Optimization for Active Learning-based Interactive
Database Exploration

Enhui Huangt, Liping Peng*, Luciano Di Palmat, Ahmed Abdelkafit, Anna Liu*, Yanlei Diao*t
fEcole Polytechnique, France; *University of Massachusetts Amherst, USA
f{enhui.huang, luciano.di-palma, ahmed.abdelkafi}@polytechnique.edu,

{lppeng, yanlei}@cs.umass.edu, anna@math.umass.edu

ABSTRACT

There is an increasing gap between fast growth of data and
limited human ability to comprehend data. Consequently,
there has been a growing demand of data management tools
that can bridge this gap and help the user retrieve high-
value content from data more effectively. In this work, we
aim to build interactive data exploration as a new database
service, using an approach called “explore-by-example”. In
particular, we cast the explore-by-example problem in a
principled “active learning” framework, and bring the prop-
erties of important classes of database queries to bear on
the design of new algorithms and optimizations for active
learning-based database exploration. These new techniques
allow the database system to overcome a fundamental limita-
tion of traditional active learning, i.e., the slow convergence
problem. Evaluation results using real-world datasets and
user interest patterns show that our new system significantly
outperforms state-of-the-art active learning techniques and
data exploration systems in accuracy while achieving desired
efficiency for interactive performance.

PVLDB Reference Format:

Enhui Huang, Liping Peng, Luciano Di Palma, Ahmed Abdelkafi,
Anna Liu, Yanlei Diao. Optimization for Active Learning-based
Interactive Database Exploration. PVLDB, 12(1): 71-84, 2018.
DOI: https://doi.org/10.14778/3275536.3275542

1. INTRODUCTION

Today data is being generated at an unprecedented rate.
However, the human ability to comprehend data remains as
limited as before. Consequently, there has been a growing
demand of data management tools that can bridge the gap
between the data growth and limited human ability, and
help retrieve high-value content from data more effectively.

To respond to such needs, we build a new database service
for interactive exploration in a framework called “explore-by-
example” [12,13]. In this framework, the database content
is considered as a set of tuples, and the user is interested in
some of them but not all. In the data exploration process,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 1

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3275536.3275542

71

the system allows the user to interactively label tuples as
“Interesting” or “not interesting”, so that it can construct
an increasingly-more-accurate model of the user interest.
Eventually, the model is turned into a user interest query'
that will retrieve all relevant tuples from the database.

In this work, we consider several target applications. First,
when a scientist comes to explore a large sky survey database
such as SDSS [39], she may not be able to express her data in-
terest precisely. Instead, she may prefer to navigate through
a region of the sky, see a few examples of sky objects, provide
yes or no feedback, and ask the system to find all other (po-
tentially many more) relevant sky objects from the database.
Second, consider many web applications backed by a large
database, such as E-commerce websites and housing websites,
which provide a simple search interface but leave the job
of filtering through a long list of returned objects to the
user. The new database service in the explore-by-example
framework will provide these applications with a new way to
interact with the user and, more importantly, help the user
filter through numerous objects more efficiently.

Our approach to building an explore-by-example system
is to cast it in an “active learning’ framework: We treat
the modeling of the user interest as a classification problem
where all the user labeled examples thus far are used to
train a classification model. Then active learning [5,36,41]
decides how to choose a new example, from the unlabeled
database, for the user to label next so that the system can
learn the user interest efficiently. The active learning based
explore-by-example approach offers potential benefits over
alternative methods such as faceted search [26,34,35] and
semantic windows [25] for several reasons.

First, the user interest may include varying degrees of
complexity, or the user does not have prior knowledge about
the complexity and hence expects the system to learn a model
as complex as necessary for her interest. More specifically,
if the user knows the relevant attributes and just wants to
set the appropriate value for each attribute, an interactive
GUI or faceted search [26,34,35] may be sufficient. However,
the user interest may involve more complex constraints, e.g.,
“(’rowbcl—al)2+(’r‘owbc2—a2)2 < 0777 and 44x+2.5*10g10(y) < 23.377
from the SDSS example query set [38], or “length*width > ¢”
as seen in our car database. If the user knows the function
shape and constants in advance, some of the above examples
(e.g., the ellipse pattern) can be supported by semantic

'In our work we use the term, user interest query, to refer to
the final query that represents the user interest, while the term,
user interest model, can refer to an immediate model before it
converges to the true user interest.

windows [25] as pre-defined patterns. However, if the user
does not have such prior knowledge, explore-by-example may
work regardless of how complex the predicates are, and which
functions and constants are used in the predicates.

Second, increased dimensionality makes it harder for se-
mantic windows to scale. For example, when the interest
of the SDSS user involves both the ellipse and log patterns
above, it will be more difficult for both the system and the
user to handle multiple patterns for data exploration (even if
such patterns can be predefined). In contrast, as the dimen-
sionality increases, explore-by-example can keep the same
user interface for data exploration and handles increased
complexity via its learning algorithm “behind the scenes”.

While prior work on explore-by-example has used active
learning [13], a main issue is the large number of labeled
examples needed to achieve high accuracy. For example, 300~
500 labeled examples are needed to reach 80% accuracy [13],
which is undesirable in many applications. This problem,
referred to as slow convergence, is exacerbated when the user
interest covers only a small fraction of the database (i.e.,
low selectivity) or the number of the attributes chosen for
exploration is large (i.e., high dimensionality).

In this work, we take a new approach to active learning-
based database exploration. Instead of improving active
learning in isolation from the database, we treat it as an
internal module of the database system and ask the question:
what query and data properties from the database can we
leverage to address the slow convergence problem? Based
on the common properties that we observed in query traces
from the Sloan Digital Sky Survey [38] and a car database
(described more in Section 6), we can indeed design new
techniques that overcome or alleviate the slow convergence
problem. Some of the key query properties include:

Subspatial Convexity: Consider the database attributes
as dimensions of a data space D and map the tuples to the
space based on the values of their attributes. Then all the
tuples that match the user interest form the positive region
in D; others form the negative region. We observe that
in some lower-dimensional subspaces of D, the projected
positive or negative region is a convex object. For example,
the SDSS query trace [38] includes 116 predicates, among
which 107 predicates define a convex positive region in the
subspace formed by the attributes used in the predicate,
and 3 predicates define a convex negative region in their
subspaces. For the car database, the 70 predicates defined
on numerical attributes all form a convex positive region.
Figure 2 shows a range of predicates from these two databases
and their positive and negative regions.

Conjunctivity: Conjunctive queries are a major class
of database queries that have been used in numerous ap-
plications. For data exploration, we are interested in the
“conjunctive” property of the set of predicates that char-
acterize the user interest. Among 45 queries provided by
SDSS [38], 40 queries are conjunctive queries. For the car
database, all user queries use the conjunctive property.

In this paper, we bring the subspatial convexity and con-
junctive properties of database queries, treated as true (yet
unknown) user interest queries, to bear on the design of
new algorithms and optimizations for active learning-based
database exploration. These techniques allow the database
system to overcome a fundamental limitation of traditional
active learning, i.e., the slow convergence problem when data
exploration is performed with high dimensionality and low

72

selectivity of the user interest query. More specifically, our
paper makes the following contributions.

1. Dual-Space Model (Section 3): By leveraging the
subspatial convex property, we propose a new “dual-space
model” (DsM) that builds not only a classification model,
Fy, from labeled examples, but also a polytope model of
the data space, Fp. On one hand, active learning theory
improves Fy by choosing the next example that enables
reduction of the version space V (the space of all classification
models consistent with labeled data). On the other hand,
our polytope model offers a more direct description of the
data space D including the areas known to be positive, areas
known to be negative, and areas with unknown labels. We
use both models to predict unlabeled examples and choose
the best example to label next. In addition, bsMm allows us
to prove exact and approximate lower bounds on the model
accuracy in terms of F'l-score. While active learning theory
offers provable bounds on classification errors [7,14,18-20],
it treats positive and negative classes equally. Given the low
selectivity of user interest queries, e.g., 1%, a classifier that
assigns all tuples to the negative class has a low error rate of
1%, but fails to return any relevant tuples. Hence, we choose
to bound F1-score as it emphasizes accuracy for the positive
class, i.e., the relevant tuples returned to the user.

2. High-dimensional Exploration: When the user
interest involves a large number of attributes, we employ two
approaches to reducing dimensionality in data exploration.

(a) Factorization (Section 4): By leveraging the conjunc-
tive and subspatial convexity properties of user interest
queries, we factorize a high-dimensional data space into low-
dimensional subspaces, in some of which the projections of
user positive or negative regions are convex. Our dual-space
model with factorization, DSMg, runs the polytope model in
each subspace where the convex property holds. We formally
define the class of queries that DSMp supports, the decision
function it utilizes, and prove that it achieves a better lower
bound of Fl-score than DSM without factorization.

(b) Online feature selection (Section 5): The user may
start exploration with more attributes than those needed in
the final model. To remove irrelevant attributes, we propose
an online feature selection method that adaptively selects the
top-k relevant attributes and leverages the convex property
(if present) for optimization.

3. Evaluation (Section 6): We evaluated our system
using two real datasets. The SDSS dataset [39] includes 190M
tuples, for which the user interests are selective and their
decision boundaries present varied complexity for detection.
Without knowing these queries in advance, DSMp can achieve
F1l-score of 95% within 10 labeled examples if the decision
boundary B falls in a sparse region, and otherwise requires up
to 100 labeled examples for 2D queries and 160-240 examples
for 4D-6D queries while maintaining per-iteration time within
1-2 seconds. For these queries, our results show that bsmg
significantly outperforms learning methods including Active
Learning (AL) [5,15] and Active Search [16], as well as recent
explore-by-example systems, Aide [12,13] and LifeJoin [9].

Our user study using a 5622-tuple car database validates
the subspatial convex property and the conjunctive property
of user interest queries. It also shows the benefits of DsMp
(a median of 10 labeled examples to reach high accuracy)
over manual exploration (where the user wrote 12 queries
and reviewed 98 tuples as the median), as well as over AL,
even in the presence of noisy user labels.

2. BACKGROUND

In this section, we review our design of an explore-by-
example system and present background on active learning.

2.1 System Overview

Our data exploration system is depicted in Figure 1. The
main concepts and modules are described as follows.

Data space. When a user comes to explore a database,
she is presented with the database schema for browsing.
Based on her best understanding of the (implicit) exploration
goal, she may choose a set of attributes, {4;}, i =1,...,d,
from a table for consideration. These attributes form a
superset of the relevant attributes that will eventually be
discovered by the system. Let us consider the projection of
the underlying table to {A;}, and pivot the projected table
such that each A; becomes a dimension and the projected
tuples are mapped to points in this d-dimensional space —
the resulting space is called a data space where the user
exploration will take place.

Initial examples. To bootstrap data exploration, the
user is asked to give a positive example and a negative
example. If she does not have such examples, the system
can run initial sampling [12,29] over the data space to help
her find such examples. Since the initial sampling problem
has been studied before, our work in this paper focuses on
data exploration after such initial examples are identified.

Iterative learning and exploration. The iterative ex-
ploration starts with a given positive example set and a
negative example set, which form the labeled dataset. In
each iteration, the labeled dataset is used to train a user inter-
est model, which is fast due to the small size of training data.
Before the model reaches convergence or a user-specified
accuracy level, it is used next to explore the data space and
retrieve a new example for display. In the next iteration,
the user labels this example as positive or negative — such
feedback can be collected explicitly through a graphical in-
terface [11], or implicitly based on the user behavior.? The
newly labeled example is added to the labeled dataset, and
the above process repeats.

Convergence and final retrieval. At each iteration,
our system assesses the current model to decide whether
more iterations are needed. The process is terminated when
the model accuracy has reached a user-defined threshold. At
this point, the model for the positive class is translated to
a query which will retrieve from the database all the tuples
classified as relevant. To provide better interpretability, our
system can visualize the final (nonparametric) model and fit
a corresponding parametric model, the form of which can be
suggested by the user after seeing the visualization.

2.2 Active Learning for Data Exploration

The problem of dynamically seeking the next example
for labeling from a large database of unlabeled tuples is
closely related to active learning. The recent results on
active learning are surveyed in [36]. Below, we summarize
those results relevant to our work.

Pool-Based Sampling. Many real-world problems fit the
following scenario: there is a small set of labeled data £ and
a large pool of unlabeled data U/ available. In active learning,
an example is chosen from the pool in a greedy fashion,

2Methods for collecting user feedback are in the purview of human-
computer interaction and are beyond the scope of this paper.

73

7]
Q i positive samples i
’—3' F Ugs;ck Classification i
initial I ee negative samples !
I
l i classification
Initial next sample el
Sampling
Space Exploration Convergence

I
active learnin:
| (Cactve eaming >

|
|
bl :
" trend accuracy 1
Copnm\zanonsl reduction -delemlon -eshmallon]
| i
| I
e 1
|
: Final retrieval
i

Figure 1: System architecture for explore by example.

model

retrieval query

according to a utility measure used to evaluate all instances
in the pool (or, if U is large, a subsample thereof). In our
setting of database exploration, the labeled data L is what
the user has provided thus far. The pool U/ is a subsample
of size m of the unlabeled part of the database. The utility
measure depends on the classifier in use, as discussed below.

Classification Model. Previous explore-by-example sys-
tems [12, 13] used decision trees to build a classification
model. It works well if the user interest pattern is a hyper-
rectangle in the data space, whereas real-world applications
may use more complex predicates. To support higher com-
plexity, our system uses more powerful classifiers such as
Support Vector Machines (SVM) or Gradient Boosting. The
new techniques proposed in our work do not depend on the
specific classifier; they can work with most existing classifiers.
But the implementation of active learning does depend on
the classifier in use. For ease of composition, in this paper
we use SVM as an example classifier.

Uncertainty Sampling and Version Space Search. A com-
mon form of utility measure over the unlabeled pool U char-
acterizes the degree of uncertainty that the current model
experiences for classifying each data example in /. Under
uncertainty sampling, the example that leads to the high-
est degree of uncertainty in classification is chosen as the
example for labeling. If the classifier is SVM-based, the
uncertainty can be measured by the distance of each example
from the decision boundary of the current SVM [5,15]. A
formal description of uncertainty sampling is through the
notion of wersion space, which is the space of all configu-
rations of the classification model consistent with labeled
data. Uncertainty sampling is a (rough) approximation of
an optimal algorithm that bisects the version space with
each selected example [41]. For the above reason, we call
active learning algorithms version space-based because they
are designed to reduce the version space.

3. DUAL-SPACE MODEL

For interactive data exploration, active learning algorithms
often require a large number of user-labeled examples to reach
high accuracy, known as the slow convergence problem. One
reason for slow convergence is the limitation of uncertainty
sampling itself: it may exert a lot of effort searching in sparse,
noisy, or irrelevant regions of the input space [36].

With the goal to provide a service for database exploration,
our work takes a new, a database centric approach to tackle
the slow convergence problem. We observe from existing
query traces that in some lower-dimensional subspaces, the
projected positive or negative region of user interest query
is often a convex object. In this section, we utilize such
subspatial convexity and introduce a dual-space (data and

line segment ellipse

>

(b) (rowc — 682.5)%+
(cole — 1022.5)% < 902

rectangle

]

(c) rowc > 617.5 and rowc < 747.5
and colc > 925 and colc < 1120

(a) rowc > 480 and rowc < 885

log pattern

hyperbola pattern

outside an ellipse

-

(d) rowv? + colv? > 0.22

(e) petroMag_ext_r +

(f) length * width >= 10.1
2.5 xlogyo(petroR50_r2) < 23.3

Figure 2: Positive (green) and negative (red) regions of 6
example predicates

version space) model, which enables improved accuracy and
provable lower bounds on the model accuracy. We begin
with the simple case that the convex property holds for the
query over the entire data space D, without factorization,
and defer the extension to subspaces to Section 4. We call
this class of queries “convex pattern queries”, denoted as
Q.= QS U Q.. Figure 2 gives examples in both classes.

3.1 A Polytope Model in Data Space

The key idea behind our data space model is that at each
iteration we use all available labeled examples to build a
partitioning of the data space. It divides the data space
into the positive region (any point inside which is known to
be positive), the negative region (any point inside which is
known to be negative) and the uncertain region. As more
examples are labeled, we have more knowledge about the
uncertain region, so part of it will be converted to either the
positive or the negative region in later iterations. Eventually,
with enough training data, the uncertain region becomes

empty, and the positive region converges to the query region.

For simplicity, we begin with queries whose positive region
is convex (QJ). When the query region @ is convex, any
point on the line segment between two points 1 € @ and
T2 € Q is also in . Then we have the following definition.

Definition 3.1 (Positive Region) Denote the examples
that have been labeled as “positive” as LT = {ef |i =
1,...,n"}. The conver hull of L't is known to be the smallest
convex set that contains Lt [27] and is called the positive
region, denoted as R*.

It is known that the convex hull of a finite number of points
is a convez polytope [17]. For example, the green triangle
in Fig. 3(a) and the green tetragon in Fig. 3(b) are the
positive regions formed by three and four positive examples,
respectively, which are an approximation of the query region
marked by the green ellipse. We can prove the following
property of the positive region for convex queries, assuming
that user labels are consistent with her interest:

Proposition 3.1 All points in the positive region R' are
positive.

All proofs in this paper are left to Appendix A of our
technical report [22] due to space constraints.

74

®
+

-

j 1 S
(b) A positive region (green)
and 5 negative regions (red)
built from 5 positive examples
and 5 negative examples.

(a) A positive region
(green) with 3 examples,
and a negative region (red)
with 1 negative and 2
positive examples

Figure 3: Positive and negative regions in the polytope model.

Definition 3.2 (Negative Region) For a negative exam-
ple e; , we can define a corresponding negative region R
such that the line segment connecting any point * € R,
and e; does not overlap with the positive region R™, but
the ray that starts from « € R; and passes through e; will

overlap with RT. More formally, R; = {z|xe; N Rt =

(3

—
D Axe; NRT #0}. Given n™ negative ezamples, the nega-
tive region R~ is the union of the negative region for each
negative example, i.e., R~ = Ul R .

From the definition, we know that R; is a convex cone
generated by the conical combination of the vectors from
the positive examples to the given negative example, i.e.,
+
J
such a convex cone. However, the union of R; ,i=1,2,...1s
non-convex. For example, the union of the five red polygons
in Fig. 3(b) is non-convex. Given more labeled examples, the
result of the union will be more accurate for approximating
the true negative region, which is outside the ellipse. We
prove the following property of the negative region:

efe; (j=1,...,n"). The red triangle in Fig. 3(a) depicts

Proposition 3.2 All points in the negative region R~ are
negative.

Definition 3.3 (Uncertain Region) Denote the data

space as R?, the uncertain region R* = RY — RY — R™.

Formally, the polytope model makes a decision about an
example x based on the following decision function, which
takes values in {—1,0, 1} corresponding to R~, R*, and R"
defined above:

Fp(x)=1-1(x€ R")—1-1(x € R"). (1)
Our work also supports the case that the negative region
of the query is convex (Q;). We can simply switch the
above definitions such that we build a convex polytope for
the negative region, and a union of convex cones for the
positive region, one for each positive example. We also offer
a test at the beginning of the data exploration process to
choose between two polytope models, @ € QF or Q € Q..
The details are deferred to Section 4 where we offer a test
procedure for all the assumptions made in the work.

Three-Set Metric. Our goal is not only to provide a
new data space model, as described above, but also to design
a new learning algorithm that enables a provable bound on
the model accuracy. As stated before, our accuracy measure
is Fl-score. Formally, Fl-score is evaluated on a test set
Diest = {(@s,y:)}, where ; denotes a database object and
y; denotes its label according to the classification model.
Then Fl-score is defined as:

Fl-score — 2 - precision - recall

precision + recall’

where precision is the fraction of points returned from Diest
by the model that are positive, and recall is the fraction of
positive points in Dies: that are returned by the model.

However, capturing F1-score in our data exploration pro-
cedure is difficult because we do not have such a labeled test
set, Diest, available. We cannot afford to ask the user to la-
bel more to produce one since the user labor is an important
concern. To bound the Fl-score with limited labeled data,
our idea is to run our polytope model, Fp : R* — {—~1,0,1},
on an evaluation set. We define the evaluation set Deyqr as
the projection of Di.s¢: without labels y;’s. Then for each
data point in Deyai, depending on which region it falls into,
Deyar can be partitioned into three sets accordingly, denoted
as DT, D™ and D“. We can compute a metric from the
number of data points in the three sets, as follows.

Definition 3.4 (Three-Set Metric) Denote D™
Deval N RJr; D™ = Deval N R77 D" = Deval n Ru; and |S|
means the size of set S. At a specific iteration of exploration,

|DF|
|DF|+|D¥]|

the three-set metric is defined to be

We will prove shortly that this metric is a lower bound of
F1-score evaluated on Diest. As more labeled examples are
provided, data points will be moved from D" to either D
or D™ . Eventually, with enough training data the uncertain
set shrinks to an empty set and the Three-Set Metric rises
to 100%, reaching convergence.

3.2 Dual-Space Model and Algorithm

We now propose a new algorithm for interactive data
exploration by exploiting models from two spaces, including
our data space model Fp with the Three-Set Metric, and a
classification model Fy with uncertainty sampling derived
from the version space.

We first define the dual-space model (DSM) by considering
two functionalities of a model for data exploration.

(1) Prediction: Given an unlabeled example, DSM predicts
the class label first based on the data space model Fp. If the
example falls in the positive region RT, it is predicted to be
positive; if it falls in the negative region R, it is predicted
to be negative. If the example falls in the unknown region
R", then the classification model Fy is used to predict the
example to be positive or negative.

(2) Sampling: In the active learning framework, the model
is also used to guide the choice of the next example for
labeling such that the new label can lead to significant im-
provement of the model accuracy. As discussed in Section 2,
active learning uses an uncertainty sampling method, Sy,
for a given classification model to choose the next example.
However, directly application of uncertainty sampling to our
dual-space model raises a problem: the example chosen by
Sy may fall in the known positive or negative region of our

75

data space model Fp, hence wasting computing resources
on such examples. In our work, we propose an uncertainty
sampling method that is restricted to the unknown region
of our data space model, denoted as Sp. However, if we
sample only from the unknown region of our data space
model, we may not get a representative sample to train the
classifier. Therefore, we use a sampling ratio, -, to alternate
between the sampling methods, Sp and Sy. For instance,
when v = 1/3, in each iteration we use Sp with probability
1/3 and use Sy otherwise.

Now we present the full algorithm for interactive data
exploration, as shown in Algorithm 1. The input is the
database D, a positive example &, a negative example
x~, a user-defined accuracy threshold A, and the sampling
ratio . First, we extract an evaluation dataset Dcyq from
the database D (line 1). For now, let us assume Deya
to be D. Then we initialize data structures, setting the
unknown partition of the evaluation dataset to be Dcyai.
The algorithm next goes through iterative exploration.

Lines 8-14 update our bsM model. The data space model,
R™ and R, is updated with the newly labeled example(s)
by the user (lines 8-9). This step incrementally updates our
convex polytope for RT and the union of convex polytopes for
R~ based on computational geometry [3]. Afterwards, the
corresponding partitions of Deyq; are incrementally updated
(line 10). In this step, some examples are removed from the
unknown partition D* and placed to the positive partition
D™ or the negative partition D~. The accuracy is then
estimated using the Three-Set Metric. We also keep track
of the labeled and unlabeled examples using Djapeiea and
Duniabeted- We use the labeled examples to train a classifier,
that is, the version space model in our DSM.

Then lines 15-28 implement uncertainty sampling using
DsM. With probability 7, we perform uncertainty sampling
from a pool that is restricted to the unknown partition of the
evaluation set, D“. Then the example chosen by uncertainty
sampling is labeled by the user. With probability 1 — v, we
perform uncertainty sampling from a pool that is a subsample
of all unlabeled examples in the database. Then the example
chosen by uncertainty sampling is first run through our data
space model, (RT, R7), to see if it falls in the positive or
negative region and hence can be labeled directly by the
model. Otherwise, it will be labeled by the user.

Then the algorithm proceeds to the next iteration. It
repeats until it has met the user accuracy requirement based
on the lower bound offered by our Three-Set Metric, or
reached the maximum of iterations allowed (line 29). Finally,
we run the DSM model over the database to retrieve all tuples
predicated to be positive. For the subsample procedures
used in the algorithm, we defer their details to Section 3.4.

3.3 Lower Bounds of F1-score

Given how the DsM algorithm works, we now present formal
results on the model accuracy achieved by DSM.

Exact Lower Bound. We begin with an exact lower
bound of our accuracy measure, the F1-score.

Theorem 3.1 The Three-Set Metric evaluated on Deya 1
a lower bound of the F1-score if DSM is evaluated on Diest.

The lower bound of DSM has several features. First, it is
an ezxact lower bound throughout the exploration process for
any evaluation set Deyq. Second, the metric is monotonic

Algorithm 1 Dual-Space Algorithm for Convex Queries

Input: database D, a positive example &, a negative example
accuracy threshold A\, sampling ratio

1: De¢yqr < subsample(D,n)

2: RT <0, R~ « 0

3: Dt <« 0, D~ < 0, D% < Deyar

4: Dlabeled — { w+7 w_}

5: Dunlabeled «~ D \ Dlabeled

6: Dlabeled,by,user <~ Dlabeleda Dlabeled,by,dsm <~ @
7: repeat

// building the Dual-Space model:

8 for = € Dlabeled,by,user do

9 (R*,R™) + updateRegion(RT,R™,x)

(Dt,D~,D"%) « threeSets(R*,R~,D*,D~,D%)
11: accu < threeSetMetric(D*, D—, D%)
12: Dlabeled'append(Dlabeled,by,user U Dlabeled,by,dsm)
13: Dunlabeled-remove(Dlabeled,by,user u Dlabeled,by,dsm
14: classifier < trainClassifier (Djgpeled)
// uncertainty sampling:
15: Dlabeled,by,user <~ (2)7 Dlabeled,by,dsm —0
16: if rand() < v then
17: pool < subsample(DY¥, m)
18: x <+ getNextToLabel (pool, classifier)
19: Dlabeled,by,usev‘ < getUserLabel ()
20: else
21: pool < subsample(Dynigbeled; M)
22: ¢ + getNextToLabel (pool, classifier)
23: if x € RT then
24: Dlabeled,by,dsm <~ (mr 1)
25: else if x € R~ then
26: Dlabeled,by,dsm — (CB, 71)
27: else
28: Diapeted_by_user < getUserLabel (x)

29: until accu > X or reachedMaxNum()
30: finalRetrieval(D, (R*,R™), classifier)

in the sense that points in the uncertain region D“ can be
moved to the positive or negative region later, but not vice
versa, and the metric goes to 1 when D" = (. If the metric
is above the desired accuracy threshold at some iteration,
it is guaranteed to be greater than the threshold in later
iterations, so we can safely stop the exploration.
Approximate Lower Bound. When D.,q; is too large,
we employ a sampling method to reduce the time to evaluate
the Three-Set Metric. Let p and ¢ be the true proportions
of the positive and negative examples in Dcyqr, i.€., p =
|D¥|/|Devat| and ¢ = |D7|/|Devat|. Then the Three-Set

Metric is b = IL Let p and ¢ be the observed proportions

of the positive and negative examples in a random draw of

n examples from Dcyq1, and let X,, = % Our goal is to

find the smallest sample size n such that the error of the
estimation X, from the exact Three-Set Metric is less than o
with probability no less than A. That is, Pr(| X, —b| < §) > A.

The following theorem helps us find the lower bound of n.

Theorem 3.2 supc | Pr(yv/n|X,—b|<e)— 2@(&
p(1—p—q)
—1 ||| = O /+/n) for any €, where ® is the cumulative

distribution function of the standard Normal distribution.

With the theorem, we can approximate the sample size by

2<I>(\/ﬁé(l—q))

p(l1-p—q)

—1>A

76

Since p(1—p—q)/(1—q)* < 1/4, it is sufficient for n to satisfy
2®(2y/nd) — 1 > X and therefore n > (¢! (%))2 /(46%).

3.4 Optimization of Sampling Methods

Sampling for creating the evaluation set (OPT1).
In line 1 of Algorithm 1, we construct an evaluation set Deyql
to develop a lower bound of the DSM model. Ideally, we want
Deyal to be as large as the entire database D. For efficiency,
we can only afford to have a memory-resident sample. The
analysis in Theorem 3.2 indicates that we can choose a sample
of size n from the database, and achieve an approximate lower
bound of the Fl-score of our DSM algorithm when evaluated
on the database. The sample, denoted as Deyqi, will expedite
line 10 of Algorithm 1. For example, the SDSS database
used in our experiments contains 190 million tuples. Denote
the true lower bound as b, when n = 50k, our approximate
lower bound b approximates b by € < .005 with probability
0.975 or higher. When n = 1.9 million, b approximates b by
€ < .001 with probability 0.994 or higher.

Sampling for pool-based active learning (OPT2).
Algorithm 1 contains two subsample procedures for pool-
based uncertainty sampling, that is, choosing the most uncer-
tain example from the pool for labeling next. The subsample
routine in line 17 creates a pool of unlabeled examples from
the uncertain partition of the evaluation set, D", which is
memory-resident. This can be implemented using reservoir
sampling. The subsample routine in line 21, however, creates
a pool, from the unlabeled portion of the entire database,
which is large and not materialized. Our work offers a
sampling-based optimization to avoid scanning the unlabeled
database in each iteration. Due to space constraints the
interested reader is referred to [22] for details.

4. FACTORIZATION

Although DsM can reduce user labeling effort and offer
better accuracy than traditional active learning, increased
dimensionality will make the volume of its uncertain re-
gion grow fast and degrade its performance. To handle this
issue, we leverage the property of conjunctive queries to
factorize a high-dimensional data space into a set of low-
dimensional spaces. By running the polytope model in each
low-dimensional space, we can “simulate” DSM in the high-
dimensional space with improved performance. This exten-
sion, denoted as DSMr, may require user labels of examples in
some subspaces: If the user label is positive for an example,
the label in each subspace is inferred to be positive. How-
ever, if the user label is negative for an example, she will be
asked to specify the subset of attributes (and the subspaces
thereof) that lead to the negative label. Since the user has
gone through thinking when deciding the label, specifying a
subset of attributes that lead to the negative label can be
facilitated via a graphical interface such as in [11].

Factorization for DSC queries. Formally, factorization
concerns a user interest query @ defined on an attribute
set A of size d, and can be written in the conjunctive form,
Qi N...ANQm. Each Q;, ¢ € [1...m], uses a subset of
attributes A; = {A;1,-- -, Aiq, }. The family of attribute sets,
A = (A, ,An), is pairwise disjoint with d = 7" | d;,
and is called the factorization structure.

In practice, we can derive the factorization structure from
available data in a database. It is a partitioning of the
database attributes with two properties: 1) Each attribute

g
rowc
«—

R+

= s 05
05 — o5 *°
s, e oW A

(a) A query in the DSC family is not con-
vex in either the positive region (green)
or the negative region (red).

points, {A, B, C, D}

B

(b) A positive region built from 4 positive

Ry
. !
Q

A

(c) 4 positive points {A, B, C, D} and 1
negative point (e~), where e~ is negative
in the (z-y) subspace and positive in the
(2) subspace

Figure 4: Illustration of factorization when 3D space (z-y-z) is factorized into two subspaces (z-y) and (z).

can appear in only one partition. 2) If several attributes
may be used in the same predicate (e.g., the positional
attributes rowc-colc, or the velocity attributes roww-colv
from SDSS), they must be assigned to the same partition. If
a query trace is available to show how attributes are used
in predicates, e.g., individually or in a pair, we can run a
simple algorithm over the query trace: Initially assign each
attribute to its own partition. As the query trace is scanned,
two partitions are merged if a predicate uses attributes from
the two partitions. At the end, all the remaining partitions
become the factorization structure A. FEven if a query
trace is not available, it is not unreasonable to assume that
by working with domain experts, it is possible to extract a
reasonable factorization structure that reflects how attributes
are used based on their semantics, e.g., the velocity attributes
rowwv-colv are often used in the same predicate.

DsC Queries. We next define a class of user interest queries
that DSMp supports with benefits over active learning: that is,
Vi =1,...,m, either the positive region in the i*" subspace,
defined as {x; € R|Q;(x;) > 0}, is convex (in the QJ
class), or the negative region, {z; € RI/|Q;(x;) < 0} is con-
vex (in Q7). We call such queries Decomposable Subspatial
Convezr (DSC) queries.

DsC allows us to combine a subspace whose positive region
is convex with another subspace whose negative region is
convex. However, the global query is not necessarily convex
in either the positive or negative region. Fig. 4(a) shows an
example query, Q =z + y? > 0.22 A 480 < z < 885, which
combines the ellipse pattern in Fig. 2(d), whose negative
region is convex, with the line pattern in Fig. 2(a), whose
positive region is convex. In the 3D space, the negative
region (marked in red) is the union of the red cylinder in the
middle of the figure and the red rectangles above and below
the cylinder, while the positive region (marked in green) is
the complement of it. Neither of the positive nor the negative
region of () is convex although it belongs to DSC.

p-DsSC Queries. We also support a superset of DSC queries,
where the convex assumption holds only in some subspaces.
We call this generalization partial factorization or p-DSC.

As a special case, if none of the subspaces permits the
convexity property, we call such queries Zero DSC or 0-DSC.

Polytope model with factorization and DSMp.
Given the factorization structure, the polytope model runs in
each subspace where the subspatial convexity is deemed true.
First, in the i*" subspace defined by A;, Q:’s positive and
negative regions, denoted as R; and R; , are built according
to Definition 3.1 and 3.2, but based on the “positive” and

77

“negative” labels of projected examples for Q;, as described
above. Then we build the positive and negative regions of
Q@ from the positive and negative regions in the subspaces
via the conjunctive property:

Rf = XIEL R = (D))

where X denotes the Cartesian product between two sets,
and R denotes the complement of set R. Then the uncertain
region of @Q is, R} R? — R? - R;.

Next we formally define the decision function for the poly-
tope model with factorization. In each subspace defined on
A;, let Fa, : R4 — {—1,0,1} be the decision function that
divides the subspace into three disjoint regions corresponding
to the negative, unknown, and positive regions, respectively.
As in (Eq. 1),

Fa,(x)=1-1(x € Rf) —1-1(x € Ry).

3)

For p-DsC queries, if the subspatial convexity is deemed not
true in a subspace, the value of its decision function is a
constant zero.

The global decision function for the polytope model with
factorization over the entire data space is then

(4)

where € = (21, ...,24), and x; denotes the projection of x
on the it" subspace defined by A;.

Finally, consider the dual-space model. Let DSMg be DSM
in §3.2 with the polytope data space model Fp replaced
by the polytope model with factorization F'p,. Then the

dual-space decision function of psMp, H : R — {—1,1}, is:

:{ FDf(m)7 FDf(m) #0

Fy(x), otherwise
where Fy is the classification model. H is our final prediction
model returned to approximate the user interest query. For
0-DSC queries, DSMr simply runs traditional active learning.
Illustration. Before presenting the formal results, we il-
lustrate the intuition that factorization allows us to construct
the positive and negative regions (R}“, R;) as supersets of

Fp (@) = minjZ, Fa, ()

H(x) (5)

(R*, R7), hence reducing the unknown region and offer-
ing better accuracy. Fig. 4(b) shows four positive points
A, B,C, D when the 3D space (z-y-z) is factorized into two
subspaces (z-y) and (2). It depicts the positive region RT as
the pyramid shaded in grey and marked by the green lines.
When we factorize R into (z-y) and (z) planes, we have
R}, as a triangle marked ABC and R as a line segment

projected onto z. Then we construct Rt from the triangle
and the line segment based on Eq. 2, we obtain a prism
marked by the blue lines, which is much bigger than RT.
Fig. 4(c) shows a negative point e~ and the negative region
constructed for it. R™ is a convex cone shaded in grey and
bounded by the solid purple rays emitting from e~. When
e~ is projected onto (z-y), it is negative and defines a convex
cone R, marked by the two solid red lines in the (z-y) plane.
When e™ is projected onto z, it lies in the positive region.
According to Eq. 2, the new negative region R extends the

convex cone R, by all possible values of z, resulting in a
geometric shape enclosed by the three solid red lines in the
figure. Again, the new R} is much larger than R™.
Formal results. For both DSC and p-DSC queries, we offer
formal results of the polytope model with factorization.

Proposition 4.1 All points in the positive region R}' are

positive and RT C R}' at each iteration of the data explo-
ration process.

Proposition 4.2 All points in the negative region R; are

negative and R~ C R; at each iteration of the data explo-
ration process.

Proposition 4.3 DSMg improves the Three-Set Metric, the
lower bound of the model accuracy in F1-score, over DSM.

Proposition 4.1 and Proposition 4.2 state that the positive
and negative regions constructed via factorization, (R}', RJT)7

are a superset of (RT, R™) that the original DsM offers.
Hence, the lower bound of F1-score built from (R}', Ry)is

higher than that from (R, R™) based on Def. 3.4.

Testing assumptions of dsmpy. Factorization replies
on two assumptions, which our system will test when a
user is performing data exploration online. The first as-
sumption is that we have a correct factorization structure,
A= (A4, --,Ap), for a database derived from its query
trace or schema. The second assumption is that user inter-
ests take the form a conjunctive query (CQ). In fact, our
system offers a simple extension of DSM to handle categorical
attributes, which is left to [22] in the interest of space. With
this extension, the class of user interest queries is an extended
class of conjunctive queries, in the form of P A P A.. ., such
that either P; is an individual predicate, or P; is defined on
a categorical attribute A and can take the disjunctive form,
(A=1)v(A=2)V..

Test Procedure. When either the factorization structure
or the CQ assumption is wrong, we start to see conflicting
examples in a polytope model for a specific subspace, i.e., a
positive example labeled by the user appears in the negative
region or vice versa. Based on this, our system uses the
following procedure to test online both assumptions behind
DSMp. At the beginning of data exploration, we build two
polytope models for each subspace, one under the assumption
that the positive region is convex, QF, the other under the
assumption that the negative region is convex, Q.. Over
iterations, we count the number of conflicting examples of
these two polytope models, and use a threshold, T, to turn
off a polytope model if its count exceeds T'. If both polytope
models remain active in a given iteration, the one with the
smaller count will be used; in the case of a tie, the model
for QF will be used as more query patterns belong to this

78

class. When both polytope models for a subspace are turned
off, we use partial factorization until they are turned off
for all subspaces, when we resort to the classifier. The test
procedure also allows DSMf to handle noisy user labeling by
adjusting the threshold 7', the number of conflicting examples
that can be tolerated by each polytope model.

5. ONLINE FEATURE SELECTION

The user exploration task may start with more attributes
than those included in the final learned model (user interest
query). The attributes that are not included in the final
model are noise in data exploration and cause slow conver-
gence of the model. To remove such noisy attributes, we
employ both offline dimensionality reduction on the database
and online feature selection techniques.

We examined dimension reduction methods including PCA
for offline compression, and Random forests (RF) and Gra-
dient boosting regression trees (GBRT) for online feature
selection. Since these are standard methods, we leave their
description and evaluation to [22]. We found that GBRT
works best for reducing dimensions. Therefore, we outline
how GBRT is used for online feature (attribute) selection in
our work. In each iteration of data exploration, we feed all
labeled examples to the GBRT learner, and ask the learner
to return the top-k features that are deemed most important
in learning. Then we build the classifier using these features
and select the next example for labeling. We repeat the two
steps in each iteration until the choice of top-k features stabi-
lizes. Then we build the full DSMr model until it converges.
However, we observe two limitations of this approach:

Unbalanced training data. GBRT is very sensitive
to unbalanced classes, that is, when the training data is
dominated by the negative examples. This is common in data
exploration because the true user interest is often a highly
selective query. We draw upon two insights in this work to
mitigate the imbalance problem. First, when applicable, our
DSMp algorithm already maintains a list of positive examples
from the evaluation set and we can add them to make the
training data balanced. Second, before DSMp accumulates
enough positive examples, we can also boost GBRT using
synthetic positive data: if the user interest has a convex
shape, as long as there are two positive examples, we can
draw points from the line that connects these two examples,
and treat these points as synthetic positive examples to
balance the training data.

How many features to select? Another issue is that
we do not know how many features to select, or the exact
value of top-k. The user does not offer this information a
priori. Choosing the right value of k£ is nontrivial because
GBRT may not have high confidence for selecting the correct
features in earlier iterations. To formalize the notion of
confidence, we utilize the feature importance scores provided
by GBRT. GBRT is a linear combination of decision tree base-
learners, where each decision tree intrinsically selects features
for splitting nodes. For each decision tree, the importance
score of a feature is computed as weighted sum of impurity
decreases for all the nodes where the feature is used [6]. Then
this score is averaged over all trees. Given feature importance
scores, we propose two strategies to characterize “sufficient
confidence” of GBRT for feature selection.

Proportion of nonroot trees: The intuition is that all deci-
sion trees must be weak learners and hence find some features
useful in distinguishing the positive class from the negative

Table 1: Query templates with different selectivity values

Query template |

Q1 (rectangle): rowc € [a1, az] A colc € [by, bo]

Q2 (ellipse): ((rowc —a1)/b1)2 + ((colc — a2)/b2)? < c?
Q3 (rectangle): ra € [a1, a2] A dec € [b1, ba]

Q4 (outside a circle): rowv? + colv? > c?

Q5: 4D queries combining two queries from Q1-Q4

Q6: 6D queries combining three from Q1-Q4

Q7: 6D-11D queries with 4-9 irrelevant attributes

Q8: 4D, (z1 > a+b-72) A(z3+c-logpz3 < d)

class. Based on this intuition, we wait until the iteration
where all trees become nonroot trees, hence likely to be weak
learners. Then we believe that the confidence of GBRT has
reached a sufficient level.

Entropy of Importance Scores (EIS): The next intuition
is that we prefer to have a lower entropy of the importance
scores across all the features. That is, the distribution of
importance scores departs from a uniform distribution and
becomes concentrated. Based on this, our second strategy is
to wait until EIS has dropped significantly below the expected
entropy of uniform importance scores, i.e., the importance
scores of some features really stand out. Then we think that
the confidence of GBRT has been sufficient.

Adaptive Feature Selection: We next devise adaptive strate-
gies to decide top-k features, depending on whether the cur-
rent iteration has reached the point of sufficient confidence
for feature selection, based on any of the above strategies.
Before reaching this point, we perform conservative feature
filtering: we select top-k features that account for 50% of
the total feature importance scores. After GBRT reaches the
point of sufficient confidence, we perform aggressive feature
selection by scanning the ranked list of feature importance
scores and choosing the top-k features such that the k"
feature and the k + 1" feature have the largest gap in the
ranked list. When GBRT chooses the same top-k features
for 10 iterations, we consider the choice of relevant features
stable and use them to build DSMF.

6. EXPERIMENTAL EVALUATION

We implemented all of our proposed techniques in a
Java-based prototype for data exploration, which connects
to a PostgreSQL database. In this section, we evaluate
our techniques and compare to recent active learning algo-
rithms [5, 15], active search [16], and explore-by-example
systems, Aide [12,13] and LifeJoin [9)].

Datasets: Our evaluation used two datasets. (1) SDSS (190
million tuples) contains the “PhotoObjAll” table with 510
attributes. By default, we used 1% sample (1.9 million tuples,
4.9GB) to create an evaluation set for DsM and for pool-
based uncertainty sampling — our formal results in Section 3.4
allowed us to use the 1% sample for data exploration, yet with
bounded difference of ¢ < .001 from the accuracy achieved
over the full database with probability >0.994. (2) Car
database (5622 tuples): this small dataset is used for our
user study because it is more intuitive for users to perform
explorative analytics. We defer a detailed discussion to §6.3.
User Interest Queries: We extracted 8 query templates
from the SDSS query release [38] to represent user interests.
They allow us to run simulations of user exploration sessions,
as in [12,13], by using the true query answers as the proxy
for user labeling. The 8 templates are shown in Table 1.
Each template is instantiated with different constants to

79

vary query selectivity in [0.01%, 10%]. In particular, Q1-Q3
represent patterns that are convex in the positive region (Q/).
Q4 retrieves tuples outside a circle, hence in the Q; class.
Q5-Q7 combine these attributes, optionally with irrelevant
attributes, for scalability tests. Q8 includes a predicate on
z1 and x> that belongs to Q7 , and a log predicate on x3 and
x4 that belongs to Q7 if z4 > 0 or is non-convex if x4 € R.

6.1 Dual-Space Algorithm with Factorization

We evaluate our Dual-Space Model (DsM) and compare it
to two ML techniques: (7) Active Learning (AL) runs uncer-
tainty sampling [5,15] to obtain labeled examples for building
a classifier, which is the version space part of bsM. We run
AL with an SVM or a standard kNN classifier (kNNT). (i)
Active Search (AS) [16] also follows an iterative procedure
of asking the user to label an example and training a new
model to guide the selection of the next example, but uses a
strategy to maximize the number of positive examples in the
set of selected examples, not classification accuracy. It uses
a special variant of kNN classifier to enable optimization,
denoted as kNN7. All tests were run up to 500 labeled
examples or when the lower bound of Fl-score reaches 99%.
In all plots, the x-axis is the number of labeled examples.

Expt 1 (2D queries): We run 2D queries from templates
Q1 to Q4. Since the results show similar trends, we show
the Fl-score, lower bound, and time measurement for Q3
(1%) in Fig. 5(a)-5(d).

Regarding accuracy, DsSM outperforms AL, and AL out-
performs AS. (1) A factor that affects performance is the
data distribution around the decision boundary B of the user
interest query. If B falls into a sparse region, separating the
positive and negative classes is relatively easy for bsM and
AL. Fig. 5(a) shows that for Q3 whose decision boundary
is in a sparse region, DSM and AL-SVM converge within 10
labeled examples. However, AS performs poorly, with F1-
score less than 20%. The reason is that AS compromises
recall by searching close to existing positive examples. In
contrast, DSM and AL aims to maximize classification accu-
racy by sampling the most uncertain region of the model,
e.g., close to the decision boundary, hence offering better
Fl-score. (2) If B falls into a dense data region, learning
an approximate B that can accurately divide all unlabeled
data points requires more labeled examples. To reach 95%
accuracy, DSM requires 100 labeled examples for Q3 and 90
examples on average for Q1-Q4. AL works better with the
SVM than the kNN classifier, but even AL-SVM cannot reach
95% for Q3 or most other workloads. Finally, AS performs
much worse than AL-KNNT while both use a kNN classifier.

DsM further offers a lower bound in Fl-score. Fig. 5(c)
shows that the lower bound is quite close to the true F1-score.

The time cost of DSM depends on the sampling method.
Recall from Algorithm 1 that with probability ~, it samples
from the unknown partition of the polytope model, D“; oth-
erwise, it does so from a subsample of the unlabeled examples
in the database, Duniabeled- 7=0 leads to high time costs
because the examples retrieved from Dyniabeieda may repeat-
edly fall in the positive or negative region of the polytope
model, wasting resources with no new information. y=1 and
~v=0.5 significantly reduce the time cost, with v=0.5 offering
slightly better accuracy due to balanced sampling. However,
both settings exhibit a spike in time cost in the early phase,
which is the time to build the polytope model the first time
by scanning the entire evaluation set. Finally, we improve

2 DSM —e— |
S AL-SVM oo
i AL-KNN* - -
= AS-KNN™ mam]
20 40 60 80 100
Tteration

(a) F-score for Q3 (1%, sparse region)

2 06 DSM —s— |
5 AL-SVM ot
= AL-KNN* --u--
= 04 AS-KNN™ —ae]
02
A A A
0
0 100 200 300 400 500
Tteration

(b) F-score for Q3 (1%, dense region)

DSM truth —— |
DSM lower bound

0 100

200 300
Tteration

(c) Lower bound for Q3 (1%, dense region)

400 500

10000 66888688
— L e 856058508688 | | |
é 1000 1 0.8 .,‘u;ﬂ"" @-a 0.8
£ DSM(y=0) — N
£ 100 DSM(=0.5) 206] g 06 DSM, truth —e— 1
B DSM(y=1) 2 . N 2 DSM, lower bound
5 10 DSM(y=0.5,0PT1) ----- ;TL 04| P R PR AN Sl = 04l DSM lower bound ---e--- |
2, ¥ AL ---] o SN STy % e
I 1 p S ol NS omy e Y DSME —e—
£ 5 ¥ DSM o .
E ol 02 [AL-SVM g | 02 r CRa

: S AL-KNN* - - - Pt g
001 o0 ¥ AS-KNN" =aem o N RS
0 100 200 300 400 500 600 0 100 200 300 400 500 0 100 200 300 400 500
ITteration Iteration Iteration

(d) Time per iteration for Q3 (1%, dense)

(e) F-score for Q2+Q3 (0.1%, dense)

(f) Lower bound for Q24+Q3 (0.1%, dense)

1 T T T 100 . C . ‘DSMF(DSQ —DSMp(p-DSC) --o-- AL-SVM -a-
DSM(y=0.5) AL-KNN* -«- AS-KNN -a-
— DSME(y=0.5, OPT1) --------
08 | g ol T -
£ 0.8
© 06 8
3 g 1t] 2 0.
—_— e Qo
=04y g-aad g y-'f:“.“:t‘*'.'m‘.’t'sr;':'.'.“_' . 2z,
a = K
et E oaf] 3
027 aae e = 02 ¥
o .
@@ ;
0 0.01 0
0 100 200 300 400 500 100 200 300 400 500 600 0 100 200 300 400 500

Iteration

(g) F-score for Q2+Q3+Q4 (0.01%, dense)

Iteration

(h) Time for Q24+Q3+Q4 (0.01%, dense)

Iteration

(i) Full vs. partial factorization with Q8

Figure 5: psMm with factorization for 2D, 4D, and 6D queries, compared to Active Learning (AL) and Active Search (AS) algorithms

~v=0.5 with the optimization (OPT1) from Section 3.4, where
we start with a smaller evaluation set to avoid the initial
spike, but later switch to a larger evaluation set once its
polytope model is built completely in the background. This
optimization keeps the time cost per iteration within a second
and will be used as the default algorithm.

Expt 2 (4D-6D queries): We next show results of 4D-6D
queries in dense regions as they present harder workloads.
The main results of Fig. 5(e)-5(h) are: (1) Without factor-
ization, DSM performs similarly to AL because the polytope
model is dominated by the uncertain region. Then DSMp
dramatically shrinks the uncertain region, and improves the
lower bound and Fl-score. (2) Consistently, DSMp outper-
forms AL, which further outperforms AS. Fig. 5(g) shows
that for the 6D query, DSMp reaches 95% with 240 examples,
AL-svM cannot reach 40% with 500 examples, and AS has
F-score close to 0. (3) DSMF can keep the time per iteration
within 1-2 seconds, as shown in Fig. 5(h) for the 6D query.

Expt 3 (Partial factorization): We next generate two
queries from Q8 with 7.8% selectivity (based on the constants
used in SDSS). Q8.v; is in the DSC family because its positive
region is convex in the (x1, z2) subspace, and its negative
region is convex in (z3, x4). Q8.v2 is in the p-DSC family
because it is non-convex in (z3, x4). Hence, DSM supports
Q8.v2 with partial factorization. Fig. 5(i) shows that DsMp
works better for the DSC query than p-DSC query, as expected,

80

but even partial factorization works much better than (7)
AL, which does not reach 60% after 500 labeled examples,
and (i7) AS, which cannot achieve more than 5% accuracy.
Expt 4 (Feature selection for 6D-11D queries): We now
evaluate the optimizations proposed for GBRT as an online
feature selection method in Section 5. To do so, we use the
template Q7. Since the major results are similar, below we
report results by extending Q2 with 4 irrelevant attributes
(making it a 6D query) or with 9 irrelevant attributes (making
the query 11D). Without feature selection, the Fl-score is
0 for these queries. As Fig. 6(a) shows, feature selection
improves the Fl-score to above 80% for all of them. As
stated earlier, GBRT is sensitive to selectivity and hence the
combination of high dimensionality (11D) and low selectivity
(0.1%) represents the hardest workload among the three.

6.2 Comparison to Alternative Systems

We next compare our system to two state-of-the-art
explore-by-example systems: 1) LifeJoin [9] uses SVM for
classification and active learning for seeking the next example
for labeling. But it differs in the SVM implementation from
our work. We implemented LifeJoin techniques as additional
methods in our system. 2) Aide [12,13] uses decision trees as
the classification model and customized methods for seeking
the next example for labeling. We obtained the source code
from the authors. When comparing these systems, we ex-

1 1

T ey
Koo S e A~ e P e e o
08 K 5 -\ 1 08 jd e - 0.8 I
. ¥ 7 T S W 4D-DSM, ---a---
206 ot 2 06| _7_‘ / © 06 / 6D-DSMg
S A /x A~ S FA 8 [6D-AIDE
= ¥ # = iy z i 4D-AIDE --x--
= 04 ¢ ¥ / m04F g m04r 6D-LifeJoin]
s N d 4D-LifeJoin —e—
02 Y. o Q2+9dim(1%) --»--] o2l il DSM --a-- | o2l
o /7 Q2+4dim(0.1%) I AIDE --x-- i
3 ! : o iy j
0 bt o4 Q2+9d‘1m(0.l 47)‘ - o 2))) Llfe.lonq —e o0 ks PP P I LI PR IL
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Tteration

(a) Feature selection for Q7 (6D-11D)

Tteration

(b) psM vs Aide and LifeJoin (2D)

ITteration

(c) psm vs Aide and LifeJoin (4D, 6D)

Figure 6: Results for partial factorization, feature selection, and comparison to Aide and LifeJoin systems, and the user study.

clude the overhead to find the first positive example as these
systems use different methods / assumptions to find them.

Expt 5: Fl-score is reported in Fig. 6(b) for a 2D query,
and in Fig. 6(c) for 4D and 6D queries. (1) For the 2D query,
our system outperforms Aide, which further outperforms
LifeJoin. Overall, LifeJoin is significantly worse in accuracy.
(2) For the 4D query, Aide and LifeJoin drop to below 10% in
accuracy, while our system achieves 99% within 200 iterations.
For the 6D query, again Aide and LifeJoin fail to work. This
observation remains for any query that we tried beyond 2D.
This is due to the combination of low selectivity and high
dimensionality in data exploration. Additional analysis of
these systems is available in [22].

6.3 User Study using a Car Database

We conducted a user study by building a car database’.
The database includes 5622 vehicles with 27 attributes such
as the model, year, length, height, engine power, and retail
price. Additional details on the database are given in [22].
Our study has two objectives: (1) build a query trace to
understand the characteristics of data exploration tasks in
this domain; (2) use this trace as the ground truth of user
interests to evaluate our system.

To develop the query trace, we designed task scenarios with
different price constraints and usage patterns, e.g., buying a
car for everyday city commute, outdoor sports, an elderly in
the family, or a small business. The 18 users in our study
belong to two groups: the first 11 users are CS professors
and graduate students, while the rest of 7 are non-technical
people. We asked each user to find all the cars that meet
the requirements of the assigned task so that he can provide
a recommendation service to customers who belong to the
given scenario. Each user proceeds in three phases: 1) Review
the schema: Since this is a familiar domain, most users can
understand the schema quickly. 2) Initial exploration: We
next show sample data to help the user understand the data
and materialize his preference. We also ask the user to come
up with the first positive example via (a) naming a car that
he already has in mind, or (b) reviewing a sample set pre-
computed for the given task based on the price constraints,
body type, year, etc., and finding one that appears relevant.
Two users chose option (a) while the others chose option
(b). 3) Iterative manual exploration: In the third phase, the
user is asked to specify his interest precisely by (a) sending
a SQL query to the database?; (b) reviewing a subset of

3The content is extracted from http://www.teoalida.com/

“4For the 7 non-techncial people, we offered help to translate their
requirements to SQL but otherwise did not influence the users in
data exploration.

the returned tuples; (c) going back to revise the query. The
steps are repeated until the user is satisfied with all returned
tuples of the final query.

First, we verify that the selectivities of all 18 queries are
in the range of [0.2%, 0.9%]. They contain 117 predicates in
total: 70 of them are defined on numerical attributes and are
all convex in the positive region. The rest 47 use categorical
attributes, for which the notion of convexity does not apply.
All the queries are conjunctive; the only disjunction is applied
to the categorical attributes.

Second, we evaluate our system by running simulations
using these queries as the true user interest. While the
queries involve 4 to 10 attributes, the classifier requires cate-
gorical attributes to be transformed using one-hot encoding,
resulting in 4 to 418 features used by DsSM. Table 2 shows
in the “DSM” column family that DsMp achieve 99% for
all queries, with a median of 10 labeled examples, despite
the high-dimensionality. In contrast, the users manually
wrote a series of queries, with a median of 12, and reviewed
many tuples, with a median of 98. The results from two user
groups are largely consistent with each other, with a small
difference that non-technical people tend to specify simpler
queries, hence easier for DSM to learn. Note that the initial
cost of finding the first positive example, with a median of
10 tuples, can be added fairly to both exploration modes.

Third, the study verified our benefits over active learning
(AL), which cannot reach 95% accuracy for most queries
within 100 iterations and for 80% has a median of 29 labeled
examples. Even if the decision boundary is often in a sparse
region, high dimensionality makes AL lose performance.

Fourth, to test the robustness of DSM we run it with noisy
user labels as described in Section 4. Any polytope model
that has exceeded T=1 conflicting examples will be turned
off, leading to partial factorization. To inject noisy labels,
our intuition is that they are more likely to occur close to
the boundary of the true pattern. 1) Noise model: we use
a Gaussian noise model where a new example gets a wrong
label with a probability that depends on its distance to the
true boundary, i.e., the probability that its distance to the
boundary of a perfect SVM classifier (with the margin size
0) is less than a sample from a Gaussian function with u=0
and o = §/2. 2) Non-uniform user behaviors: we assume
the first s (=5 or 10) examples to be noise free because they
are drawn from the broad data space, hence likely to be far
from from the true boundary, and the user tends to be more
patient at the beginning. The last 9 columns of Table 2
show DsM and AL under noisy labels. DSM reaches 95%
accuracy with a median of 11 labeled examples including
5 noise-free initial examples, while AL requires 36 labeled
examples with 10 noise-free examples to achieve 80%. Out

81

Table 2: Results of the car database using Manual Exploration, DSM, Active Learning (AL). #A shows the number of attributes used
in the user interest and #F shows the number of features (with onehot encoding) after transforming all categorical attributes for use by
the classifier. For manual exploration, To shows the number of tuples reviewed in initial exploration (the 2nd phase) for the user to find
the first positive example; and T3 shows those reviewed in iterative exploration (3rd phase). For DSM and AL, the algorithm marked by

‘-’ never reached the desired accuracy within 100 iterations.

Q #A #F Manual AL DSM DSM DSM AL
Exploration 5 noise free 10 noise free | 10 noise free
T, T3 #SQL| 0.8 095 0.99| 0.8 0.95 0.99| 0.8 0.95 0.99| 0.8 0.95 0.99] 0.8 0.95 0.99
Q1 Min 4 12 0 35 8 8 9 9 4 4 5 4 4 5 4 4 5 8 9 9
~ Max 8 418 | 18 412 49 - - - 14 23 26 - - 14 - - -
Q11 Mdn 6 35 11 104 16 29 42 - 7 10 13 7 13 - 7 10 13 35 - -
Q12 Min 4 4 0 50 4 9 15 15 3 5 6 3 5 6 3 5 6 9 16 -
~ Max 10 51 24 260 15 - - - 7 11 12 - - - 7 11 12 - - -
Q18 Mdn 6 24 4 91 10 28 - - 6 6 9 6 - 6 6 9 48 - -
GlobalMdn 6 30 | 10 98 12 | 29 - - | 6 9 10 | 6 11 -] 6 9 10 | 36 - -

of the 105 subspatial polytope models built for 18 queries,
14% were turned off when s=5 and 6% were turned off when
s=10. Partial factorization still outperforms AL for noisy
labels due to fast convergence.

7. RELATED WORK

Data Exploration. Faceted search iteratively recommends
query attributes for drilling down into the database, but the
user is often asked to provide attribute values until the desired
tuple(s) are returned [26,34,35] or offer an “interestingness”
measure and its threshold [10]. Semantic windows [25] are
pre-defined multidimensional predicates that a user can ex-
plore. These methods are different from our active learning
approach. Recent work also supports time series data [32]
or avoids false discoveries of statistical patterns [44] during
interactive data exploration. Finding best database objects
based on user preferences [40] assumes a numeric weight per
database attribute, which is different from the active learning
approach to discover the user interest on the fly.

Query by Example is a specific framework for data ex-
ploration. Earlier work on QBE focused on a visualization
front-end that aims to minimize the user effort to learn the
SQL syntax [23,33]. Recent work [31] proposes exemplar
queries which treat a query as a sample from the desired
result set and retrieve other tuples based on similarity met-
rics, but for graph data only. The work [37] considers data
warehouses with complex schemas and learns the minimal
project-join queries from a few example tuples efficiently. It
does not consider selection with complex predicates, which is
a focus of our work. The work [24] helps users construct join
queries for exploring relational databases, and [28] does so
by asking the user to determine whether a given output table
is the result of her intended query on a given database.
Query formulation has been surveyed in [8]. The clos-
est to our work is LifeJoin [9], which we compared in Sec-
tion 6.2. Query By Output (QBO) [42] takes the output of
one query on a database, and constructs another query such
that running these two queries on the database are instance-
equivalent. Dataplay [2] provides a GUI for users to directly
construct and manipulate query trees. It assumes that the
user can specify the value assignments used in his intended
query, and learns conjunctions of quantified Horn expressions
(with if-then semantics) over nested relations [1].

Active Learning. Tong and Koller [41] provide a theoreti-
cal motivation on selecting new examples using the notion
of a version space, but with unknown convergence speed.
Related to our work is a lower bound on the probability

82

of misclassification error on the unlabeled training set [7].
However, it relies on user labeling of an additional sample
from the unlabeled pool, which is not required in our work.
Recent papers [14,18-20] offer probabilistic bounds for the
classification error and sample complexity. Our work dif-
fers in that we focus on Fl-score, which suits selective user
interest queries (imbalanced classes in classification).

Most learning theory makes no assumptions on convex

data/class distributions [21]. Clustering techniques can as-
sume that data is clustered in convex sets [21], but address
a different problem from ours. In Active Learning, convexity
assumptions occur in the Version Space [4,41], which is the
set of classifiers consistent with training data. DSM can em-
brace any classifier developed through the version space, but
also includes the new polytope model.
Active Search. Active search [16,30,43] aims to maximize
the number of positive examples discovered, called the Target
Set Accuracy, within a limited budget of user labeling effort.
In comparison, our work aims to maximize the F'I-score of
the model learned to approximate the true user interest. We
reported the performance difference from [16] in the previous
section. The works [30,43] use a kernel function to measure
similarity of items in order to maximize the utility of a set
of selected items. Such kernel methods have the smoothness
requirement, i.e., similar items have similar utility values,
and require training data to tune the kernel for each use case
(user interest), which do not suit our problem setting.

8. CONCLUSION AND FUTURE WORK

We presented new algorithms for interactive data explo-
ration in the active learning framework, which leverage the
subspatial convex and conjunctive properties of database
queries to overcome the slow convergence of active learning.
Our results show that our DSM algorithm significantly outper-
forms active learning [5,15], active search [16], and existing
explore-by-example systems, Aide [12,13] and LifeJoin [9],
in accuracy and convergence speed, while maintaining the
per-iteration time within 1-2 seconds. In future work, we will
address inconsistent labeling by extending our DSM model
to a probabilistic model, extend query patterns to multi-
ple disjoint areas using exploration versus exploitation, and
leverage data properties to further improve accuracy.

Acknowledgements. This work was funded in part by
NSF under the grant 1IS-1218524, Agence Nationale de la
Recherche (ANR), and Université Paris-Saclay.

9.
1]

[9]

[10]

[11]

[16]

REFERENCES
A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M.

Hellerstein, and A. Silberschatz. Learning and verifying
quantified boolean queries by example. In Symposium
on Principles of Database Systems (PODS), pages
49-60, 2013.

A. Abouzied, J. M. Hellerstein, and A. Silberschatz.
Playful query specification with dataplay. PVLDB,
5(12):1938-1941, 2012.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Transactions
on Mathematical Software, 22(4):469-483, Dec. 1996.
K. Bellare, S. Iyengar, A. Parameswaran, and

V. Rastogi. Active sampling for entity matching with
guarantees. ACM Transactions on Knowledge
Discovery from Data, 7(3):12:1-12:24, Sept. 2013.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast
kernel classifiers with online and active learning.
Journal of Machine Learning Research, 6:1579-1619,
Dec. 2005.

L. Breiman. Random forests. Machine learning,
45(1):5-32, 2001.

C. Campbell, N. Cristianini, and A. J. Smola. Query
learning with large margin classifiers. In Proceedings of
the Seventeenth International Conference on Machine
Learning, ICML ’00, pages 111-118, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

A. Cheung and A. Solar-Lezama. Computer-assisted
query formulation. Foundations and Trends®) in
Programming Languages, 3(1):1-94, June 2016.

A. Cheung, A. Solar-Lezama, and S. Madden. Using
program synthesis for social recommendations. In
Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, CIKM

'12, pages 1732-1736, New York, NY, USA, 2012. ACM.

D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and

G. Lohman. Dynamic faceted search for
discovery-driven analysis. In CIKM, pages 3—12, 2008.
Y. Diao, K. Dimitriadou, Z. Li, W. Liu,

O. Papaemmanouil, K. Peng, and L. Peng. AIDE: an
automatic user navigation system for interactive data
exploration. PVLDB, 8(12):1964-1967, 2015.

K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
Explore-by-example: an automatic query steering
framework for interactive data exploration. In
SIGMOD Conference, pages 517-528, 2014.

K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Aide:
an active learning-based approach for interactive data
exploration. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2842-2856, 2016.

R. El-Yaniv and Y. Wiener. Active learning via perfect
selective classification. Journal of Machine Learning
Research, 13(1):255-279, Feb. 2012.

S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning
on the border: Active learning in imbalanced data
classification. In Proceedings of the Sizteenth ACM
Conference on Conference on Information and
Knowledge Management, CIKM 07, pages 127-136,
New York, NY, USA, 2007. ACM.

R. Garnett, Y. Krishnamurthy, X. Xiong, J. G.
Schneider, and R. P. Mann. Bayesian optimal active
search and surveying. In Proceedings of the 29th

83

(26]

27]

(28]

29]

(30]

(31]

32]

International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012,
pages 843-850, 2012.

B. Griinbaum. Convex polytopes. In Convex Polytopes.
Springer-Verlag New York, 2 edition, 2003.

S. Hanneke. Rates of convergence in active learning.
The Annals of Statistics, 39(1):333-361, 02 2011.

S. Hanneke. Theory of disagreement-based active
learning. Foundations and Trends® in Machine
Learning, 7(2-3):131-309, June 2014.

S. Hanneke. Refined error bounds for several learning
algorithms. The Journal of Machine Learning Research,
17(1):4667-4721, Jan. 2016.

T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, 2001.

E. Huang, L. Peng, L. D. Palma, A. Abdelkafi, A. Liu,
and Y. Diao. Optimization for active learning-based
interactive database exploration. Technical report,
2018. https://hal.inria.fr/hal-01870560.

B. E. Jacobs and C. A. Walczak. A Generalized
Query-by-Example Data Manipulation Language Based
on Database Logic. IEEE Transactions on Software
Engineering, 9(1):40-57, 1983.

M. Kahng, S. B. Navathe, J. T. Stasko, and D. H. P.
Chau. Interactive browsing and navigation in relational
databases. PVLDB, 9(12):1017-1028, 2016.

A. Kalinin, U. Cetintemel, and S. Zdonik. Interactive
data exploration using semantic windows. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 505-516, New York, NY, USA, 2014. ACM.

N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed and Interactive Cube Exploration. In
ICDE, pages 472-483, 2014.

S. R. Lay. Convex Sets and Their Applications. Dover
Publications, 2007.

H. Li, C.-Y. Chan, and D. Maier. Query from examples:
An iterative, data-driven approach to query
construction. PVLDB, 8(13):2158-2169, 2015.

W. Liu, Y. Diao, and A. Liu. An analysis of
query-agnostic sampling for interactive data
exploration. Technical report, University of
Massachusetts Amherst, 2016. Technical report
UM-CS-2016-003.

Y. Ma, R. Garnett, and J. G. Schneider. ¥-optimality
for active learning on gaussian random fields. In
Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United
States., pages 2751-2759, 2013.

D. Mottin, M. Lissandrini, Y. Velegrakis, and

T. Palpanas. Exemplar queries: Give me an example of
what you need. PVLDB, 7(5):365-376, 2014.

R. Neamtu, R. Ahsan, C. Lovering, C. Nguyen, E. A.
Rundensteiner, and G. N. Sarkozy. Interactive time
series analytics powered by ONEX. In Proceedings of
the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 1595-1598,
2017.

[33]

[34]

G. Ozsoyoglu and H. Wang. Example-Based Graphical
Database Query Languages. Computer, 26(5):25-38,
1993.

S. B. Roy, H. Wang, G. Das, U. Nambiar, and

M. Mohania. Minimum-effort driven dynamic faceted
search in structured databases. In Proceedings of the
17th ACM Conference on Information and Knowledge
Management (CIKM), pages 13-22, 2008.

S. B. Roy, H. Wang, U. Nambiar, G. Das, and

M. Mohania. Dynacet: Building dynamic faceted search
systems over databases. In International Conference on
Data Engineering (ICDE), pages 1463-1466, 2009.

B. Settles. Active Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan
Claypool Publishers, 2012.

Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and

L. Novik. Discovering queries based on example tuples.

In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’14, pages 493-504, New York, NY, USA,
2014. ACM.

Sloan digital sky survey: Dr8 sample sql queries.
http://skyserver.sdss.org/dr8/en/help/docs/
realquery.asp.

A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. R.
Slutz, and R. J. Brunner. Designing and mining
multi-terabyte astronomy archives: The sloan digital

84

(44]

sky survey. In SIGMOD Conference, pages 451-462,
2000.

B. Tang, K. Mouratidis, and M. L. Yiu. Determining
the impact regions of competing options in preference
space. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17,
pages 805-820, New York, NY, USA, 2017. ACM.

S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. Journal
of Machine Learning Research, 2:45-66, Mar. 2002.

Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data,
SIGMOD °’09, pages 535-548, New York, NY, USA,
2009. ACM.

H. P. Vanchinathan, A. Marfurt, C. Robelin,

D. Kossmann, and A. Krause. Discovering valuable
items from massive data. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, pages 1195-1204, 2015.

Z. Zhao, L. De Stefani, E. Zgraggen, C. Binnig,

E. Upfal, and T. Kraska. Controlling false discoveries
during interactive data exploration. In Proceedings of
the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, pages 527-540,
New York, NY, USA, 2017. ACM.

