
Ontology-based Entity Matching in Attributed Graphs

Hanchao Ma
Washington State University

hanchao.ma@wsu.edu

Morteza Alipourlangouri
McMaster University
alipoum@mcmaster.ca

Yinghui Wu
Washington State University
Pacific Northwest National

Laboratory
yinghui.wu@wsu.edu

Fei Chiang
McMaster University

fchiang@mcmaster.ca

Jiaxing Pi
Siemens Corporate

Technology
jiaxing.pi@siemens.com

ABSTRACT
Keys for graphs incorporate the topology and value con-
straints needed to uniquely identify entities in a graph. They
have been studied to support object identification, knowl-
edge fusion, and social network reconciliation. Existing key
constraints identify entities as the matches of a graph pat-
tern by subgraph isomorphism, which enforce label equal-
ity on node types. These constraints can be too restrictive
to characterize structures and node labels that are syntac-
tically different but semantically equivalent. We propose a
new class of key constraints, Ontological Graph Keys (OGKs)
that extend conventional graph keys by ontological subgraph
matching between entity labels and an external ontology.
We show that the implication and validation problems for
OGKs are each NP-complete. To reduce the entity matching
cost, we also provide an algorithm to compute a minimal
cover for OGKs. We then study the entity matching prob-
lem with OGKs, and a practical variant with a budget on
the matching cost. We develop efficient algorithms to per-
form entity matching based on a (budgeted) Chase proce-
dure. Using real-world graphs, we experimentally verify the
efficiency and accuracy of OGK-based entity matching.

PVLDB Reference Format:
Hanchao Ma, Morteza Alipourlangouri, Yinghui Wu, Fei Chi-
ang, Jiaxing Pi. Ontology-based Entity Matching in Attributed
Graphs. PVLDB, 12(10): 1195-1207, 2019.
DOI: https://doi.org/10.14778/3339490.3339501

1. INTRODUCTION
Keys are a fundamental integrity constraint defining the

properties to uniquely identify an entity. Keys serve an im-
portant role in relational and XML databases during de-
sign, normalization, and query optimization where they are
commonly used for object reconciliation, to minimize redun-
dancy, and to improve query runtimes. All these benefits
transfer to graphs, where key constraints have been studied

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3339490.3339501

for entity identification [3, 7, 10, 13, 16, 32]. The application
of keys to graphs extends beyond deduplication to include
emerging knowledge fusion [14] and fact checking [28].

Keys for graphs are inherently more complex than their
relational counterparts due to the absence of schema, vari-
ances in topology and node types, and they may be recur-
sively defined. Keys for graphs incorporate a topological
constraint expressed by a graph pattern Q to uniquely iden-
tify entities. For example, keys for XML data identify du-
plicate entities via regular paths [10]; and for graphs, key
constraints are posed on node matches induced by subgraph
isomorphism [16]. Existing work has studied the theoret-
ical foundations and applications of key constraints, and
their generalized counterpart, graph functional dependen-
cies [18,22,37]. These constraints have been applied to data
cleaning [21], data validation [6], and entity matching [16].

Entities in real-world knowledge graphs often contain het-
erogeneous labels and multiple attributes. This poses two
challenges for entity matching over graphs: (1) nodes that
should refer to the same entity may not be captured by
key constraints that only enforce label equality [31]; and
(2) nodes with equal labels that match key patterns may
not necessarily refer to the same entity, due to differing at-
tributes. Furthermore, such graphs are often interpreted
with respect to (w.r.t) an ontology that provide domain
specific concepts and relationships, defining semantic equiv-
alence among node labels. Consider the following example.

Example 1: Consider a knowledge graph G consisting of
triples (subject, predicate, object) where subject and object
are nodes, and predicate is an edge connecting subject to
object. Figure 1 illustrates a fraction of DBpedia G, with
three subgraphs describing three music entities {v1, v2, v3},
where each node has an associated type denoted in paren-
theses. For example, entities omg mike and omg in v1 and
v3, respectively, are both of type song.

Consider graph keys ϕ1 and ϕ2 depicted as graph patterns
P1 and P2 in Figure 1. ϕ1 states that “if two songs share the
same name and album, then they refer to the same song”.
Similarly, an album can be identified by its name, year of
release and artist, characterized by ϕ2. Note the dependence
of ϕ1 on ϕ2, to identify a song, we need to first identify its
artist, reflecting the recursive property of graph keys [16].
Applying ϕ1 and ϕ2 via subgraph isomorphism on G, we
obtain only v3 as a match, since (1) v1 end of days is of type

1195



Figure 1: Entity matching with ontologies.

OST (rather than album); (2) v2 is of type hit rather than
song; and (3) the v1 album predicate band fails to match the
required label artist. Hence, ϕ1 and ϕ2 fail to identify v1

and v2 as the same song as they rely only on label matching.

Given an ontology O, as shown in Figure 1, we exploit on-
tological relationships and semantic equivalance to extend
graph keys. For example, we recognize an OST is a type
of album participating in a hyponym (subClassOf) relation-
ship. Similarly, we note that labels artist and band, and
types hit and song are semantically similar. By extending
ϕ1 and ϕ2 with these ontological equivalences, we identify
v1 and v2 are indeed the same song.

Not all labels in O are useful. Ontological similarity is of-
ten characterized within a scope such that concepts that are
‘far apart’ in O (w.r.t. a distance function) are not concep-
tually close. For example, if we replace the OST entity with
a film entity to create an entity v4, this will not match ϕ2

using a distance threshold of two, since the distance between
album and film in O exceeds this bound. 2

Beyond entity deduplication, ontological extension of graph
keys enrich the neighborhood of equivalent entities. For ex-
ample, merging v1 and v2 yield two new edges for the song
entity: one with company Geffen, and the second with pro-
ducer S. Beavan, completing the song information. These
semantic extensions have widespread applications to link
prediction, learning and inference for knowledge base com-
pletion [19,26,28], and knowledge fusion [14].

The above example highlights the need for a new class of
dependencies for graphs that go beyond existing subgraph
isomorphism to consider entity matching with ontological
similarity. We extend existing notions of keys for graphs,
which uniquely identify an entity, to exploit the relation-
ships among node labels given in an ontology. The recursive
property of graph keys allows us to precisely define related
entities for the keys. By incorporating ontologies, we further
increase the scope of entities that can be matched to recur-
sive keys to include matches that are ontologically similar.

While ontological extensions have been studied for tradi-
tional functional dependencies [8, 11], little work has been
done to enrich graph keys with ontologies.

Contributions. We extend keys for graphs with ontological
pattern matching, and illustrate their applications.

(1) We propose Ontological Graph Keys (OGKs), a new class
of key constraints that exploit ontologies to enhance keys for
graphs. An OGK includes an event pattern that defines an
entity u, which is used to identify similar concepts w.r.t. an
ontology O. We characterize entity equivalence by match-
ing: (i) pairs of equivalent subgraphs w.r.t. the key con-
straints, which may be recursively defined; and (ii) value
constraints defined on the node attributes.

(2) We study the foundations of OGKs, including their sat-
isfiability, validation, and implication. We show that adding
ontologies does not make these fundamental problems harder,
compared to traditional keys that enforce label equality. For
example, both validation and implication of OGKs is NP-
complete. We also provide an algorithm to compute the
minimal cover for OGKs based on our implication analysis.

(3) We formally introduce the entity matching problem us-
ing OGKs. Given a set of OGKs Σ, a scope (G,O, θ) that con-
sists of graph G, ontology O, and a matching cost threshold
θ to ensure semantic closeness, the problem is to compute an
equivalence relation R, such that the quotient graph induced
by R of G satisfies Σ. While this problem is NP-complete,
we introduce efficient algorithms to enforce Σ.

(a) To characterize the matching process, we revise the Chase
process of conventional data dependencies for OGKs, by in-
corporating ontology matching that trigger a sequence of
non-destructive “merge” operations over equivalent entities.
We show that the Chase with OGKs satisfies the Church-
Rosser property, i.e., Chase sequences are finite and termi-
nating, resulting in a unique graph satisfying the OGKs.

(b) We define early terminating criteria for the revised Chase,
and the corresponding entity matching algorithms over re-
cursively defined OGKs. Our dynamic programming algo-
rithm consists of two efficient phases: (i) a top-down phase
that decomposes OGKs to smaller, tree constraints to refine
matches, and perform early validation; and (ii) a bottom-
up synthesizing phase that assembles the matches, and in-
duced entity equivalence classes for recursive entity match-
ing. We develop optimization techniques to prune unpromis-
ing matches that reduce the verification cost.

(c) Given limited resources for entity matching, we propose
a practical variant of the Chase that includes a cost model
for matching and editing entities in G. We compute a Chase
sequence that minimizes the cost under budget B, enforcing
OGKs that tend to merge highly similar entities. We develop
an anytime algorithm that can be interrupted to return the
Chase sequence identified thus far, with tunable memory.

(4) We experimentally verify the efficiency and effectiveness
of our OGK-based techniques using two real-world bench-
marks. We compare against two existing baselines to verify
our ability to identify semantically equivalent entities in at-
tributed graphs that are ignored by existing solutions.

2. ONTOLOGICAL GRAPH KEYS
We provide definitions, and introduce ontological graph keys.

2.1 Preliminaries
Graphs. We consider directed, attributed graphs G =
(V,E, L, FA), where V is a set of nodes, and E ⊆ V × V
is a set of edges. For each node v ∈ V (resp. edge e ∈ E),

1196



L(v) (resp. L(e)) is a type (resp. a relation) from a finite al-
phabet τ . For each node v, its value is denoted as v.val. The
v.val is an example of an attribute of v, describing a node
property. For each node v, its attributes Ai ∈ A, i ∈ [1, n]
are captured in its property tuple, FA(v), defined as a se-
quence of attribute-value pairs {(v.A1, a1), . . . (v.An, an)}.
Each pair (v.Ai, ai) states that the attribute v.Ai = ai.

Entity identifiers. To define the mapping between a node
v and a real-world entity u, we introduce entity identifiers.
Given a set of entities {u1, . . . , um}, we associate a unique
entity identifier eidi to entity ui (i ∈ [1,m]). Each node v
carries a (possibly empty) list of entity identifiers {v.eid1,
. . ., v.eidm}, For each eidi 6= Null, this indicates that v en-
codes an instance of entity ui. We enforce two types of node
equality: (1) two nodes v and v′ are value equivalent if v.val
= v′.val; and (2) v and v′ are entity equivalent w.r.t. entity
u (with entity identifier eidu), if v.eidu = v′.eidu.

Remarks. Nodes in G may encode a node identifier, and an
entity identifier(eid) to distinguish different nodes and dif-
ferent entities, respectively. In real world graphs, a single
node may model instances of two different entities, and sim-
ilarly, two distinct nodes may model the same instance of an
entity. These specifications often occur in multi-typed en-
tities, which are common in property graphs [5], knowledge
bases [24] and social networks [27]. Existing keys for graphs
only enforce node identity, and do not differentiate between
entity vs. node identifiers [10,16].

Ontologies. An ontology is a directed graph O = (Vo, Eo),
where Vo is a set of concept labels and Eo ⊆ Vo × Vo is
a set of semantic relations among the concept nodes. In
practice, an edge (v, v′) ∈ Eo may encode three types of re-
lations [25]: (a) equivalence, which state that v and v′ are se-
mantically equivalent, representing relations such as “refers
to” or “known as”; (b) hyponyms that state v is a kind of
v′, modeling “is-a” or “’subClassOf” relations that define a
preorder over Vo; and (c) descriptive, which state that v is
described by v′ in terms of ‘association’ or ‘part-of’ relations.
In practice, an ontology may encode a taxnonomy, thesauri,
or RDF schema. By incorporating ontologies, OGKs are
more expressive than traditional graph keys [16], and cap-
ture semantic similarity relations during entity matching.

Example 2: We return to Figure 1, where entities v1 − v3

all have the property genre = pop, but v1 and v3 are both
of type song, and v2 is of type hit. By using the ontology
O associated with G, we expand the notion of similarity to
include semantic relationships among the node labels. For
example, OST is a subclass of album via a hyponym edge,
and band is semantically similar to artist. 2

Relevant set. Given an ontology O and a concept label l,
the relevant set to l refers to the set of concepts similar to
l in O, denoted as lsim(l), according to a distance function
dist(·). Formally, lsim(l)= {l′|dist(l, l′) ≤ α}, where dist(·) :
Vo×Vo → [0, 1] computes the distance between l and l′, and
the threshold α defines the scope of similarity. dist(l, l′) can
be defined as the normalized sum of the edge weights along
the shortest undirected path between l to l′ in O [24, 36].
To differentiate among the relations in O, one can assign
weights w1, w2, w3 to the edges representing equivalence,
hyponym, and descriptive relations, respectively [25].

Example 3: For ontology O in Figure 1, we set the weights
w1 = 0.1, w2 = 0.3 and w3 = 0.6 to represent the relative

cost among the ontological relations. The dist(album, OST)
= 0.3, since there is a path length 1 between these two con-
cepts sharing a hyponym relation. Similarly, dist(film,OST )
= 0.6, for a descriptive relation. Given threshold α = 0.3,
the relevant set to OST is lsim (OST) = {OST, album}. 2

Entity patterns. An entity pattern P (uo) is a connected
graph (VP , EP , LP ) containing a set of pattern nodes VP ,
and pattern edges EP . Each pattern node u ∈ VP (resp.
pattern edge e ∈ EP ) has a label LP (u) (resp. LP (e)). The
pattern nodes VP may be one of three types: (1) a designated
center node uo ∈ VP , representing the primary entity to be
identified; (2) a set of variable nodes Vx ⊆ VP ; and (3) a set
of constant nodes Vc = VP \ ({uo} ∪ Vx).

Example 4: Consider the two entity patterns P1 and P2

in Figure 1, characterizing instances of song, and album,
respectively. P1 contains a constant node name, and a vari-
able node album. Intuitively, the equivalent instances of
song should be recursively determined by the equivalent in-
stances of album as defined by pattern P2. 2

Matching cost. To identify entities in a graph G that match
an entity pattern P (uo), we must define a mapping function
from nodes and edges in P (uo) to those in G. Formally, a
matching between P (uo) and G is an injective function f
from VP to V , such that, for each node u ∈ VP , L(f(u)) ∈
lsim(LP (u)) (concepts in G are similar to the concept mod-
eled by u), and if (u, u′) ∈ EP , then (f(u), f(u′)) ∈ E.

We quantify the matching cost by applying the the prin-
ciple of spreading activation [34], which propagates concept
relevance by following links of semantic networks to quan-
tify concept closeness. We treat a pattern node uo with
concept label l as a “compound” concept, characterized by
its neighboring pattern nodes. Given a matching f and en-
tity pattern P (uo), the matching cost of f is quantified by
the distance between uo and f(uo), which is defined as

c(uo, f(uo)) =
1

|VP |
∑

u′∈VP

cr(u′, f(u′))

where cr(u′, f(u′)) is the relative cost of matching u′ with
f(u′) w.r.t. uo, and is computed as

cr(u′, f(u′)) =

{
βdu′ · dist(LP (u′), L(f(u′))) u′ /∈ Vx
βdu′ · c(u′, f(u′)) u′ ∈ Vx

Here du′ is the distance between u′ and uo in P (uo) (treated
as an undirected graph), β ∈ [0, 1] is a decay factor, and
dist computes the distance of concept labels in O. When
u′ = uo, cr(u′, f(u)) is simply dist(LP (uo), L(f(uo))). Intu-
itively, c(uo, f(uo)) simulates a partial spreading activation
focused on uo, by aggregating the propagated cost (“dis-
similarity”) between each pattern node and its matches to
uo. When u′ is a variable node, the cost is aggregated by
recursively expanding the pattern(s) modelling u′.

Example 5: Consider w2 = 0.3, and decay factor β=0.9.
(1) Given a matching f between P2(album) in G such that
f(album) = end of days(OST), f(name)=oh my god(name),
f(year) = 1999(name), and f(artist) = Guns N’ Roses(band),
(a) For constant nodes name and year in P2, the matching
cost cr(name, oh my god(name)) = cr(year, 1999(year)) =
0.91 ∗ 0 = 0 (the concept labels name and year are omit-
ted in ontology O); and cr(artist, Guns N’ Roses(band)) =
0.91 ∗0.3 = 0.27, due to matching band to artist via the sub-
classOf relation. (b) c(album, end of days(OST)) is thus

1197



Table 1: Summary of notation.

Notation Description
G=(V,E, L, FA) attributed graph G

P (uo)=(VP , EP , LP ) entity pattern P (uo); uo: center node
Vx ⊆ VP ; Vc ⊆ VP variable nodes Vx; constant nodes Vc

Q(uo, G) query answer of Q in G
c(uo, f(uo)), cr(u, f(u)) matching cost & relative cost
ϕ(uo) = (P (uo), X) ontological graph key with literals X

(G,O, θ) scope of OGKs with cost bound θ

computed as 1
4

(0.90 ∗ 0.3+0.9 ∗ 0+0.9 ∗ 0+0.9 ∗ 0.3) = 0.14,

where 0.90 ∗ 0.3 is the relative matching cost from album
to end of days(OST). (2) Similarly, given a match between
P1(song) and G that matches song to v1, name to oh my
god(name) and album to end of days(OST), c(song, omg)
= 1

3
(0.91*0+0.91*0+0.9 ∗ 0.14)=0.042. That is, the match-

ing cost of a song depends on the propagated cost from its
relevant variable and constant nodes. 2

A matching of P (uo) under scope (G,O, θ) is an injective
function f from VP to V , such that: (i) for each node u ∈
VP , there exists a node match f(u) ∈ V where L(f(u)) ∈
lsim(LP (u)); (ii) for each edge ep=(u, u′) ∈ EP , there exists
an edge match e = (f(u), f(u′)) ∈ E; and (iii) c(uo, f(uo)) ≤
θ. A match of P in G induced by f , denoted as P (G, f),
is the induced subgraph of G with nodes and edges from
matching f . The notations are summarized in Table 1.

2.2 Ontological Graph Keys
We extend keys for graphs with ontologies, and present their
semantics, matching criteria, and properties.

An ontological graph key (OGK) ϕ(uo) for an entity uo

is a pair (P (uo), X), where P (uo) is an entity pattern with
center node uo that is associated with a unique identifier
eido, and X is a set of literals. Each literal l ∈ X is either a
constant literal of the form of u.A = c (for a constant c), or
a variable literal u.A = u′.A′, where u and u′ are two nodes
in P (uo), and A and A′ are node attributes from A.

Semantics. Given an OGK ϕ(uo) = (P (uo), X), and scope
(G,O, θ), a matching function f satisfies X, denoted as f |=
X, if (i) f(uo) 6= ∅ under threshold θ; and (ii) for each
constant and variable literal in X, f(u).A = c and f(u).A
= f(u′).A′, respectively.

Ontological Bisimilarity. Let ϕ(uo) = (P (uo), X) be an OGK
defined on the entity uo with identifier eido. We define the
criteria to identify equivalent entities. We say two matches
P (G, f1) and P (G, f2) are bisimilar under scope (G,O, θ),
denoted as P (G, f1) ∼ P (G, f2), if the following hold: (a)
f1 |= X, and f2 |= X; and (b) for each pair of nodes (v1, v2)
where f1(u) = v1 and f2(u) = v2, (i) if u is a constant node,
then v1, v2 are value equivalent, i.e., v1.val = v2.val; or (ii)
if u is a variable node, then v1, v2 are entity equivalent, i.e.,
v1.eidu = v2.eidu (eidu is the entity identifier of u).

A scope (G,O, θ) satisfies ϕ, denoted as (G,O, θ) |= ϕ, if
and only if for every pair of matches P (G, f1) and P (G, f2)
are bisimilar (P (G, f1) ∼ P (G, f2)), and the matches are
entity equivalent w.r.t. eido (f1(uo).eido = f2(uo).eido) Intu-
itively, OGK ϕ(uo) enforces the requirement that “all nodes
participating in bisimilar matches satisfying X under given
scope (G,O, θ) should refer to the same entity as uo”.

OGK Properties. We introduce two properties of OGKs.

Non-trivial. An OGK ϕ = (P (uo), X) is non-trivial, if P (uo)
contains uo, and at least one variable or constant node, and
X is satisfiable. To define satisfiability, we first define the

Figure 2: Ontological Graph Keys

closure of X (denoted as cl(X)) as all literals that can be
derived via transitivity of the equality relation. We can
perform a fixed point inference that includes X in cl(X),
and then adds v.A=v′.A′ to cl(X) if v.A = c and v′.A′=c
in cl(X), or v.A=v′′.A′′ and v′′.A′′=v′.A′ are both in cl(X),
until cl(X) no longer changes. We say X is satisfiable if
there is no pair (v.A=c, v.A=c′) in X such that c 6= c′.

Well-defined. A set of OGKs Σ is well-defined, if for every

OGK ϕ(uo) = (P (uo), X) in Σ, and every variable node u′

in P (uo), there exists an OGK ϕ(u′) ∈ Σ. Henceforth, we
consider well-defined Σ that contain nontrivial OGKs. We
denote ϕ(uo) as ϕ, when uo is clear.

Example 6: The two pattern constraints in Figure 1 ex-
tend to two OGKs: (1) ϕ1 = (P1(song), song.genre = pop),
and (2) ϕ2 = (P2(album), ∅). ϕ1 states that if two nodes
ontologically match song, with the same song name, and re-
fer to the same album entity, then they are equivalent songs.
Figure 2 shows three additional OGKs ϕ3, ϕ4 and ϕ5, with
entity patterns P3(artist), and P4, P5 referring to entity
Writer, respectively. When ϕ2 and ϕ3 both exist in Σ, the
artist node in P2 necessarily becomes a variable node. 2

Relationship to other dependencies. We highlight the
relationship between OGKs and other graph dependencies.
For an OGK ϕ with θ = 1, ontology O is ∅ (f only enforces
label equality), and all eids refer to node identifiers, ϕ can be
considered as: (i) a general case of keys for graphs that only
enforces X [16]; (ii) a special case of graph functional depen-
dencies (GFDs), by “duplicating” its pattern P to P (uo) and
P ′(u′o) via graph isomorphism, and by enforcing attribute
equality on eid (i.e., uo.eid = u′o.eid) [18]; and (iii) a special
case of graph entity dependencies (GEDs), which subsume
GFDs, using more general graph homomorphism [17].

Example 7: OGKs ϕ3 and ϕ4 in Figure 2 define con-
straints for equivalent artist and Writer, respectively. Con-
sider nodes v4, v5 and v6, all referring to the name Bob
Dylan, where (v4, v5) are entity equivalent w.r.t. artist, and
(v5, v6) are entity equivalent w.r.t. writer. Node v5 is both
a Writer and artist, thereby enforcing eidartist and eidwriter.
Existing graph keys enforce only node identity and cannot
differentiate multiple entities encoded by a single node. 2

3. REASONING ABOUT OGKS
In this section, we study four fundamental problems for a

set Σ of OGKs: (1) satisfiability : whether Σ can be satisfied;
(2) validation: whether a given scope (G,O, θ) satisfies Σ;
(3) implication: given (G,O, θ) |= Σ, an OGK ϕ /∈ Σ, deter-
mine whether Σ |= ϕ; and (4) minimality: find a minimal
cover, i.e., a minimal set of OGKs Σ’ equivalent to Σ.

Satisfiability. A set of OGKs Σ is satisfiable if there is a
scope (G,O, θ), such that for each OGK ϕ(P (uo), X), there
exists a non-empty match of P (uo) in G, and (G,O, θ) |= Σ.

1198



Unlike data dependencies on graphs [18], there always exists
such a scope (G,O, θ), and this problem becomes trivial.

Lemma 1: For any finite set of OGKs Σ, there always exists
a scope (G,O, θ), such that (G,O, θ) |= Σ. 2

Intuitively, for any OGKs with satisfiableX, we can always
construct matches, and construct the corresponding scope
(G,O, θ) using the matching function. Moreover, OGKs only
enforce equivalence over entity identifiers, independent of
variables in X. We present detailed proofs in [1].

Validation. Given scope (G,O, θ), and OGKs Σ, the vali-
dation problem is to decide whether (G,O, θ) |= Σ.

Theorem 1: The OGK validation is NP-complete. 2

Proof sketch: The hardness of OGK validation can be ver-
ified by a reduction from subgraph isomorphism with type
equality. To see the upper bound, we show there is an NP
algorithm that guesses a pair of matches (P (G, f), P (G, f ′))
for each OGK ϕ(uo) with pattern P (uo), where v=f(uo),
v′=f(u′o). The algorithm verifies in polynomial time whether
(v, v′) are entity equivalent w.r.t. uo. 2

Implication. Given a set Σ of OGKs, and an OGK ϕ /∈ Σ,
we say Σ implies ϕ, denoted as Σ |= ϕ, if for any triple
(G,O, θ), if (G,O, θ) |= Σ, then (G,O, θ) |= ϕ. Given any
finite set of OGKs Σ ∪ {ϕ}, the implication problem is to
determine whether Σ |= ϕ.

Theorem 2: The OGK implication is NP-complete. 2

To characterize implication for OGKs, we introduce the
notion of embeddings between two OGKs.

Embedding of OGKs. Consider two entity patterns P (uo)

= (VP , EP , LP ), and P ′(u′o) = (V ′P , E
′
P , L

′
P ), and ontology

O. Intuitively, we say that P ′(u′o) is embedded in P (uo), if
there exists a bijection ρ that maps the node type, labels,
(and edges) from each node u′ ∈ V ′P (each edge e′ ∈ E′P ) to
a subset of nodes in VP (edges in EP ). Formally, the bijec-
tion ρ makes a correspondence between P (uo) and P ′(u′o)
such that: (i) for each u′ ∈ V ′P , lsim (f(u′)) ⊆ lsim(u′); (ii)
(u′1, u

′
2) ∈ E′P if and only if (f(u′1), f(u′2)) ∈ EP ; and (iii)

nodes u′ and f(u′) are the same (constant/variable) type.
An OGK ϕ′ = (P ′(u′o), X ′) is embedded in another OGK

ϕ = (P (uo), X), denoted as ϕ′ � ϕ, if P ′(u′o) is embedded
in P (uo) via a mapping ρ, and X=ρ(X ′). That is, we can
obtain each literal l ∈ X by renaming a literal l′ ∈ X ′ by
setting u′.A in l′ to ρ(u′).A in l.

Lemma 2: Given an OGK ϕ and OGKs Σ, Σ |= ϕ if and
only if there exists an OGK ϕ′ ∈ Σ, such that ϕ′ � ϕ. 2

Example 8: Consider OGKs ϕ4 and ϕ5 in Figure 2 mod-
eled by patterns P4 and P5, respectively. We can verify that
ϕ5 � ϕ4. For any scope (G,O, θ) |= ϕ5, (G,O, θ) |= ϕ4. In-
tuitively, a pair of entities representing Writer that is identi-
fied by the less stringent constraint in ϕ5, will remain equiva-
lent under more specific conditions posed by ϕ4. P5 imposes
weaker topological constraints than P4, and its literals sub-
sume those in P4, e.g., writtenwork subsumes poem. 2

The implication analysis requires verifying the condition
in Lemma 2, which is NP-complete. For each OGK ϕ′ ∈ Σ,
we must check whether ϕ′ � ϕ, and compute the subgraph

isomorphism between the entity patterns in ϕ′ and ϕ (fur-
ther details available in [1]).

Minimality of OGKs. To reduce the cost of entity match-
ing, it is preferable to find a minimal set of OGKs that are
equivalent to Σ, i.e., a minimal cover of Σ. Given two sets
of OGKs, Σ and Σ′, we say Σ′ covers Σ, if for every OGK
ϕ ∈ Σ, Σ′ |= ϕ. A minimal cover of Σ, is a set Σ′ of OGKs
such that Σ′ covers Σ, and no proper subset of Σ′ covers Σ.

Computing a minimal cover. Given Theorem 2, computing
a minimal cover is NP-hard. For practical entity matching
using OGKs, we outline an algorithm that computes a mini-
mal cover of Σ. Based on Lemma 2, the algorithm performs
the following. First, for each OGK ϕ ∈ Σ, we verify whether
Σ\{ϕ} |= ϕ, by checking if there exists an OGK ϕ′ ∈ Σ\{ϕ},
such that ϕ′ � ϕ. If so, we remove ϕ. We repeat the above
process, until no OGK can be removed from Σ. The above
algorithm takes O(|Σ|2|Pm||Pm|) time, where Pm (usually
small) refers to the largest entity pattern from the OGKs Σ.

Our analysis above show that the enriched semantics pro-
vided by OGKs do not make these fundamental problems
harder, compared to their existing counterparts that enforce
node identity [16]. Our results remain intact for the special
case of OGKs with label equality, and are consistent with
general GFDs [18]. We present the detailed proofs in [1].

4. ENTITY MATCHING WITH OGKS
We apply OGKs to entity matching, and introduce dynamic
matching that extends the Chase process [2] over graphs.

Entity graphs. We define the notion of an entity (hyper)
graph that identifies nodes from a graph G = (V,E, L, FA)
referring to the same entity in each hyperedge. Formally,
given a set of entities E = {u1, . . . , um}, and scope (G,O, θ),
the entity graph VE is a hypergraph (V,

⋃
u∈E V [u]), where

V [u] the quotient set of V induced by the entity equivalent
relation R(u). Two nodes, (v, v′) ∈ R(u) if and only if v.eidu
= v′.eidu; (v, v′) are entity equivalent w.r.t. u. We can
obtain a base graph G′ of VE that models entity equivalence
for each pair of nodes in the hypergraph. We obtain G′ by
enforcing entity identifier equivalence for each pair of nodes
in V [u] ∈ VE in the original graph G.

The Chase for OGKs. We characterize entity match-
ing by extending the Chase to an entity graph VE . Con-
sider a set of OGKs, Σ defined on a set of center entities
E = {u1, . . . , um}, and scope (G,O, θ). Intuitively, given an
initial hypergraph containing singleton nodes in a hyperedge
(for each entity u), the Chase(Σ, G) continually merges edges
containing entity equivalent nodes, according to ϕ ∈ Σ, un-
til no further changes are induced by ϕ. Specifically, we
start with an initial hypergraph V 0

E , where each hyperedge
[v]u in V 0

E is a singleton {v} for every entity u ∈ E . Given
a triple (ϕ, (v, v′)), where ϕ = (P (u), X), for ϕ ∈ Σ, f
(resp. f ′) are two ontology matchings of P (u), v = f(u),
v′ = f ′(u), and P (G, f) ∼ P (G, f ′), a Chase step of G by
(ϕ, P (G, f), P (G, f ′)) at a hypergraph graph V i

E is

V i
E

(ϕ,(v,v′))
=⇒ V i+1

E

Specifically, the following two Chase rules must be satisfied:

(1) if v.eido is not in fA(v), create a new equivalence class
[v] with v.eidu = cu, where eidu is the entity identifier for
u ∈ E with a unique value c. (Inclusion of new eids.)

1199



     (OST) 

end_of_days

    (album) 

end_of_days

    

'end_of_days'
    

'1999'

    

'Guns N' Roses'

omg (song)  oh_my_god (hit)  

... ...

(φ  , 'end_of_days'(OST), 

  'end_of_days(album)')
1

   omg (song)  oh_my_god (hit)  

...

     (OST) 

end_of_days

    (album) 

end_of_days

    

'oh my god'

    (company) 

        Geffen

 (producer) 

 S.Beavan

 (φ  , 'omg'(song), 

'oh_my_god(hit)')
2

Figure 3: Entity graphs induced by two Chase steps.

(2) for all existing equivalence classes, [v]u and [v′]u in V i
E for

entity u, merge [v]u and [v′]u to a single equivalence class
[v]u, and update the set of edges EE accordingly. (Merge
hyperedges with entity equivalent nodes.)

By following these rules, the Chase(G,Σ) algorithm will
generate a sequence of Chase steps that induce a sequence
of hypergraphs {V 0

E , . . . , V
n
E }. The Chase(G,Σ) terminates

if there exists no (ϕ, (v, v′)) that elicits changes to V n
E (no

new eids, nor merges to enforce entity equality). Intuitively,
Chase(G,Σ) verifies whether a set of nodes match the same
pattern node via bisimilar matches. Since the matching pro-
cess reduces to a Boolean function to determine whether two
nodes a and b match pattern node u (via bisimilarity), a
transitive closure holds over Chase(G,Σ). 1

Example 9: Figure 3 illustrates a fraction of the entity
graphs induced by two Chase steps over graph G in Figure 1
(with changed fraction marked in red). The first Chase step
(ϕ1, end of days(OST), end of days(album)) creates three
equivalent classes in V 1

E that merges equivalent constant
nodes e.g.,1999, and a pair of equivalent OST and album en-
tities. The second Chase step enforces OGK ϕ2, and further
merges equivalent song and hit entities given the equivalent
classes in V 1

E , and yields V 2
E . 2

We now introduce Lemma 3, which verifies that Chase
with OGKs under scope (G,O, θ) preserves the Church-Rosser
property. That is, all Chase sequences are terminating, and
all terminating Chase produce the same V n

E .

Lemma 3: Given scope (G,O, θ), (1) chasing with any set
of OGKs Σ is finite and has the Church-Rosser property; and
(2) any terminating Chase guarantees (G′, O, θ) |= Σ, where
G′ is the base graph of V n

E when the Chase terminates. 2

Entity matching with Chase. Given scope (G,O, θ), and
OGKs Σ, defined on a set of entities E={u1, . . . , um}, the
entity matching problem is to compute the entity graph VE
induced by a terminating Chase sequence Chase(G,Σ).

This problem is, not surprisingly, NP-hard: the validation
for OGKs alone is already NP-hard. Even for small OGKs,
one needs to make O(|Σ|N2) comparisons of N matchings
of a pattern in OGKs, where N is already large [9]. We show
that this can be significantly reduced by effective pruning
strategies given existed equivalent classes (Section 5).

5. ENTITY MATCHING ALGORITHM
Given the recursive nature of OGKs, an OGK cannot be

enforced before all variable nodes are resolved. In this sec-
tion, we introduce the OGK-Entity Matching (OGK-EM) al-

1“If a and b match pattern node u via bisimilar matches (i.e.,
a and b are equivalent), and b and c match u via bisimilar
matches (b and c are equivalent), then a and c match u via
bisimilar matches (a and c are equivalent)”.

gorithm that avoids exhaustive match enumeration of candi-
date pairs. OGK-EM focuses early Chasing with non-recursive
(sub)keys. These Chase sequences (involving constant nodes)
can be enforced directly, once bisimilar matches are identi-
fied, or help to prune matches for their recursive counter-
parts. Moreover, such sequences can be computed indepen-
dently without being “blocked” by dependent entities, and
thus can be computed as early as possible.

5.1 Dependency Graph
To model interactions among OGKs, OGK-EM maintains

an auxiliary structure called dependency graph. Given a set
of OGKs Σ, we define a dependency graph GΣ = (Σ, EΣ),
where (i) each node represents an OGK ϕ(uo) in Σ, and (ii)
there exists an edge (ϕ(uo), ϕ′(u′o)) ∈ EΣ if u′o ∈ Vx, where
Vx is the set of variable nodes in P (uo). For each OGK ϕ =
(P (uo), X), OGK-EM maintains: (a) match set P (u,G) for
each pattern node u in P (uo); (b) V [uo], a partition (hyper-
edge) of P (uo, G) induced by relation R(uo); and (c) a pair
of boolean flags (isC, Val) that is set to true when, respec-
tively, ϕ contains only constant nodes, and (G′, O, θ) |= ϕ
given all enforced Chase steps thus far.

For ease of presentation, we construct a directed acyclic
graph (DAG) Gd from GΣ by collapsing each strongly con-
nected component (SCC) into a single SCC node. Abusing
terms from trees, we say a root (resp. leaf) of Gd is a node
without an incoming (resp. outgoing) edge. We set the con-
stant node flag, isC = true for all leaves in Gd. Moreover, for
each node vd in Gd, a rank r(vd) is defined as: (i) r(vd) = 0
if vd is a root; (ii) r(vd) = max(r(v′d))+1 otherwise, where
v′d ranges over the parents of vd in Gd; and (iii) for an SCC
node vd, all nodes in vd have the same rank r(vd).

5.2 Matching Algorithm
OGK-EM initializes entity graph, VE , with over estimated

equivalence classes, where each class represents the set of
nodes having concept labels l in the relevant set of entity
node ui ∈ E , l ∈ lsim(lui). We dynamically refine these
classes by retaining true ontological matches and splitting
equivalence classes, with two major phases. First, a “top-
down” decomposition phase decomposes each OGK to a set
of tree keys (entity keys with tree patterns). We efficiently
chase bisimilar tree matches to refine VE by merging equiv-
alence classes whenever possible. Second, in a “bottom-up”
synthesizing phase, OGK-EM refines VE by assembling bisim-
ilar matches from the leaves of the dependency graph Gd,
until all the nodes in Gd are processed.

Algorithm Phases. The main phases of OGK-EM is il-
lustrated in Figure 4. It first constructs Gd and computes
the node ranks. The decomposition and partial validation
phase proceeds in ascending node rank order similar to a
breadth-first traversal of Gd. The synthesizing phase starts
at the leaf level proceeding in descending node rank order.

(1) Top-down Decomposition. For each root ϕ = (P (uo), X)
in Gd, OGK-EM initializes the match sets P (u,G) for each
node u in P (uo) as {v|L(v) ∈ lsim(LP (u))}. It initializes
V [uo] as {[v]|[v] = {v}} for each v ∈ P (uo, G). The pro-
cedure Decomp decomposes ϕ to a set of tree keys Pϕ =
{ϕ1, . . . , ϕn}. Each tree key ϕi = (Pi(u), Xi) contains: (i) a
tree-structured pattern Pi(u) centered on entity u; and (ii)
Xi ⊆ X with literals involving pattern nodes in Pi only. In-
tuitively, these tree patterns constitute a tree cover of P (uo)
with shared pattern node uo, and

⋃n
i Xi=X.

1200



Algorithm OGK− EM

Input: a set of OGKs Σ over entities E, scope (G,O, θ);
Output: the entity graph VE induced by Chase(Σ, G).

1. initializes V [ui] (ui ∈ E); integer i=0;
2. construct Gd; integer rm:=max(r(vd)) (vd in Gd);
3. while i < rm do /*“top-down” phase*/
4. Σi := {ϕ|r(ϕ) = i};
5. for each ϕ ∈ Σi do
6. Pϕ := Decomp(ϕ); /*spawning tree keys*/
7. P (uo, G) := PVal(Pϕ); i := i+ 1; /*partial validation;*/
8. while i >= 0 do /*“bottom-up” phase*/
9. Σi := {ϕ|r(ϕ) = i}; i := i− 1;
10. for each ϕ(uo) ∈ Σi do
11. V [uo]:= SVal(ϕ,Gd);
12. VE :=

⋃
ui∈E V [ui];

13. return VE ;

Figure 4: Algorithm OGK-EM

(2) Partial Validation. Given a set of tree keys Pϕ = {ϕ1,
. . . , ϕn} of ϕ = (P (uo), X), OGK-EM first partitions con-
stant tree keys Pc ⊆ Pϕ, from variable tree keys Pv =
Pϕ \ Pc, which contain at least a variable node besides uo

(via procedure PVal). We then partially validate each tree
key and refine the match sets to update V [uo]. Specifically,
for each constant tree key ϕi, PVal sets its flag isC = true.
Next, for each pattern node u, we refine match set P (u,G)
as

⋂n
i=1 Pi(u,G), from all tree keys in Pϕ containing pat-

tern node u. For each child ϕ′ = (P ′(u′o), X ′) of ϕ in GΣ,
we initialize the match set P ′(u′o, G) with the refined match
set of the corresponding variable node in P . Lastly, this de-
composition and partial validation process is then repeated
for all children of ϕ following a breadth-first traversal of Gd.

(3) Bottom up Synthesizing. After completing the top-down
decomposition where all leaves in Gd are processed, OGK-
EM traverses Gd “bottom up” from the leaves to the root.
For each node ϕ = (P (uo), X) in Gd, visited in descend-
ing node rank, OGK-EM invokes procedure SVal to com-
pute P (uo, G) and the bisimilar matches, to update V [uo]
by enforcing equivalence classes. For each tree key ϕ, we re-
fine its match set by using the match sets from its children.
We update V [uo] ∈ VE by iteratively merging two equiva-
lence classes ([v], [v′]) induced by pairs (v, v′) from bisimilar
matches P (uo, G, f) and P (uo, G, f

′), where each pair sim-
ulates a Chase step. When we can no longer enforce such
pairs, OGK-EM sets Val=true for ϕ. The bottom up traver-
sal terminates once Val=true for all root nodes in Gd, i.e.,
the enforced base graph G′, G |= Σ.

We illustrate the running of top-down phase below and
present the details of Decomp and PVal in [1].

Example 10: Consider the OGKs ϕ, ϕ′ and ϕ′′ for entities
album, producer, and band in Figure 5. A partial depen-
dency graph Gd is illustrated with two (dotted) edges (ϕ,ϕ′)
and (ϕ,ϕ′′), for entities producer and band, respectively. In
the top-down phase, Decomp decomposes ϕ to two tree keys
with patterns P1 and P2. Their common matches, computed
by PVal, refine the match set of P to {a2, . . . , a5}. The pro-
cess continues following Gd until it reaches leaves. 2

Procedure SVal. Once the traversal reaches the leaf level
(each interior variable node has been decomposed into its
own tree keys, and every child ϕ′ of ϕ in Gd has ϕ′.Val =
true), SVal verifies the bisimilar matches for P (uo, G) with
the following invocation cases (Figure 6).

(album)

name* producer

{p }4

{b }5

Figure 5: OGK-EM: Entity matching and pruning.

ϕ is a leaf. For ϕ = (P (uo), X), PVal computes matches by

verifying for each pair (v, v′) from P (uo, G), whether there
exists a pair of bisimilar matches P (G, f) ∼ P (G, f ′). To
avoid enumerating all pairwise comparisons, we extend the
VF2 algorithm with backtracking [12] to consider partial
matches (v, v′) with an added feasibility condition: for all
(v1, v2) that match a constant node u in P (uo), v1.val =
v2.val. If (v, v′) are induced by bisimilar matches, we merge
[v] and [v′] in V [uo]. After all pairs have been evaluated,
SVal sets ϕ.Val = true in Gd. We further optimize the match-
ing by using an ontology index [36] ( see details in [1]).

Leveraging children equivalence classes. If each child ϕ′(u′o)

of ϕ(uo) in Gd has ϕ′.Val = true, then no further equivalence
classes for ϕ′(u′o) can be merged from bisimilar matches.
SVal uses these equivalence classes to refine VE(uo). First,
for each variable node u′o ∈ Vx of P (uo), SVal induces a lo-
cal view Vϕ[u′o] of enforced equivalence classes V [u′o], where
Vϕ[u′o] is defined as

⋃
v[u]∈V [u] v[u] ∩ P (u,G), i.e., the par-

titions V [u] that are induced by nodes in P (u′o, G). Second,
SVal then constructs an equivalence relation R(ϕ, uo), where
a pair of nodes (vo, v

′
o) ∈ R(ϕ, uo) if the following hold:

• {vo, v′o} ⊆ P (uo, G), and
• for each variable node ux ∈ Vx, there exists v and v′

such that (v, v′) ∈ Vϕ[u′o], and vo, v (resp. v′o, v′) are
from the same match Pi(G, f) (resp. Pj(G, f

′)) of at
least a tree key Pi (resp. Pj) of P (uo).

The relation R(ϕ, uo) partitions Vϕ[uo] of P (uo, G), and
SVal verifies each pair (vo, v

′
o) using only equivalence classes

vϕ[u] ∈ Vϕ[uo], without having to do pairwise comparisons
from P (uo, G) (using the extended VF2 algorithm). Lastly,
we update V [uo] to enforce equivalence classes of uo, and
set ϕ.Val = true. Lemma 4 shows that the reduced number
of verification steps continues to preserve correctness.

Lemma 4: For any OGK ϕ(uo) ∈ Σ, and any entity equiv-
alent pairs (v, v′) ∈ R(uo), (v, v′) ∈ R(ϕ, uo). 2

Early termination. Given Lemma 4, OGK-EM terminates
the matching process early for ϕ whenever R(ϕ, uo) is an
identity relation without verification. Indeed, entity graph
VE will remain unchanged for all such OGKs. The esti-
mated V [uo] (with nodes from P (uo, G) that may contain
non-matches) is used to prune the match sets of its parents.

For an SCC node vd in Gd that contains multiple OGKs,
OGK-EM resolves equivalence classes in a similar manner
but conducts a fixpoint computation (see details in [1]).

Example 11: Continuing our example in Figure 5, in the
bottom-up phase, a set of equivalence classes for producer
({{p2, p4},{p5, p6}}) and band ({{b1, b2}, {b3, b4}, {b5}}) are

1201



Procedure SVal(ϕ(uo), Gd)

1. if V [uo] = ∅ then V [uo] := {[v]|[v] = {v}, v ∈ P (uo, G)};
2. if r(ϕ) = rm then /*a leaf node in Gd*/
3. for each (vo, v′o) ∈ P (uo, G) do
4. if (Verify(vo, v′o, uo)=true) then
5. [vo]uo := [v′o]uo ∪ [v′o]uo ;
6. enforce equality of eido on [vo]uo ;
7. update V [uo] with [vo]uo ; break;
8. if r(ϕ) < rm then
9. for each variable node u′o ∈ Vx do
10. compute Vϕ[u′o] and Vϕ[uo] (R(ϕ, uo));
11. for each vϕ[uo] ∈ Vϕ[uo] and (v, v′) ∈ vϕ[uo]do
12. if (Verify(v, v′, uo)=true) then
13. merge [v]uo and [v′]uo ; update V [uo];
14. return V [uo];

Figure 6: Procedure SVal

derived from the two children of OGK ϕ, respectively. For
the node producer in ϕ with potential matches {p3, . . . ,
p7}, SVal first induces a local equivalence partition given
that all equivalent producer entities are known by enforcing
ϕ′. This induces a non-singleton equivalence class {p5, p6}
and a singleton {p4}. Similarly, it induces local equivalence
classes {b3, b4} and {b5} derived from ϕ′′ for band.

The match set for album {a2, . . . , a5} (obtained in the
top-down phase; Example 10) is then refined to {{a2, a3},
{a4},{a5}}. Specifically, (1) a2 and a3 have a child p5 and p6

respectively, both from a same equivalent class for producer;
and share a same child b3 (band); (2) a4 and a5 each has
children either from producer or band that distinguish them
from equivalent entities. Thus, only a single pair of entities
{a2, a3} need to be verified for entity equivalence. 2

Analysis. OGK-EM correctly enforces Σ. Indeed, G′ |= Σ
when OGK-EM terminates, where G′ is the base graph of the
produced entity graph VE , ensured by the correctness of PVal
and SVal. Let the set C(uo) be {v|L(v) ∈ lsim(uo), v ∈
V } under scope (G,O, θ), d be the maximum diameter of a
pattern in Σ, and Cm (resp. Pm) refers to the largest C(uo)
(resp. P (uo) in Σ). It takes O(|Σ|2) time to construct Gd,

and O(|Nd(C(uo))|2|P (uo)|) time to identify equivalent pairs,
where Nd(C(uo)) are the d-hop neighbors of C(uo). Thus,

OGK-EM takes O(|Σ|2 + |Σ||Nd(Cm)||Pm|) time. In practice,
|Σ|, |Pm| and d are small (see Section 7).

6. BUDGETED ENTITY MATCHING
Resources are often limited in practice, and constraints are

imposed to minimize the effort and cost to perform entity
matching [29]. We introduce a budgeted version of OGK-EM
that performs entity matching with bounded matching cost.

We start with a cost model for Chase with OGKs.

Cost Model. Given OGK ϕ = (P (uo), X), scope (G,O, θ),

let Chase(i) = (Gi (ϕ,f)
=⇒ Gi+1), represent a single Chase step.

We define the cost c(Chase(i)) of a single Chase step as
c(uo, f(uo)), which is the cost to match uo and f(uo). For

a Chase sequence, Chase(ij), we define ρ = (Gi (ϕ,(v1,v2))
=⇒

. . .
(ϕ′,(v′

1,v
′
2))

=⇒ Gj), and the cost is computed as

c(ρ) = c(Gi,Gi+1) ·
j−1∑
i

c(Chase(i))

where c(Gi,Gj) = |U|
|V | , and U refers to the total number of

entity identifiers (v.eid) updated in Gi to enforce the Chase

Algorithm BOGK− EM

Input: dependency graph Gd, scope (G,O, θ); budget B; beam size b;
Output: the entity graph VE under budget B.

1. initializes V [ui] (ui ∈ E);
2. integer r :=l + 1 (l: the maximum node rank of Gd);
3. set π∗ :=∅; set π := ∅; stack S.push (r, 0, B); cost U :=0;
4. while S.top() 6= ∅ do
5. π:= Bchase (π, r, S, b,Gd);/*compute a Chase under budget*/
6. if π 6= ∅ then
7. π∗ = π; U := π.cost; /* current optimal chase*/

/* set new cost range to explore Chase */
8. while S.top().cmin ≥ U do S.pop();
9. S.top().cmin:= S.top.cmax; S.top().cmax:= U ;
10. if S=∅ then
11. construct VE by enforcing sequence π∗;
12. return VE .

Figure 7: Algorithm BOGK-EM

rules. Intuitively, we measure the cost to enforce Σ, which
requires merging and transforming nodes in Gi to those in
Gj , and includes the matching cost of each Chase step.

Budgeted Entity Matching Problem. Given a set of
OGKs Σ, scope (G,O, θ), and a budget B, we want to com-
pute a Chase sequence ρ that generates a G, such that ρ has
a smallest cost c(ρ) bounded by B.

Our goal is consistent with evaluating entity resolution
with “merging” cost of entities [29], while (1) c(ρ) aggre-
gates the editing cost weighted by ontological matching cost;
and (2) B encodes a threshold to distinguish “good” entity
matching results and infeasible ones. Intuitively, we iden-
tify feasible entity matching result with a minimum cost.
Budgeted entity matching generalizes the entity matching
problem in Section 4: the latter carries unit Chase step cost
with B = ∞, This leads to the following result.

Lemma 5: Budgeted matching with OGKs is NP-hard. 2

To find a Chase with minimal cost, we model this as a
planning problem that outputs a sequence of OGKs π =
{ϕ1, . . . , ϕn} to be enforced with minimum cost. We show
that the search can be optimized by revising OGK-EM with
beam search and backtracking.

Overview. We introduce a budgeted version of OGK-EM
called BOGK-EM, optimized by beam search with backtrack-
ing. Beam search is a heuristic optimization of breadth-
first search that traverses a search tree by expanding and
exploring the most promising nodes, up to a fixed number
b, called the beam size. BOGK-EM follows beam search to
select the top-b “best” OGKs following node ranks in depen-
dency graph, but dynamically reduces the allowed budget
according to current best solution, and backtracks to explore
alternative Chase sequences. Moreover, BOGK-EM dynam-
ically estimates an upper bound of Chase cost to prioritize
the selection of promising beam elements as OGKs.

Auxiliary structures. BOGK-EM uses the dependency graph
Gd to coordinate the search. For each node vd in Gd, it ex-
tends the auxiliary information of vd to a vector {isC,Val, U)},
where U is an estimate of the additional Chase cost to en-
force all OGKs in vd. At each layer i, BOGK-EM records: (1)
an open set open(i) of candidate OGKs to be explored; (2) a
set L ⊆ open(i) of OGKs to be validated and enforced with
tunable memory size; and (3) a stack S containing values
(i, cmin, cmax) that define the allocated cost range to OGKs
(open(i)) evaluated at layer i.

1202



Algorithm. The algorithm BOGK-EM is illustrated in Fig-
ure 7. Let the leaves in Gd be of rank l, and vs be a pseudo
node of rank l + 1, connecting to the leaf nodes. BOGK-
EM initializes the auxiliary structures, as well as the cur-
rent best Chase and the newly constructed Chase with π∗

and π, respectively (lines 1-3). It then executes a layered,
beam search with backtracking starting at vs, invoking pro-
cedure Bchase (lines 4-9) to update π∗. It then enforces π∗

to perform entity matching (lines 10-12).
We next describe procedure Bchase (see details in [1]).

Beam selection. At each layer i, Bchase evaluates all nodes
in Gd with rank i. If i = (l + 1), we initialize the candidate
set of OGKs to explore, open(l), to all the leaves in Gd with
rank l, set OGKs π and π∗ to ∅, and push (l, 0, B) to stack
S. For each candidate node vd in open(i − 1), representing
an OGK ϕ = (P (uo), X → lo), we compute the matches for
each node u in P (uo) using Decomp and PVal. We derive
an upper bound of the matching cost vd.U as

vd.U =
|P (uo, G)|
|V | max

vo∈P (uo,G)
ĉ(uo, vo)

where ĉ(uo, vo) is an overestimated cost, computed as

ĉ(uo, vo) =
1

|VP |
∑

u′∈VP

max
v′∈P (u′,G)

cr(u′, v′)

We overestimate the matching cost by assuming that ev-
ery pruned node in Decomp and PVal are indeed matches.
The cost of an SCC node vd is computed similarly, as the
sum of the estimated cost for each OGK ϕ ∈ vd.

Bchase initializes L with the b OGKs in open(l) of smallest
cost within the range (S.top().cmin, S.top().cmax]. For beam
selection when backtracking to layer i, we define the cost
range for the next batch of OGKs by pushing a triple (i,
maxvd∈L(vd.U), B) onto the stack S.

Backtracking. We refine each OGK in L(i − 1) by refining
its matches using procedure SVal. We also update vd.U to
its true cost B′, and add the selected OGK to the current
Chase π. We must update the list of candidates for the next
level, open(i − 2), as the set of nodes in Gd with validated
children (using flag Val), and deduct B′ from the current
budget B. If B > 0, and candidates remain in open(i −
2) or open(i − 1), Bchase will continue processing the next
layer i − 2. Otherwise, we set the optimal Chase π∗ = π,
if π∗=∅, or c(π) < c(π∗). We backtrack to layer i − 1, to
populate the cache L(i − 1) with the b OGKs of lowest cost
vd.U ∈ (S.top().cmin, S.top().cmax), and update the stack S.
After processing all candidate OGKs in layer i − 1, we set
open(i − 1) = ∅. BOGK-EM terminates when open(l) is ∅,
and enforces the equivalence classes for each OGK in π∗.

Example 12: Consider the dependency graph Gd in Fig-
ure 8. Let the beam size b = 2 and a budget B = 9, BOGK-
EM computes a budgeted Chase as follows. (1) Starting
from the pseudo node vs (ϕ0), it initializes the stack S with
(3, 0, 9), stating “Chase with cost in [0,9] will be explored”.
As the costs of ϕ1, ϕ2, and ϕ3 are validated to be 3, 4 and 5
respectively and b=2, It sets open (2) as {ϕ1, ϕ2, ϕ3}, L(2)
= {ϕ1, ϕ2}, and updates S.top() to be (3, 0, 5), to prevent
traversing Chase with cost less than 5 when backtracking to
level 2. (2) At level 2, BOGK-EM pushes (2, 0, 9) to S, identi-
fies L(2) to be {ϕ4, ϕ5}, and updates the top of S to (2, 0, 6)
similarly. (3) At level 3, it constructs the current best Chase

φ
1 φ

2
φ

3

φ
4 φ

6 φ
7

φ
0

open(2)

open(1)

open(2)

open(1)

(3,0,9)
stack S

(2,0,9)
stack S

 (3,0,5)

backtracking

(2,0,6)
stack S

 (3,0,5)

(2,0,7)
stack S

 (3,0,5)

3 4 5

4 6

current best: 7

stack S

 (3,5,7)

current best: 7

1

(2,0,7)
stack S

 (3,5,7)

current best: 7

5φ
5

(2,0,7)
stack S

 (3,5,6)

current best: 6

Figure 8: BOGK-EM: budgeted Chase with backtracking.

{ϕ1, ϕ4}. As the only successor of ϕ4 exceeds the budget,
it backtracks to level 1. (4) Given the current minimum
cost 7, it updates S.top().cmin to 5, and S.top().cmax to 7,
“switching” to explore Chase with cost in [5, 7]. This finally
yields a better Chase {ϕ5, ϕ7} with cost 6. 2

Analysis. BOGK-EM is an anytime algorithm that can re-
turn the current Chase π upon request, and can continue
to refine π if needed, with decreasing incremental cost to
generate new solutions. It is also memory efficient, with the
memory cost in O(2b · (Nd(Cm) + |Pm||Cm|) + |Σ|), where d
is the diameter of Pm (see [1] for detailed analysis).

7. EXPERIMENTAL STUDY
We use real graphs and ontologies to evaluate: (1) the ef-

ficiency of entity matching using OGKs; (2) the effectiveness
of entity matching (with ground truth), and the trade-off
between effectiveness and efficiency (using injected redun-
dancy); and (3) case studies for real entity matching.

Experimental Setup. We implement all our algorithms in
Java v8, and ran our experiments on a Linux machine with
AMD 2.7 GHz CPU with 256 GB of memory.

Datasets. We use two real benchmark datasets containing
the ground truth to evaluate the efficiency and effectiveness
of our techniques. We also develop a data generator to inject
duplicates into one of the benchmark datasets to evaluate
scalability. Table 2 summarizes the data characteristics.

DBpedia-Yago2: this benchmark graph (used in [35]) con-
tains 50, 248 verified ground truth entity pairs with aligned
properties between DBpedia and Yago. These equivalent
pairs cover 10 types of entities. To create a “hybrid” ontol-
ogy, we added “is A” relations between two types for each
ground truth entity pair, one from the DBpedia ontology,
and the other from the Yago ontology.

DBpedia-IMDb3: this second benchmark graph (used in [15])
contains 33,437 entities covering 10 types, totaling 9, 515
redundant pairs between DBpedia and IMDb. We create the
corresponding ontology that links entities between DBpedia
and IMDb following a similar process for DBpedia-Yago.

DBpYago-Dup: To evaluate the trade-off between efficiency
and effectiveness, we create a data generator that injects a
controlled number of duplicate entity pairs, facts, and labels
into DBpedia-Yago, and its corresponding ontology. The du-
plicate entries are duplicated from the ground truth entities

2
https://github.com/lgalarra/vickey

3
https://www.csd.uoc.gr/~vefthym/minoanER/datasets.html

1203



Table 2: Data characteristics.

Dataset #entities #triples #labels #duplicates
DBpedia-Yago 592K 4.5M 10 50248
DBpedia-IMDb 33K 200K 10 9515
DBpYago-Dup 4.6M 29M 935 65248

with varied labels from the original ontology. The gen-
erator injects pairs of “seed” equivalent entity pairs (v, v′),
and duplicates v and v′ in DBpedia and Yago respectively,
along with their neighborhood up to 3 hops. The genera-
tor then disturbs the entity types of these duplicates to a
concept label in the ontology, and randomly updates 50% of
the literals of duplicated entities. We then identify a set of
true examples Γ+ (containing equivalent entity pairs), and
false examples Γ− (that do not refer to the same entity as a
result of injecting noise into the labels and literals).

We use the two benchmark graphs to evaluate the com-
parative accuracy of OGK based techniques against the base-
lines, and the controllable DBpYago-Dup to verify efficiency.

OGKs Generation. We extend the key mining algorithm,
KeyMiner [4] to generate OGKs. Given ground truth, it dis-
covers OGKs via level-wise graph pattern mining to identify
maximal entity patterns and literals that preserve bisimi-
lar matches for entity equivalent pairs. We compute OGKs
using a minimum support of 80%, with confidence level of
at least 90% over the matched entities. For each dataset,
we sample 40% of the examples as a training dataset. We
validate the keys over 10% of the examples (as a validation
dataset), and retain those with desirable accuracy. Using
these OGKs, we apply entity matching over the remaining
50% of the dataset as a test dataset. We used hyponym
edges to identify entity types, and equivalence and descrip-
tive edges to identify concept labels, to be assigned to the
OGK patterns. We extracted 10, 8, and 250 OGKs covering
at least 40K, 7.6K and 52K of the ground truth in DBpedia-
Yago, DBpedia-IMDb and DBpYago-Dup, respectively. We
retain the OGKs with high support and confidence condi-
tioned by proper literals. The OGKs for DBpYago-Dup are
generated over the examples Γ+ and Γ−.

Algorithms. We implemented the following methods.

OGK-EM: our exact entity matching algorithm (Section 5).

EnumEM: a variant of OGK-EM without the top-down phase
that follows a bottom-up strategy to perform pairwise verifi-
cation of bisimilar matches without hypergraph refinement.

GK-EM: a variant of EnumEM that simulates graph key-
based entity matching [16], by enforcing type equality with-
out literals, and merges nodes instead of entity identifiers.

BOGK-EM: our weighted entity matching algorithm. We
compare BOGK-EM against BEnumEM and BGK-EM, which
are the budgeted versions that uses pairwise verification
without hypergraph refinement, and enforces type equality,
respectively. For pattern matching, we implement an algo-
rithm that extends VF2 with ontology similarity [12].

Vickey [35] detects conditional keys via breadth-first search
using logical rules with strict label equality. It considers
neither topological nor ontological similarity.

Holistic [33] performs graph alignment by personalized page-
rank from seed entities, and expands subgraphs (modeled as
“pair graphs”) to capture the impact of correlated entities.

We set a support threshold 2% for Vickey, and a simi-
larity threshold 0.85 for Holistic to assert equivalence. We

choose these settings to favor both methods under which
they achieve the highest average precision and recall. Our
source code and test cases are all available online4.

Experimental Results. We next report our findings. We
first evaluate the efficiency of OGK-EM and BOGK-EM against
EnumEM, GK-EM, and BEnumEM, BGK-EM. Our objec-
tive is to evaluate the effectiveness of our optimizations on
runtime, and the overhead of enriched key semantics.

Exp-1: Efficiency of OGK-EM. Using DBpedia-Yago, we
defined 10 OGKs. We set lsim(l), and θ to include similar
labels that are within 2 hops of l in the corresponding on-
tologies. The center nodes have on average 12000 matches.
Figure 9a reports the time of entity matching and the im-
pact of pattern size (number of edges). (1) It is quite fea-
sible to identify equivalent entities over real-world graphs
using OGK-EM. For example, it takes on average 10 sec-
onds to enforce OGKs Σ over DBpedia-Yago, and 9.1 seconds
over DBpedia-IMDb. (2) OGK-EM outperforms EnumEM by
2.4 times, and has comparable performance with GK-EM.
This is notable since GK-EM enforces only label equivalence,
thereby inspecting fewer entities than OGK-EM. (3) OGK-
EM outperforms Vickey by 4.2 times on average. While the
major bottleneck for both methods are the pairwise compar-
isons of entities, OGK-EM performs less comparisons due to
an enriched OGK semantics and pruning strategy. Vickey
identifies relatively more entity pairs that must be com-
pared. We also found that Holistic cannot run to completion
after 350 seconds. The major bottleneck is the construction
of auxiliary structures, such as pair graphs.

Exp-2: Scalability. Using DBpYago-Dup, we evaluate
the scalability of our algorithms by varying: the number
of variable nodes (|Vx|), thresholds (α, θ), recursion depth
(rm), the number of OGKs (|Σ|), graph size (|G|=(|V |, |E|)),
budget (B), and beam size (b). We set |Σ| = 10, |Vx| = 2,
|G| = (16M, 20M), rm = 2, and (α, θ) = (2, 0.5) by default.

Varying variable size |Vx|. Figure 9b reports the impact of

the number of variable nodes |Vx| (varied from 1 to 4 by
selecting corresponding OGKs groups) to the performance
of OGK-EM. While all algorithms take more time for OGKs
with larger variable nodes, OGK-EM is less sensitive com-
pared to EnumEM and GK-EM, due to its aggressive pruning
that reduce the pairwise comparison costs. More equiva-
lence classes can also be refined during the “bottom-up”
phase over larger |Vx|, further reducing verification. On av-
erage, OGK-EM outperforms EnumEM by 2 times.

Varying (α, θ). We varied α from 1 to 5 and θ from 0.1 to 0.5.
Given a pair of equivalent entities from the positive examples
(benchmark data), we calculate the distance between their
labels in the corresponding ontology. We observe that 5 is an
“upper bound” of α in order to identify ontologically similar
entity types for most cases. Figure 9c shows that OGK-EM
scales well as OGKs relax strict equality matching to allow
approximate entity matching using similar concept labels by
tuning θ and α. OGK-EM leads to longer running times due
to verifying more matched entities. It is more sensitive to α
comparing with θ, as larger α indicates more entities need to
be verified. GK-EM lacks such flexibility due to strict label
equality.

4
https://github.com/HanchaoMaWSU/OGKEM.git

1204



 0

 10

 20

 30

 40

 50

 60

|P|=2

           DBpedia-Yago

|P|=3 |P|=2

           DBpedia-IMDB

|P|=3

T
im

e
 (

se
c
o
n
d
s)

GK-EM
OGK-EM

EnumEM
Vickey

(a) Efficiency (Benchmark)

 0

 10

 20

 30

|Vx|=1 |Vx|=2 |Vx|=3 |Vx|=4

T
im

e
 (

se
c
o
n
d
s)

Number of variable nodes

GK-EM
OGK-EM

EnumEM

(b) Varying |Vx|

 0

 10

 20

 30

 40

0.1
        alpha=1

0.3 0.5 0.1
        alpha=3

0.3 0.5 0.1
        alpha=5

0.3 0.5

T
im

e
 (

se
c
o
n
d
s)

GK-EM
OGK-EM
EnumEM

(c) Varying (α, θ)

 0

 10

 20

 30

 40

 50

rm=1 rm=2 rm=2

T
im

e
 (

se
c
o
n
d
s)

Maximum recursion depth

GK-EM
OGK-EM

EnumEM

(d) Varying rm

500

1000

1500

2000

2500

3000

3500

50 100 150 200 250

T
im

e
 (

se
c
o
n
d
s)

|Σ| (Size of Σ)

OGK-EM

EnumEM

GK-EM

(e) Varying |Σ|

10

20

30

40

50

(4, 5) (8,10) (12,15) (16,20) (20,25)

T
im

e
 (

se
c
o
n
d
s)

G=(V,E) (M)

OGK-EM

EnumEM

GK-EM

(f) Varying |G|

5
10
15
20
25
30
35
40
45

100 300 500 700 900

T
im

e
 (

se
c
o
n
d
s)

B (Budget)

BOGK-EM

BEnumEM

BGK-EM

(g) Varying B

 0

 10

 20

 30

 40

 50

b=1 b=3

T
im

e
 (

se
c
o
n
d
s)

b (Beam size)

BGK-EM
BOGK-EM

BEnumEM

(h) Varying b

Figure 9: Efficiency of Entity Matching using OGKs.

Varying recursion rm. We varied the OGK recursion depth
in Σ (i.e., the maximum node rank rm in dependency graph
Gd) from 1 to 3. This occurs when new references are iden-
tified among the entities in Σ. Figure 9d shows increased
runtimes for all algorithms as deeper recursion rm is en-
forced. However, OGK-EM terminates earlier for larger rm,
due to greater refinement of equivalence classes.

Varying |Σ| and |G|. Figs 9e and 9f verify that all methods

take longer time for larger |Σ| and |G|. Specifically, OGK-EM
outperforms EnumEM by 1.7 times and 4.8 times when |Σ|
= 250 and |G| is varied to (20M, 25M), respectively. OGK-
EM has a reduced number of comparisons, and comparable
runtime with GK-EM, which only enforces label equality.

We now evaluate the anytime BOGK-EM for budgeted en-
tity matching, and compare it with BEnumEM and BGK-EM.
For a fair comparison, we report the runtime for each algo-
rithm to converge to the best Chase for a given budget B.

Varying budget B. Figure 9g shows that all three budgeted
algorithms take more time as we vary B from 100 - 900,
due to additional verification from more merge operations.
BOGK-EM outperforms BEnumEM by 5 times on average.

Varying beam size b. Fixing |G| = (16M, 20M), Figure 9h
shows that larger beam sizes allow BOGK-EM to prioritize
Chase and select more promising OGKs first. Aggressive
pruning can also occur during the bottom-up phase due to
more OGKs at the leaf level. BGK-EM is not affected by b
since it does not execute a beam search.

Exp-3: Impact of Parameters to Accuracy. We inves-
tigate the impact of the thresholds (α, θ) and the budget B
using DBpYago-Dup. We injected 15K true and false exam-
ples each to DBpYago-Dup (|Γ+| = |Γ−| = 15K). By default,
we set α = 3, θ = 0.8, and B = 500.

Varying threshold pair (α, θ). Recall that larger values of α
and θ relax the strict equality conditions for label and onto-
logical matching, respectively, e.g., label equality is enforced
at α = 0. By allowing this flexible similarity matching, we
achieve precision gains over existing techniques. For exam-

Table 3: Comparative accuracy against baselines

Entity Type
(#entities, #positives)

OGK-EM Vickey Holistic
P/R/F P/R/F P/R/F

Book(126K, 13.2K) 0.97/0.85/0.9 0.96/0.36/0.5 0.8/0.58/0.67
Actor(204K, 5K) 1/0.66/0.79 0.95/0.12/0.2 0.6/0.36/0.46

Museum(34K, 3.2K) 0.99/0.42/0.58 1/0.1/0.18 0.82/0.14/0.2
Scientist(154K, 16.1K) 0.99/0.67/0.8 0.99/0.2/0.33 0.72/0.56/0.6
University(215K, 12.6K) 0.96/0.5/0.66 0.93/0.11/0.2 0.79/0.3/0.43

Movie(33K, 9.5K) 0.95/0.74/0.8 0.95/0.1/0.18 0.65/0.1/0.17

ple, OGK-EM achieves an 18% gain in precision on average
over GK-EM by capturing more correct entities via ontolog-
ical matching (not shown). Figure 10a shows that as (α, θ)
increase, precision decreases, as more weakly related entities
(false positive examples) are captured due to approximate
matching. We also verify this trend as fpr increases for larger
(α, θ) values. In contrast, Figure 10b shows that increasing
α and θ improves recall. We observe a 53% gain in recall,
and a 25% gain in F1 score when (α, θ) is varied from (1,
0.4) to (3, 1), since more true positive entities are captured
by OGKs via ontological matching.

Varying budget B. Figure 10c and Figure 10d show that
algorithms BOGK-EM and BGK-EM achieve improved pre-
cision and recall for larger B (we set (α, θ) to (2, 0.8)). As
expected, an increased budget allows for more OGKs to be
evaluated, and more merges of entity equivalent nodes to
occur, thereby capturing more true positives. We observe a
similar trend for increased fpr values (not shown) for increas-
ing B,α, θ values. We note that BOGK-EM is more accurate
than BGK-EM in capturing true positives as it achieves on
average 20% gain in recall. We also observe a 47% gain in
F1 score by BOGK-EM when we vary B from 100 to 500,
and a lesser gain of 15% by BGK-EM (not shown).

Comparing the above analysis with their efficiency coun-
terparts in Exp-2 (Figures 9c and 9g), we verify that OGK-
based techniques support a flexible trade-off between match-
ing efficiency and accuracy by tuning (α, β) and budget B.

Exp-4. Case Analysis. We study the accuracy of OGK-
EM against the baselines, and report a case analysis over 6
common entity types in Table 3, in terms of precision (P), re-

1205



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

θ

alpha=1 alpha=2 alpha=3

(a) prec vs.(α, θ)(DBpYago-Dup)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.2 0.4 0.6 0.8 1

R
e

c
a

ll

θ

alpha=1 alpha=2 alpha=3

(b) rec vs.(α, θ)(DBpYago-Dup)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

100 200 300 400 500

P
r
e

c
is

io
n

B

BOGK-EM BGK-EM

(c) prec vs. B (DBpYago-Dup)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

100 200 300 400 500

R
e

c
a

ll

B

BOGK-EM BGK-EM

(d) rec vs. B (DBpYago-Dup)

Figure 10: Effectiveness of Entity Matching using OGKs.

call (R) and F -measure (F ). All entities are from DBpedia-
Yago except for Movie entities, which are from DBpedia-
IMDb. We set α=2, θ=0.8, and B=500. These settings
over real benchmark graphs are guided by cases that have
high accuracy using DBpYago-Dup. When no ground truth
is available, a configuration can be initialized by duplicating
entities with equal labels and examining cases with reason-
able accuracy that cover these ground truth subsets.

We observe the following. (1) OGK-EM achieves the best
precision and recall in most cases using OGKs: the joint
topological and value constraints improve precision, while
the ontological matching mitigates loss of recall. (2) Vickey
achieves comparable precision at a cost of low recall due to
enforcing label equality. In addition, conditional keys mined
by Vickey may be overfitted to the datasets leading to lower
recall (e.g., “Actor” in Table 3). For example, Vickey fails
to identify Michael Burrows (scientist) and Michael Burrows
(person). (3) Holistic achieves higher recall but lower preci-
sion compared with Vickey. Indeed, not all “similar” entities
are equivalent. For example, two scientists William Arthur
(botanist) and William Arthur (mathematician) are linked
by Holistic due to the same name, work place and national-
ity, but are correctly distinguished by OGKs due to the high
ontological matching cost. (4) GK-EM incurs an average 21%
decrease in recall compared to OGK-EM by enforcing only
type equality without considering entity ids. EnumEM pro-
vides similar accuracy results with OGK-EM. Due to limited
space, we report full details in [1].

8. RELATED WORK
Ontological Dependencies. Existing work has coupled
ontologies with functional dependencies (FDs), and equality-
generating dependencies (EGDs) over RDF triples [3,23,30].
These constraints, however, are limited to value bindings
with no topological restrictions. Ontological FDs (OFDs) [8]
is a tighter integration of FDs and ontologies in relational
data, by relaxing the strict equality conditions in FDs to
include synonym and inheritance (is-a) notions of semantic
equivalence. OFDs have shown to significantly reduce false
positive errors, improve recall in entity resolution.

This work extends keys for graph to include both graph
patterns and ontologies to capture topological constraints
and semantic equivalence. OFDs restrict ontological exten-
sions to only the consequent attribute of the dependency.
Furthermore, OFDs cannot be directly applied to charac-
terize OGKs with topology and value constraints. Our work
also benefits from pattern matching with ontologies [36].

Graph Dependencies. Recent work has proposed variants
of graph functional dependencies (GFDs) that define value

relationships over entities satisfying topology constraints [17,
18]. Keys for graphs specialize GFDs by enforcing node
identity to identify an entity [16]. In addition, keys for
graphs may be recursively defined, allowing entity identi-
fication to be dependent on sub-entities. This recursive
dependency makes keys for graphs inherently more com-
plex than GFDs. In OGKs, this recursive complexity man-
ifests in entity matching to efficiently resolve all dependent
sub-entities, and to accurately propagate semantic similar-
ity across the matched nodes. Graph entity dependencies
(GEDs) unifies GFDs and keys [17]. These bindings are
fixed and inflexible to exploit external ontologies to reconcile
semantically equivalent entities. Closer to our work is con-
ditional keys for RDFs [35]. These constraints are defined
by a conjunctive condition over attribute properties, and en-
force attribute identity. Nevertheless, conditional keys are
not characterized by patterns and topological constraints.

Graph Matching and Entity Categorization. Proba-
bilistic graph matching seeks a mapping that induces simi-
lar subgraphs from a pair of graph instances, and their node
features [38]. Entity matching differs from graph match-
ing as two similar nodes in graph matching may not nec-
essarily refer to the same entity. By using graph patterns
and ontologies, we can precisely define the context of entity
equivalence and also enable feasible entity matching for big
graphs. Unlike entity categorization [20], OGKs incorporate
ontological similarity during the matching process, and dy-
namically propagate this similarity to neighboring nodes to
identify entity pairs that are semantically equivalent.

9. CONCLUSION
We proposed a class of ontological graph keys (OGKs),

which are a variant of graph keys by relaxing node identity
to entity identifier equivalence, and type equality to onto-
logical matching. We show that adding ontological match-
ing does not make reasoning of OGKs harder: validation
and implication problems are both NP-complete. We ex-
tended Chase to characterize entity matching with OGKs,
and show Chase preserves the Church Rosser property with
fixed scope. We developed efficient algorithms with early
termination, for both exact matching and budgeted match-
ing. OGKs are a first class of approximate graph key con-
straints with tunable tolerance on type mismatching. As
next steps, we intend to study the application of OGKs to
knowledge fusion (e.g., compared with graph embeddings),
and the parallel discovery of OGKs in distributed graphs.

Acknowledgements. This work is supported in part by
USDA/NIFA 2018-67007-28797, Siemens, and the Depart-
ment of Energy under DE-IA0000025 for UI-ASSIST project.

1206



10. REFERENCES
[1] Full version.

http://www.cas.mcmaster.ca/∼alipoum/full.pdf.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] W. Akhtar, A. Cortés-Calabuig, and J. Paredaens.
Constraints in RDF. In SDKB, pages 23–39, 2011.

[4] M. Alipourlangouri and F. Chiang. Keyminer:
Discovering keys for graphs. In VLDB workshop
TD-LSG, 2018.

[5] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Computing Surveys (CSUR),
40(1):1–39, 2008.

[6] M. Arenas and L. Libkin. A normal form for xml
documents. ACM TODS, 29(1):195–232, 2004.

[7] M. Atencia, M. Chein, M. Croitoru, J. David,
M. Leclère, N. Pernelle, F. Säıs, F. Scharffe, and
D. Symeonidou. Defining key semantics for the rdf
datasets: experiments and evaluations. In ICCS, pages
65–78, 2014.

[8] S. Baskaran, A. Keller, F. Chiang, L. Golab, and
J. Szlichta. Efficient discovery of ontology functional
dependencies. In CIKM, pages 1847–1856, 2017.

[9] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
The traveling salesman problem in bounded degree
graphs. ACM Trans. Algorithms, 8(2):1–18, 2012.

[10] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W.-C. Tan. Keys for xml. Computer networks,
39(5):473–487, 2002.

[11] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. Datalog±: a
unified approach to ontologies and integrity
constraints. In ICDT, pages 14–30, 2009.

[12] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
An improved algorithm for matching large graphs. In
3rd IAPR-TC15 workshop, GbRRR, pages 149–159,
2001.

[13] A. Cortés-Calabuig and J. Paredaens. Semantics of
constraints in RDFS. In AMW, pages 75–90, 2012.

[14] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn,
K. Murphy, S. Sun, and W. Zhang. From data fusion
to knowledge fusion. VLDB, 7(10):881–892, 2014.

[15] V. Efthymiou, K. Stefanidis, and V. Christophides.
Benchmarking blocking algorithms for web entities.
IEEE Transactions on Big Data, pages 1–14, 2016.

[16] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for
graphs. PVLDB, 8(12):1590–1601, 2015.

[17] W. Fan and P. Lu. Dependencies for graphs. In
PODS, pages 403–416, 2017.

[18] W. Fan, Y. Wu, and J. Xu. Functional dependencies
for graphs. In SIGMOD, pages 1843–1857, 2016.

[19] M. Gardner and T. M. Mitchell. Efficient and
expressive knowledge base completion using subgraph
feature extraction. In EMNLP 2015, pages 1488–1498,
2015.

[20] S. Hao, N. Tang, G. Li, and J. Feng. Discovering

mis-categorized entities. In ICDE, pages 413–424,
2018.

[21] S. Hao, N. Tang, G. Li, and J. Li. Cleaning relations
using knowledge bases. In ICDE, pages 933–944.
IEEE, 2017.

[22] J. Hellings, M. Gyssens, J. Paredaens, and Y. Wu.
Implication and axiomatization of functional
constraints on patterns with an application to the
RDF data model. In FoIKS, pages 250–269, 2014.

[23] J. Hellings, M. Gyssens, J. Paredaens, and Y. Wu.
Implication and axiomatization of functional and
constant constraints. Annals of Mathematics and
Artificial Intelligence, 76(3-4):251–279, 2016.

[24] J. Hoffart, F. M. Suchanek, K. Berberich, and
G. Weikum. Yago2: A spatially and temporally
enhanced knowledge base from wikipedia. Artificial
Intelligence, 194:28–61, 2013.

[25] R. Knappe, H. Bulskov, and T. Andreasen.
Perspectives on ontology-based querying. International
Journal of Intelligent Systems, 22(7):739–761, 2007.

[26] N. Lao, T. M. Mitchell, and W. W. Cohen. Random
walk inference and learning in A large scale knowledge
base. In EMNLP, pages 529–539, 2011.

[27] G. Levchuk, J. Roberts, and J. Freeman. Learning and
detecting patterns in multi-attributed network data.
In AAAI Fall Symposium Series, 2012.

[28] P. Lin, Q. Song, J. Shen, and Y. Wu. Discovering
graph patterns for fact checking in knowledge graphs.
In DASFAA, pages 783–801, 2018.

[29] D. Menestrina, S. E. Whang, and H. Garcia-Molina.
Evaluating entity resolution results. PVLDB,
3(1-2):208–219, 2010.

[30] B. Motik, I. Horrocks, and U. Sattler. Adding
Integrity Constraints to OWL. In OWLED, 2007.

[31] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich.
A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, pages 11–33, 2016.

[32] N. Pernelle, F. Säıs, and D. Symeonidou. An
automatic key discovery approach for data linking.
Web Semantics: Science, Services and Agents on the
World Wide Web, 23:16–30, 2013.

[33] M. Pershina, M. Yakout, and K. Chakrabarti. Holistic
entity matching across knowledge graphs. In IEEE Big
Data, pages 1585–1590, 2015.

[34] M. R. Quillan. Semantic memory. Technical report,
Bolt Beranek and Newman Inc. Cambridge MA, 1966.

[35] D. Symeonidou, L. Galárraga, N. Pernelle, F. Säıs,
and F. Suchanek. Vickey: Mining conditional keys on
knowledge bases. In ISWC, pages 661–677, 2017.

[36] Y. Wu, S. Yang, and X. Yan. Ontology-based
subgraph querying. In ICDE, pages 697–708, 2013.

[37] Y. Yu and J. Heflin. Extending functional dependency
to detect abnormal data in RDF graphs. In ISWC,
pages 794–809, 2011.

[38] R. Zass and A. Shashua. Probabilistic graph and
hypergraph matching. In CVPR, pages 1–8, 2008.

1207


