
lectivity of those pairs (counting the tuple pairs for which
both predicates are true). These pairs of inequality joins are
then treated like the other refiners and also sorted by their
combined priority weight.

Final result. At the end of the whole depth-first traver-
sal, we obtain the complete delta evidence set. Hydra could
continue the previous evidence inversion if it saved the origi-
nal Ψpre (including all redundant DCs) and the index struc-
ture for the subset checking. For memory efficiency and due
to the fact that experiments show that evidence inversion
is rather cheap compared to Hydra’s other phases, Hydra
does a new evidence inversion for the complete evidence set,
which yields the complete set of minimal DCs (see Theo-
rem 2).

7. EVALUATION
In this section, we compare Hydra with the only other

published DC discovery algorithm FastDC [3]. In particu-
lar, (i) we demonstrate the improved efficiency of our algo-
rithm; (ii) we investigate its scalability over growing dataset
sizes; (iii) we explore its memory consumption; and (iv) we
provide a number of in-depth experiments that allow a bet-
ter understanding of the interaction of Hydra’s different
phases thereby justifying our design decisions.

7.1 Setup and Datasets
For our experiments, we implemented both Hydra and

FastDC in Java and integrated them into Metanome [11],
a data profiling framework. For FastDC no prior imple-
mentation was publicly available, but the observations with
our best-effort implementation generally agree with those of
Chu et al. [3]. All experiments were run on a Dell Pow-
erEdge R620 with two Intel Xeon E5-2650 CPUs (2.00GHz,
Octa-Core) and 128GB of DDR3 RAM running CentOS re-
lease 6.8 and OpenJDK 64-Bit Server JVM 1.8.0 101. Fur-
thermore, all measurements of Hydra were repeated at least
three times to accommodate the randomness of the samples

and the mean values are reported. Hydra conducts a ran-
dom sampling with 20 random samples per tuple as more
samples do not seem to improve the selectivity estimations
any further (Section 7.5.1). The focused sampling continues
until the efficiency drops below a threshold of 0.005.
The authors of FastDC evaluated their algorithm against

three datasets [3]: Tax, Hospital, and Stock. We reuse these
datasets to ensure that our implementation is comparable in
terms of performance to the original implementation. Tax
is a generated dataset with personal data, such as salary, zip
code, and city; Hospital features information about hospital
provider, type, etc.; and Stock contains historical data for
the S&P 500 stocks. Table 2 provides more details on the
datasets. Furthermore, our repeatability page1 provides our
implementations and pointers to the datasets.

Table 2: The three datasets used for evaluation.

Name #attr. #tuples #pred. Type

Hospital 15 114,919 34 real-world
Stock 7 122,496 82 real-world
Tax 15 1,000,000 50 synthetic

Predicate spaces. To allow for a fair comparison of Hy-
dra and FastDC, both algorithms consistently apply the
predicate space restrictions from [3]: textual attributes are
compared only for (in)equality, while for numeric attributes
all six operators are allowed (=, 6=, <,≤, >,≥). Further-
more, the predicates that involve two different attributes are
restricted: For Hospital and Stock, two distinct attributes A
and B, need to have at least 20% common values to allow
the predicates t[A] θ t[B] and t[A] θ t′[B] for θ ∈ {=, 6=}. If
A and B are numeric attributes and their arithmetic means
are in the same order of magnitude, we furthermore add
t[A] θ t′[B] for θ ∈ {<,≤, >,≥}. For Hospital this leads to 34
predicates, while for Stock there are 82 predicates. For Tax,
the predicate space P contains only predicates that com-
pare the same attribute for different tuples, which leads to
50 predicates. In [3], the authors already showed that these
restrictions are quite reasonable, because they prune unin-
teresting DCs and at the same time speed up discovery. Of
course, we can also run Hydra on a predicate space without
restrictions: although the discovery takes up to three times
longer on these datasets, we mainly gain uninteresting new
results, such as ∀t, t′ : ¬(t.zipCode = t′.HospitalOwner).

7.2 Tuple Scalability
This experiment evaluates the tuple scalability by measur-

ing the runtime for the same dataset but different numbers
of tuples. The aim is to receive an impression of the growth
behavior and, hence, to facilitate an estimation on how the
algorithm behaves on larger datasets. We vary the number
of tuples by gradually considering more tuples starting from
the beginning of the dataset. Figure 5 shows the scaling
behavior of both FastDC and Hydra. For all three data-
sets we see that Hydra’s runtime scales almost linearly in
the number of tuples. For Tax, an inflection point occurs at
around 400,000 tuples, but the overall scaling behavior still
seems linear. The increased gradient might be attributed
to low-level caching effects. On contrast, for Hospital and

1https://hpi.de/naumann/projects/repeatability/
data-profiling/dc.html

319

0

25

50

75

100

0
30
00
0
60
00
0
90
00
0

12
00
00

Number of tuples

T
im

e
[m

in
]

HOSPITAL

10

20

T
im

e
[s
]

0

250

500

750

0
25
00
0
50
00
0
75
00
0

10
00
00

12
50
00

Number of tuples

STOCK

20

40

60

80

0

200

400

600

0

25
00
00

50
00
00

75
00
00

10
00
00
0

Number of tuples

TAX

0
500

1000
1500
2000

Hydra FastDC

Figure 5: Comparison of Hydra’s and FastDC’s scal-
ability with an increasing number of tuples. The
upper plots show the runtimes for both in minutes,
while the lower plots give a more detailed view for
Hydra’s runtime in seconds.

Tax, the quadratic complexity of FastDC is evident. The
quadratic runtime complexity of FastDC does not show
for the Stock dataset, because here FastDC’s runtime is
dominated by its second phase (the minimal cover search,
comparable to our evidence inversion). This phase is highly
sensitive to the number of predicates and Stock combines a
big predicate space with a relatively small number of tuples.

Hydra’s almost linear scaling is a clear improvement over
the quadratic complexity of FastDC, which becomes in-
creasingly evident for larger datasets, because the speedup
of Hydra in comparison to FastDC grows linear in the
number of tuples. Due to this quadratic scaling, FastDC’s
runtime hits the time limit of 15 hours before it can pro-
cess the complete Tax dataset, which Hydra processes in
about 40 minutes. The estimated runtime of FastDC for
this dataset is more than a week and even a parallel version
of FastDC takes 16 hours using all 16 cores of the CPU,
which results in an estimated speedup factor of about 360
times for Hydra over a single-threaded version of FastDC.
Hydra finishes the two smaller datasets Hospital and Stock
at a maximum of 2 minutes, while FastDC takes about 90
minutes for Hospital and more than 14 hours for Stock. To
conclude, we can say that Hydra not only scales better,
but also shows a much better runtime behavior in absolute
numbers. Due to these results, we focus only on Hydra in
the following.

7.3 Predicate Scalability
The maximum size of the predicate space grows exponen-

tially in the number of attributes. Because the number of
attributes widely differs between different datasets, we in-
vestigate how well Hydra scales to large predicate spaces.
For this scaling experiment, we ran Hydra only on the first
20,000 tuples of Hospital, Stock and Tax to reduce the in-
fluence exerted by the number of tuples. In order to vary
the number of predicates, we considered different attribute
subsets of the datasets. In detail, we started with only one

0

5

10

15

20

25

0 20 40 60 80

Number of predicates

T
im

e
[s
]

Hospital Stock Tax

Figure 6: Scalability of Hydra with an increasing
number of predicates on the first 20,000 tuples.

attribute and successively added attributes chosen at ran-
dom until the full set of attributes was reached. This process
was repeated multiple times and the average runtimes are
reported in Figure 6.
Apparently, Hydra’s runtime increases exponentially with

the number of predicates. However, a better scaling behav-
ior is precluded, because we observe an exponential growth
of the results as well. That being said, while Hydra eas-
ily scales to datasets with up to 15 columns, in situations
with more columns one might consider to tighten the pred-
icate space restrictions to allow further scaling. The larger
predicate space is also the reason, why even Hydra can-
not compete against more specialized algorithms for, e.g.,
FD discovery. But although the FD discovery algorithm
HyFD [13] finishes FD discovery in less than 15s on all of
these datasets, a large share of valid DCs (up to 99%) on
these datasets cannot be expressed as FDs.

7.4 Memory Usage
While one might assume that especially the DC checking

of Hydra requires a high amount of memory for storing
the involved cluster pairs, we observed Hydra to have a
low memory footprint. To determine its peak memory us-
age, we ran Hydra with different main memory capacities,
starting from 128MB and successively doubling that value
until the algorithm finished three times in a row for one
limit. We found that Hydra can process the Hospital and
Stock datasets with 256MB of main memory. In contrast,
the Tax dataset required 2GB. A reason for this demand
is the fact that our implementation loads the full dataset
into main memory. Even though the Tax dataset’s CSV file
takes up only 73MB, it effectively requires much more main
memory when loaded into the JVM, in particular due to
the overhead of string objects and their UTF-16 encoding.
Using a heap space of 120GB, Hydra can process a Tax
instance of 50M tuples (in 7h), while it runs out of main
memory for 75M tuples while loading the input data.

7.5 Phases of Hydra
Having demonstrated Hydra’s performance and scalabil-

ity characteristics, we proceed to evaluate its various phases
in more detail, thereby accounting for our design decisions.
Figure 7 gives an overview of which phases of Hydra domi-
nate in different scenarios and aims to establish an intuition
on which phases are the most critical for efficiency. Overall,
the evidence set completion appears to be the most expen-
sive part. It dominates especially for datasets with a lot of
tuples (Tax dataset). The runtimes of the linear and focused
sampling grow linear in the number of tuples. In addition,

320

0

5

10

15

20

25

25
00
0
50
00
0
75
00
0

10
00
00

Number of tuples

T
im

e
[s
]

HOSPITAL

0

20

40

60

25
00
0
50
00
0
75
00
0

10
00
00

Number of tuples

STOCK

0

500

1000

1500

2000

0

25
00
00

50
00
00

75
00
00

10
00
00
0

Number of tuples

TAX

Random Sampling

Focused Sampling

Evidence Inversion

Minimization

Evidence Set Completion

Final Inversion

Figure 7: Runtime distribution for the different
phases of Hydra while scaling the number of tuples.

0

500

1000

0 50 10
0

15
0

Time [s]

E
v
id
en

ce
se
t
si
ze

HOSPITAL

2000

4000

6000

0 50 10
0

15
0

Time [s]

STOCK

3000

6000

9000

0 50 10
0

15
0

Time [s]

TAX

Random Focused

Figure 8: Effectiveness of focused sampling. The
black horizontal line marks the size of the complete
evidence set. The random sampling serves here as
a baseline.

the experiments on the Stock dataset with its 82 predicates
give a notable impression of the influence of a high number
of predicates: in such circumstances the evidence inversion
and the minimization take a much longer time than for data-
sets with fewer predicates.

7.5.1 Sampling

In the following, the focused sampling’s effectiveness is
evaluated w.r.t. its recall on Efull over time, as well as how
the specific sampling configurations influence the total run-
time of Hydra. Note that although random and focused
sampling serve different purposes in Hydra, the random
sampling still can serve as a baseline to show how much
faster Hydra’s focused sampling completes the evidence set.

Figure 8 evaluates the effectiveness of the focused sam-
pling method described in Section 4. At different points
in time, the size of the evidence set was measured up to a
time limit of 150 seconds. The focused sampling method
achieves a much higher recall on the evidence set than the
random sampling methods in a short amount of time. This
fact shows that our focused sampling is working well and
delivers a diversity of tuple pairs.

Figure 9 gives insight on the influence of Hydra’s two
sampling parameters on Hydra’s total runtime: the number
of samples per tuple k in the random sampling and the effi-
ciency threshold in the focused sampling phase. The overall
result of these experiments is thatHydra is relatively robust
for the choice of both parameters. Hydra performs a ran-
dom sampling to estimate predicate selectivity. Figure 9a)
shows the impact of different numbers of samples per tu-
ple k for this phase: the runtime of the random sampling

0

10

20

30

10 20 30 40

Linear factor

T
im

e
[s
]

HOSPITAL

0

25

50

75

100

10 20 30 40

Linear factor

STOCK

0

1000

2000

10 20 30 40

Linear factor

TAXa)

0

10

20

30

1e-
05

0.0
05 0.2

Threshold

T
im

e
[s
]

0

25

50

75

1e-
05

0.0
05 0.2

Threshold

0

1000

2000

1e-
05

0.0
05 0.2

Threshold

b)

Random Sampling

Focused Sampling

Evidence Inversion

Minimization

Evidence Set Completion

Final Inversion

Figure 9: Influence of a) the samples per tuple k in
the random sampling and of b) the focused sam-
pling’s efficiency threshold on Hydra’s total run-
time.

grows obviously linear with k, but due to better selectiv-
ity estimations, the algorithm can save time in the evidence
completion phase. The influence of this parameter choice is
small and 20 samples per tuple seem to work well for both
real-world datasets and show only slight disadvantages for
the synthetic Tax dataset.
In Figure 9b) we can observe the influence of the efficiency

threshold of the focused sampling with interesting results. A
smaller efficiency threshold causes more sampling iterations
and therefore of course a longer sampling phase. This in-
crease does not come as a surprise, and on the Hospital and
Stock datasets the additional sampling pays off by reducing
the time spent on the evidence completion. For both data-
sets the threshold 0.005 works best, and the performance
decreases in both directions (although only slowly). Unex-
pectedly, for the Tax dataset a smaller threshold and, hence,
more sampling, does not lower the time needed for the result
completion. One might think that this phenomenon occurs
because the tree of DCs that needs to be checked grows with
an increasing sample. However, we could not measure a sub-
stantial growth of the tree size. This suggests that due to
the more extensive sampling more complex predicate com-
binations arise that need to be checked in the evidence set
completion. Nevertheless, this observation is actually less
of a problem, because Hydra’s default threshold of 0.005
for the sampling saves in this case on both, the time for
the sampling as well as the result completion. As the re-
sult for the Tax dataset seems to constitute an exception
and as it is also a generated dataset, the best threshold of
0.005 observed on the other datasets was chosen for Hydra.
Overall, Hydra is not very sensitive to the parameters and
hence has proven its robustness.

7.5.2 Evidence Inversion

This experiment evaluates the gains of Hydra’s evidence
inversion in comparison to FastDC’s minimal cover search,
which serves the same purpose. The underlying set cover

321

0.01

1.00

10 20 30

Number of predicates

T
im

e
[s
]

HOSPITAL

0.01

1.00

100.00

0 20 40 60 80

Number of predicates

STOCK

0.01

1.00

100.00

0 10 20 30 40 50

Number of predicates

TAX

FastDC FastDC-T Hydra

Figure 10: Scalability of different evidence inversion
methods with an increasing number of predicates
compared on the full evidence set (log-scale).

Table 3: Effect of different refiner weights on the
runtime of the result completion.

Order criterion Hospital Stock Tax

Selectivity only 7.5s 422.8s > 2h
Frequency / selectivity 6.1s 36.5s 38m
Frequency only 81.6s > 2h > 2h

problem is NP-complete, so it is not surprising that Fig-
ure 10 shows an exponential runtime behavior for both meth-
ods with an increasing number of predicates (mind that the
y-axis for this graph is in log scale). However, as it is an
NP-complete problem we should pay special attention and
design the algorithm with great care as even a constant fac-
tor speedup can have serious performance impacts. The
general testing procedure is similar to that for the predicate
scaling experiment with a time limit of 60 minutes. It is
interesting that FastDC’s cover inversion is faster if one of
its optimizations (the transitivity pruning rule) is disabled
(FastDC-T) and we therefore disabled it in general scaling
experiments. Nevertheless, Hydra’s evidence inversion is
faster by orders of magnitude in all scenarios. The observed
speedup is consistent with experiments in [12] for the do-
main of functional dependency discovery: Fdep [6], whose
cover inversion inspired that of Hydra, scales better with
the number of columns than FastFD [16], which in turn
inspired FastDC.

7.5.3 Evidence Set Completion

Hydra considers both the selectivity and the frequency
of partition refiners (predicates or pairs of predicates) to de-
termine their order of evaluation in the evidence completion
phase. Table 3 shows that it is indeed important to take the
selectivity of the refiners into account as well as their fre-
quency in the DC set. If only the selectivity is considered or
only the frequency, then the DC checking on the Tax dataset
does not finish within a time limit of two hours. However, if
we optimize the ratio of both, the checking finishes in about
40 minutes. Additionally, we can see that the selectivity is
a more important criterion than the frequency. If only the
frequency is taken into account the resulting runtimes are
worse for every dataset compared to if only the selectivity
is considered.

Finally, Figure 11 stresses the importance of minimizing
the set of DCs prior to checking them. The minimization
introduces a small extra cost, but the total runtime can

be up to four times smaller than without the minimization
(NOMIN). The effect is bigger for datasets with a larger
number of predicates and therefore also a larger number of
DCs. The minimization not only reduces the number of DCs
to be checked, but, as it also prefers smaller representations,
the number of necessary refinement operations decrease as
well. In the same figure the effect of the pipelining (de-
scribed in Section 6.2) on the runtime is shown by compar-
ing Hydra to a version with disabled pipelining (NOPIPE).
Although the pipelining’s effect on the runtime is negligible,
it serves its purpose very well: it reduces the required mem-
ory significantly. Without pipelining, Hospital can still be
processed with 256MB of RAM, but for Stock the required
memory doubles (512MB) and Tax even requires four times
the original amount (16GB instead of 2GB).

0.0

2.5

5.0

7.5

Hy
dr

a

NO
PI
PE

NO
MIN

T
im

e
[s
]

HOSPITAL

0

100

200

300

400

Hy
dr

a

NO
PI
PE

NO
MIN

STOCK

0

1000

2000

3000

4000

5000

Hy
dr

a

NO
PI
PE

NO
MIN

TAX

Evidence Set Completion Minimization

Figure 11: Evaluation of variants for the result com-
pletion comparing original Hydra with a version of
disabled pipelining (NOPIPE) and no prior mini-
mization (NOMIN).

8. CONCLUSIONS
We presented the novel denial constraint discovery algo-

rithm Hydra. Hydra first approximates the set of valid
denial constraints through intelligent sampling, and then ef-
ficiently checks and corrects invalid results to finally obtain
a complete and correct result, thereby avoiding to compare
all tuple pairs in the given dataset. The algorithm’s ex-
perimentally determined runtime grows only linearly in the
number of tuples, and thus overcomes the quadratic runtime
complexity of state-of-the-art DC discovery methods. This
results in a speedup by orders of magnitude, especially for
datasets with a large number of tuples. In fact, Hydra can
deliver results in a matter of seconds that to date took hours
to compute.
While Hydra discovers exact DCs, real-world data might

contain errors, so that an approximate version is a next step.
An adapted version needs to count the number of times it
saw each evidence, ensuring not to count twice any evidence
originating from the same tuple pair. Due to the approx-
imation, more evidences are necessary to preclude a DC.
An adjusted efficiency definition in the focused sampling
phase takes this into account and results in more sampling.
Hydra’s cover inversion technique needs major changes to
incorporate the observed frequency of evidences, while the
evidence set completion requires almost no changes.

Acknowledgements. We thank the X. Chu, I. F. Ilyas,
and P. Papotti for their help in starting this project. This
research was partly funded by the German Research Society
(grant no. FOR 1306).

322

9. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling

relational data: a survey. VLDB Journal,
24(4):557–581, 2015.

[2] T. Bleifuß, S. Bülow, J. Frohnhofen, J. Risch,
G. Wiese, S. Kruse, T. Papenbrock, and F. Naumann.
Approximate Discovery of Functional Dependencies
for Large Datasets. In Proceedings of the International
Conference on Information and Knowledge
Management (CIKM), pages 1803–1812, 2016.

[3] X. Chu, I. F. Ilyas, and P. Papotti. Discovering Denial
Constraints. PVLDB, 6(13):1498–1509, 2013.

[4] X. Chu, I. F. Ilyas, and P. Papotti. Holistic Data
Cleaning: Putting Violations Into Context. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 458–469, 2013.

[5] J. Ehrlich, M. Roick, L. Schulze, J. Zwiener,
T. Papenbrock, and F. Naumann. Holistic data
profiling: Simultaneous discovery of various metadata.
In Proceedings of the International Conference on
Extending Database Technology (EDBT), pages
305–316, 2016.

[6] P. A. Flach and I. Savnik. Database dependency
discovery: a machine learning approach. AI
Communications, 12(3):139–160, 1999.

[7] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC data-cleaning framework. PVLDB,
6(9):625–636, 2013.

[8] A. Heise, J.-A. Quiane-Ruiz, Z. Abedjan, A. Jentzsch,
and F. Naumann. Scalable discovery of unique column
combinations. PVLDB, 7(4):301–312, 2013.

[9] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. TANE: An Efficient Algorithm for
Discovering Functional and Approximate

Dependencies. The Computer Journal, 42(2):100–111,
1999.

[10] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani,
P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and
P. Kalnis. Lightning Fast and Space Efficient
Inequality Joins. PVLDB, 8(13):2074–2085, 2016.

[11] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener,
and F. Naumann. Data Profiling with Metanome.
PVLDB, 8(12):1860–1863, 2015.

[12] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert,
J.-P. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms. PVLDB,
8(10):1082–1093, 2015.

[13] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. In Proceedings of
the International Conference on Management of Data
(SIGMOD), pages 821–833, 2016.

[14] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald.
Gordian: Efficient and scalable discovery of composite
keys. In Proceedings of the International Conference
on Very Large Databases (VLDB), pages 691–702,
2006.

[15] J. Szlichta, P. Godfrey, L. Golab, M. Kargar, and
D. Srivastava. Effective and complete discovery of
order dependencies via set-based axiomatization.
PVLDB, 10(7):721 – 732, 2017.

[16] C. Wyss, C. Giannella, and E. Robertson. FastFDs: A
heuristic-driven, depth-first algorithm for mining
functional dependencies from relation instances
extended abstract. In Proceedings of the International
Conference of Data Warehousing and Knowledge
Discovery (DaWaK), pages 101–110, 2001.

323

