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ABSTRACT

This paper presents Zidian, a middleware for key-value (KV)
stores to speed up SQL query evaluation over NoSQL. As
opposed to common practice that takes a tuple id or primary
key as key and the entire tuple as value, Zidian proposes a
block-as-a-value model BaaV. BaaV represents a relation as
keyed blocks (k, B), where k is a key of a block (a set) B of
partial tuples. We extend relational algebra to BaaV.

‘We show that under BaaV, Zidian substantially reduces data
access and communication cost. We provide characterizations
(sufficient and necessary conditions) for (a) result-preserving
queries, i.e., queries covered by available BaaV stores, (b)
scan-free queries, i.e., queries that can be evaluated without
scanning any table, and (¢) bounded queries, i.e., queries
that can be answered by accessing a bounded amount of data.
We show that in parallel processing, Zidian guarantees (a)
no scans for scan-free queries, (b) bounded communication
cost for bounded queries; and (c) parallel scalability, i.e.,
speed up when adding processors. Moreover, Zidian can be
plugged into existing SQL-over-NoSQL systems and retains
horizontal scalability. Using benchmark and real-life data,
we empirically verify that Zidian improves existing SQL-over-
NoSQL systems by 2 orders of magnitude on average.
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1. INTRODUCTION

Key-value (KV) stores have found prevalent use in industry
[22, 34, 6,18, 7, 40]. KV stores support dictionary-like data ac-
cess to retrieve and store data as key-value pairs, offering hor-
izontal scalability, fault tolerance and transparent sharding.

To support queries at scale, several SQL engines have been
developed on top of KV stores. After all, 75% of business
data is generated and stored as relations [43], and analytics
of the data is typically carried out via SQL queries. These
systems are often based on an SQL-over-NoSQL architecture
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[37], which stores data persistently in a KV-store cluster,
and answers queries in a computing cluster (as a separate
layer) in parallel [29]. This architecture has been adopted by
Google’s Spanner [20, 12], Facebook’s MyRocks [25], Hive [8]
and SparkSQL [11], among other systems.

While these systems offer the benefits of underlying KV-
storage, they do not perform as well as traditional DBMS
when evaluating SQL queries, for the following reasons.

(1) Costly scan. Typically, most SQL-over-NoSQL systems
are based on a tuple-as-a-value (TaaV) model. It stores a
relation as a set of KV pairs (k,t), in which k is an internal
id or primary key of a tuple ¢. These KV pairs are organized in
a distributed hash table (DHT). DHT supports efficient point
access via get that given a key k, fetches the entire tuple t.
However, for most SQL queries, we do not know the keys of
relevant tuples in advance. Hence we have to “blindly” scan
a table by incurring as many get’s as the size of the table.

(2) Heavy communication load. As observed by [37], few
SQL-over-NoSQL systems are able to reduce data retrieval
by e.g., pushing selection predicates down to the storage
layer, and none can execute scans efficiently. As a result,
a large amount of data (even the entire relation) is often
retrieved from the KV storage and is processed by the com-
puting layer. This incurs heavy communication cost for data
shuffling in parallel execution. The situation is even worse
in the common practice of denormalizing databases [32, 36],
i.e., when using wide tables or universal relations.

Can we reduce excessive data access and communication
costs, and make existing SQL-over-NoSQL systems as effi-
cient as DBMS when it comes to answering SQL queries?

Zidian. To overcome the limitations of SQL-over-NoSQL,
we develop Zidian, a middleware for KV storage. Underlying
Zidian is a block-as-a-value model (BaaV). In contrast to
the conventional TaaV model for KV stores, BaaV represents
relations in KV stores as keyed blocks (k, B), where k is a
key of a block B of partial tuples. Under BaaV, arbitrary
attributes can be taken as a key k, while k can only be an
id or primary-key attributes under TaaV.
Under the BaaV mode, Zidian offers the following.

[1] Efficient SQL. Zidian speeds up SQL-over-NoSQL systems
by reducing get invocations, retrieval of irrelevant data, and
hence both computation cost and communication cost.

(a) Keyed blocks offer a data locality of relations in DHT.
With a single get, one can retrieve a block of relevant data.

(b) BaaV provides KV stores with convenient indexing, which,
as observed by [37], is not yet well supported by KV stores.
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By making explicit use of indexes, we can make queries scan-
free, to be answered without scanning any table. A scan-free
query @ fetches and operates on only the part of data needed
for answering @, and hence also reduces computational cost.

(c) By reasoning about keyed blocks (k, B) and the size of
B, we can check whether a query is bounded, which only
need to access a bounded amount of data no matter how big
the underlying dataset is, and hence can be answered with
bounded computation and communication costs.

[2] Scalability. In parallel processing, Zidian guarantees (a)
parallel scalability, i.e., speedup guaranteed when adding
computing nodes to the computing layer; and (b) bounded
communication cost for bounded queries. Moreover, (c) Zidian
retains the horizontal scalability of SQL-over-NoSQL systems,
i.e., increasing throughput when adding new nodes to the
storage layer, where the throughput is the total number of
tuples retrieved from all storage nodes per second via get [37].

[8] Ease of use. Zidian can be built on top of any SQL-over-
NoSQL systems over any KV stores, without the need to hack
into the systems or change their underlying KV storage. That
is, Zidian can be “plugged into” exiting SQL-over-NoSQL
systems and help speed up their SQL query answering.

Contributions & organization. This paper proposes Zid-
ian and justifies BaaV, from foundations to practice.

(1) Data model (Section 4). We introduce BaaV, a model to
represent relations in KV stores as keyed blocks. We extend
relational algebra to BaaV stores, to leverage the BaaV model
when answering SQL queries. Moreover, we define scan-free
queries and bounded queries in terms of BaaV query plans,
to speed up SQL evaluation on SQL-over-NoSQL systems.

(2) A framework (Section 5). Based on BaaV, we propose
Zidian, a framework to speed up SQL evaluation of existing
SQL-over-NoSQL systems. It maps conventional databases D
to BaaV stores D. It takes SQL queries @ posed on D and an-
swers @ in the corresponding BaaV store D whenever possible.
We study fundamental problems underlying the framework.
In particular, we provide a characterization of preservation,
i.e., a sufficient and necessary condition, for deciding whether
a query @ posed on D can be answered in available D.

(3) Scan-free data access (Section 6). We characterize scan-
free (resp. bounded) queries, i.e., we develop a sufficient and
necessary condition for deciding whether an SQL query is
scan-free (resp. bounded) on a BaaV store. While the prob-
lem is undecidable, the characterization provides an effective
syntax of such queries that can be efficiently checked. More-
over, we provide an algorithm to generate query plans, which
guarantee to avoid scan (resp. access a bounded amount of
data) for scan-free (resp. bounded) queries.

(4) Parallelization: boundedness and scalability (Section 7).
We propose to interleave data access and computation when
answering a query in parallel, instead of first fetching all the
data and then computing answers. With this strategy, we
show that Zidian needs no scan for scan-free queries and incurs
bounded communication cost for bounded queries. Moreover,
under BaaV, Zidian guarantees parallel scalability and retains
the horizontal scalability of SQL-over-NoSQL systems.

(5) Implementation (Section 8). As a proof of concept, we
have implemented Zidian and deployed it for SoH (SparkSQL-
over-HBase [7]), SoK (SparkSQL-over-Kudu [7]) and SoC

(SparkSQL-over-Cassandra [6]). In addition to the framework
of Section 5, Zidian also includes (a) a module to help design
BaaV schema under storage constraints (Section 8.1); and
(b) adapters for deploying Zidian over existing KV systems.

(6) Ezperiments (Section 9). Using benchmark TPC-H [42]
and real-life data, we evaluate the effectiveness of Zidian. We
find the following on average. (1) Zidian outperforms SoH, SoK
and SoC in efficiency by 2.8x10%, 1.7x10% and 8.1x10? times
for scan-free queries, respectively, and by 2.0x10%, 1.5x102
and 3.6x10? times for non scan-free queries. (2) With Zidian
the systems incur stable computation and communication
costs for bounded queries when datasets grow. (3) Zidian is
parallel scalable and scales well with datasets, e.g., on average
Zidian on top of SoH takes 27.7 and 65.4 seconds for scan-
free and non scan-free queries on datasets of 128GB with 8
workers, respectively, compared to 1.7x10% and 2.1x10% sec-
onds by SoH without Zidian. (4) Zidian retains the horizontal
scalability of underlying KV systems for KV workload.

We discuss related work in Section 2 and review SQL-over-
NoSQL in Section 3. The proofs of the results are in [2].

2. RELATED WORK

We categorize related work as follows.

SQL-over-NoSQL. The SQL-over-NoSQL architecture is
widely used to support scalable parallel SQL processing over
commodity machines, e.g., [34, 12, 40, 19, 35, 41, 25], capital-
izing on KV systems as the storage, such as Apache’s Cassan-
dra [6], HBase [7] and Kudu [1]. Spanner [20, 12, 40] started
this line of work, to support distributed transactions at scale.
It is based on BigTable [18], which stores relations as tables of
KV pairs under TaaV. The work was followed by open-source
systems CockroachDB [19], Nuodb [35], MyRocks [25], and
Partiqgle [41] (supporting SPJ). SparkSQL [11] and Hive [8]
also provide SQL-like query interface for Spark and Hadoop-
based KV systems over KV datasets. All these systems follow
the column-family design of BigTable [18], by treating each
tuple as a value with a designated row key.

While these SQL-over-NoSQL systems are able to scale
with OLTP transactions, their efficiency suffers from scans on
KV stores, as observed by recent attempts to support analyti-
cal (OLAP) queries [37, 15, 33]. To overcome the limitations,
[37, 15, 33, 1] improve the performance of scans by designing
new KV systems. They focus on exploring the design space
of KV systems, to trade scan efficiency with other system pa-
rameters, e.g., updating, versioning and query types. Among
them, Tell [37] (a recent modern KV system optimized for
scans) and Apache’s Kudu [1] also explore columnar based
storage for relations in KV-stores. The efforts do not help
existing KV stores and SQL-over-NoSQL combinations.

This work takes a different approach, by proposing the
BaaV model. It aims to improve the performance of analyt-
ical queries on existing SQL-over-NoSQL systems, without
hampering their scalability. It explores new logical represen-
tation model of relations in KV stores that can be readily
supported by existing systems, and studies its impact on
query evaluation, without changing the KV storage.

Secondary index. The BaaV model provides the capacity of
secondary index for KV stores, but it is way beyond just
indexing. Few KV stores support indices. Among the few
that do, secondary indexes are encoded as relations sorted by
padded keys [38], and hence are still subject to the restrictions
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of the TaaV model. More specifically, a secondary index on
non-key attribute A of a relation R in KV stores is typically
implemented as a collection of KV pairs (k,v), where keys
k are A-values padded with an internal id attribute I (or a
primary key of R), so that Al values are distinct under TaaV,
and hence can be used as keys; they fetch entire tuples of
R. This is inefficient since (a) point access on A still incurs
many get invocations, (b) it does not help scans, and (c) it
introduces extra index maintenance cost.

In contrast, (a) BaaV supports indexing by using DHT of
KV systems, and needs only one get to fetch a block of values
for the same point access on attribute A. Moreover, it reduces
duplicated and unnecessary attributes in tuples fetched, and
thus reduces data access and intermediate relations. The
redundancies get inflated rapidly with joins. (b) It improves
scans by increasing the data locality and throughput of get,
while retaining the benefits of horizontal and parallel scal-
ability. (¢) Above all, as a data model BaaV exposes such
indexes as “schemas”, and allows users to make explicit use
of the indexes for optimization. (d) Better yet, we can deduce
scan-free queries and bounded queries, all at the query level.
These substantially improve both computation and commu-
nication. These are beyond the scope of traditional secondary
indexing that aims to speed up data retrieving only.

Materialized views. Materialized views are used in DBMS to
tailor database storage and speed up query evaluation [39].
In some sense, BaaV and Zidian offer the functionality of
“materialized views” for KV-stores. However, there are key
differences. (a) To the best of our knowledge, no major SQL-
over-NoSQL systems support and use materialized views over
NoSQL storage yet. (b) One might want to extend existing
KV systems to support materialized views as DBMS does.
However, such an extension does not provide the benefits of
BaaV-stores if the views are stored under the TaaV model. In-
deed, views are essentially relations tailored for given queries
in DBMS. Hence, views over KV storage (if supported) are
also subject to the same limitations that base relations suffer
in KV-stores under the conventional TaaV model. Therefore,
BaaV is an alternative and more efficient way to support
materialized views (and base relations) in KV-stores.

Bounded evaluation. Related to this work is also the study
of bounded evaluation [26], to formalize scale independence
under cardinality constraints [9, 10, 27, 16]. That line of
work adopts a hash-based index guided by the cardinality
constraints to determine whether only a bounded amount of
data is required for answering relational queries with index-
only plans, by query rewriting under cardinality constraints.

This work differs from bounded evaluation in the following.
(a) The focus of bounded evaluation is to decide what query
can be boundedly evaluated given a set of cardinality con-
straints and their associated hash-based indices. In contrast,
we do not require the availability of cardinality constraints.
(b) Bounded evaluation works on DBMS only, while BaaV
and Zidian are developed for KV stores in SQL-over-NoSQL.
(c) Bounded evaluation did not study, e.g., algebra, paral-
lelization and data mapping, which we develop for Zidian.

3. PRELIMINARIES

We review basic notations for SQL-over-NoSQL systems.

key-value storage. A KV store is a collection of key-value
(KV) pairs (k,v), referred to as key and wvalue attributes,

(SQL-over-NoSQL)

SQL query @ over R

Interface: relational schema R

SQL query @ over R

Interface: relational schema R ‘Q can be answered on BaaV schema R? |(M1)

KBA planning |m2

SQL layer SQl faver Parallelization  |M3)
jget(k) I‘key' tuple) pairs lget(k) I(key, tuple) lget(k) Tkeyed blocks

TaaV store for D of R KV store Mﬂ{ BaaV store |(M4)

Key-value storage system ‘

(b) SQL-over-NoSQL with Zidian

‘ Key-value storage system H

(a) SQL-over-NoSQL

Figure 1: Improving SQL-over-NoSQL using Zidian

respectively. It supports (a) get(k) to retrieve a KV pair
(k,v) with key = k, (b) put(k,v) to add a KV pair, and (c)
next() to iterate over all keys and get the next key.

Relations in KV stores. A tuple ¢ of a relation R is
represented in KV stores under the TaaV (tuple-as-a-value)
model as a KV pair (k,v), where k is an id or the primary
key of R in ¢, and v is t. Relation R is stored as a set of KV
pairs sharing the same key and value attributes, in which
each pair represents a tuple of R. KV stores of relations are
typically encapsulated and referred to as, e.g., wide-column
family stores since they provide tableau views of relations.

A scan of R is carried out by invoking get operations with
keys extracted via next(), iterating over all keys in R.

SQL-over-NoSQL. In such a system, as shown in Fig. 1a,
a database D of relational schema R is stored as KV stores
in the storage layer, under the TaaV model. An SQL-over-
NoSQL system exposes R to the users, who can then issue
SQL queries @ over R. The evaluation of @ is conducted in a
separated layer called the SQL layer, by a computing cluster.
The SQL layer consists of SQL parser, planner and executor,
to generate a query plan £ for . The plan £ accesses data
in the underlying KV store of D via get operations only.

An SQL-over-NoSQL system works as follows. Upon receiv-
ing an SQL query @, the storage layer retrieves all relations
involved in @) and moves the data to the SQL layer; the
SQL layer then generates a parallel query plan £ for @, and
executes the plan on all computing nodes in parallel.

The separation of storage and computation gives SQL-over-
NoSQL (a) high availability since heavy computation tasks
do not affect storage, and (b) easy scalability since we can
scale out and in on demand. However, it comes with a price:
data access typically incurs slow full-relation scans and the
communication load for the SQL layer is hence heavy.

4. THE BAAV MODEL

In this section, we first introduce the BaaV model, to rep-
resent relations in KV stores as keyed blocks (Section 4.1).
We then propose an algebra over BaaV stores (Section 4.2).

4.1 BaaV: Block-as-a-Value

BaaV stores. A KV schema is of the form R(X,Y), where

X and Y are sets of attributes. A keyed block over B(X,Y')
is a KV pair (k, B), where k is a tuple over attributes X and
B is a set of tuples over attributes Y. A KV instance D of

R(X,Y) is a set of keyed blocks over R with distinct keys.
The degree of D, denoted by deg(D), is measured as the

maximum size of keyed blocks (k, B) in D, i.e., deg(D) =

max, pyep |Bl, where [B]| is the number of tuples in B.
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Table 1: A summary of notations

Notation | Definition

R(Z) relation schema under TaaV
R(X,Y) KV schema under BaaV

R (resp. R) relational schema (BaaV schema)
att(ﬁ) (resp. pk(é)) attributes (resp. primary key) of R
D (resp. D) relational database (resp. relations)
|D| (resp. |D]) number of tuples (resp. values) in D
D (resp. D) a BaaV store (resp. KV) instance

Example 1: Consider Ry with TPC-H relations (simplified)
SUPPLIER(suppkey, nationkey), PARTSUPP(partkey, suppkey,
supplycost, availgty), and NATION(nationkey, name), in which
primary keys are underlined. Under the BaaV model, they
can be stored in KV storage with the following KV schemas:
SUPPLIER(nationkey, suppkey),
PARTSUPP (suppkey, (partkey, supplycost, availgty)), and
NATION(name, nationkey).

Note that under the TaaV model, nationkey, suppkey, and
name cannot be key attributes since they are not the primary
keys of corresponding relations. In contrast, under BaaV, they
are taken as keys since BaaV values are blocks of tuples. [

A KV schema ﬁ(X ,Y) can also carry a primary key, which
is a subset W_C XY of attributes such that for any of its
KV instance D and any Y-tuples ¢; and t2 associated with
the same key (i.e., X-tuple), t1 and t5 are distinct on WNY
attributes. Note that it is not necessary that W C X.

A BaaV schema R is a set of KV schemas. A BaaV store
D of R consists of all KV instances of KV schemas in R.
The degree of D, denoted by deg(D), is the maximum

degree of KV instances in D, i.e., deg(D) = maxj.z deg(ﬁ).

Properties. BaaV offers the following benefits.

(1) In contrast to TaaV, BaaV stores allow arbitrary attributes
to be taken as keys. In fact, TaaV is a special case of BaaV
when in a keyed block (k, B), B is a single tuple.

(2) Each get invocation can retrieve more data under BaaV
than under TaaV, and is hence more efficient on BaaV stores.

(3) The degree of BaaV stores indicates the extent of data
locality of the DHT of KV storage. By tuning the degree of
BaaV stores, we can get bounded queries, and balance the
efficiency and update cost of KV stores under BaaV.

Mapping between relational databases and KV stores.

There is a convenient correspondence between the two.

(1) Consider an instance D of KV schema (X,Y), i.e., a set
of key-block pairs (k, B). For each Y-tuple ¢ in block B, we
refer to (k,t) as a tuple of D. The relational version D of D
is the set of all tuples of D. Tt is an instance of traditional
relation schema (X,Y"), by flattening B. Similarly we define
the relational version D of a BaaV store D.

(2) Consider a relational schema R, a database D of R, and
a BaaV schema R. The mapping of D on R is a BaaV store
D of R defined as follows: for each instance D of R € R in
D and any KV schema R(X,Y) € R, if XY are attributes
in R, then D includes a KV instance D obtained from D
by first projecting D on XY and then grouping by X. For
convenience, in the sequel we assume that each Rin R is
composed of attributes from the same relation schema of R.

Notations are summarized in Table 1.

A B B C A C AB C AB C
1 1 1 1 1 1
12 12 14 112 112
3 2|3 2 513 3 3
24 34 23 234 234

Bi(A<B) RBa(B<C) B3(A<C)| Ry=RixRs Rs=Ry1a
Figure 2: KV instances in Example 2

4.2 KBA: An Algebra of Keyed Blocks

As opposed to relations, queries on BaaV stores are eval-
uated on keyed blocks. In light of this, we present KBA, an
extension of relational algebra (RA) to express internal query
plans on BaaV stores. Below we first present KBA algebra,
and then study properties of KBA plans over BaaV stores.

KBA algebra. We present major operators of KBA.
(1) Extension (). Consider instances D; of KV schema (X,
Y) and Dy of (Y', Z). If Y’ C XY, then the extension of D

with 52, denoted by Dy 52, is the mapping of D1 Xy Dy
on a new KV schema (XY, Z). Here D;(i = {1,2}) is the

relational version of KV instance [_5i, and Xy is the natural
join in the classical RA on attributes Y’.

Intuitively, Dy « Ds extends D, with relevant Z-attributes
of Dg, extracted by using values of Dy as keys. One can view
Dy « Ds as a special “join” unique to BaaV: it joins Dy and
52 bqp it does not access all the data in Dg, i.e., it does not
scan D2. We will show that oc allows us to express query plans
whose execution does not incur blind scans over BaaV stores.

2) Shift (1). For KV instance D of X,Y) and X’ C XY,
(2) Shift (1). (X,Y)

the shift of D with X', denoted by D1, is a KV instance D'
of (X', XY \ X') that has the same relational version as D.
Intuitively, DT x redistributes the key and value attributes
for D, by setting X’ as key. It allows us to align KV instances
and enables set-like operations (e.g., union and difference)
on KV instances with different key attribute distribution.
Extension (x) and shift (1) are new operators unique to
KBA that find no counterpart in RA. We next introduce
extensions of conventional RA operators for the BaaV model.

(3) Join (X). For KV instances Dy of (X1,Y1) and Dy of (X,
Y2), the join of Dy and Dy on attributes X (X C X1Y3 N
X5Y>), denoted by 51 X x 52, is the mapping of the join of re-
lational versions of D; and 52 on KV schema (X1 X2, Y1Y2).

Example 2: Consider KV instances of R (A, B), R2<B C)
é3<A, C) shown in Fig. 2 (left side) The results of B; o Rs
and Ry 14 are the instances of R4(AB,C) and Rs(A, BC),
respectively, in Fig. 2 (right side). The join result of Rs Mac
Rs contains keyed blocks (1, {(1, 1)}) and (2, {(3, 3)}). O

Other relational operators are defined along the same lines.
By transforming between KV instances and relations on the
fly (see Section 4.1), KBA queries can readily benefit from op-
timizations developed for RA. KBA is closed and is relational-
complete. Indeed, it can express RAaggr, i.€., the extension of
RA with group-by aggregates: for any database D, any BaaV-
store D such that D is a relational version of 5, for any RAaggr
Q over D, there exists a KBA @ such that Q(D) = Q(D),

i.e., answer Q(D) is the relational version of answer Q(D).
KBA plans. A KBA plan is similar to an RA plan tree [3].

As opposed to a conventional RA plan whose leaf nodes are
relations, in a KBA plan, (1) each leaf is either a constant
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(constant keyed block) or a KV instance; and (2) each inter-
mediate node is one of the operators of KBA. In particular,
for KBA plan § = Ry Rg, Ry is the unique leaf node of &,
and R, is treated as a parameter of .

Denote by &(D ) the execution result of £ over BaaV store
D where ¢ and D are over the same BaaV schema R.

Below we identify two special classes of KBA plans.
Scan-free KBA plans. A KBA plan £ is scan-free over BaaV

schema R if all its leaf nodes are constants. Intuitively, the
execution of such £ incurs no scans on any BaaV store of R.

Example 3: Recall R1 and the KV schemas PARTSUPP,
SUPPLIER and NATION from Example 1. Let R1 be a BaaV
schema consisting of these KV schemas. Consider SQL Q1
over Ri, which is a simplified TPC-H query (query qi1 [42]):

select PS.suppkey, SUM(PS.supplycost)

from PARTSUPP as PS, SUPPLIER as S, NATION as N

where PS.suppkey = S.suppkey and S.nationkey

= N.nationkey and N.name = “GERMANY”

group by PS.suppkey

Consider KBA plans & = ((“Germany” oc NATION) o
SUPPLIER) o« PARTSUPP and & = group_by(&], PS.suppkey,
SUM(PS.supplycost)) (group & by PS.suppkey and sum over

PS.supplycost per group). Then &; is scan-free over R1 since
it uses ox only to access all KV instances. Moreover, on corre-
sponding BaaV stores £ answers Q1: for any database D of
R1,£1(D) = Q1 (D), where D is the mapping of Don R1. [

Bounded KBA plans. A KBA plan £ is bounded over BaaV
store D of schema R if (a) ¢ is scan-free over R and (b) D
has a degree bounded by a constant independent of |ﬁ|

Intuitively, if € is bounded over 5, then & on D is guaran-
teed to access a bounded amount of data.

Scan-free and bounded SQL queries. As will be seen
shortly, Zidian aims to take as input SQL queries ) posed on
a database D of relational schema R, and answer Q over D
of BaaV schema R, where D is the mapping of D on R.

We say that an SQL query Q over R can be answered over
R if it has a KBA plan § over R i.e., for any instance D of R,
Q(D) = £(D). An SQL query Q over R is scan-free over BaaV
schema R if it has a scan-free KBA plan over 7_3;. Similarly,
we define bounded SQL queries over BaaV store D.

S. SQL-OVER-NOSQL WITH BAAV

In this section we show how to improve existing SQL-over-
NoSQL systems using BaaV. Below we first propose Zidian,
a middleware framework that extends the SQL-over-NoSQL
architecture with BaaV (Section 5.1). We then study some
fundamental problems underlying Zidian (Sections 5.2).

5.1 Zidian: SQL-over-NoSQL with BaaV

As shown in Fig. 1b, Zidian is built on top of the KV storage
of the SQL-over-NoSQL architecture, and extends it with
support of the BaaV model. By deploying Zidian over exist-
ing SQL-over-NoSQL systems, BaaV speeds up SQL query
answering, without modifying the KV storage.

More specifically, Zidian extends SQL-over-NoSQL with
four major modules M1-M4 shown in Fig. 1b, as follows.

(1) At the bottom (M4), Zidian maintains a BaaV store D,
which is mapped from a conventional database D of schema R
to a BaaV schema R. BaaV store D is physically stored in the

same KV system. Zidian helps users design R and construct
D, based on an analysis of historical query patterns. Users
may opt to build D to cover all the attributes of D, and then
drop D entirely. Alternatively, they may pick D to cover se-
lected attributes only, and keep D small. When D is in place,
Zidian incrementally maintains D in response to updates.

(2) At the top (M1), Zidian allows users to pose conventional
SQL queries @ on relational database D. It checks whether
Q can be answered in BaaV store D. If so, it passes Q to M2
(see below); otherwise, Zidian identifies sub-queries of @ that
can be answered on ﬁ, passes them to M2, and processes
the rest of @ using the existing SQL layer directly.

(3) Zidian extends existing SQL layer to generate KBA plans £
for queries @ that can be answered in available BaaV store D
(M2). It identifies @ that is scan-free over R or bounded over
5, and guarantees to generate scan-free and bounded KBA
plans for such queries, respectively. For queries Q that are
not scan-free but can be answered over R, Zidian identifies
sub-queries of ) that are scan-free and generates KBA plans
for @) with scan-free sub-plans for such sub-queries.

(4) Upon receiving a KBA plan &, Zidian generates a paral-
lel KBA plan &, by parallelizing £ (M3). It guarantees the
following: (a) parallel scalability, (b) if £ is scan-free over R,
then &, scans no table, and (c) if ¢ is bounded over D, then
&p incurs bounded communication cost. It also retains the
horizontal scalability of existing SQL-over-NoSQL systems.

5.2 Fundamental Problems

We next study fundamental problems underlying module
M1 of Zidian. We will study problems associated with M2,
M3 and M4 in Sections 6, 7 and 8, respectively.

Given an SQL query @ posed on a database D of schema R,
Zidian checks whether Q can be answered in the BaaV store
D of schema R (module M1). The need for this is evident
when R covers only those attributes selected by users.

We say that R is result preserving for query @ over R if
there exists a KBA plan £ over _”Ii such that for any database
D of R, £(D) = Q(D), where D is the mapping of D on R.

A special case is data preserving, when R is result preserv-
ing for all SQL queries over R. Intuitively, a data preserving
R preserves all information of D in its mapping D on R.

Below we characterize the data preservability and result
preservability, based on which Zidian implements M1.

(1) Data preservability. Condition (I) below gives a char-
acterization, where R is a database schema and Risa BaaV
schema; pk( R) denotes the prlmary key of R, and att(R)

denotes the set of all attributes of R; similarly for att(R).

Condition (I): Data preservability

For each relation R € R, there exists a KV schema R € R such
that att(R) = clo(R, R), where clo(R, R) is inductively defined as:

(1) att(R) C clo(R, R); and
(2) if pk(R') C clo(R, R) for R’ € R, then att(R’) C clo(R, R).

Theorem 1: Condition (I) is a sufficient and necessary
condition for R to be data preserving for R. O

Example 4: BaaV schema Ry of Example 3 is data preserv-
ing for Ry by Condition (I): att(NATION)=clo(NATION, R1)
:att(NATION); similarly for SUPPLIER, PARTSUPP. O
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Complemty Based on Theorem 1, Zidian checks whether BaaV
schema R is data preserving for R in O(|R||R|?)-time, where
|R| is the number of attributes in R (see [2] for details).

Remark. Theorem 1 shows that KBA is relationally complete:
any SQL query @ on D can be ezactly answered by trans-
forming it to a KBA plan £ on D such that Q(D) = £(D)
if the KBA schema is data preserving. One can verify by
contradiction that if any operator is dropped from KBA, it
can no longer ensure the relational completeness.

(2) Result preservability. We next characterize when R
is result preserving for @ over R. We first study SPC queries,
and then extend to RA.g (RA with group-by aggregates).
The characterization uses the following notations.
(1) Denote by min(Q) the minimal equivalent query of SPC
query Q. Informally, min(Q) is obtained from @ by removing
all redundant relations (see [3] for details). For example, for
Q = ma(R1(A,B) X Ry(A, B)) where Ry and R rename
relation R(A, B), either Ry or Rz could be removed without
changing answers to Q. For an SPC query @, there exists a
unique minimal equivalent query up to isomorphism [3].
(2) Denote by X the set of attributes of relation R that ap-
pear in selection/join predicates or the final projection of Q.
Condition (II) below characterizes the whether BaaV
schema R is result preserving for SPC query @ over R.

Condition (II): Result preservability

For each relation R in the minimal equivalent query min(Q) of
SPC Q, there exists & € R such that X1"(?) C clo(R, R).

Theorem 2: Condition (II) is a sufficient and necessary
condition for R to be result preserving for SPC query Q. [

Example 5: Continuing with Example 3, consider SPC query
Q4 that is simply @1 without the final group-by operation;
i.€., Q/l is ﬂ_PS.suppkey,PS.supplycostUC(N XS X PS)7 where N, S and PS
are short for NATION, SUPPLIER and PARTSUPP, respectively;
condition C' is N.name = “GERMANY” A N.nationkey =
S. natlonkey/\S suppkey = PS .suppkey. Consider BaaV schema
, which i is derived from R, by replacing PARTSUPP with
PARTSUPP (suppkey7 (partkey, supplycost)).
Unlike Rl, Rl is not data preserving for R1 by Condition
(1). However, R} is result preserving for Q} by Condition (II)

Indeed, Q) is a minimal SPC and XPQS1 = cIo(PARTSUPP ,
R4) = {suppkey, supplycost}; similarly for XSQ/1 and X,\?/l.
Consider SPC Q2 = 7ps suppkey,PS.supplycost 0’ (N X S X PS X
S’), where PS’ renames PARTSUPP and C’ = C A PS.availqgty
= PS’.availgty. Then X%‘ = {suppkey, supplycost, availqty }
Z clo(PARTSUPP' | R)). However, min(Q2) = Q. Hence
X;'Si"(Q2) = clo(PARTSUPP', R}) and similarly for X[ "(©2

and X;"i"(Q2>. Thus, 73'1 is also result preserving for Q.
This justifies query minimization in Condition (II). O

Complexity. It is NP-complete to decide whether R is result
preserving for an SPC query Q. Indeed, it is intractable to
find the minimal equivalent query min(Q) of @, a.k.a. SPC
minimization [3]. Nonetheless, several effective algorithms for
SPC minimization are already in place (see e.g., [3]). Employ-
ing one of these algorithms, Zidian checks result preservability
based on Condition (IT) in O(Tmin(Q) + |Q||R|?)-time, where
Twin(Q) is the time for minimizing Q (see [2] for details).

Extending to RAsger. We next consider RA,ger queries, which
extend RA with additionally a group-by aggregate operator:

group-by(Q, X, agg; (V1), - -, agg, (Vin)),
where (a) @ is an RA query, (b) X is a set of attributes
for group-by, (c) agg, is one of aggregates max, min, count,
SuM, avg, and (d) Vi, ..., Vi, are attributes such that X U
U~ {agg;(Vi)} forms the output relation of Q [3].

When it comes to RA,ge queries, result preservability is
beyond reach: it is undecidable. Indeed, it is undecidable to
check whether an RA,g query is satisfiable (cf. [3]), which
can be readily reduced to the result preservability problem.

Not all is lost. Condition (II) provides us with an effective
syntaz of RA,ger queries for which R is result preserving. It
uses max SPC sub-queries. A max SPC sub-query Qs of an
RA.ger @ is a sub-query of @ such that @), is an SPC and no
other SPC sub-query Q% of @ includes Qs as a sub-query.

Theorem 3: BaaV schema R is result preserving for RAsger
Q if and only if Q is equivalent to an RA,zg Q' such that R
is result preserving for every max SPC sub-query of Q. O
Theorem 3 assures that we can focus on RA,g queries
whose max SPC sub-queries can be answered over R. This
does not lose expressive power, since such RA,gr queries can
express all RA.ggr queries for which R is result preserving, up
to equivalence. Moreover, such RA,g queries can be effec-
tively checked by employing algorithms for checking the result
preservability of SPC queries outlined above. Hence Zidian
handles generic RA.ggr (SQL) queries based on Theorem 3.

6. SCAN-FREE DATA ACCESS

In this section we study problems underlying module M2
of Zidian. We first characterize SQL queries posed on database
D that are scan-free or bounded over the corresponding BaaV
store D (Section 6.1). We then show how Zidian generates
KBA plans, which are guaranteed scan-free (resp. bounded)
for scan-free (resp. bounded) queries (Section 6.2).

6.1 Deciding Scan-Free Queries

We develop a sufficient and necessary condition for query
Q over R to be scan-free over BaaV mapping R of R. Again
we start with SPC, and then extend the study to RA,gg.

The idea is to check (a) whether attributes that are needed
for answering @) can be retrieved from R using scan-free plans,
and (b) whether their combinations are preserved. For (a), we
define a set GET(Q, 73) of all attributes in ) that can be re-

trieved from R with scan-free plans, referred to as retrievable
attributes over R. For (b), we define a set VC(Q, R) of sets of
attributes in GET(Q, R) whose combinations can be verified.

Retrievable attributes GET(Q,R). Let X& be the set of
attributes A in selection conditions in () of the form A = cfor
a constant c. The rules below define GET(Q, R) inductively:
(a) X& CGET(Q,R);
(b) if A € GET(Q,R) and A = B by the selection condition
C of Q via equality transitivity, then B € GET(Q, R);
(c) if X C GET(Q, R) (X Y) e R, then Y C GET(Q, R)

The set GET(Q, R) contains nothing else.

Intuitively, GET(Q, 7_3') starts with constant attributes X g
in @, and recursively propagates them to other attributes
via extension o over R, possibly using 1 and X to form key
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attributes for oc. If R is result preserving for @, then for any
database D of R, GET(Q, R) contains all attributes of @ such
that their values in D needed for computing Q(D) can be

fetched from the BaaV mapping D of D via scan-free plans.

Verifiable combinations VC(Q,R). The set GET(Q,R)
identifies attributes of () whose values can be fetched from R
using scan-free plans. To answer @, however, not only these
values but also their combinations may have to be preserved.
To do this, we define a collection VC(Q, ﬁ) of attributes
sets in GET(Q, R) such that their value combinations in D
of R can be checked using scan-free access plans over the
mapping D of D. Denote by Rqg those KV schemas in R
whose attributes are all contained in GET(Q, ﬁ), i.e.,

Rq = {5 € R|attr(S) C GET(Q, R)}.
Then (recall clo() from Condition (I) of Section 5.2):
VC(Q,R) = {clo(S,Rq) | S € Ro}.
We next characterize scan-free SPC queries @ in terms of
VC(Q, R). Consider query @ defined over a database schema

R, and the BaaV mapping R of R. Recall the notion of
minimal equivalent queries min(Q) from Section 5.2.

Condition (III): scan-free evaluability
For each relation R in the minimal equivalent query min(Q) of @,
there exists a set W € VC(min(Q), R) such that XI"{"MQ) cw.

—

Theorem 4: Condition (III) is a sufficient and necessary
condition for SPC Q to be scan-free over R. O

Example 6: Recall Q; and Ry from Examples 5 and 3, re-
spectively. Query Q) is scan-free over R4 since Condition (I1T)
holds: min(Q}) = Q1, GET(Q’,R1) = {N.name, N.nationkey,
S.nationkey, S.suppkey, PS.suppkey, PS.supplycost}, X,\?/l =
{N.name, N.nationkey}, ngll = {PS.supplycost, PS.suppkey},
XSQ/1 = {S.nationkey, S.suppkey}, VC(Q}, R1) = {X,?ll,stll,
Xgl }. Indeed, &] of Example 3 is a scan-free plan for Q7.

Similarly, recall R and Q2 from Example 5. One can verify
that both Q) and Q2 are also scan-free over R. O

Complexity. It is NP-complete to check whether an SPC Q is
scan-free over R (see [2] for a proof). This said, based on Con-
dition (III), Zidian makes use of existing efficient algorithms
for SPC minimization (e.g., [3]) to check scan-free queries
in O(Twin(Q) + |Q|IR|(IR| +1Q]))-time, where Tiin(Q) is the
cost of minimizing Q. It minimizes @ to min(Q), computes
vC(min(Q), R) in O(|R|(|R|+|Q|))-time, and checks for each

R in Q whether Xg'"(Q) C W for some W € VC(min(Q), R).

Extending to RA.g. For RA.g queries, it is not surprising
that it is undecidable to check whether an RA.z query @
over R is scan-free over BaaV schema R. It involves checking
whether Q) is equivalent to a scan-free query Q, and the query
equivalence problem is undecidable (cf. [3]).

Effective syntax. Nonetheless, below we provide an effective
syntaz for scan-free RA.qer queries. Recall the notion of SPC
sub-query of max RA.g queries from Section 5.2.

Theorem 5: An RA.gr query Q is scan-free over R if and
only if Q is equivalent to an RA.ger Q' such that every maz
SPC sub-query of Q' is scan-free over R. O

The class of RA.gr queries Q@' described in Theorem 5
makes an effective syntax for all scan-free RA.ggr queries over
R. It covers all scan-free RA.ger queries up to equivalence, and
can be effectively checked by employing the checking algo-
rithms for scan-free SPC queries. Based on this, Zidian checks
whether an RA,gr (SQL) query is scan-free. For instance, Q1
of Example 3 is in this class w.r.t. 7@'1 of Example 5.

Bounded queries. As an immediate corollary of Theorem 5,
given an RA,gr query @) over a database D, Zidian decides
whether @ is bounded over the corresponding BaaV store D as
follows: check (a) whether @Q is scan-free, and (b) whether for
each relation R in each max SPC sub-query of Q, deg(ﬁ) <eg,
where c is a predefined bound, and D is the BaaV mapping of
instance D of R in D. If so, it concludes that @ is bounded.

6.2 Generating Scan-Free KBA Plans

We next present an algorithm for generating KBA query
plans for user queries. Consider a BaaV schema R and an
SQL query @ over database schema R such that R is result
preserving for @). Zidian generates a KBA plan g for @ over
7€, such that &g is scan-free (resp. bounded) when @ is scan-
free (resp. bounded) by the effective syntax above.

To generate &g for @) over 7€, Zidian adopts a chase-based
approach [3] following [17, 14], outlined as follows.

(1) Zidian first generates a conventional RA.gg plan &g for Q
over R. Note that leaf nodes of g are relations in Q.

(2) Zidian then replaces all leaf nodes of £ with KBA plans.
More specifically, it generates a sequence ¢ of applications
of the rules for computing GET(Q,R) and VC(Q,R) (Sec-

—

tion 6.1), referred to as a chasing sequence for @ and R.

_ While there are possibly many chasing sequences for @ and
R, they all converge at the same GET(Q,R) and VC(Q,R)
(see Theorem 6 and [2]). Moreover, for each leaf node R in &g

such that Xg C W for some W € VC(Q, 7_3‘) (recall Condition
(I11)), there exists a sub-sequence £r of £ that “proves” this.
Such a proof yields a scan-free KBA plan that fetches R for
Q, by interpreting steps in £r as either o or X.

(3) If Q is not scan-free over R, then there must exist leaf
nodes R in &g such that Xg Z W for all W € VC(Q,R).
For such relations R, there must existﬂl_%’ € R such that
Xg C clo(R, R) by Condition (II) since R is result preserving
for Q. Zidian simply replaces such R in {g with R.
Example 7: Recall Q1, Ry and &1 from Example 3. Zidian
generates the KBA plan &; for Q1 over R, as follows.

(a) It first generates an RA,g plan (& in Fig. 5 of [2]) for Q1.

(b) It then generates a chasing sequence ¢ for Q3 over Ri:

rule (c) of GET

@rule (a) of GET rule (1) of clo for VC
e

(0,0) ({N.name},0)

®rule (b) of GET
=

T1:*GERMANY’>NATION

(att(N),{att(N)}) (att(N) U {S.nationkey } {att(N)})

@ rule (c) of GET
e () ofele forVe, i (N) U att(S), {att(N), ate(S)})

Ty :T; <SUPPLIER
®rule (b) of GET
—_

(att(N) U att(S) U {PS.suppkey}, {att(N), att(S)})

® rule (¢) of GET
rule (1) ofclo for VC

T3:T, xPARTSUPP
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(att(N) U att(S) U att(PS), {att(N), att(S), att(PS)}),



where att(N) is the set consisting of all attributes in relation
schema NATION; similarly for att(S) and att(PS).

Intuitively, £ is essentially the trace of the computation
of (GET(Qth) VC(Qth)) Initially, both of them are 0.
At step @, N.name is added to GET(Q1,R1) by rule (a) in
the definition of GET (Section 6.1). At step @), by rule (a) of
GET, N.nationkey is added to GET(Q1,R1) by KBA plan T}
in ¢, yielding GET(Ql,ﬁl) = att(N); i.e., step @ encodes T.
In addition, by rule (1) of clo(Q1,R1) (Section 5.2) in the
computation of VC(Q1,R1), set att(N) is added to VC(Q1,
ﬁl), i.e., the combination of (N.name, N.nationkey)-values can
be verified over R1; similarly for steps @—®©) in £.

(c) It translates ¢ into KBA plans &n, & and &ps that fetch
data for N, S and PS, respectively. Specifically, &y is the plan
T encoded by step @ when it finds that X3 = att(N) is
included in VC(Q1,R1) (recall Condition (III)). Similarly, &
(resp. &ps) is plan T» (resp. T3) encoded by step @ (resp. ©).

(d) Finally, it replaces N, S and PS of & with &y, &s and &ps, re-
spectively, yielding KBA plan &g, for @1 (Fig. 5 in [2]). It op-
timizes g, by removing duplicated sub-plans and operations,
yielding exactly §1 of Example 3. Along the same lines, Zidian
generates a similar KBA plan Q1 over R1 of Example 5. [

By (2) and (3), all leaf nodes in the rewritten &g are
constants or KV schemas of R, i.e., £g becomes a KBA plan.

Theorem 6: Plan &g (1) correctly answers query Q as
long as R is result preserving for Q; and (2) it is scan-free
(resp. bounded) when Q is in the effective syntazx for scan-free
(resp. bounded) RA.gg queries over R. O

Intuitively, Theorem 6 assures that when @ is in the ef-
fective syntax of Theorem 3, Zidian always finds a correct
KBA plan £g for @ over R. Moreover, £q is scan-free (resp.
bounded) if @ is scan-free (resp. bounded) by Theorem 5.

7. PARALLEL EVALUATION OVER BAAV

In this section we show how KBA plans can be executed in
parallel while guaranteeing parallel scalability and horizontal
scalability (module M3 of Zidian). We first review how query
plans are parallelized in existing SQL-over-NoSQL systems
(Section 7.1). We then propose an interleaving strategy to
parallelize KBA plans and prove the guarantees (Section 7.2).

7.1 Overview

We start with the parallel strategies of SQL-over-NoSQL
systems. We then show how Zidian parallelizes KBA plans.

Parallelization in SQL-over-NoSQL systems. An SQL-
over-NoSQL system typically parallelizes a sequential query
plan £ as follows. (a) It first retrieves all relations that appear
in £ from the storage layer. (b) Moving the data to the SQL
layer, it then executes each operator of £ in parallel one by
one. Among the RA operators, parallelization of join is the
trickiest part. The common practice is to use parallel hash
join algorithms [31]. While there have been recent theoretical
proposals on hypercube-based, parallel hash-based multi-way
join [4, 29, 13], they still retrieve entire relations from the
underlying KV-stores and incur heavy communication cost,
the same problem that binary hash join experiences.

Parallelizing KBA plans. For a KBA plan ¢, one could fol-
low the parallelization strategy above, i.e., (a) fetch relevant

KV instances in & from the BaaV-store D, (b) flatten blocks
into relations and replace all o< operations in £ as X, and
(c) execute & using parallel join algorithms (cf. [29, 31, 13,
4]). While this method can be directly supported by existing
SQL layers in SQL-over-NoSQL systems, it does not take
advantages of BaaV and KBA plan £ since it still retrieves
all relevant relations. Hence, even when £ is scan-free over
ﬁ, its parallel execution still involves costly scans.

To overcome this, we propose a method to execute KBA
plans ¢ in parallel on BaaV D. It ensures the following.

(1) Bounded communication. If £ is scan-free over D, the
parallelized execution of £ remains scan-free, and moreover,
if D has a bounded degree, then the parallel plan incurs
bounded data access and bounded communication cost.

(2) Parallel scalability. The parallelized € is parallel scalable
for both computational and communication costs.

(8) Horizontal scalability. Zidian preserves the horizontal scal-
ability of existing SQL-over-NoSQL systems, which is mea-
sured as the system I/O throughput when adding new storage
nodes. This will also be experimentally verified in Section 9.

7.2 Interleaved Parallelization

We next present our parallelization strategy, and prove its
bounded communication and parallel scalability.

As opposed to fetching the entire data needed from the
storage layer first and then executing £ on the data by the
computing nodes, Zidian accesses data, parallelizes plan and
executes the plan in an interleaved manner to reduce data ac-
cess and communication cost. Moreover, when £ is scan-free,
it fetches data only using o operations, without scan.

Zidian parallelizes operations in ¢ one by one, starting from
leaf nodes. For an operation ¢, Zidian parallelizes it as follows.

(1) 6 is Ry « Rs. Zidian does the following: (a) re-partition
keyed blocks of R; (intermediate results) based on key dis-
tribution of Ra; this is supported by, e.g., SparkSQL (b)

distribute partitions of Ry to storage nodes in which R re-
sides; and (c) at each relevant storage node, retrieve only
needed keyed blocks of Eg in 1_5, by making use of the dis-
tributed keyed blocks of R; as “constants”. This allows us
to fetch necessary data in ég without scanning it. Note that
data access and parallel execution are interleaved.

(2) 6 is o, m, X, U or —. Zidian parallelizes § by applying

existing parallelization methods for RA operations (cf. [39
31]). Different from (a), these do not involve data access.

(8) 6 is a KV schema R. Such operation does not appear in

a scan-free KBA plan. If § is ﬁ, then £ is not scan-free and it
has to scan the KV instance of R from D. It is parallelized
in the same way as SQL-over-NoSQL systems.

(4) 6 is 1. Operation 1 is used to align KV instances for
operations , U or —. It is executed along with their paral-
lelization without changing the complexity asymptotically.
We denote by &, the KBA plan & parallelized as above.
We next verify that the parallelized scan-free KBA plans
indeed scan no table and are parallel scalable.

Communication boundedness. We have the following.

Proposition 7: For scan-free KBA plans £ over 5, & (a)
incurs no scans of KV instances, and (b) if £ is bounded on
D, then it incurs bounded communication cost. O
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Parallel scalability. To characterize the effectiveness of
parallel processing, we adopt a criteria introduced by [30] that
has been widely used in practice. Suppose that the computing
cluster has p nodes. The complexity of a parallelized plan &,

over BaaV-store D, denoted by Toar (&p, ﬁ), is measured by:
Toar (ép, ﬁ) = Teomm(&p, 5) + Teomp (€ps ﬁ):

where Teomm (&p, 5) and Teomp (&p, 13) are the communication
and computation costs incurred by the execution of &, on
D over p computing nodes, respectively. To simplify the
discussion, we assume w.l.o.g. that D is not skewed, i.e.,
when parallelizing D1 X Dy using hash-join over p machines,
its parallel complexity is IDl;# [39, 31].

We say that a parallelized plan &, is parallel scalable rel-
ative to £ if all for BaaV stores 5, with p computing nodes,

Tyar(p(€), D) = O(Treq(€, D) /p),

where Tieq (€, 13) is the sequential complexity of & over D.

Intuitively, the parallel scalability measures speedup over
sequential plan £ by parallelization. It is relative to the yard-
stick plan . A parallel scalable £, guarantees to reduce the
running time of £ when more computing nodes are used.

Theorem 8: When D is not skewed, interleaved parallel
plans &, are parallel scalable relative to KBA plans &. O

Theorem 8 shows that &, is parallel scalable, no matter
whether it is scan-free or not. Proposition 7 assures that &,
remains scan-free (resp. bounded) as long as & is scan-free
(resp. bounded) by interleaving data access and computation.
Due to the space constraint we defer the proof to [2].

Remark. While interleaved parallelization is, to some extent,
in the same spirit of operation pipelining and pushdown in
distributed databases [39], it is not easy to support them
in the existing SQL-over-NoSQL systems under the TaaV
model. Indeed, under TaaV, selection predicates and inter-
mediate results (say, on X-attributes) cannot be efficiently
used to fetch new data in an on-demand manner to avoid ex-
cessive get invocation and scans, since X-attributes are not
a key. We view M3 as an immediate benefit of BaaV, show-
casing that with BaaV, conventional advanced parallelization
methods in distributed databases can be easily adopted in
SQL-over-NoSQL, which is hard, if not impossible, with TaaV.

8. SYSTEM

We show how Zidian decides the BaaV-store for module M4
(Section 8.1) and how Zidian is implemented (Section 8.2).

8.1 From TaaV to BaaV

Given a database D of schema R, Zidian first decides a BaaV
schema R for D. It then maps D to ﬁ, yielding BaaV store D.

Zidian employs QCS from historical queries. A QCS has the
form Z[X], where X and Z are sets of attributes of R and
X C Z. It extends query-column-set of e.g., AQP systems [5],
by distinguishing “known” attributes X from query-column-
set Z to abstract the access patterns of query execution.

Intuitively, Z[X] is an “access pattern” of query plans. It
says that a plan often accesses attributes Z of a relation when
X-values are already known. A query Q is abstracted by a set
X of QCS if @ has a plan that follows the “access patterns”
of QCS in X (see [2] for a formal definition). For example,
query Q = p(ca=1R(A, B,C) Xp=g S(E, F,G)) could be
abstracted as two QCS ¢1 = AB[A] and ¢ = EF[E] since (a)
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only AB and EF attributes are needed by @, (b) from A =1
and ¢1 we can get related B-values and in turn, FE-values by
Mp=pg; and (c) F-values are related to E-values by ¢s.

BaaV schema design. Zidian provides an algorithm (T2B)
that, given a schema R, a database D of R, a set X' of QCS,
and a storage budget b, computes BaaV schema R so that:

(a) the mapping D of D on R is no larger than b; and
(b) all QCS Z[X] in X are supported by R if b > |D| (size
of D): for any X-value, all associated Z values in the

database D of R can be fetched from 5, and even
without scans when b is sufficiently large.

When b permits, R is data preserving for R by Condition
(I). As an added flexibility by the implementation, Zidian also
exposes an interface for the users to modify R with suggested
KV schemas, allowing human-in-the-loop schema design.

We outline algorithm T2B (see full version [2] for details).

(1) T2B first generates an initial BaaV schema Ro by treating
each QCS Z[X] as a KV schema (Z, X \ Z). For any query
Q@ abstracted by the QCS in X, Q is scan-free over Ro.

(2) Tt then removes redundant KV schemas in Ro: a KV
schema ﬁ(Z , X) is redundant in R if for any query @, @ is
scan-free over Ry if and only if Q is scan-free over Ro \ {R}.
When there exist multiple redundant KV schemas in ﬁo,
algorithm T2B removes them one by one by using a ranking
function that picks the one with minimum estimated impact
on the efficiency of query evaluation over Rg.

(3) If the mapping of D on the BaaV schema R’ generated
by step (2) exceeds the budget b, T2B iteratively merges KV
schemas in R’ to reduce the size of the mapping while keep-
ing all scan-free queries over R, until the size is within b. In
each iteration, T2B picks a pair of KV schemas with minimum
estimated impact on the efficiency of query evaluation.

8.2 Implementation

As a proof of concept, we have implemented Zidian. Below
we outline its implementation and deployment.

Realizing BaaV. A keyed block (k, B) is realized in Zidian
by encapsulating the block B of tuples as a single value. In
this way, keyed blocks, and hence KV instances under BaaV,
can be supported by all existing KV storage systems.

If B of a keyed block (k, B) has size above a threshold
s, Zidian breaks (k, B) into multiple smaller keyed blocks
such that each block does not exceed s. The decomposed
blocks share the same X-values but are assigned with distinct
internal ID segments appended to X; they logically appear
as one keyed block. In Zidian, each relation is controlled by
an individual threshold (500MB by default).

Note that conventional TaaV stores are a special case of
BaaV stores since a KV instance under TaaV essentially con-
sists of keyed blocks with block size threshold set to 1 tuple.

Remark. Modern KV storage systems support complex values
and multi-map data abstraction. Because of this, keyed blocks
and BaaV-stores can be supported by them without any modi-
fication. We position BaaV as an alternative model for storing
relations using existing KV systems, to unleash their flexibil-
ity and performance that the TaaV model has not explored.

Modules. Zidian supports all modules (M1—-M4) of Fig. 1b.
More specifically, we have implemented algorithms, all in
C++, for Zidian to (a) check whether R is data preserving



Table 2: Case study: @1 of Example 3 (Exp-1)

SOH SOHZTdian SOK SOKZidian SOC SOCz;dian
time (s) 1.3x10%[12.4 40.5 |54 88.1 [9.9
#data 5.2x10%(8.4x10° [5.2x10%[8.4x10°5.2x10%(8.4 x10°
#get 1.0x108[5.2x10% [1.0x103[5.2x10%]1.0x10¥[5.2x10%
comm (MB)[4.6x10%[16.7 4.5x10%[15.4 4.5x10%15.7

for R (based on the proof of Theorem 1 in [2]; for M1); (b)
check whether over the internal BaaV schema 757 an input SQL
query @ (i) can be answered and (ii) is scan-free (proofs of
Theorems 2, 4 in [2]; for M1); (c) generate a KBA plan & for
Q over R (Section 6.2; for M2); (d) parallelize ¢ (Section 7;
proof of Theorem 8 in [2]; for M3); (e) generate the BaaV
schema R (T2B in Section 8.1 and [2]; for M4).

Zidian also includes a module to map database D of R to
R generated in M4 (following Section 4.1), yielding BaaV-
store D. In addition, it monitors changes to D and keeps D
up-to-date. In response to updates A, e.g., tuple insertions
and deletions to D, Zidian incrementally updates D in O(|A|-
deg(ﬁ))—time, independent of the size of D and D, where |A|
is the size of A and deg(D) is the degree of D (see [2]).

These modules are all platform independent in the sense
that their implementation works with all KV storage systems.

Deploying Zidian. To deploy Zidian for a SQL-over-NoSQL
combination, an adapter is needed for Zidian to connect to the
underlying KV system (i.e., the NoSQL part), by carrying
out KBA plans with the latter. It is platform dependent since
it involves interactions with the KV storage.

This can typically be realized by implementing KBA opera-
tions using connectors of the KV systems for SQL layers atop
them, so that we do not need to directly translate KBA plans
into low-level get sequences. For instance, to deploy Zidian
for SparkSQL-over-HBase [7], we simply extend the Spark-
SQL (Spark) connector of HBase to interpret KBA plans
as RDD operations. Similarly, Zidian can be deployed for
SparkSQL-over-Kudu [1] and SparkSQL-over-Cassandra [6].

Added functionality. Zidian extends SQL-over-NoSQL sys-
tems with unique features offered by the BaaV model.

(1) Compression. BaaV allows data compression for keyed
blocks. More specifically, when mapping an instance I of
schema R(X,Y, Z) to a KV instance I of KV schema (X,Y’)
under BaaV, for each keyed block (k, B) in I, B consists of
distinct Y-values only, where each § € B is attached with a
counter ¢ that records the multiplicity of (k,g) in I.

(2) Statistics. Zidian also maintains group-by statistics aggre-
gated over keyed blocks to speed up aggregate queries. For
each keyed block (k, B) of KV schema (X,Y), it records the
min, max, sum and avg of numeric attributes in B. We find
such statistics useful for aggregate queries grouped by X.

9. EXPERIMENTAL STUDY

Using benchmark and real-life datasets, we conducted four
sets of experiments to evaluate the effectiveness of Zidian
to improve existing SQL-over-NoSQL for (1) overall perfor-
mance, (2) ability to reduce scans, (3) parallel scalability and
communication reduction, and (4) KV workload performance.

Experimental settings. We start with the settings.

Benchmark. We used TPC-H benchmark [42] and tested its
22 built-in benchmark queries. We generated 8 relations with
61 attributes of different scales using TPC-H dbgen.

Table 3: Average time (s): 128GB, 8 workers

SOH SOHZidTan SOK SOKZidian SOC SOCZidian
MOT [3.3x103]1.4 4.3x10%|0.3 7.6x10%]0.3
AIRCA[1.0x10%[1.1 1.2x10%(0.4 1.8x103]0.4
TPC-H|1.5x10%[96.1 1.9x10%[52.2 3.1x10%[1.2x107?

Real-life datasets. We also used two real-life datasets.

(a) UK MOT data (MOT) integrates anonymized UK MOT
tests data [23] and roadside survey of vehicle observations [24]
on the UK road network. It has 3 tables with 42 attributes,
about 16GB of data records from 2007 to 2011.

(b) US Air carriers (AIRCA) records flight statistics of US air
carriers. It consists of Flight On-Time Performance Data [44]
and Carrier Statistic data [45]. It has 7 tables, 358 attributes,
and about 32 GB of data for records from 1987 to 2001.

To test scalability, we scaled up both real-life datasets up to
128GB by populating tuples with values from active domains.

Queries. We designed a generator to produce queries with
varying structures over the two real-life datasets. We manu-
ally created 12 query templates for each dataset with 1 to 3
joins. The generator populates these templates by randomly
instantiating their parameters with values from the datasets,
yielding 36 queries for each real-life datasets.

BaaV schema. We extracted 8, 8 and 64 KV schemas for
MOT, AIRCA and TPC-H queries, respectively, from QCS de-
rived from their historical execution plans using algorithm
T2B (Section 8.1; the storage budget is set to 3.5 times of
the size of the datasets). Over them, for each real-life dataset,
query templates g1 — g are scan-free and g7 — ¢q12 are not;
q1 — g are also bounded on both datasets since the relevant
KV instances have stable and bounded degrees. For TPC-H
queries, gz, 43, 45, q7, Gs, 410, q11, 12, q17, q19 and ga1 are scan-
free but are not bounded since TPC-H datasets have large and
varying degrees; all other TPC-H queries are not scan-free be-
cause they simply aggregate over (ranges of) entire datasets.
The KV schemas are result preserving for all these queries.

The BaaV schemas and real-life queries are reported in [2].

Systems. We implemented Zidian and deployed it on
top of three baselines: (a) SparkSQL-over-HBase(SoH),
(b) SparkSQL-over-Kudu(SoK) and (c) SparkSQL-over-
Cassandra (SoC) using Spark v2.3.3, HBase v2.0.5, Kudu
v1.9.0 and Cassandra v3.0.17. We denote SoH, SoK and SoC
with Zidian as SoHzidian, SOKzidian and SoCzidian, respectively.

Configuration. The experiments were conducted on a cluster
of 12 Amazon EC2 m4.2xlarge instances, with 32GB of
memory, 8 vCPUs and 500GB of SSD for each instance. Each
instance works as both a computing node and a storage node,
All the tests were run 3 times. The average is reported here.

Experimental Results. We next report our findings.

Exp-1: Overall performance. We first evaluated the over-
all performance. Using a cluster of 8 EC2 instances, we com-
pared the (a) evaluation time (time), (b) total number of val-
ues accessed (#data), (c) number of get invocations (#get)
and (d) size of total data shipped (comm) of all systems.

Case study. We first report the results of Q1 of Example 3
over TPC-H of 128GB in Table 2, for which SoHzidian, SOKZidian
and SoCzigian used the KBA plan generated in Example 7.
Here Zidian speeds up SoH, SoK and SoC by 10.8, 7.5 and 8.8
times, respectively. With Zidian, all three systems access 62.1
times less data, invoke 2x10® times fewer get requests, and
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Time (s) (logscaled)

(a) MOT: vary |D| (s.f.)

(b) MOT: vary |D| (non s.f.)

(¢) TPC-H: vary |D| (s.f.) (d) TPC-H: vary |D| (non s.f.)

Figure 3: Impact of scans: 1 worker (Exp-2)

incur about 28 times less communication than without Zidian.
This verifies the effectiveness of BaaV and Zidian.

Qwverall results. The evaluation time on TPC-H of 128GB
and the expanded MOT and AIRCA (128GB) are reported in
Table 3 (see Tables 4-15 in [2] for evaluation time, #data,
#get and comm of each individual query on all datasets).

(1) SoHzidian, SOKzidian and SoCzigian outperform SoH, SoK and
SoC, respectively, for each and every query on all the datasets.
The speedup ratio of SoHzigian Over SoH is 2.9><1037 1.0x10°
and 46.1 times on MOT, AIRCA and TPC-H on average, respec-
tively, up to 4.1x10%, 1.3x10% and 5.3x10? times. Similarly,
on average Zidian improves SoK by 2.0x10%, 3.3x10? and 11.6
times, up to 3.7x10%, 5.1x10% and 1.1x10? times, respectively;
over SoC the speedup ratio on average is 3.0x10%, 5.4x10°
and 11.6 times, up to 5.7x10%, 9.3x10 and 24.1 times.

(2) For scan-free (bounded) queries for MOT and AIRCA, on
average Zidian improves SoH by 2.9x10% and 1.1x10® times,
respectively, up to 4.1x10® and 1.3x10% times; similarly, it
speeds up SoK by 2.1x10% and 3.5x10? times on average, up
to 3.7x10% and 5.1x10% times, and improves SoC by 4.3x10%
and 7.4x10% times, up to 5.7x10% and 9.3x10% times.

For scan-free (unbounded) TPC-H queries, Zidian speeds up
SoH, SoK and SoC by 71.4, 17.4 and 6.1 times on average,
respectively, up to 5.6x10%, 1.1x10% and 24.1 times.

For non scan-free MOT, AIRCA and TPC-H queries, the
average speedup over SoH is 2.8x10%, 8.6x10? and 20.9 times,
respectively, up to 3.8x10%, 1.2x10% and 1.1x10? times; the
numbers for SoK (resp. SoC) are 2.0x10%, 3.1x10%, 5.8 (resp.
1.7x10%, 3.4x103, 5.5) times on average, up to 3.7x103,
4.4x10%, 24.6 (resp. 2.1x10%, 5.4x10%, 21.4) times.

Observation. The speedup on scan-free TPC-H queries is not
as substantial as on MOT and AIRCA. This is because TPC-H
generates skew-free datasets using uniform data distribu-
tions [21], and most of their attribute values are distinct. As
a consequence, the degrees of KV instances (Section 4) under
BaaV are mostly either 1 (the same as under TaaV) or almost
as large as the relation size. Thus KBA plans over such skew-
less TPC-H datasets under BaaV are often similar to plans un-
der TaaV. In contrast, both real-life datasets MOT and AIRCA
are quite skewed. Hence, under BaaV, KV instances for MOT
and AIRCA have reasonable degrees and benefit better from
KBA plans. Moreover, many attributes of MOT and AIRCA
have small active domains due to skewness, on which the
compression and statistic features of Zidian are more effective.

Exp-2: Scan-free evaluation. To see why Zidian improves
the performance, we studied the impact of scans. Using 1
EC2 instance (to exclude the impact of communication) and
varying the datasets from 1GB to 16GB (we varied the size
of MOT and AIRCA by partitioning on date attributes), we
tested the evaluation time of all systems.

The results for scan-free (s.f.) and non scan-free (non s.f.)
MOT queries are reported in Figures 3a and 3b, respectively;
the results for non scan-free and scan-free TPC-H (all are un-
bounded) are in Figures 3¢ and 3d, respectively. See Figure 6
in [2] for AIRCA results (similar to the results on MOT).

(1) SoHzidian is 2.0 x10% and 1.4x10? times faster than SoH for
bounded and non scan-free MOT queries, respectively; and
the speedup is 1.1x10? and 88.5 (resp. 2.2x10% and 9.3x10%)
times over SoK (resp. SoC), respectively. For scan-free but un-
bounded and non scan-free TPC-H queries on 16GB of data,
the speedup is 39.0 and 9.4 times over SoH, 5.9 and 3.0 times
over SoK, and 5.3 and 3.0 times over SoC, respectively. Zidian
improves scan-free queries better than non scan-free ones by
avoiding scans. It also improves non scan-free queries as they
contain many scan-free subqueries. These verify that scan
inflicts a large cost on query time for SQL-over-NoSQL and
Zidian effectively improves that with scan-free (sub)queries.
Note that HBase (SoH) is the slowest among the three.

(2) The evaluation time of bounded queries by SoHzidian is
indifferent to |D|: 0.7 seconds on 1GB and 0.7 seconds on
16GB of MOT, while SoH increases from 12.9 seconds to
1.2x10? seconds; similarly for SoKzigian and SoCzidian. This
verifies that with BaaV, bounded queries can be answered
by using a bounded amount of data regardless of |D].

Exp-3: Parallel scalability and communication cost.
We also find that Zidian guarantees parallel scalability and
reduces the communication cost of SQL-over-NoSQL systems,
in addition to efficiency improvement with the BaaV model.

Varying p. Using 32 GB of each of MOT, AIRCA and TPC-H,
we varied the number p of workers (EC2 instances) from 4 to
12, and tested the evaluation time and total data shipment
of all systems. The results over MOT and TPC-H are shown
in Figures 4a-4d (see Figures 7a-7b in [2] for AIRCA results).

(1) Zidian consistently speeds up SoH, SoK and SoC in all cases.
On average, SoHzidian i 5.5 ><102, 1.6x10% and 10.9 times faster
than SoH over MOT, AIRCA and TPC-H, respectively, up to
1.2x10%, 3.6x10? and 1.9x10% times. The speedup is 6.3x102,
95.3 and 5.5 on average for SoK, up to 1.9x10%, 2.1x10? and
45.7 times respectively, and 1.0x10%, 1.2x10® and 4.9 times
for SoC, up to 2.5x10%, 2.4x10% and 15.5 times, respectively.

(2) Moreover, Zidian reduces total communication cost of SoH,
SoK and SoC. The total communication of SoHzigian accounts
for 0.03%, 0.15% and 22.7% of that of SoH over MOT, AIRCA
and TPC-H, respectively; similarly for SoK and SoC.

(3) Zidian does not hamper the scalability of SoH, SoK and
SoC: they all scale well with p. Varying p from 4 to 12, the
evaluation time of SoHzgian improves by 2.0, 2.5 and 2.2 times
on MOT, AIRCA and TPC-H, respectively, while it is 2.5, 2.8
and 2.6 times for SoH. The improvements for SoKzgian vs.
SoK and SoCzigian vs. SoC are similar. The running time of
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Figure 4: Parallel scalability and communication cost (Exp-3)

SoH improves slightly better than with Zidian when increasing
p since the evaluation time of SoHzigian is much smaller and
hence system initialization overhead of its underlying SoH
plays a larger role in the performance of SoHzigian when adding
workers; similarly for SoK and SoC.

Varying |D|. Fixing p = 8, we varied the size |D| of the
datasets from 8GB to 128GB, and evaluated all systems. The
results over MOT and TPC-H are reported in Figures 4e—4h
(see Figures 7c—7d in [2] for results over AIRCA).

(1) Consistent with the results above, Zidian improves SoH,
SoK, SoC in efficiency and communication cost in all cases.

(2) All systems, with or without Zidian, scale well with |[D|. On
average SoHzigian takes 1.4, 1.1 and 96.1 seconds for queries on
128GB of MOT, AIRCA and TPC-H, respectively. In contrast,
SoH takes 3.4x10%, 1.0x10® and 1.6x10® seconds in the same
setting; similarly for SoKzgian vs. SoK and SoCzigian vs. SoC.
Moreover, with Zidian the evaluation time of scan-free queries
of all systems decreases slower than that of non scan-free
queries, justifying the benefit of BaaV and scan-free queries.

(3) The communication of SoHzigian for bounded queries is
consistently about 0.33MB and 0.25MB, respectively, for
bounded MOT and AIRCA queries when |D| varies from
8GB to 128GB, while SoH increases from 2.8x10°MB to
4.6x10°MB and from 45.9MB to 8.5x10°MB. Similarly,
SoKzidian (resp. SoCzidian) incurs stable communication.

Exp-4: Support for KV workload. We next evaluated the
impact of BaaV and Zidian on SoH, SoK and SoC for executing
key-value workload: throughput and horizontal scalability.

Throughput. We evaluated the throughput of all systems
in the same setting as Exp-1, which is measured by TPwMS:
the number of values processed per ms by all workers. We
did not use # of gets/puts processed because a get under
BaaV retrieves values involving multiple gets under TaaV.

For read workload (bulk gets), we found that Zidian im-
proves the average TPMS of SoH by 1.5, 1.4 and 1.1 times
over MOT, AIRCA and TPC-H, respectively. For write workload
(bulk puts), TPMS of SoHzidian is 67.4%, 74.1% and 90.1% of
that of SoH on MOT, AIRCA and TPC-H, respectively; similarly
for SoK and SoC. Zidian improves read throughput because
get under BaaV is more efficient than under TaaV with more
efficient get invocations. However, a put with key-value pair
(k,v) under BaaV has to process more values than under TaaV
when k already exists in the storage; so its write throughput
is a bit lower but is still comparable.

Horizontal scalability. Fixing the size of data at each worker
to 10 GB, we varied the number of workers from 4 to 12, and
tested TPMS of read and write workloads as above (see Fig-
ure 8 in [2] for results). The average throughput (TPMS) of
both SoH and SoHzigian increases almost linearly, from 5.8 x102
and 7.7x10% to 1.5x10% and 1.9x10® for read, and from
2.1x10% and 1.6x102 to 5.3x10? and 4.1x10? for write, respec-
tively; similarly for SoKzigian and SoCzigian. These verify that
Zidian retains the horizontal scalability of SoH, SoK and SoC.

Summary. We find the following. (1) On average Zidian
outperforms SoH, SoK and SoC in efficiency by 2.8x10?
1.7x10% and 8.1x10? times for scan-free queries, respectively,
and by 2.0x10%, 1.5x10% and 3.6x10? times for non scan-free
queries. Moreover, on average it reduces communication
cost of SoH, SoK and SoC by 1.5x10%, 2.9x10% and 4.2x103
times. (2) For bounded queries, both computation cost and
communication cost of all systems with Zidian remain stable
when datasets get larger. (3) Zidian is parallel scalable and
scales well with datasets, e.g., on average SoHzidian takes 27.7
and 65.4 seconds for scan-free and non scan-free queries on
datasets of 128GB over 8 workers, respectively, compared to
1.7x10* and 2.1x10% seconds by SoH. (4) Zidian retains the
throughput and horizontal scalability of SoH, SoK and SoC.

10. CONCLUSION

We have proposed Zidian, a middleware to improve exist-
ing SQL-over-NoSQL systems by speeding up SQL query
answering. The novelty of the work consists of (a) BaaV,
a keyed-block model, and KBA, an extension of relational
algebra to BaaV, to reduce blind scans and communication
costs; (b) characterizations of result-preserving, scan-free and
bounded KBA queries; (c) algorithms for generating (scan-
free) query plans; and (d) a parallelization strategy that guar-
antees the parallel scalability of parallel query processing,
preserves the scan-free (resp. bounded) property of scan-free
(resp. bounded) KBA queries, and retains the horizontal scal-
ability of SQL-over-NoSQL systems. Our experimental study
has verified that Zidian substantially outperforms existing
SQL-over-NoSQL systems in SQL query answering.
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