AggChecker: A Fact-Checking System
for Text Summaries of Relational Data Sets

Saehan Jo*, Immanuel Trummer+, Weicheng Yu-,
Xuezhi Wangt, Cong Yu', Daniel Liu*, Niyati Mehta*
Cornell University; Google Research®

{sj683, itrummer, wy248, dI596, nbm44y@cornell.edu, {xuezhiw, congyu}@google.com

ABSTRACT

We demonstrate AggChecker, a novel tool for verifying tex-
tual summaries of relational data sets. The system auto-
matically verifies natural language claims about numerical
aggregates against the underlying raw data. The system
incorporates a combination of natural language processing,
information retrieval, machine learning, and efficient query
processing strategies. Each claim is translated into a se-
mantically equivalent SQL query and evaluated against the
database. Our primary goal is analogous to that of a spell-
checker: to identify erroneous claims and provide guidance
in correcting them. In this demonstration, we show that our
system enables users to verify text summaries much more ef-
ficiently than a standard SQL interface.

PVLDB Reference Format:

Sachan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang,
Cong Yu, Daniel Liu, Niyati Mehta. AggChecker: A Fact-Checking
System for Text Summaries of Relational Data Sets. PVLDB,
12(12): 1938-1941, 2019.

DOI: https://doi.org/10.14778/3352063.3352104

1. INTRODUCTION

Text summaries of relational data sets are very common.
Typical examples include data journalism newspaper arti-
cles, company executive summaries of internal audits, and
reports providing analyses of survey results. However, the
correctness of numerical facts in these text documents is of-
ten taken for granted (i.e., left unchallenged), the claimed
values seldom double-checked against raw data. In our prior
work [6], we proposed AggChecker! to address this problem.

AggChecker is a system for fact-checking natural language
claims about relational data. It takes as input a relational
database and a text document containing claims about nu-
merical aggregates derived from the database. The output of
AggChecker is similar to that of a spell-checker. AggChecker

! An online demo and a video tutorial of the system are avail-
able at http://facts-demo-dbgroup.cs.cornell.edu/.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOL: https://doi.org/10.14778/3352063.3352104

provides a marked-up version of the input text where each
claim is tentatively marked up as either correct or erroneous.

Ezxample 1. Consider the following text “There were only
four previous lifetime bans in my database - three were for
repeated substance abuse” taken from a newspaper article [3].
It contains two claims (four and three) about the number
of lifetime suspensions in the NFL. These claims are trans-
lated into the SQL queries SELECT CouNT(*) FROM NFLSUS-
PENSIONS WHERE GaMEs = ‘INDEF’ and SELECT CouNT(*)
FROM NrLSUSPENSIONS WHERE GAMES = ‘INDEF’ AND CAT-
EGORY = ‘SUBSTANCE ABUSE, REPEATED OFFENSE’ on the asso-
ciated data set. Our goal is to automatically translate text
to queries, to evaluate those queries, and to compare the
evaluation result against the claimed one.

Currently, we focus on claims that can be translated into
queries of the form: SELECT Fcr(Ace) FROM T1 E-JOIN
T2 ... WHERE C1=V1 AND C2=V2 ..., an aggregate over
an equi-join of tables with conjunctive equality predicates.
Claims of this type are both popular and error-prone [6].

To verify a claim, AggChecker evaluates the correspond-
ing query on the database and compares the query result
with the claimed value. Thus, our main challenge is to cor-
rectly translate a claim (i.e., a natural language description
of a numerical aggregate) into a semantically equivalent SQL
query. Despite this similarity to natural language query-
ing [7, 10], there are two particularities of fact-checking that
introduce new opportunities. First, in fact-checking, we ac-
cept as input an entire document with multiple potentially
related claims. We can exploit semantic relationships be-
tween different claims to facilitate claim-to-query transla-
tions. Second, since each claim contains a claimed result
of its underlying SQL query, we can resolve ambiguity in
natural language understanding by evaluating many query
candidates against the claimed result. Prior work on auto-
mated fact-checking [5] focuses on checking claims against
professionally-verified natural language facts. However, such
verification results are only available for a small number of
claims that received widespread attention.

AggChecker is based on a mixture of natural language
analysis, information retrieval, machine learning, and effi-
cient query evaluation strategies. In Section 2, we introduce
the details of these components. In Section 3, we present a
thorough description of our demonstration.

2. SYSTEM OVERVIEW

Figure 1 gives an overview of the AggChecker system. Ag-
gChecker starts with a text document and its associated re-
lational data set as inputs. In the end, the system displays

1938

Name Games | Category
There were only four
A. Karras 14 | personal conduct . e .
previous lifetime bans in my
A. Jones 20 | personal conduct database — three were for
L. Brazill indef | substance abuse, repeated substance abuse,
repeated offense one was for gambling.
Raw Relational Data Text Document
RDBMS Indexing Parsing
A .
Query Fragments Claim Keywords
> Matching
SQL Query Query Result
Relevance Scores
A
uery Candidates
Query Query Probabilistic
Evaluation X Inference
Evaluation Results
Y
Most Likely Queries ’ User Feedback
There were only four
. L - User
previous lifetime bans in my
database — three were for Interface

repeated substance abuse,
one was for gambling.

&
<

Marked-up Text Document

Figure 1: Overview of the AggChecker system.

its automated fact-checking result (i.e., marked-up version of
input text) to users and integrates user feedback if necessary.
The system can be decomposed into four main components:
Indexing/Parsing/Matching, Probabilistic Inference, Query
Evaluation, and User Interface.

Indexing/Parsing/Matching. The system produces
keyword-based relevance scores for claims and query frag-
ments. In the Indexing stage, the system indexes relevant
keywords (e.g., column names, literal names, and their syn-
onyms found in word dictionaries) for every query fragment
that can be formed from the data set. In the Parsing stage,
we associate each claim with a set of keywords using natu-
ral language processing (NLP) tools and word dictionaries.
Finally, in the Matching stage, we use an information re-
trieval (IR) engine to query the keyword set of each claim
against the keyword sets of query fragments. Consequently,
we obtain a relevance score per query fragment-claim pair.

Probabilistic Inference. The heart of AggChecker is a
probabilistic model which infers the probability distribution
over SQL queries behind each claim. The primary challenge
in fact-checking claims against relational data is to trans-
late each natural language claim into a semantically equiv-
alent SQL query. When translating claims to queries, am-
biguities in natural language often create uncertainty. This
motivates the use of a probabilistic model which can thor-
oughly reason over alternative query translations per claim.
The model takes three inputs: 1) keyword-based relevance
scores for each pair of a claim and a query fragment, 2) eval-
uation results of query candidates, and 3) user feedback. As
a result, it outputs the likely SQL queries (and their prob-
abilities) per claim. Then, the system tentatively marks up
each claim as correct or erroneous based on the evaluation
result of the most likely query.

Query Evaluation. AggChecker uses efficient query pro-
cessing techniques like caching, query merging, and incre-

1939

mental execution to evaluate myriads of query candidates
against an RDBMS. We compare the query results with the
claim (i.e., claimed result in text) in order to obtain more
information about the likelihoods of query candidates.

User Interface. Via an interactive user interface, we
collect user feedback and adjust the probabilities of query
candidates accordingly.

2.1 Indexing, Parsing, and Matching

Given a text document and its associated data set, our
system calculates the keyword-based relevance scores be-
tween SQL query fragments and a claim. By query frag-
ments, we denote an aggregation function, an aggregated
column, or equality predicates which together can construct
an aggregate query. The number of queries that can be
formed from these query fragments is typically in the order
of billions or trillions for typical cases.

First, the system considers all possible query fragments
that can be generated based on the data set. We asso-
ciate each query fragment with relevant keywords based on
the names and descriptions of each contained database el-
ement. Likewise, we associate a claim with relevant key-
words based on the document hierarchy, sentence structures,
and synonyms, derived from the HTML markups, Stanford
parser [8] and WordNet [2, 9], respectively. Keywords are
weighted based on the document hierarchy and sentence
structures. Note that it is often necessary to consider words
outside the claim sentence to grasp the full context of a claim
(increasing the translation accuracy by 7~12%). Having as-
sociated a set of keywords with each claim and each query
fragment, we use an IR engine, Apache Lucene [13], to cal-
culate the relevance scores for query fragment-claim pairs.
These scores form an input to the probabilistic model which
infers the probabilities of query candidates being the under-
lying query behind a claim.

2.2 Probabilistic Inference

Given the relevance scores of SQL query fragments and
natural language claims, AggChecker infers for each claim
the most likely SQL queries. To achieve this goal, our sys-
tem utilizes a probabilistic model and an algorithm based
on expectation maximization (EM) to compute the proba-
bilities of query candidates.

The system represents the main focus of a text document
by prior probability distributions over SQL query fragments
(p). In addition, there are two other factors that contribute
to final probabilities of query candidates: 1) relevance scores
from keyword matching (S.) and 2) evaluation results of
query candidates (E.). Note that these factors are specific
to each claim. Intuitively, a higher keyword-based relevance
score of a query fragment and a claim makes it more likely
that this query fragment appears in the underlying query.
Likewise, a query result that matches the claimed value
in text indicates a higher probability of this query being
the proper match (under the assumption that a majority of
claims in a professional text document are correct). As a
result, AggChecker calculates claim-specific probability dis-
tributions over queries as follows (based on Bayes rule):

Pr(QclSe, Ec) o< Pr(Se A Ee|Qc) - Pr(Qc) (1)

We derive prior query probabilities Pr(Q.) from p, which
incorporate the document topic into the claim-specific prob-
ability distribution. We also obtain the following by assum-

Table 1: Examples for erroneous claims.

Erroneous Claim Author Comment Ground Truth Correct
SQL Query Value

There were only four previous Yes — the data was updated on Sept. 22, and the article was SELECT Count(*) FROM 4

lifetime bans in my database - originally published on Aug. 28. There’s a note at the end of = NFLSUSPENSIONS WHERE

three were for repeated sub- the article, but you're right the article text should also have GAMES = ‘INDEF’ AND CAT-

stance abuse, one was for gam- been updated. ECGORY = ‘SUBSTANCE ABUSE,

bling. [3] REPEATED OFFENSE’

Obama has spoken widely, in ... the likely explanation is that the data on GitHub does not = SELECT CouNnTDis- 16

17 states and D.C., while giv- include speeches Obama gave in 2016. TINCT(STATE) FROM PRES-

ing commencement addresses no IDENTIALSPEECHES ~WHERE

more than three times in any one PRESIDENT_-NAME = ‘BARACK

state (New York). [4] OBAMA’

This year, 56,033 coders in 173 Our analyst’s recollection is that three of the responses were ~SELECT Count(*) FROM 56,030

countries answered the call. [12]

from people who ”stumbled” into the survey and had no busi-

STACKOVERFLOW2016

ness taking it, so they were excluded from the data file and
the reporting... but meanwhile, the team building the website
were writing copy based on the initial count of respondents.

ing independence between relevance scores and evaluation
results:

Pr(Se A Ee|Q.) = Pr(S:|Q.) - Pr(E.|Q.) (2)

Our probabilistic model relies on a fundamental property
of text documents: there is usually a primary focus in every
text summary. If we know the document-specific theme (p),
it helps the system to recognize SQL queries behind claims
(Qc). Similarly, if we correctly identify the SQL queries
associated with the claims, the system can infer the main
focus of the text. This circular dependency motivates an
EM approach. AggChecker iteratively alternates between an
expectation step (inferring query candidates using document
priors) and a maximization step (inferring document priors
from query candidates).

2.3 Query Evaluation

AggChecker exploits efficient query evaluation strategies
to increase the translation accuracy of claims into queries.
In fact-checking, we are not only given a natural language
claim but also a claimed result. If a query result matches the
claimed value, it is a strong evidence for the query candi-
date being the underlying query behind that claim. Hence,
we can partially overcome the difficulty in natural language
understanding by evaluating alternative query candidates at
a massive scale.

For each claim, the system efficiently evaluates a large
number of query candidates (i.e., aggregate queries) by merg-
ing them into a single CUBE query. Note that these query
candidates are similar since the probabilistic model gener-
ates them based on the same input of keyword-based rel-
evance scores. In addition, query candidates of different
claims might also overlap because these claims adhere to
a common theme of a text document. Thus, we cache the
query results from previous claims to avoid redundant query
evaluations for the current claim. Whenever we can gain
by reusing the cached values, the system rewrites the cube
query by removing previously processed query candidates.

Lastly, we exploit the property that we are only inter-
ested in finding out whether the query result matches the
claimed value. Our system can skip the computations of
query candidates that cannot yield a matching result. This
is achieved by an incremental evaluation strategy where we
start by evaluating a cube of smallest extent and then gradu-
ally increase the dimension of evaluated cubes. For instance,

if a COUNT aggregate with no restriction produces a result
lower than the claimed value, there is no point in executing
query candidates with more restrictions which only results
in smaller or equal values. On the other hand, incremen-
tal evaluation introduces additional overheads like reading
the data multiple times. Since the incremental approach
depends on the data properties, our system relies on a cost
model to automatically choose for each data set whether to
activate this strategy or not.

2.4 User Interface

AggChecker shows claim verification results to users via
an interactive user interface. For each claim, the system
provides a natural language description of the most likely
query translation. If necessary, users may make corrections
to a query translation giving feedback to the system. More
details are presented in Section 3.2.

3. DEMONSTRATION

We present AggChecker as an online web application ser-
vice which can support many users simultaneously. We show
how our system can be used to fact-check text summaries of
relational data using a variety of real-world data sets.

3.1 Real-World Data Set

We uploaded 53 real-world articles (with a total of 392
claims) and their associated data sets such that the audience
can easily try out our system without the inconvenience of
manually entering the text input. This includes newspaper
articles from the New York Times [14], FiveThirtyEight [1],
Vox [15], summaries of developer surveys on Stack Over-
flow [11], and Wikipedia [16] articles. In fully automated
mode, AggChecker has an F1 score of 47.9% in identify-
ing erroneous claims (when evaluated on this data set) [6].
Also, for 58.4% and 68.9% of the claims, the correct query
translation is within the top-1 and top-10 likely query trans-
lations proposed by our system. Table 1 presents a subset of
erroneous claims AggChecker found in the 53 articles. Fur-
thermore, we contacted the authors of the articles to verify
that these claims are truly erroneous (see the column “Au-
thor Comment”).

3.2 Usage Tutorial

We walk through a usage scenario of AggChecker to de-
scribe its user interface and functionalities. A typical use

1940

Fact Checker

Input Text: VIIl. DESKTOP OPERATING SYSTEM

Click vmark if Query matches the text. sentence: The average developeris 929.6 yearsold. Custom Query: The AVERAGE over ...
9 12.3% of the entire 0S market for

PICK THE QUERY THAT MATCHES TEXT SELECT AGGREGATED COLUMN

Speaking of the Linuxes, Ubuntu is tops
among them with ? 12.3% of the entire 0S
market for developers. Fedora, Mint, and
Debian accounted for ? 1.4%, ‘? 1.7%, and
?1.9% of all responses, respectively.

Select Dataset:

Pﬂ(entage of elements in
"Desktop_os" where
"Desktop_os" = "ubuntu"
(Query Result: 12.30)

SHOW ALL OPTIONS -

Query Description (Result) |

AGGREGATED COLUMN RECOMMENDATIONS

[Average over "Age" (29.62)

"Age_range" = "25-29"

[Percentage of all elements where

(a) Entry screen: text
input and data set
selection.

(b) Marked up claims
after initial processing.

(c) Display of query
description upon
hovering.

: |
hge ‘
(24.92)] !

I Developer_experience
r o B E o
(d) Select query from (e) Construct query by
top-5 likely candidates. selecting from
fragments.

Figure 2: Screenshots from the AggChecker user interface.

case would be data journalists using our tool to double-check
claims in their article before a final submission.

The first step in using AggChecker is to load the raw re-
lational data into the database. In our demonstration, the
data will be already loaded into the database, but our on-
line web application also provides the functionality to upload
new data as a comma-separated values (CSV) file.

Next step is to enter a natural language text that users
want to fact-check and select the corresponding data set
as in Figure 2(a). In our demonstration, we select one of
the articles and click on the “Verify” button to initiate the
process described in Section 2. After the initial process, the
system shows the input text with two-color markup where
light green and light red indicate tentatively correct and
incorrect claims, respectively (see Figure 2(b)).

AggChecker shows a pop-up with the natural language de-
scription of the most likely SQL query when we hover over
a marked-up claim as in Figure 2(c). If this query matches
the claim, we simply click on the check mark located in the
top-left corner of the pop-up. Although AggChecker iden-
tifies the right SQL query in more than 50% of the claims
according to our experimental results, the system also pro-
vides alternative means to explore more possibilities when
this is not the case.

The first alternative is to click on the “View More Queries”
button which presents a list of top-5 likely query candidates
from the probabilistic model (see Figure 2(d)). Their query
results are also shown to guide the user in selecting the ap-
propriate SQL query. We click on one of the queries if it
matches the claim. When none of the candidates fits the
description of the claim, we click on the “View Even More
Queries” button to see five more likely query candidates.

The second alternative is to construct a query from scratch
using query fragments recommended by AggChecker. The
“Build Query” button shows a pop-up where we can select
an aggregation function, an aggregated column, and restric-
tions to formulate an SQL query that matches the semantics
of a claim. For each query fragment, our system ranks pos-
sible candidates by their probabilities and illustrates corre-
sponding background colors as in Figure 2(e).

We iterate these steps until all claims are accurately asso-
ciated with their underlying SQL queries. By this demon-
stration, the audience can learn how to use the interactive
features of AggChecker.

3.3 Additional Analysis.

In addition, our online web application allows users to
choose the query processing strategies themselves. Users
can experience the performance improvements as the sys-
tem gradually exploits efficient processing strategies. More-

1941

over, our system presents detailed analysis of each article
including the execution time per system components, the
final priors of SQL query fragments, and the ratio of cached
query candidates against the executed ones.

4. REFERENCES

[1] ESPN Inc. FiveThirtyEight.
http://fivethirtyeight.com/.

C. Fellbaum and G. Miller. WordNet: An Electronic
Lezical Database. MIT Press, 1998.

FiveThirtyEight. The NFL’s Uneven History Of
Punishing Domestic Violence, 2014.

FiveThirtyEight. Sitting Presidents Give Way More
Commencement Speeches Than They Used To, 2016.
N. Hassan, G. Zhang, F. Arslan, J. Caraballo,

D. Jimenez, S. Gawsane, S. Hasan, M. Joseph,

A. Kulkarni, A. K. Nayak, V. Sable, C. Li, and

M. Tremayne. ClaimBuster: The First-ever
End-to-end Fact-checking System. PVLDB,
10(12):1945-1948, 2017.

S. Jo, I. Trummer, W. Yu, X. Wang, C. Yu, D. Liu,
and N. Mehta. Verifying Text Summaries of Relational
Data Sets. In SIGMOD, pages 299-316, 2019.

F. Li and H. V. Jagadish. NaLIR: an interactive
natural language interface for querying relational
databases. In SIGMOD, pages 709-712, 2014.

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,
S. Bethard, and D. McClosky. The Stanford CoreNLP
Natural Language Processing Toolkit. In ACL, pages
55-60, 2014.

G. A. Miller. WordNet: A Lexical Database for
English. Commun. ACM, 38(11):39-41, 1995.

D. Saha, A. Floratou, K. Sankaranarayanan, U. F.
Minhas, A. R. Mittal, and F. Ozcan. ATHENA: An
ontology-driven system for natural language querying
over relational data stores. PVLDB, 9(12):1209-1220,
2016.

Stack Exchange, Inc. Stack Overflow Insights.
https://insights.stackoverflow.com/survey/.
Stack Exchange, Inc. Developer Survey Results 2016,
2016.

The Apache Software Foundation. Apache Lucene
Core. https://lucene.apache.org/core/, 2017.
The New York Times Company. The Upshot.
https://www.nytimes.com/section/upshot/.

Vox Media. Vox. https://www.vox.com/.

Wikipedia contributors. Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/.

