
Performance-Optimal Filtering:
Bloom Overtakes Cuckoo at High Throughput

Harald Lang Thomas Neumann Alfons Kemper Peter Boncz?
Technical University of Munich Centrum Wiskunde & Informatica?

firstname.lastname@in.tum.de boncz@cwi.nl

ABSTRACT
We define the concept of performance-optimal filtering to in-
dicate the Bloom or Cuckoo filter configuration that best ac-
celerates a particular task. While the space-precision trade-
off of these filters has been well studied, we show how to
pick a filter that maximizes the performance for a given
workload. This choice might be “suboptimal” relative to
traditional space-precision metrics, but it will lead to better
performance in practice. In this paper, we focus on high-
throughput filter use cases, aimed at avoiding CPU work,
e.g., a cache miss, a network message, or a local disk I/O
– events that can happen at rates of millions to hundreds
per second. Besides the false-positive rate and memory foot-
print of the filter, performance optimality has to take into
account the absolute cost of the filter lookup as well as the
saved work per lookup that filtering avoids; while the ac-
tual rate of negative lookups in the workload determines
whether using a filter improves overall performance at all.
In the course of the paper, we introduce new filter variants,
namely the register-blocked and cache-sectorized Bloom fil-
ters. We present new implementation techniques and per-
form an extensive evaluation on modern hardware platforms,
including the wide-SIMD Skylake-X and Knights Landing.
This experimentation shows that in high-throughput situa-
tions, the lower lookup cost of blocked Bloom filters allows
them to overtake Cuckoo filters.
PVLDB Reference Format:
H. Lang, T. Neumann, A. Kemper and P. Boncz. Performance-
Optimal Filtering: Bloom Overtakes Cuckoo at High Through-
put. PVLDB, 12(5): 502-515, 2019.
DOI: https://doi.org/10.14778/3303753.3303757

1. INTRODUCTION
A Bloom filter [5] represents a collection of n keys with

an initially-zeroed array of m bits, setting for each inserted
key k bits to 1, using as many hash functions to identify
the positions [0,m) where the bits are set in the array. This
structure allows for fast true-negative tests, but it can pro-
duce false-positives at some probability: the false-positive

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 5
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3303753.3303757

101 105 109

104

106

108

Work time tw per positive lookup [CPU cycles]

  
  
P
ro

b
le

m
 s

iz
e

[n
u
m

b
e
r 

o
f 

ke
y
s 

n]

CPU
cache
miss

tuple over
network

(amortized)

NVMe
read

SSD
SATA
read

magnetic
disk
read

read
100MB S3

Parquet file

da
ta
ba

se
 p
ro
ce
ss
in
g

se
le
ct
iv
e 
jo
in
 p
us
hd

ow
n

di
st
rib

ut
ed

 

se
m
i-j
oi
n

LSM tree
fil
te
r

 to
o 
la
rg
e

& 
ex

pe
ns
iv
e 

object 
caches

network 
routing

cloud
data 

access

better use
an exact filter

(hash map, tree)

Bloom CuckooBest performing filter type:
high throughput low throughput

Figure 1: Performance-optimal filter types for different
problem sizes n and potential work savings tw. Example
reference points for tw values are shown above the plot and
applications inside the plot.

rate f . The more recently introduced Cuckoo filter [15]
offers similar capabilities. It stores small signatures – which
approximate keys using a few bits – in buckets that can hold
a few such signatures. The data structure is a Cuckoo hash
table of such buckets. A filter lookup checks all signatures
in a maximum of two buckets. An advantage of Cuckoo fil-
ters over Bloom filters is that they allow deletes as well as
duplicates in the key set (thus: bag). Importantly, Cuckoo
filters provide a lower false-positive rate f than Bloom fil-
ters, given the same size m. In other words, a Bloom filter
needs a larger size to reach the same f , and this larger size
may increase its lookup cost.
A popular use case in database systems is selective join

pushdown. In foreign-key joins between a large (fact) ta-
ble and a small (dimension) table with a filter predicate that
selects a fraction of the dimension tuples, only a fraction σ
of the fact table tuples will find a match and contribute to
the join result. It can then be beneficial to create a Bloom
or Cuckoo filter that contains the n selected dimension keys,
and for each fact tuple first test if all k bits of the join key are
set in it. If not, the tuple does not join and further work can
be eliminated for it, such as a hash table or index lookup,
or nested-loop scan. This filtering could be the first step
in the join, but the filter test can also be pushed down all
the way into the fact table scan, such that the data volume
coming out of the scan is reduced, making any intermediate

502



operations in between the scan and the join cheaper. Addi-
tionally, column stores can skip over data from the non-key
columns if whole stretches of tuples test negatively, avoiding
(disk or network) I/O and decompression effort.
In selective equi-join pushdowns, Bloom filters are known

to significantly enhance query performance in real analytical
workloads, as well as in synthetic ones, such as TPC-H and
TPC-DS [6]. However, using a Bloom or Cuckoo filter can
potentially backfire if it does not eliminate (enough) join
candidates, certainly in cases where the selectivity σ=1.0
(no negative lookups), or values of σ close to that. A way to
deal with this is to use cardinality estimation to gauge σ and
n at query optimization time, in order to decide whether
to create a filter at all, and if so, with which parameters.
Alternatively, some database systems monitor the join hit-
rate σ of hash or index joins at run-time, and add a filter
if σ is below a given threshold [33]. This has the advantage
that by then n is known (e.g., the hash table has already
been built – in the case of a hash join), allowing us to better
choose the filter size m, as well as parameters such as the k
for Bloom filter and the signature and bucket size (l, b) for
Cuckoo filters.
A Bloom filter is a well-known data structure also used in

many systems outside of databases, notably including net-
work routers and caches of all sorts. Beyond our leading
example of selective equi-join pushdown, other uses inside
database systems include key-value indexes based on multi-
ple structures/runs such as log-structured merge-trees [12]
(in order to reduce the number of structures to search), cold
storage structures (idem) [2], and distributed-semijoin opti-
mization for exchange operators in MPP systems, which first
broadcast a Bloom filter across compute nodes to avoid ex-
changing unneeded join-probe tuples over the network [21].
Our work applies to all filter usage scenarios.
The common thinking is that if the n is known, space-

optimal Bloom filter parameters can be calculated based
on theory [25], given a desired false-positive rate f , namely
k = −log2f and m = 1.44kn. However, our argument is
that a minimal size m given an f or vice versa is not a goal
in itself, rather, the goal is to optimize performance.
In defining performance-optimal filtering, we introduce

a model to optimize this overall performance and answer the
crucial question: what filtering data structure and param-
eters best accelerate a particular workload? To determine
what is performance optimal, we have to take into account
the additional factors: (i) the actual time tl a filter lookup
takes, (ii) the work time tw per tuple that a negative lookup
identified by the filter saves later on, and (iii) the mentioned
fraction 1-σ of real negative lookups (regardless of false pos-
itives). The issue is how much tl to invest (in lookup time)
and how much tw (work time) this pays off and how often
this pays off (1-σ).
Systems that incorporate key filtering need to decide on

the above question, and its answer is not clear, which is the
reason why we performed this research. Our work focuses on
filtering techniques that provide both low f but also have
low lookup time tl, and builds on the cache-efficient and
hash-efficient blocked Bloom filter work of Putze et al. [31].
In doing so, we introduce two new Bloom filter variants,
namely the cache-sectorized and register-blocked ones.
Further, we take fast implementation techniques into

account. This includes SIMD GATHER instructions as well
as the many-core Knights Landing architecture with wide

SIMD. Fast implementations only use m values that are
powers-of-two, such that modulo can be computed with bit-
wise AND. This means that theoretically optimal values of m
typically cannot be chosen, leading to anm that in the worst
case is a factor

√
2'1.44 off (average case 1.22). Instead,

we provide fast SIMD implementation techniques that allow
almost any size m to be used. Our implementations scale
from filters that fit a small cache to filters that are GBs in
size. We release all our code and experiments in open-source
for reproducibility and re-use.
Comparing the overall performance of two filter configu-

rations, a decrease in false-positive rate (∆f ) only pays off
if the extra work saved (∆f ∗ tw) exceeds the increase in
lookup cost (∆l), i.e. if ∆f ∗ tw > ∆l. We will show that
in all realistic selective join workloads, blocked Bloom filters
with worse false-positive rate outperform Cuckoo filters, due
to their lower lookup cost.
Figure 1 summarizes our key findings from our detailed ex-

periments with regard to which filter type, Bloom or Cuckoo,
performs best for a given problem size n and the potential
savings tw. In high-throughput situations (left side, low tw),
Bloom filters are to be preferred over Cuckoo filters. Bloom
filters offer lower lookup costs but also a higher false-positive
rate. In high-throughput scenarios, the costs induced by a
false-positive result is relatively low and the fast lookups are
the dominant factor. In contrast, low-throughput scenarios
(right side) require higher accuracy as the costs induced by
a false positive are significantly higher than the actual filter
lookup. Database processing use cases for filter structures
often involve high-throughput lookups where, e.g., filtering
just avoids a CPU cache miss caused by a hash lookup, but
also have use cases where filters are used to avoid more ex-
pensive accesses (right side: lower-throughput workloads),
like magnetic disk seeks, e.g. into log-structured merge-trees
on hard disk. These higher tw use cases are the areas where
Cuckoo filters dominate, due to their lower false-positive ra-
tios. In those cases, though, if the problem size is small (low
n), then false positives can and should be avoided entirely
by using an exact data structure instead.

Our contributions are:

• a formal definition of performance-optimal filtering;

• improved filter variants: register-blocked Bloom filters
and cache-sectorization of blocked Bloom filters;

• consideration of advanced implementation techniques,
allowing us to use filter sizes beyond just powers-of-
two, and AVX2/AVX-512 SIMD hardware optimiza-
tions for Bloom and Cuckoo filters;

• extensive experiments that allow us to establish that
blocked Bloom filters overtake Cuckoo filters when the
work saved tw by negative lookups is low or moderate:
we call this the high-throughput use cases;

• open-source implementations for all filter structures1.

2. PERFORMANCE-OPTIMAL FILTERING
Figure 2 shows the selective join pushdown scenario. The

query contains a join between a fact table (probe pipeline)
and a dimension table (build pipeline), and may proceed
above the join, e.g. with an aggregation.
1Source code: https://github.com/peterboncz/bloomfilter-repro

503



The query cost c can be divided as c = cbuild+cwork+cpost:
the cost to build the hash table, the time to run the pre-join
pipeline up until the join lookup itself, and the time to run
the rest of the query, including join result generation. Note
that cwork = |R|∗tw, that is, tw is the per-tuple execution
time of the probe pipeline.
Installing a Bloom filter in the scan at the bottom of the

probe pipeline will reduce the data volume flowing through
it to a factor σ+f . Overall, this can accelerate the query
maximally (if σ=f=0) by a factor c/(cbuild +cpost), however
we will ignore this in the rest of the paper, focusing on the
filter with most performance impact – however high it is.
In order for a query optimizer to decide on installing a

(Bloom) filter in a join, it needs to estimate tl, tw, f , and
σ. In order to estimate tl and f , it would need to esti-
mate the amount of build-side keys n, which can be done
using logical cost (cardinality) estimation. There are well-
studied methods to do this, but cardinality estimation can
still be off. Furthermore, tl and tw are physical (per tu-
ple) costs, which are much harder to estimate correctly [23]
because they estimate hardware behavior and may even be
impacted by external factors (such as concurrent workload
or even temperature). The alternative strategy of installing
a filter at runtime, after running the probe pipeline for a
while, has the advantage that tw, n and σ are known. The
performance-optimal filter F , out of all possible filter con-
figurations F , is the one that minimizes the per-tuple work
using filtering tw′(F ):

tw′(F ) = (1−σ′)∗t−l (F ) + σ′∗(t+l (F )+tw) with: σ′=σ+f(F )

where we use f(F ) to denote the false-positive rate f achieved
by F . We split up the lookup cost tl of F for the case of a
lookup that finds a hit and when it does not t−l (F ). This is
needed for classic Bloom filters, because they test the k bits
one-by-one and break off search as soon as a bit is not set.
In classic Bloom filters with a low load factor (i.e., it con-
tains mostly zeros), most negative queries will already test
negatively on the first bit, therefore typically only one hash
function needs to be computed and only one cache line will
be accessed. For positive queries, however, classic Bloom
filters need to compute all k hash functions and perform k
memory accesses (t+l � t−l ), making them expensive if k is
significant, and more so if this happens often (largish σ).
Most other filter algorithms that we study – including

Cuckoo – are implemented such that they do an equal amount
of work for positive and negative queries (t+l = t−l = tl) and
only access one or two cache lines. Furthermore, classic
Bloom filters are hard to SIMDize and are thus computa-
tionally more expensive than SIMDizable variants (such as
the register-block Bloom filter). A SIMD version of classic
Bloom filters was implemented [29], but in the many ex-
periments we performed, it was never performance optimal.
As the performance-optimal filtering algorithms do exhibit
equal performance for positive and negative queries, we can
simplify the definition of the performance-optimal filter F opt

to the one with least overhead:

F opt ∈ F : 6 ∃F ∈ F : ρ(F ) < ρ(F opt)

with: ρ(F ) = tl(F ) + f(F ) ∗ tw
(1)

Here ρ(F ) is the overhead of all filtering (i.e., filter lookup
and false-positive work). Parameter σ is still needed, but
only to decide if filtering is beneficial at all, namely whether:
ρ(F opt) < (1− σ) ∗ tw.

⋈      

Γ

σp

scan(L) scan(R)

post join

pre join

probe
pipeline

build
pipeline

HJ
Bloom filter
construction

Bloom filter
probe

work saved
for filtered
tuples...

pushdown

Figure 2: Bloom filters with selective joins. Tuples without
a join partner are filtered before entering the pipeline.

Filter size

O
ve

rh
ea

d

  False-
positive
   rate

Memory
  costs

Figure 3: Overhead ρ as a function in m for fixed configu-
ration F , n and tw.

But how to determine F opt, that is, to find the best com-
bination of lookup cost tl and f given a tw and n? For
instance, in blocked Bloom filters, the configuration param-
eters are k (the more hash functions, the higher tl but typ-
ically the lower f) and m (the larger the size, the lower f
becomes, but due to more cache and TLB misses, tl may
increase). Figure 3 sketches the overhead ρ as a function in
m. If the filter size is set too small, the bitvector of a Bloom
filter gets “overly populated” and f increases. On the other
hand, if the size chosen is too large, cache miss probability
increases, making lookups more expensive.
For the influence of k, m and n on f , a numerical model is

available [25] using a Poisson approximation. However, tl is
a physical cost metric and is harder to predict, as it depends
on the hardware. We therefore propose to collect the actual
filter lookup costs by performing microbenchmarks on the
target platform as part of a one-time calibration phase.

3. BLOOM FILTER VARIANTS
As the previous section suggests, there is a very large

space of filter variants and possible configurations. To achieve
performance optimality it is necessary to understand the
individual properties of the filter instances and how these
properties affect performance for a given problem setting.
To quantify the performance-related aspects, we consider
the precision given by the false-positive rate f , the space
efficiency (i.e., the memory footprint) as well as the compu-
tational efficiency, which refers to the CPU work of lookups
and the memory bandwidth efficiency. All four dimensions
are correlated. For instance, tuning for space efficiency may
come at the cost of additional computations and reduced
precision, but also with a better bandwidth efficiency.
In the rest of this section, we explore the design space

of Bloom filters and their respective positioning within the
four dimensions.

504



3.1 Blocking
A blocked Bloom filter as proposed in [31] is a Bloom filter

that is split into equally sized blocks. Each block is a small
Bloom filter. The size of a block, denoted as B, is proposed
to be equal to the size of a cache line, which is B = 512 bits
on the x86 architecture. All k bits of an inserted key are
set within a single block and each insert or lookup results in
one single cache miss at most. Because a cache line is the
unit of memory transfer and all bits are spread across the
entire cache line, it can be considered optimal with regard
to memory bandwidth efficiency.
The second advantage of blocked Bloom filters is that

fewer hash bits are required per key and they therefore have
improved computational efficiency as compared to classic
Bloom filters. Blocking reduces the number of required hash
bits from k · log2(m) down to k · log2(B) plus log2(m/B) bits
to address the corresponding block. Listing 1 shows the
lookup function in pseudocode.
The improved bandwidth and computational efficiency

comes at the cost of reduced accuracy (higher f). Every
block acts as a classic bloom filter of size B, thus the false-
positive rate is known to be

fstd(m,n, k) =

(
1−

(
1− 1

m

)kn)k
, (2)

where m is set to the block size B. The important thing to
note here is, that not all blocks contain the same amount
of keys. In other words, the (block-local) n varies among
the different blocks and affects the overall f of the filter.
The load that the individual blocks receive is binomially
distributed, and [31] provides the following approximation
for the false-positive probability:

fblocked(m,n, k,B) =

∞∑
i=0

Poisson
(
i, B

n

m

)
∗ fstd(B, i, k)

(3)
where fstd denotes the false-positive rate of a classic Bloom
filter with the arguments m, n and k (see Equation 2).

Register Blocking: For high-throughput scenarios, we
consider an extreme case of blocking, where the block size is
reduced to the size of native CPU registers, namely 64-bit
or 32-bit. These register-blocked Bloom filters significantly
reduce computational efforts, as all k bits can be tested in a
single comparison and only one processor word needs to be
loaded (see Listing 2). Thus, since only one processor word is
accessed per lookup, a register-blocked filter can no longer be
considered as being memory bandwidth efficient. Effectively,
only 1/8th or 1/16th of a cache line is accessed for 64-bit and
32-bit blocks, respectively. Therefore, register blocking is a
technique to trade memory bandwidth efficiency and preci-
sion for further increased computational efficiency, which is
particularly important for CPU-cache resident filters.

Impact of blocking: Figure 4a illustrates how blocking
affects the false-positive rate f depending on the bits-per-
key rate (m/n). We compare a space-optimal classic Bloom
filter (blue line) with register-blocked Bloom filters (red and
orange lines), and a cache line blocked filter (green line).
Figure 4b shows the corresponding values for k, which indi-
cates the computational efforts caused by hashing.
The smaller the block size, the higher f becomes. This in-

crease in f can be compensated to some degree by increasing

// Block addressing
h = consume log2(m/B) hash bits
block_idx = h mod m/B
found = false
for each k do {
// Word addressing (W denotes the size of a word)
h = consume log2(B/W ) hash bits
word = load word from block_idx + h
h = consume log2(W ) hash bits // Bit addressing
found |= word & (1 � h) // Bit testing

}
return found

Listing 1: Lookup function of blocked Bloom filters.

// Block addressing
h = consume log2(m/B) hash bits
block = load word at position h mod (m/B)
search_mask = 0;
for each k do {
// Bit addressing
h = consume log2(B) hash bits
search_mask |= 1 � h

}
return block & search_mask == search_mask // Bit testing

Listing 2: Lookup function of register-blocked Bloom
filters.

the filter size m and the bits-per-key rate, respectively. For
instance, a classic Bloom filter with f = 1% requires ≈ 10
bits per key of memory, whereas a register-blocked Bloom
filter requires ≈ 12 or 14 bits per key for block sizes of 64
and 32 bits. However, depending on the desired f , the mem-
ory footprint of the filter quickly becomes impractical. For
instance, with B = 32, a false-positive rate of 0.1% requires
32 bits per key, which is significant memory consumption,
and an exact data structure, e.g., a hash map might be a
better choice.

3.2 Sectorization
With an increasing tw, the false-positive rate f of a filter

becomes increasingly important and it therefore becomes
necessary to increase the block size beyond a single processor
word. If the bits are distributed over multiple words, we can
no longer test multiple bits in one comparison instruction
(compare Listing 1 and 2), which significantly reduces CPU
efficiency. In this section, we present sectorization of blocked
Bloom filters to address this inefficiency. For clarity, we
first present the key idea of sectorization, followed by an
extension which we call cache-sectorization. The latter can
compete with Cuckoo filters even for large filters that exceed
the CPU cache size.
To the best of our knowledge, sectorization (in a primi-

tive form) was first used in the SIMD Bloom filter of the
Impala database system [21]. The authors actually com-
bined a m/k-partitioning scheme [20] with blocking. How-
ever, this technique has not been further investigated with
regard to performance and false-positive rate. In the fol-
lowing, we catch up on this by discussing the upsides and
downsides of sectorization and further provide a formula for
the false-positive rate.
Sectorization is a partitioning scheme that sub-divides

blocks into equally sized partitions, which we call sectors,
and the k bits, set for each key, are equally distributed

505



5 10 15 20

10−4

10−2

100

Bits per key (m/n)

Fa
ls
e-
po

si
ti
ve

ra
te

Classic Bloom 32-bit blocked
64-bit blocked 512-bit blocked

(a)

5 10 15 20
0

5

10

15

Bits per key (m/n)

O
pt
im

al
k

(b)

Figure 4: Impact of blocking on the false-positive-rate and
the hashing efforts.

among all sectors. This partitioning scheme has the fol-
lowing advantages:

1. It reduces the number of required hash bits and there-
fore reduces computation efforts caused by hashing.

2. It can change the random access within a block to a
sequential access pattern which greatly improves CPU
efficiency.

To exemplify sectorization, we set the block size to 512
bits and the sector size to 64 bits. Furthermore, we assume
that a native processor word has 64 bits (as in x86_64) and
is therefore equal to the size of a sector. Hence, a block is a
sequence of s=8 words which can be processed sequentially
and independently by setting the first k/8 bits in the first
word, the next k/8 bits in the second word, and so on. Each
word has to be read exactly once and multiple bits can be
tested at once, similar to register blocking (see Listing 2).
Formally, we let S denote the sector size and the (capi-

talized) K the number of bits set per key per sector, where
1 ≤ S ≤ B. As sectorization aims for CPU efficiency in
Bloom filter implementations, we restrict the block size as
well as the sector size to be a power of two and k needs to
be a multiple of the number of sectors B/S.
Sectorization generalizes the (prior) definition of a blocked

Bloom filter. I.e., if we set S := B, then the individ-
ual blocks consist of exactly s=1 sector and it implies that
k = K. The filter instance is therefore equivalent to a
blocked Bloom filter as defined by Putze et al. in [31].
In contrast to m/k-partitioning as proposed by Kirsch et
al. [20], sectorization is applied at block level and therefore
preserves the locality of a blocked Bloom filter. Further, our
scheme is more flexible because it allows us to set multiple
bits per partition (sector), which improves CPU efficiency.
Figure 5 shows a performance comparison of a blocked

Bloom filter with and without sectorization with k = 16 (on
a Xeon E5-2680v4 using 28 threads). The leftmost data
points refer to register blocking (where one block = one
word). We then double the block sizes until we reach the
size of a cache line. Immediately, when a block exceeds a
single word, the lookup performance drops significantly by
≈ 60% for cache-resident filters and by ≈ 50% for larger fil-
ters, because we have to use the first lookup algorithm from
Listing 1 (using a random access pattern). On the other
hand, with sectorization enabled, the performance degrades
gracefully with increasing block sizes. The important thing
to note here is that the sector size is set to word size and it

1 4 16
0

1000

2000

3000

4000

Words per block

Lo
ok
up

s
[M

/s
ec
]

Blocked (one sector)
Sectorized (# of sectors = # of words)

(a) Cache (16KiB filter)

1 4 16
0

500

1000

Words per block

Lo
ok
up

s
[M

/s
ec
]

(b) DRAM (256MiB filter)

Figure 5: Performance impact of sectorization for varying
block sizes.

remains constant. We only increase the number of sectors
with the block size, which is the enabler for using the more
efficient lookup algorithm from Listing 2 within each sector
(in a sequential order).
Technically, the sector size can be set to any power of two

(as long as S ≤ B), but it must be less than or equal to the
word size in order to get a sequential block access pattern.
In most cases, setting the sector size to the word size (either
32-bit or 64-bit) is the best option. In rare cases, splitting a
word in multiple sectors may improve the false-positive rate,
which we describe later. In the remainder of the paper, we
set the sector size to the word size, unless stated otherwise.
The downside of sectorization is that the number of ks

needs to be a multiple of the number of sectors. In other
words, we need at least as many ks as we have sectors. And
with regard to CPU efficiency, we would prefer to set/test
multiple bits per sector. Thus, it is desirable to have higher
ks per sector. For instance, if we use 32-bit words and a
block size B = 512 bits, we need at least 16 sectors and con-
sequently at least k = 16, which is already a very high value
for k (not only for high-throughput scenarios). If we also
want to set/test multiple bits at once, we have to increase k
to unreasonably high values of 32, 48, etc. With these limita-
tions, it is hardly possible to find the right balance between
low false-positive rates, high memory bandwidth efficiency,
and high CPU efficiency. The Impala implementation, for
instance, uses the (hard-coded) configuration k = 8, S = 32,
and B = 256 2, where only the filter size m can be adjusted.
It therefore leaves room for optimizations.
To address these limitations, we propose an extension to

sectorization that offers more flexible parameterization and
is therefore more tunable to a wide variety of problem set-
tings. We call our approach cache-sectorization. The
design goal is to distribute the bits over entire cache lines
but also support lower ks.
Cache-sectorization works as follows: Blocks are parti-

tioned in word sized sectors. Multiple sectors are then logi-
cally grouped together. When a key is inserted, we set k/z
bits in each group, where z is the number of groups per
block. Inside each group, the k/z bits are set in one sec-
tor, which is determined by the key’s hash value. Figure 6
illustrates the cache-sectorization block partitioning. Per
key, z words are accessed, and all words belong to the same
cache line. Inside each group, we now have a dependent load

2The configuration is ideal for AVX2 SIMD using 256-bit
registers.

506



which makes the access pattern less optimal. However, this
is amortized by accessing fewer words per block. Further,
across the groups, all operations remain independent and
can be performed in parallel. In contrast to sectorization, k
can be chosen more flexibly, as a multiple of z instead of s,
where z < s.

False-positive rate: Cache-sectorization can improve the
false-positive rates as compared to sectorization. In Fig-
ure 7, we compare both variants: The blue line represents
the sectorized variant that spreads the bits across 4 words,
resulting in 4 loads per lookup. The cache-sectorized ver-
sion (red line), also accesses 4 words per lookup but spreads
the bits across an entire cache line, which results in a sig-
nificantly lower false-positive rate. If we further reduce the
number of accessed words (orange line), we can improve the
lookup performance with f similar to the sectorized vari-
ant. For reference, the dashed lines show the false-positive
rates of (register-)blocked filters without sectorization, with
B = 32 and B = 512, respectively.
We provide formulas for the false-positive rate for both

sectorized variants:

fsector(m,n, k,B, S) =

∞∑
i=0

Poi
(
i, B

n

m

)
∗
(
fstd

(
S, i,

k

s

))s
(4)

fcache(m,n, k,B, S, z) =

∞∑
i=0

Poi
(
i, B

n

m

)
∗

(
i∑

j=1

Poi
(
j, S

i ∗ z
B

)
∗ fstd

(
S, j,

k

s

))z
(5)

Our experimental analysis discussed in Section 6 shows
that a Bloom filter with cache-sectorized blocks can com-
pete with Cuckoo filters and outperforms standard (non-
sectorized) blocked Bloom filters.

4. CUCKOO FILTER
With the Cuckoo filter [15], Fan et al. presented an al-

ternative to Bloom filters which claims to be “practically
better” in terms of lookup performance and space consump-
tion. A Cuckoo filter is a variation of a cuckoo hash table [27]
with two major differences:

1. It stores small signatures (aka fingerprints) instead of
the entire keys, while every hash bucket can hold mul-
tiple of such signatures.

2. For collision resolution, the alternative bucket of an
entry is determined based on the key’s signature and
its current bucket index, instead of using two indepen-
dent hash functions.

The signature of a key is computed using a hash function.
Typically, the low-order bits of the hash value are used as
the signature. Inside the cuckoo hash table, each signature
has two candidate buckets in which they can be stored. The
indexes of the two buckets i1 and i2 of a key x are calculated
as follows:

i1 = hash(x)

i2 = i1 ⊕ hash(x’s signature)
(6)

S0 S1 S2 S3 S4 S5 S6 S7

block

sector

Z0 Z1

insert / lookup

k/z bits k/z bits

k bits

group of sectors

Figure 6: Block partitioning scheme of cache-sectorized
Bloom filters: hashing sets bits concentrated in z words
spread over a cache line.

10 15 20

10−3

10−2

10−1

Bits per key (m/n)

Fa
ls
e-
po

si
ti
ve

ra
te

(l
og

sc
al
e)

cache-sectorized, z=4
cache-sectorized, z=2
sectorized
register-blocked
blocked

Figure 7: Comparison of the false-positive rate of sector-
ized and cache-sectorized Bloom filters, with k = 8.

The noteworthy property is that the index i1 can also be
computed using the key’s signature and the index i2:

i1 = i2 ⊕ hash(x’s signature) (7)

This property allows to determine the alternative bucket of
a signature without having access to the actual (unhashed)
key value, which is not stored in the cuckoo hash table. This
technique, which the authors refer to as partial-key cuckoo
hashing, is necessary to relocate signatures inside the table
in case of collisions. Whenever a signature cannot be stored,
due to fully occupied buckets, a signature in one of the two
target buckets is randomly chosen and relocated to its al-
ternative bucket. The fact that the alternative bucket index
is a combination of the signature and the first bucket index
(and vice versa) results in a lower table occupancy (∼50%)
compared to a cuckoo hash table that is using two inde-
pendent hash functions. The authors address this issue by
storing multiple signatures per bucket. For instance, using
a bucket size b = 2, 4, or 8 increases the table occupancy
to 84%, 95%, or 98%, respectively. However, this approach
also negatively affects the accuracy, as we describe in the
following paragraph. During a lookup, the key is hashed
to compute the signature and to determine both candidate
buckets. Afterwards, both buckets are searched for that sig-
nature.
The false-positive probability of a Cuckoo filter is

fcuckoo(α, l, b) = 1−
(

1− 1

2l

)2bα

, with: α =
l ∗ n
m

(8)

where l is the signature length in bits and α the load factor
of the table. Thus, the false-positive rate primarily depends

507



10 15 20

10−4

10−3

10−2

Bits per key (m/n)

Fa
ls
e-
po

si
ti
ve

ra
te

(l
og

sc
al
e)

8 bit sig.
12 bit sig.
16 bit sig.

(a) Four sig. per bucket.

10 15 20

10−2

10−1.5

Bits per key (m/n)

2 sig. per bucket
4 sig. per bucket
8 sig. per bucket

(b) Sig. size fixed to 8 bits.

Figure 8: The false-positive rate of Cuckoo filters for dif-
ferent signature lengths and bucket sizes.

on the signature size l. The longer the signatures, the lower
the false-positive rates. Typically, l is between 8 and 16 bits.
Increasing the filter’s size (i.e., lowering the load factor α)
only gradually improves the false-positive rate, as shown
in Figure 8a. On the other hand, reducing the numbers
of signatures per bucket b significantly improves the false-
positive rate (see Figure 8b), while coincidentally impairing
memory efficiency due to lower load factors.
A noteworthy property of a Cuckoo filter is that an inser-

tion may fail if the target buckets are fully occupied and the
signatures cannot be relocated. This is in contrast to Bloom
filters, where insertions always succeed.

5. IMPLEMENTATION TECHNIQUES
For our evaluation we implemented a blocked Bloom fil-

ter that is optimized for high-throughput scenarios where
lookups are performed in batches. Our implementation is
generic in the sense that it allows us to vary the block size,
sector size, and naturally the number of hash functions as
well. Even though our implementation is generic, the gener-
icity does not induce any runtime costs as it is mostly writ-
ten in C++ template language. All parameters are compile-
time static except the size of the filter m.
Further, we revised and extended the original Cuckoo fil-

ter implementation and unified the interface of all filters
under test with regard to batched lookups. I.e., the contains
functions take an entire list of keys at once and produce a po-
sition list (also called a selection vector) consisting of 32-bit
integers. As this work focuses on high-throughput scenarios,
we use multiplicative hashing for both, Bloom and Cuckoo
filters.

5.1 Data Parallelism
The performance-critical contains functions make exten-

sive use of SIMD instructions (i.e., from the AVX2 and the
AVX-512 instruction set). SIMD is primarily used to exe-
cute multiple lookups in parallel which allows the average
number of CPU cycles per lookup to be reduced to less then
two cycles (for low ks). Our actual C++ implementations of
the Bloom filter contains functions are very similar to the
scalar pseudocode in Listings 1 and 2. This also applies
for the SIMDized versions, as we used an abstraction layer
for the SIMD vector types and vector instructions. This
allows us to perform one lookup per SIMD lane, whereas
each SIMD lane operates on 32-bit words. It also allows

us to easily scale to broader SIMD registers. For instance,
the C++ implementations for AVX2, which performs eight
simultaneous lookups, is the same as for AVX-512, which
performs 16 lookups in parallel. Please note that this tech-
nique relies on the gather instruction and we therefore do
not support pre-AVX2 architectures. It is also noteworthy
that the SIMD abstractions do not incur any runtime costs.
Each contains function (one per filter configuration) is com-
piled into a branch-free instruction sequence.
Similarly, we optimized the Cuckoo filter implementations

to perform parallel lookups. In contrast to the Bloom filter,
the Cuckoo filter implementation is less generic. It requires
a separate code path for each signature length, and not all
signature lengths are “SIMD friendly”. Some may result in
unaligned memory accesses. – Please note that this also
applies for non-SIMD implementations. – We therefore op-
timized only the (SIMD-friendly) instances with 8-, 16- and
32-bit signatures.
Modern processors differ greatly in their SIMD capabili-

ties and their out-of-order execution capabilities [1, 18]. We
observed significant performance differences across various
platforms (Xeon, Knights Landing, Skylake-X and Ryzen)
with a single SIMD implementation. To address this issue,
we instantiate the filter templates with multiple parameters
with respect to the vector lengths and unrolling factors and
perform a short calibration phase at library installation time
which allows us to select the best performing instantiation
at runtime. The calibration is done only once per platform
and in the worst case, or if the underlying platform is of a
pre-AVX2 generation, the scalar (non-SIMD) code is used
as a fallback.

5.2 Magic Modulo
A common optimization technique is to size data struc-

tures to powers of two to avoid costly modulo operations and
substitute them by bitwise ANDs (this applies, for example,
to the Impala Bloom filter, the SIMD Bloom filter from [29],
and to the reference implementation of the Cuckoo filter).
I.e., the operation hash(key) mod m, which involves an in-
teger division, is several times slower than using hash(key)
& mask (with mask := (1�log2(m))-1). However, our ex-
perimental analysis shows, that this approach is very inflex-
ible and leaves large potential for optimizations.
Especially for SIMD, there is no satisfactory solution to

sizing data structures more flexibly. Even an inefficient mod-
ulo operation is not possible, because modern SIMD instruc-
tion sets do not support integer division. Putze et al. [31]
therefore proposed to perform the division with floating-
point arithmetic. Even though, the floating-point division
on Intel vector processing units is still an expensive oper-
ation, i.e., 13 cycles on Haswell, the operation is applied
to eight elements in parallel. If we take the necessary type
conversions into account, a division of eight elements takes
15 cycles, which is an improvement of approximately 6×
over scalar code. For our evaluation, we implemented an ap-
proach known from the field of compiler construction, which
performs the same operation in approximately 10 cycles.
Modern compilers substitute the costly modulo operations

(more precisely, the involved integer division) with a cheaper
instruction sequence consisting of a multiply, a shift, and an
addition. Based on the divisor, a compiler determines a
magic number [19] to multiply with, a shift amount and a
summand. On most platforms, the multiply-shift-add se-

508



quence is faster than an integer division. Naturally, the
compiler can only optimize if the divisor is known at com-
pile time, which is not the case with dynamically-sized data
structures such as, in our case, the Bloom or Cuckoo fil-
ters. We therefore re-implemented this approach manually
to support (almost) arbitrary filter sizes. We further opti-
mized the magic number approach to substitute the integer
division with a multiply-shift instruction sequence, without
the trailing addition, saving one additional instruction. The
enabler for this optimization is, that the magic numbers for
(unsigned) division can be categorized into two classes: (i)
those which require multiply-shift-add instructions and (ii)
those which only require a multiply and a shift. Which in-
struction sequence to use depends on the divisor. In our
context, we can (slightly) vary the size of the data struc-
ture. This additional degree of freedom allows us to choose
a divisor that belongs to the second class and to save the
trailing addition. We refer to this approach as magic mod-
ulo. A modulo operation i = hash(key) mod C is thereby
replaced by

h = hash(key)

i = h− (mulhi_u32(h,magicNo)� shiftAmount) ∗ h,
(9)

whereas the function mulhi_u32 multiplies two 32-bit inte-
gers, producing a 64-bit intermediate, and returns the upper
32 bits of the product.
Magic modulo is used to determine a block3 of the Bloom

filter and a bucket in the Cuckoo filter, respectively. The
actual filter size is therefore

mactual = x ∗ nextMagicNo
(⌈mdesired

x

⌉)
(10)

with x := B for Bloom filters and x := l∗b for Cuckoo filters.
In our implementation, which supports up to 232 blocks, the
actual number of blocks is at most 0.0134% higher than the
desired number of blocks or buckets, respectively. Naturally,
magic modulo is more expensive than a single bitwise AND

which is not in favor of Cuckoo filters, because the indexes
of two buckets need to be computed. Further, the XOR op-
eration of the partial-key cuckoo hashing (see Equation 6)
needs to be replaced by a different and slightly more expen-
sive self-inverse function. In our implementation, the bucket
indexes of a key x are computed as follows:

i1 = hash(x) magicMod C
i2 = −(i1 + hash(x’s signature)) magicMod C

(11)

where C denotes the number of buckets.
Figure 9 illustrates the benefits of magic modulo by using

an example of a cache-sectorized Bloom filter (k = 8, B =
512, z = 2). Magic modulo allows to vary the filter size in
very small steps (purple line) compared to the power-of-two
sizes (blue dots). At cache boundaries, there is a wide range
where this flexibility improves lookup performance 1 . The
range, where the performance degrades over power-of-two
modulo is relatively small 2 , because magic modulo has
only a modest overhead 3 . With an increasing filter size
(e.g., a multiple of the last-level cache size), magic modulo
becomes less beneficial with regard to performance 4 , but
still gives better control over the memory consumption. The
same applies for very small L1- or L2-resident filters.
3The Bloom filter block sizes are powers of two and there-
fore, inside a block, bitwise AND instructions are used to de-
termine the bit positions.

10 100
0

10

20

30

40

Filter size [MiB] (log scale)

Lo
ok
up

co
st
s
[c
yc
le
s] Magic

Pow24

2

3

1

Figure 9: Lookup performance of a cache-sectorized Bloom
filter for varying filter sizes.

Table 1: Hardware platforms
Intel Intel Intel AMD
Xeon Knights Skylake-X Ryzen

Landing

model E5-2680v4 Phi 7210 i9-7900X 1950X
cores (SMT) 14 (x2) 64 (x4) 10 (x2) 16 (x2)
SIMD instr. AVX2 AVX-5121 AVX-5122 AVX2
SIMD [bit] 2×256 2×512 2×512 256
freq. [GHz] 2.4 – 3.3 1.3 – 1.5 3.3 – 4.5 3.4 – 4.0
L1 cache 32 KiB 64 KiB 32 KiB 32 KiB
L2 cache 256 KiB 1 MiB 1 MiB 512 KiB
L3 cache 35 MiB - 14 MiB 32 MiB
launch Q1’16 Q4’16 Q2’17 Q3’17
1 AVX-512{F,CD,ER,PF}
2 AVX-512{F,DQ,CD,BW,VL}

6. EXPERIMENTAL ANALYSIS
In this section, we present the results of our experiments,

conducted on four different hardware platforms (see Ta-
ble 1). We tested many different problem sizes (n) and ran
experiments on the different hardware platforms, varying
all relevant parameters for each filter data structure. For
Bloom filters, we considered values for k in [1, 16], B in
{4, 8, 16, 32, 64} bytes, S in {1, 2, 4, 8, 16, 32, 64} bytes, W
in {32, 64} bits and z in {2, 4, 8}. For Cuckoo filters, we
varied l in {4, 8, 12, 16} bits, and b in {1, 2, 4}. As the data
set we used random 32-bit integers (uniformly distributed)
generated with the Mersenne Twister engine from the C++
Standard Template Library. To get stable results, we re-
peated each measurement five times and report the aver-
age. This resulted in more than 15 million experiments
that we performed on all these possible filter configurations.
Throughout all experiments we used the GCC compiler (ver-
sion 5.4.0) with optimization level set to -O3.
Unless stated otherwise, we present multi-threaded re-

sults, using one thread per core; except for KNL with 4-way
hyper-threading, we ran two threads per core. Even though,
all experiments ran on a single processor, we had to take
NUMA effects into account. KNL and Ryzen are NUMA
architectures, with four and two nodes, respectively. On
these platforms, we replicated the filter data to all NUMA
nodes and let all threads query the NUMA-local filter. The
probe data (256MiB), on the other hand, was distributed
across all nodes in a round-robin fashion.

Skylines. For each valid4 filter configuration F ∈ F we
scaled the problem size n from 210 to 228 keys. More pre-
cisely, we used the values ni,j = b2i+j∗0.0625c with i in

4Please note that not all configurations are valid. For in-
stance, setting B := 64 and S := 512 is illegal, as the sector
size may not exceed the block size.

509



[10, 27] and j in [0, 15]. For each 〈F, n〉 pair, we scaled the
filter size m between 4n and 20n, thus limiting the bits-
per-key rate to 20. The values of m are also scaled expo-
nentially, containing all powers of two and nine interme-
diates in between. For each experimentally collected data
point, we compute the overhead ρ(F ) for 28 different tw val-
ues. For the tw values, we use 2i with i in [4, 31]. From
the resulting data set, we determined for each 〈n, tw〉 point
the performance-optimal filter configuration F opt with the
smallest overhead. By doing this for all these points, we ob-
tain a skyline of performance-optimal filter configurations.

Performance-optimal filter type. Figure 10 summarizes
the results from the four hardware platforms. For each
〈n, tw〉 point, we report whether the performance-optimal
filter is a Bloom filter (green area) or a Cuckoo filter (blue
area). On all platforms, the Bloom filter is the filter of
choice for high-throughput scenarios and Cuckoo for mod-
erate and low-throughput scenarios. On AVX-512 platforms
(KNL and SKX), the more SIMD-friendly Bloom filter cov-
ers a larger space than on AVX2. Please note that the unit
of time for tw are CPU cycles.
On all platforms we observe a similar shape of the sky-

lines. The left-hand side is dominated by Bloom filters due
to their lower lookup costs, whereas the right-hand side,
Cuckoo filters dominate due to their lower false-positive-
rate. But we also observe that the tw-range in which the
Bloom filters dominate increases with the problem size. For
instance, for large problem sizes, Bloom filters perform bet-
ter than Cuckoo filters for tws up to approximately 105

cycles. Whereas for small n values, the Bloom filter only
performs best up to a tw of ∼ 103 cycles. This is caused
by the higher cache miss probability of the Cuckoo filter
which significantly increases the lookup costs once the fil-
ter spills to L3 or DRAM. Figure 14 shows a comparison
of the lookup costs for three different filter instances. The
fact that Cuckoo filters access two cache lines almost dou-
bles their lookup costs compared to Bloom filters. Thus, in
terms of filter overhead ρ, it takes “longer” for the Cuckoo
filter to compensate the higher lookup costs with its lower
false-positive rate.

Performance comparison. In Figure 11a, we compare
the performance of Bloom and Cuckoo filters on our default
evaluation platform SKX. For each 〈n, tw〉 point, we show
the performance improvement of the best performing filter,
either a Bloom or a Cuckoo filter, over its counterpart. De-
pending on n and tw, we observe relative speedups of up to
3× for Bloom filters in high-throughput scenarios 1 . The
Cuckoo filter, on the other hand, outperforms Bloom filters
in low-throughput scenarios by factors 2 . Naturally, for ar-
bitrarily large tws, the speedup of Cuckoo filters becomes
arbitrarily large, as the lower false-positive rate outweighs
the higher lookup costs. However, in practical scenarios
(tw ≤ 109 cycles), we observe speedups of up to 5×.
False-positive rate. The lowest possible false-positive rate
f in our experimental setup is 0.0002 for Bloom (using k =
11, and B = S = 512) and 0.00005 for Cuckoo (using l = 16
and b = 2). Note that f for Cuckoo could theoretically be
even lower. For instance, with b set to 1, the false-positive
probability would be 0.000024. However, construction would
most likely fail, as the load factor of the cuckoo hash table
would be significantly higher than 50%. Further, if an imple-
mentation that supports 19-bit signatures were be available,

f could be lowered to 0.000015. Nevertheless, the considered
Cuckoo implementations have false-positives rates that are
up to an order of magnitude lower than the Bloom filter im-
plementations. Figure 11b shows the dominance of Cuckoo
filters in terms of low f (green area). For faster moving
workloads (left side), the top performers are Bloom filters
with f in [0.0001, 0.01). Higher fs are mostly observed in
the area where filtering is not beneficial (top left corner).

Best performing Bloom filter variants. In Figure 12a,
we only consider Bloom filters and show which variant per-
forms best. We differentiate between register-blocked, sec-
torized, cache-sectorized and blocked, whereas the latter
refers to blocked Bloom filters without sectorization. The
results prove that, due to their low lookup costs, our newly
developed Bloom filter variants, register-blocking and cache-
sectorization, are well suited for a wide range of problem
sizes in high-throughput scenarios. We observed an up to
48% reduced overhead with cache-sectorization as compared
to plain sectorization (15% on average). In very few sce-
narios, plain sectorization performs slightly better (yellow
outliers). We attribute this to the dependent load in cache-
sectorization (see Section 3.2). However, the increase in
overhead was at most 0.5% throughout our experiments.
In low-throughput scenarios, higher precision is more im-

portant than CPU efficiency and refraining from using sec-
torization lowers the false-positive rate. However, if we
take the space dominated by Cuckoo into account, only a
small window of opportunity remains for (standard) blocked
Bloom filters 3 . Please see Figure 1 for example use cases.
So far, we have only distinguished between the filter types

and the different Bloom filter variants. In the following, we
examine the parameterization of the individual filters.

Bloom filter configurations. In Figures 12b-12g we re-
solve the parameters of the performance-optimal Bloom fil-
ter configurations. We start with the block sizes. Larger
block sizes generally trade CPU efficiency for improved accu-
racy. However, our cache-sectorization approach allows for
efficiently spreading the bits across an entire cache line, with
just a minor impact on the lookup costs. Thus, block sizes
larger than 4 bytes (single word) and smaller than 64 bytes
(cache line) play a minor role 4 . Nevertheless, register-
blocked Bloom filters with a block size of 4 bytes still out-
perform cache-sectorization and are therefore the best choice
for very low tws.
Figure 12c shows the number of sectors used in the perfor-

mance-optimal Bloom filters. In almost all high-throughput
cases, the number of sectors is equal to the number of words
per block. A rare exception is 5 , where the sector size
is smaller than the word size. In our implementation, the
smallest possible sector size is one byte. Which means, that
even a register-blocked filter can be sectorized. This sector-
ization on the sub-word level has no impact on the lookup
performance, but it negatively affects the false-positive rate.
However, for very low ks, there is almost no difference in f ,
and the outlier can therefore be considered noise. In that
particular case, the second-best filter instance, which is not
sectorized, has only a 0.2% higher overhead. We therefore
conclude that sub dividing words into multiple sectors is not
beneficial in practice.
On the right-hand side of the skyline, the low-throughput

cases, the sector count drops to one (standard blocked Bloom
filter), as non-sectorized filters offer a lower f .

510



101 105 109

104

106

108

tw

n

(a) Xeon (14 threads)

101 105 109

104

106

108

tw

n

(b) KNL (128 threads)

101 105 109

104

106

108

tw

n

(c) SKX (10 threads)

101 105 109

104

106

108

tw

n

Blocked Bloom Cuckoo

(d) Ryzen (16 threads)

Figure 10: Skyline of performance-optimal filters for varying n and tw.

101 105 109

104

106

108

1 2

tw

n

< 5% [1.05, 1.1)
[1.1, 1.25) [1.25, 1.5)
[1.5, 1.75) [1.75, 2)
[2, 3) [3, 4)
[4, 5)

(a) Speedups of the best filter over its counterpart.

101 105 109

104

106

108

tw

n

[0.00001, 0.0001)
[0.0001, 0.001)
[0.001, 0.01)
[0.01, 0.1)
[0.1, 1)

(b) False-positive rates of the best performing filters.

Figure 11: Performance comparison of Bloom and Cuckoo filters (a) and the corresponding false-positive rates (b).

101 105 109

104

106

108

3

high
throughput

low
throughput

tw

n

Blocked Sectorized
Cache-sectorized Register-blocked

(a) Bloom filter variants

101 105 109

104

106

108

4

tw

n

4 Bytes 8 Bytes 16 Bytes
32 Bytes 64 Bytes

(b) Block size

101 105 109

104

106

108

5

tw

n
1 2 4 8 16

(c) Sector count

101 105 109

104

106

108

6

tw

n

z = 1 z = 2 z = 8

(d) Cache-sectorization

101 105 109

104

106

108

9

8 7

tw

n

2 3 4 5 6 8 9 10 11

(e)Number of hash functions k

101 105 109

104

106

108

tw

n

Power of two Magic

(f) Modulo

101 105 109

104

106

108

10

tw

n

≤ L1 ≤ L2 ≤ L3
≤ 64MiB ≤ 128MiB ≤ 256MiB

(g) Filter size

Figure 12: Skyline of configurations of the best performing blocked Bloom filters (on SKX).

101 105 109

104

106

108

low
throughput11

12

tw

n

4 Bits 8 Bits 16 Bits

(a) Signature length

101 105 109

104

106

108

tw

n

1 2 4

(b) Bucket size

101 105 109

104

106

108

13

tw

n

Power of two Magic

(c) Modulo

101 105 109

104

106

108

tw

n

≤ L1 ≤ L2 ≤ L3
≤ 64MiB ≤ 128MiB ≤ 256MiB

(d) Filter size

Figure 13: Skyline of configurations of the best performing Cuckoo filters (on SKX).

511



10 100 1,000 10,000 100,000

0

20

40

60

80

L1 L2 L3

filter size [KiB]

cy
cl
es

pe
r
lo
ok
up

Register-blocked Bloom (B = 32, k = 4)
Cache-sectorized Bloom (B = 512, k = 8, z = 2)
Cuckoo (b = 2, l = 16)

Figure 14: Lookup time for varying filter sizes (on SKX).

As mentioned earlier, cache-sectorization covers the largest
space in high-throughput scenarios (see Figure 12d). How-
ever, the space where z = 8 6 is dominated by the Cuckoo
filter. Therefore, the most interesting configuration is where
two words of a cache line are accessed (z = 2).
With regard to the number of hash functions (k), which

are shown in Figure 12e, we found that in high-throughput
scenarios, a k ≤ 8 is sufficient. In particular k = 6 and k = 8
are the sweet spots for cache-sectorized filters 7 . For regis-
ter blocking, ks between 3 and 5 offer the best performance
8 . Filters with a k less than 3 are not practical altogether,
as they fall into the area where filtering is not beneficial 9 .
For low-throughput scenarios, we found that ks larger than
11 are never performance optimal.
Figure 12f shows that almost all top-performing Bloom

filters make use of magic modulo to optimally utilize the
available memory budget (20 bits per key). Magic modulo
also helps in cases, where it is better to reduce the k and
increase f instead of going to L3 or DRAM 10 , by adjusting
the filter size in small steps.

Cuckoo filter configurations. In Figure 13, we shed light
on the parameters of the best performing Cuckoo filters.
Throughout our experiments, the Cuckoo filter tends to

use the largest possible signature length l for the given mem-
ory budget. – Note that the largest signature length is 16
bit in this case. – Only in very high-throughput scenarios do
smaller signatures become beneficial, due to a higher degree
of SIMD parallelism. However, in that area, either Bloom
filter dominates 11 or filtering is not practical altogether 12 .
An interesting insight regarding the Cuckoo filter is that

a bucket size of b = 2 is to be favored over b = 4, which was
chosen for the evaluation in [15] (and hard-coded in their
implementation). Choosing a bucket size of 4 was the key
feature for Cuckoo filters to achieve better space efficiency
than Bloom filters. The fact, that our experimental results
show that two signatures per bucket perform better in al-
most all cases (see Figure 13b) substantiates our general
finding, that optimal filter space efficiency does not equate
to optimal performance.
Similar to Bloom filters, magic modulo is used to exploit

memory constraints as well as possible. However, in compar-
ison to Bloom filters, power-of-two modulo covers a larger
space (see Figure 13c 13 ), which is due to the higher costs
involved with magic modulo, as described in Section 5.2.
In general, we observed similar memory consumptions

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
pe
r
lo
ok
up

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

Sp
ee
du

p

pow2 magic

(a) Cuckoo filter (b = 2, l = 16)

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
pe
r
lo
ok
up

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

Sp
ee
du

p

(b) Register-blocked Bloom filter (B = 32, k = 4)

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
pe
r
lo
ok
up

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

Sp
ee
du

p

(c) Cache-sectorized Bloom filter (B = 512, k = 8, z = 2)

Figure 15: Performance of our SIMD-optimized filter im-
plementations.

among the two filters under test. The claim that Cuckoo
filters have better space efficiency [15] no longer holds when
performance optimality is the objective.

6.1 SIMD Optimizations
We present the performance impact of our SIMD opti-

mizations. Figure 15 shows the query performance and the
speedup over the scalar (non-SIMD) implementation of three
representative filters: a Cuckoo filter, a register-blocked, and
a cache-sectorized Bloom filter (L1 cache-resident filters, 1
thread). The blue bars represent the filter instances using
sizes of powers of two and the purple bars represent the filter
instances using magic modulo.
SIMD optimizations offer speedups of up to 10× and

therefore make filtering applicable for a larger spectrum in
high-throughput scenarios (small tws). On AVX2 platforms,
the (bare L1) performance of Cuckoo filters is very similar
to register-blocked Bloom filters. If the filter size exceeds
L2, blocked Bloom filters perform better with regard to
CPU cycles per lookup due to better memory bandwidth
efficiency (see Figure 14). On AVX-512 platforms, Bloom
performs significantly better than Cuckoo. In particular on
the Knights Landing (KNL) platform, the Cuckoo filter suf-
fers from mixing AVX2 and AVX-512 instructions due to
the missing AVX-512BW (Byte Word) instruction set. In
contrast to the Intel platforms, we barely observed any sig-
nificant speedups on the AMD Ryzen platform (mostly less
than 50% improvement over scalar), which we attribute to
the poorly performing gather instruction. Compared to
SKX, Ryzen is ≈ 2× to 5× slower in absolute numbers
(wall clock time, per thread).

512



7. RELATED WORK
The survey [9] describes many of the application areas of

Bloom filters [5]: databases, dictionaries, (P2P) network-
ing and routing. In databases, log-structured merge-trees
(LSM) have become important in write-optimized (cloud or
cluster) storage, splitting up a structure into multiple lay-
ers that are generated sequentially and periodically merged.
Queries need to check all layers, and in that respect Bloom
filters help to avoid accessing layers that do not contain a
key. Monkey [12] observes that different layers need differ-
ently tuned Bloom filters. That paper navigates correlated
parameter spaces in a data structure and identifies an opti-
mal tuning method. Our insights can be useful for LSMs:
we find that Cuckoo filters are a better match than Bloom
filters for workloads where filtering avoids I/O.
There have been many extensions of the original Bloom

filter [5]. Scalable Bloom filters [3] allow the filter to grow
dynamically if n is not known in advance, at the cost of more
expensive membership tests (lookups into multiple struc-
tures). Spectral Bloom filters [11] and counting Bloom fil-
ters [28, 7] can represent bags (duplicate keys) rather than
sets. The Bloomier filter [10] can associate a value (rather
than a bit) with a key. Retouched Bloom filters [13] allow
the suppression of certain selected false positives (that are
particularly harmful for the performance of an application).
Our adapted cache-sectorized and register-blocked Bloom

filters owe in spirit much to the work by Putze et al. [31]
in its search for more CPU-efficient and cache-efficient fil-
ters. That study introduced multi-blocked Bloom filters
and described SIMD implementations for insert and test,
and showed that reducing k and increasing m with regard
to their information-theoretic optima can significantly im-
prove performance. Our research into performance-optimal
filtering delves deeply into that realm of possibilities. Their
SIMD approach is different, as it spreads the bits of a single
key throughout the full SIMD register, and the lookup in-
struction sequence tests just for one key. Rather than setting
k bits one-by-one, these bits are generated using pseudo-
random, pre-generated bit patterns stored in a table. How
these bits are generated is not described, and the Putze et
al. source code was not available on request, so a perfor-
mance comparison was not possible. Our method looks up
multiple keys in parallel, one key per SIMD lane, profiting
from ever-wider SIMD widths in hardware. For instance,
cache-sectorized lookup uses GATHER-AND-CMP computation se-
quences that resolve 16 keys at once using AVX-512.
A SIMD implementation of classic Bloom filters is de-

scribed in [29]: at every iteration, one bit for multiple tu-
ples is tested (one key per GATHER lane). Keys that have been
resolved are retired and the SIMD lanes they leave empty
get refilled with new tuple data. This approach still suf-
fers from the original Bloom problem that a negative query
needs k cache line accesses. In addition, the refill mechanism
requires significant CPU work.
The Cuckoo filter [15] achieves better precision than Bloom

filters, can represent bags, and allows deletions. However,
the CPU and memory cost of Cuckoo filters make member-
ship tests slower. Our work puts Bloom and Cuckoo filters in
perspective, and our open-source software release provides
highly efficient SIMD implementations for Cuckoo filters,
making them more performance competitive. Another op-
timized Cuckoo filter named the Morton filter is presented
in [8]. It reduces the number of accessed cache lines from

two down to one in most cases. This is achieved by intro-
ducing a new SIMD-friendly data layout, an overflow logic,
and compression. We compared our implementation with
the reported numbers5 on similar hardware (Ryzen Thread-
ripper 1950X), showing that our implementation provides
the same query performance with large filters (≈ 200MB);
we expect it to outperform Morton filters significantly with
smaller (cache-resident) filters, which is not the sweet spot
of Morton filters.
A few alternative and approximate non-Cuckoo hash ta-

bles have been proposed. Both the Quotient filter [4] and
TinySet [14] store signatures in a mini-chained hash table.
Their advantage over Cuckoo filters is a single cache-miss,
as the entire chain fits in a cache line. Their disadvantage is
a more CPU-intensive and SIMD-unfriendly lookup, since a
loop is needed to walk the chain and determine membership.
Space-efficient index structures, in general, have attracted

a lot of interest in database research. Many lightweight data
structures have been proposed to accelerate table scans by
(i) skipping blocks of tuples, e.g., Column Imprints [32]
or MinMax indexes using Small Materialized Aggregates
(SMAs) [26], (ii) skipping scan ranges within blocks, e.g.,
Positional SMAs [22] and Adaptive Range Filters [2], or
(iii) by skipping (parts of) individual tuples, e.g., BitWeav-
ing [24, 30] and ByteSlice [16]. The more recent Column
Sketches [17] are more heavy weight, as they store approx-
imations of columns using lossy compression, but are also
applicable to a wide range of workloads (see Table 1 in
[17]). However, it is an open question, whether Bloom filter
pushdowns can be combined with Column Sketches (or with
any of the aforementioned index structures). A Bloom fil-
ter could be populated with the compressed values from the
sketch column, but this would require the Column Sketches
to have a low false-positive rate and the compressed values
need to be known at build time.

8. CONCLUSION
While the space-precision trade-offs of Bloom filters are

clearly understood, choosing a performance-optimal config-
uration is less obvious – in fact it was already known that
space-optimal Bloom filters are typically not the most effec-
tive configurations. The emergence of new filter types, and
specifically the Cuckoo filter, created yet another question
for practitioners with regard to what filter type and config-
uration to use for their problems. Our work sheds light on
the issue of which filter structure to choose, and with which
parameters, by formally defining performance-optimal fil-
tering and measuring it in our exhaustive experimentation.
Our overall finding is that the amount of work saved (tw)
primarily determines the choice between Bloom and Cuckoo:
high-throughput workloads (small tw) should use a (cache-
sectorized) Bloom filter, whereas slower moving workloads
(high tw), where precision is absolutely essential, should use
a (SIMD) Cuckoo filter.

9. ACKNOWLEDGEMENTS
This work was partially supported by the German Fed-

eral Ministry of Education and Research (BMBF) grant
01IS12057 (FASTDATA andMIRIN), and the DFG projects
NE1677/1-2 and KE401/22. We would like to thank Abe
Wits for his suggestions regarding this research.

5At the time of writing, the source code of Morton filters
was not available for reproducibility.

513



10. REFERENCES
[1] Advanced Micro Devices, Inc. Software Optimization

Guide for AMD Family 17h Processors (rev. 3.00).
2017.

[2] K. Alexiou, D. Kossmann, and P. Larson. Adaptive
range filters for cold data: Avoiding trips to siberia.
PVLDB, 6(14):1714–1725, 2013.

[3] P. S. Almeida, C. Baquero, N. M. Preguiça, and
D. Hutchison. Scalable bloom filters. Inf. Process.
Lett., 101(6):255–261, 2007.

[4] M. A. Bender, M. Farach-Colton, R. Johnson,
R. Kraner, B. C. Kuszmaul, D. Medjedovic,
P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don’t thrash: How to cache your hash on flash.
PVLDB, 5(11):1627–1637, 2012.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[6] P. A. Boncz, T. Neumann, and O. Erling. TPC-H
analyzed: Hidden messages and lessons learned from
an influential benchmark. In Performance
Characterization and Benchmarking - 5th TPC
Technology Conference, TPCTC 2013, Trento, Italy,
August 26, 2013, Revised Selected Papers, pages
61–76, 2013.

[7] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,
and G. Varghese. An improved construction for
counting bloom filters. In Algorithms - ESA 2006,
14th Annual European Symposium, Zurich,
Switzerland, September 11-13, 2006, Proceedings,
pages 684–695, 2006.

[8] A. Breslow and N. Jayasena. Morton filters: Faster,
space-efficient cuckoo filters via biasing, compression,
and decoupled logical sparsity. PVLDB,
11(9):1041–1055, 2018.

[9] A. Z. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2003.

[10] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pages 30–39, 2004.

[11] S. Cohen and Y. Matias. Spectral bloom filters. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pages 241–252,
2003.

[12] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey:
Optimal navigable key-value store. In Proceedings of
the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 79–94,
2017.

[13] B. Donnet, B. Baynat, and T. Friedman. Retouched
bloom filters: allowing networked applications to trade
off selected false positives against false negatives. In
Proceedings of the 2006 ACM Conference on Emerging
Network Experiment and Technology, CoNEXT 2006,
Lisboa, Portugal, December 4-7, 2006, page 13, 2006.

[14] G. Einziger and R. Friedman. TinySet - An access
efficient self adjusting bloom filter construction.
IEEE/ACM Trans. Netw., 25(4):2295–2307, 2017.

[15] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than
bloom. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’14, pages 75–88, New
York, NY, USA, 2014. ACM.

[16] Z. Feng, E. Lo, B. Kao, and W. Xu. ByteSlice:
Pushing the envelop of main memory data processing
with a new storage layout. In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 31–46, 2015.

[17] B. Hentschel, M. S. Kester, and S. Idreos. Column
Sketches: A scan accelerator for rapid and robust
predicate evaluation. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 857–872, 2018.

[18] Intel Corporation. Intel R© 64 and IA-32 Architectures
Optimization Reference Manual. 2018.

[19] H. S. W. Jr. Hacker’s Delight, Second Edition.
Pearson Education, 2013.

[20] A. Kirsch and M. Mitzenmacher. Less hashing, same
performance: Building a better bloom filter. Random
Struct. Algorithms, 33(2):187–218, 2008.

[21] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus,
J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL engine
for hadoop. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2015, Online
Proceedings, 2015.

[22] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on compressed storage using both
vectorization and compilation. In Proceedings of the
2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 311–326, 2016.

[23] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[24] Y. Li and J. M. Patel. BitWeaving: Fast scans for
main memory data processing. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 289–300, 2013.

[25] M. Mitzenmacher and E. Upfal. Probability and
computing - randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[26] G. Moerkotte. Small Materialized Aggregates: A light
weight index structure for data warehousing. In
VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, pages 476–487,
1998.

514



[27] R. Pagh and F. F. Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122–144, 2004.

[28] P. Pandey, M. A. Bender, R. Johnson, and R. Patro.
A general-purpose counting filter: Making every bit
count. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 775–787, 2017.

[29] O. Polychroniou and K. A. Ross. Vectorized bloom
filters for advanced SIMD processors. In Tenth
International Workshop on Data Management on New
Hardware, DaMoN 2014, Snowbird, UT, USA, June
23, 2014, pages 6:1–6:6, 2014.

[30] O. Polychroniou and K. A. Ross. Efficient lightweight
compression alongside fast scans. In Proceedings of the
11th International Workshop on Data Management on

New Hardware, DaMoN 2015, Melbourne, VIC,
Australia, May 31 - June 04, 2015, pages 9:1–9:6,
2015.

[31] F. Putze, P. Sanders, and J. Singler. Cache-, hash-,
and space-efficient bloom filters. J. Exp. Algorithmics,
14:4:4.4–4:4.18, Jan. 2010.

[32] L. Sidirourgos and M. L. Kersten. Column imprints:
A secondary index structure. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 893–904, 2013.

[33] M. Zukowski, M. van de Wiel, and P. A. Boncz.
Vectorwise: A vectorized analytical DBMS. In IEEE
28th International Conference on Data Engineering
(ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012, pages 1349–1350, 2012.

515


