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ABSTRACT
Location privacy-preserving mechanisms (LPPMs) have been
extensively studied for protecting a user’s location in location-
based services. However, when user’s perturbed locations
are released continuously, existing LPPMs may not protect
users’ sensitive spatiotemporal event, such as “visited hospi-
tal in the last week” or “regularly commuting between lo-
cation 1 and location 2 every morning and afternoon” (it is
easy to infer that locations 1 and 2 may be home and office).
In this demonstration, we demonstrate PriSTE for protect-
ing spatiotemporal event privacy in continuous location re-
lease. First, to raise users’ awareness of such a new privacy
goal, we design an interactive tool to demonstrate how accu-
rate an adversary could infer a secret spatiotemporal event
from a sequence of locations or even LPPM-protected lo-
cations. The attendees can find that some spatiotemporal
events are quite risky and even these state-of-the-art LPPMs
do not always protect spatiotemporal event privacy. Second,
we demonstrate how a user can use PriSTE to automati-
cally or manually convert an LPPM for location privacy into
one protecting spatiotemporal event privacy in continuous
location-based services. Finally, we visualize the trade-off
between privacy and utility so that users can choose appro-
priate privacy parameters in different application scenarios.
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1. INTRODUCTION
In our modern life, people often use location-based ser-

vices (LBS) such as Yelp or Uber for snapshot or continu-
ous queries, for example, “where is the nearest restaurant”
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or “continuously report the taxis within one mile of my lo-
cation”. Mobile users have to share their current location,
or a sequence of locations with the service providers, which
raises privacy concerns since users’ digital trace can be used
to infer sensitive information, such as home and workplace,
religious places and sexual inclinations [6].

In order to protect location privacy, many studies (see sur-
veys [5]) have explored different aspects of location privacy:
privacy goals, adversarial models, location privacy metrics,
and location privacy preserving mechanisms (LPPMs). Pri-
vacy goals indicate what should be protected or what are the
secrets (e.g., a single location or a trajectory); adversarial
models make assumptions about the adversaries; location
privacy metrics formally define the quantitative measure-
ment of the protection w.r.t. the privacy goal; LPPMs is
designed to achieve a specified privacy metric. For instance,
Geo-Indistinguishability [1] is a location privacty metrics,
which is receiving increasing attention since the protection
level does not depend on adversaries’ prior knowledge; the
privacy goal of Geo-Indistinguishability is to protect a single
location; Laplace Planar Mechanism is an LPPM satisfying
Geo-Indistinguishability. In this study, we focus on state-of-
the-art probabilistic LPPMs, which takes an actual location
and a privacy parameter as inputs and outputs a randomly
perturbed location. The LPPM privacy parameter controls
the location privacy level (take Laplace Planar Mechanism
for example, a smaller privacy parameter indicates stronger
privacy protection).

We argue that existing LPPMs [1][7][8] may not adequately
protect users’ sensitive information in their spatiotemporal
activities because the privacy goal in location privacy is not
well-studied. The existing LPPMs focused on the protec-
tion of either a single location or a trajectory, which does
not completely reflect the secrets that should be protected
in users’ spatiotemporal activities. To explain this, we need
to define “spatiotemporal activities”. We define a user’s a
single location at time t as a predicate ut = si where ut is
the user’s position at time t and si ∈ S, i ∈ [1,m] is one
location on the map S of m locations. The value of such
predicate can be either true or false, which could be a secret
of the user. Then, we can represent users’ spatiotempo-
ral activities as Boolean expressions of combining different
predicates over spatial and/or temporal dimensions, which is
called spatiotemporal event in this paper (a predicate alone
also can be a spatiotemporal event). As shown in Fig.1,
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we illustrate six representative examples of the Boolean ex-
pression between location and time dimensions. It is easy
to see that the events representing a sensitive location/area
and a trajectory are only two cases (i.e., (b) and (c)) among
the six enumerated examples. Therefore, even if an LPPM
protects each location or a trajectory, it may not protect a
secret spatiotemporal event.
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Figure 1: Examples of spatiotemporal events. s1 and s2 are
two locations. u1 and u2 are two variables about a user’s
possible locations at time 1 and time 2, respectively. Event
(a) is always false since a user cannot be at two different
locations at the same time. Event (b) means that the secret
is a sensitive area including locations {s1, s2}. Event (c)
represents a sensitive trajectory s1 → s1. Event (d) denotes
that the secret is the visit to s1 at time point 1 or 2. Event
(e) depicts the secret as a type of trajectory pattern, i.e.,
the user may stay at two sensitive areas successively. Event
(f) indicates the secret as user’s presence in sensitive area
{s1, s2} at either time point 1 or 2.

In our recent work [2], we formally defined the such a new
privacy goal, i.e., spatiotemporal event, as a Boolean ex-
pression between spatial and temporal predicates. We also
proposed a new privacy metrics, ε-Spatiotemporal Event
Privacy, by extending the notion of differential privacy [4].
Although the spatiotemporal event is a generalization of a
single location or a trajectory in terms of privacy goal, inter-
estingly, we showed that location privacy metrics and spa-
tiotemporal event privacy metrics could be orthogonal pri-
vacy notions. That is to say, an LPPM may not provide
spatiotemporal event privacy, while a mechanism for spa-
tiotemporal event privacy has no guarantee of location pri-
vacy. We developed a quantification-based method to adapt
a given LPPM to protect spatiotemporal event privacy so
that a user could enjoy the best of two worlds: the under-
lying LPPM provides general protection against unknown
risks, while spatiotemporal event privacy guarantees flexi-
ble and customizable protection which may not be provided
by the existing LPPMs.

However, there are three challenges when users use the
proposed method in [2] for protecting secret spatiotemporal
event in practice. First, it is difficult for users to under-
stand the privacy implications (or the risks) of spatiotempo-
ral event privacy. Second, a user may have different location
privacy demands on different locations, so she may want to
change the LPPM privacy parameter on the fly depending
on the place she is visiting, but such an interface is lacking
in [2]. Third, it is hard to know how to set the privacy pa-
rameter for striking the right balance between privacy and
utility in different scenarios.

To address these challenges, we implement our algorithms
in [2] with additional user-friendly modules into PriSTE
(Private SpatioTemporal Event).

This demonstration makes the following contributions:
First, to raise users’ awareness of such a new privacy goal,

we design an interactive tool to quantitatively show how
much spatiotemporal event privacy that existing LPPMs
can provide. Using this tool, the attendees of the confer-
ence could intuitively see how accurate an adversary could
infer a user-specific spatiotemporal event from a sequence
of locations or even LPPM-protected locations. This tool
allows attendees to customize the test under different con-
figurations: the attendees can simulate the input location
traces with different mobility patterns, choose one LPPM
from the candidates (or without an LPPM) and select dif-
ferent LPPM privacy parameters. The attendees can find
that state-of-the-art LPPMs do not always properly protect
spatiotemporal event privacy.

Second, we demonstrate how PriSTE can automatically
or manually convert an LPPM for location privacy into
one protecting spatiotemporal event privacy in continuous
location-based services. Using the algorithms we developed
in [2], we can quantify the level spatiotemporal event pri-
vacy of an LPPM at each time point, and then adjust the
LPPM privacy parameter to satisfy the required level of spa-
tiotemporal event privacy. There are two ways to adjust the
LPPM privacy parameter. In the “hands-off” way, a user
only needs to initiate an LPPM privacy parameter once at
the very beginning (this privacy parameter indicate the loca-
tion privacy level she wants to enjoy at all time points); then
the system will automatically adjust the LPPM privacy pa-
rameter for the desired spatiotemporal event privacy. In the
“hands-on” way, a user can customize her location privacy
protection level at each time, while the system indicates the
current level of spatiotemporal event privacy so that user
can either reduce or increase her LPPM privacy parameter.

Third, we visualize the trade-off among location privacy,
spatiotemporal event privacy, and data utility with respect
to different user mobility patterns so that users can explore
the interactions among these factors to choose appropriate
privacy parameters in different scenarios. Interestingly, a
stricter LPPM can satisfy a certain level of spatiotempo-
ral event privacy without any adjustment, whereas a more
loose LPPM may need to reduce its privacy parameter signif-
icantly for protecting the same spatiotemporal event; how-
ever, for achieving a specific level of spatiotemporal event
privacy, a stricter LPPM is not always better in terms of
data utility. The attendees can also find that if their simu-
lated trajectories have a significant pattern (e.g., recurrent
visits), an LPPM may need a small privacy parameter to
achieve the same spatiotemporal event privacy.

2. BACKGROUND

2.1 Spatiotemporal Events
Spatiotemporal events can represent user’s secrets about

spatiotemporal activities in their real-world, such as “visited
a hospital in the last week” or “commuting between Location
1 and Location 2 every morning and afternoon”. Let S =
{s1, s2, · · · , sm} be the domain of space, where m is the
number of all locations and si is one location on the map.
A user’s trajectory consists of a set of (u, t) denoting the
user’s location at timestamp t in {1, 2, · · · , T}. A predicate
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can represent each pair of location and time. For example, a
predicate u1 = s3 indicates (u1, s3). If the user is in location
s3 at timestamp 1, then the ground truth of the predicate
is true. A spatiotemporal event is defined as a Boolean
expression of the (location, time) predicates using the AND,
OR, NOT operators, denoted by ∧, ∨, ¬ respectively.

Definition 2.1 (Event). A spatiotemporal event, de-
noted by Event, is a set of (location, time) predicates, i.e.
ut = si, under the Boolean operations.

Using Boolean logic to define spatiotemporal events enables
users to customize their privacy for real-world activities. If
a user is at a location si at timestamp t, then ut = si. If the
user is at one location of an area {si, sj , · · · , sk} at times-
tamp t, then (ut = si) ∨ (ut = sj) ∨ · · · ,∨(ut = sk) holds.
If the user passed through {si, sj , · · · , sk} over timestamps
1 to T , then (u1 = si) ∧ (u2 = sj) ∧ · · · ,∧(ut = sk) holds.

From the above definitions, we can see that, in terms of
privacy goal, spatiotemporal event privacy is a generaliza-
tion of location privacy; but the privacy notions could be
orthogonal as shown in the next section.

2.2 ε-Spatiotemporal Event Privacy
Inspired by the definition of differential privacy[4], we de-

fine ε-Spatiotemporal Event Privacy as follows.

Definition 2.2 (ε-Spatiotemporal Event Privacy).
A mechanism preserves ε-Spatiotemporal Event Privacy for
a spatiotemporal Event if at any timestamp t in {1, 2, · · · , T}
given any observations {o1, o2, · · · , oT },

Pr(o1, o2, · · · , ot|Event) ≤ eε Pr(o1, o2, · · · , ot|¬Event) (1)

where Event is a logic variable about the defined spa-
tiotemporal event and ¬Event denotes the negation of Event.
Pr(o1, o2, · · · , ot|Event) denotes the probability of the obser-
vations o1, o2, · · · , ot given the value of Event.

(a) indistinguishability-based
Location Privacy

(b) indistinguishability-based
Trajectory Privacy

(c) ε-Spatiotemporal Event Privacy
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s3 ! s2

s2 ! s1

s3 ! s3

Figure 2: Indistinguishability-based privacy metrics for
three types of privacy goals when S = {s1, s2, s3} and T = 2.

To better understand the characteristics of spatiotempo-
ral event privacy, we illustrate the indistinguishability-based
privacy metrics for the three privacy goals in Fig.2, where
the lines connecting two secrets indicate the requirements of
indistinguishability between the corresponding two possible
values of the secrets. We can see that these privacy notions
are orthogonal due to different structures (see more detailed
analysis in an extended version [3] of this work).

3. SYSTEM OVERVIEW
As shown in Fig.3, there are three components in PriSTE

framework including LPPM, PrivacyCheck and Visualization.
PriSTE calibrates the privacy parameter α of an underlying
LPPM (denoted as α-LPPM) at each time point in order to
achieve the required ε-spatiotemporal event privacy.

time

Private:
(local)

Public:

True
Loc. Event

perturbed 
loc.

W

Privacy
para. ε

LPPM PrivacyCheck Visualization

Figure 3: PriSTE framework.

In the LPPM component, we implement two LPPMs for
different privacy metrics (i.e., Planar Laplace Mechanism for
Geo-Indistinguishability [1] and Planar Isotropic Mechanism
for δ-location set privacy [8] [9]) as the candidate LPPMs.
Two inputs of LPPM are a true location and the privacy
parameter. True locations can be simulated by attendees
or selected from a real-world dataset, i.e., Geolife [10]. The
privacy parameter determines the location privacy protec-
tion level. For both of the two candidate LPPMs, a smaller
privacy parameter indicates stronger privacy. In the Priva-
cyCheck component, the technical challenge is to quantify
whether or not the α-LPPM satisfy ε-spatiotemporal event
privacy w.r.t. user-specified spatiotemporal event. The ba-
sic idea is to compute the prior and posterior probabilities
of the spatiotemporal event w.r.t. adversaries’ prior knowl-
edge π about the initial distribution of the user’s possible
locations; then we ensure that the spatiotemporal event pri-
vacy leakage is bounded w.r.t. any π. In [2], this problem
is reduced to a quadratic programming problem, and we
designed an algorithm to solve it efficiently.

The interactions between components are described as fol-
lows. At each time point, the LPPM component generates a
perturbed location from the true location and pass it to Pri-
vacyCheck. The PrivacyCheck component checks whether
or not this perturbed location satisfies Equation (1) w.r.t.
a user-specified spatiotemporal event. If so, the perturbed
location will be released; if not, PrivacyCheck interacts with
LPPM to find an appropriate location privacy parameter α
either automatically (system decides the next α) or manu-
ally (user decides the next α). At each time, PrivacyCheck
passes the real-time computation results to the Visualization
component for visualized display to users.

4. DEMONSTRATION SCENARIOS
As shown in Fig.3, there are four basic inputs, i.e., true

location, LPPM privacy parameter α, the spatiotemporal
event to be protected, and its privacy level ε. Another in-
put controlled by attendees of this demo is the trajectory
pattern. As shown in Fig.4 , in the user dashboard of our
demonstration, attendees can simulate input locations by
clicking consecutive points on the map, or randomly select
a location trace from a real-life database GeoLife [10]. For
each click, PriSTE generates a perturbed location and plots
the real-time results in the visualization panel. A user can
selectively configure the parameters according to different
demonstration scenarios below.

4.1 Adversary Posterior
One goal of this demonstration is to raise users’ awareness

of spatiotemporal event privacy, which may not be protected
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Figure 4: PriSTE Demonstration.

by LPPM. An intuitive and direct way to quantify the spa-
tiotemporal event privacy is to calculate Equation (1) with
given prior and observed perturbed (or true) locations. The
attendee first configures the value of each input as shown in
Fig. 4. Then, she or he can simulate a trajectory by click-
ing consecutive points on the map. Next, the information
about how much adversary prior and posterior w.r.t. the
user-specific spatiotemporal event will be plotted in the vi-
sualization panel in real time. The difference between prior
and posterior indicates the loss of spatiotemporal event pri-
vacy. The attendee can observe that for some configurations
(for example, recurrent events or a larger privacy parame-
ter α), the spatiotemporal event privacy loss is quite high.
It would be interesting to explore how these factors affect
spatiotemporal event privacy loss.

4.2 Calibrating LPPM
In the LBS, some “hands-off” users may want to have a

uniform location privacy parameter α as an upper bound
and do not want to set this value at each time manually;
whereas, some “hand-on” users may want more fine-grained
controls over the privacy parameter (e.g. allowing a high
value or weaker privacy for certain locations such as his/her
office). We demonstrate how PriSTE can meet these require-
ments by automatically or manually adjusting the privacy
parameter of an LPPM. As shown in Fig. 4, the attendee can
select “Auto α” or “Manual α” for conservative users and
liberal users respectively. In the meantime, a real-time fig-
ure of time point (x-axis) versus calibrated LPPM parameter
α (y-axis) is plotted. The larger LPPM parameter implies
higher data utility (less noise). Even more interestingly, the
attendees can select “Manual α” in the configuration panel
and then try their best to see if they can outperform (i.e.,
have larger LPPM parameters than) the system.

4.3 Utility-Privacy Trade-off
One important function of our demonstration is to al-

low the attendees to explore the data utility under different
configurations, which includes different trajectory patterns,
LPPMs, location privacy parameters, and spatiotemporal
event privacy level. There are two data utility measure-
ments used in our demonstration: one is the LPPM param-
eters as mentioned in Section 4.2 and the other is Euclidean
distance between the perturbed location and the actual lo-
cation. The attendees can explore the relationship between
location privacy and spatiotemporal event privacy and their

impact on utility. For example, fixing all parameters in the
configuration except LPPM parameter α, we can observe
that α does not have a monotonic effect on data utility. An
optimal alpha is hard to theoretically capture, but we can
find it empirically using this demonstration. This also im-
plies that there is a significant design space for improving
the utility of spatiotemporal event privacy mechanisms, and
this demonstration can help us discover the insights before
we reach elegant theoretical results.

5. CONCLUSION
We demonstrate PriSTE, a framework for protecting spa-

tiotemporal event privacy. PriSTE is featured by quantifica-
tion-based approach for protecting both location privacy
and spatiotemporal privacy so that a user can enjoy the
best of two worlds: the underlying LPPM provides gen-
eral protection against unknown risks, while spatiotemporal
event privacy guarantees flexible and customizable protec-
tion which may not be provided by the existing LPPMs.

We also present three demonstration scenarios: showing
the adversary’s posterior about the sensitive spatiotemporal
event for raising the users’ awareness of such a new privacy
goal, providing a user-friendly interface for customizable lo-
cation privacy protection, and exploring the trade-off be-
tween utility and privacy under different configurations.

In summary, the demonstration of PriSTE help the confer-
ence attendees to understand the privacy implications and
the characteristics of spatiotemporal event privacy. We hope
that PriSTE will be a useful tool for protecting users’ spa-
tiotemporal event privacy in location-based services.
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