Accelerating Generalized Linear Models with MLWeaving:
A One-Size-Fits-All System for Any-Precision Learning

Zeke Wang, Kaan Kara, Hantian Zhang, Gustavo Alonso, Onur Mutlu, Ce Zhang
Systems Group, Department of Computer Science
ETH Zurich, Switzerland
firstname.lasthname@inf.ethz.ch

ABSTRACT

Learning from the data stored in a database is an important func-
tion increasingly available in relational engines. Methods using
lower precision input data are of special interest given their over-
all higher efficiency. However, in databases, these methods have a
hidden cost: the quantization of the real value into a smaller num-
ber is an expensive step. To address this issue, we present ML-
Weaving, a data structure and hardware acceleration technique in-
tended to speed up learning of generalized linear models over low
precision data. MLWeaving provides a compact in-memory rep-
resentation that enables the retrieval of data at any level of preci-
sion. ML Weaving also provides a highly efficient implementation
of stochastic gradient descent on FPGAs and enables the dynamic
tuning of precision, instead of using a fixed precision level during
learning. Experimental results show that MLWeaving converges
up to 16 x faster than low-precision implementations of first-order
methods on CPUs.
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1. INTRODUCTION

Database engines have started to provide support for train-
ing machine learning (ML) models over relational data (e.g.,
MADIib [32]). Generalized linear models, such as support vec-
tor machines and logistic regression solved using stochastic gradi-
ent descent (SGD), are among the most common approaches used
within databases. Although useful in many applications, these
models are expensive to compute and, thus, there is a great deal
of activity exploring ways to reduce the overhead of training. One
promising approach is quantization applied to either the values in
the model [15, 31,92] or, our focus in this paper, lower precision
input data. Using lower precision on the input data reduces the
amount of data accessed during training, thereby shortening train-
ing times [108].
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From a database perspective, these approaches are interesting
as they alleviate the memory bottleneck. However, existing ap-
proaches quantizing the input data implicitly assume that either the
data is always available in the correct precision (e.g., for 32-bit
fixed-point numbers, 32 copies of the original data with precision
ranging from 1 to 32 bits are required) or the data is pre-quantized
at its source (e.g., memory or disk) [17,45]. A further challenge is
that the correct precision needed by each application is not always
known in advance and varies depending on the statistical charac-
teristics of the data. The overhead for machine learning that uses
quantized datasets is even bigger when hardware accelerators are
used, since existing solutions require 1) a different microarchitec-
ture for each precision level and 2) a separate copy of the quantized
data at the right level of precision [45].

To address these issues, we have designed MLWeaving, a novel
end-to-end system enabling any-precision learning of generalized
linear models in database engines. We implement a prototype of
the MLWeaving system in DoppioDB, a column store database
augmented with FPGA acceleration [87], as a first step to explore
how database storage formats can be combined with the require-
ments of machine learning algorithms. MLWeaving has two key
innovations that make the learning process on FPGAs quantization-
friendly (C1) and synchronous (C2).

C1: Flexible Memory Layout and Hardware Implementation.
MLWeaving combines 1) a memory layout supporting the efficient
retrieval of the input data at any level of precision and 2) an FPGA-
based design providing hardware acceleration to speed up SGD re-
gardless of the precision used. The key idea behind MLWeaving is
a transposed memory layout where different bits of a given value
are stored separately. SGD is evaluated sample-at-a-time, i.e., all
the features of the sample are read before the gradient is computed.
At full precision, reading a row corresponding to a data point ac-
cesses all the features for that sample. MLWeaving vertically par-
titions each data point (a row in a table) at the bit level so that the
first bit of all features of a data point are stored consecutively, then
the second bit, etc. This provides two benefits. First, the number
of memory accesses needed to read a value is proportional to the
precision used. Lower precision leads to fewer memory accesses.
Second, the format allows the serialization of the data into a hard-
ware accelerator in the form of a bit stream, improving the memory
bandwidth utilization.

We show that the bit stream format can be used to compute the
gradient using bit-serial multipliers (i.e., process all the first bits in
the first cycle, all the second bits in the second cycle, etc. [33,43,
66, 88,93, 102, 105]) a more efficient approach than that used in
existing systems [17,45]. The resulting design employs only one
third of the resources used in previous solutions and allows higher
frequency, doubling the rate at which data can be processed on an



FPGA accelerator. Furthermore, our approach supports dynamic
selection of the level of precision by simply reading more or fewer
bits when processing the data in each epoch of the SGD algorithm.

C2: Efficient Synchronous Execution. Due to the sequential
nature of the SGD algorithm, a common approach to parallelizing
it on modern CPUs/GPUs is to perform asynchronous updates to
the model. By doing so, different cores do not need to acquire ex-
pensive locks for every gradient calculation [71, 109] (thus better
hardware efficiency). This approach is guaranteed to converge un-
der certain (often mild) conditions, but it could converge slower
than the synchronous approach (thus worse statistical efficiency).
In MLWeaving, we show how synchronous SGD on an FPGA can
be made almost as efficient, in terms of hardware efficiency, as
asynchronous SGD on an FPGA. Meanwhile, MLWeaving often re-
quires fewer epochs to converge than its asynchronous CPU coun-
terpart. As a result, MLWeaving converges faster, in terms of end-
to-end performance, than its asynchronous CPU counterpart.

We have implemented ML Weaving on an Intel Arria 10 FPGA
using Intel’s Xeon+FPGA platform (HARP) [28] where the FPGA
is integrated in the same package as a Xeon multicore CPU. Ex-
perimental results show that MLWeaving achieves up to 16 per-
formance improvement over the state-of-the-art low-precision first-
order CPU implementation (Table 8).

2. BACKGROUND

MILWeaving combines ideas from several areas: databases, ma-
chine learning, and computer architecture. In this section we in-
troduce the necessary background to understand the overall design.
Table 1 summarizes the notation used throughout the paper.

Table 1: Notation used in the paper

[ Term T Definition [ Range |
N Number of samples for training Input
M Number of features in the sample Input
B Mini batch size Hyper-param
A Learning rate Hyper-param
s Number of bits used at runtime Input
T Model, i.e., a vector of parameters Output
S Maximum number of bits of the quantized value 32
Ts s-bit fixed-point table (i.e., training dataset) 1<s<S
alll i-th bit of fixed-point value a, 1 <7 < S Oorl
Qs(A) s-bit quantized value of full-precision A 1<s<S
#CL Number of bits of a cache line 512 bits
#Freq Frequency of the SGD hardware design 400 MHz
H#Mpax Maximum dimensions of supported model 32K
#Bank Number of banks implemented in hardware 8

2.1 Normalization and Quantization

For all ML algorithms, raw data must be converted into a suitable
format before the learning process. In MLWeaving, data is stored in
the format resulting from a normalization and a quantization step.

Normalization reduces the range of values without affecting the
overall result of the training. Without loss of generality, MLWeav-
ing uses the scaled range [0, 1]. Accordingly, for each column, the
original value f is normalized to the value f (Equation 1):
f= M’ 1)
max man
where fiin and fi,qz are the maximum and minimum values in the
column, respectively. An advantage of learning inside the database
engine is that normalization can be accomplished using either the
meta-data available on a relational table or computed using stan-
dard SQL (min, max).
Quantization happens over the normalized dataset. It involves
converting a full-precision floating-point value f into a lower-
precision fixed-point value. Specifically, our goal is to construct
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a function Qs : R? — F9, a deterministic quantization function
that maps a floating-point value to an s-bit fixed-point representa-
tion Qs (a).The quantization process is conducted in two steps.

1, Floating Point to Fixed Point Conversion. The first step is
to generate a full-precision fixed-point table T's, where S is the
maximum number of bits of the quantized value in the table. The
new fixed-point value (@) in T’s is calculated to be f multiplied
by 2° — 1 (instead of 2°),' since the range of each floating-point
value in the normalized table is between 0 and 1. Therefore, the
larger the S value, the higher the precision. In our FPGA design,
the fixed-point value a is interpreted as:

S
a=>Y a"x27",
i=1

where @) represents the 4-th bit of @, 0 or 1. The first bit (i = 1)
is the most significant bit. Figure 1(a) shows an example of a full-
precision fixed-point table T's where S = 4. The quantized value
(@ = 10102) of the seventh column and the first row” represents
the value of f: 1 x 27 ' +0x 272+ 1x 27340 x 27% = 0.625.

2, Fixed Point Quantization. The second step of Qs is to quan-
tize the fixed point table T's into the desired level of precision. This
step is performed by keeping the s most significant bits of Ts. Fig-
ures 1(b-d) illustrate the quantized 3-bit, 2-bit and 1-bit fixed-point
tables for the original data shown in Figure 1(a). For example, the
full-precision fixed point representation 10102 in 7} is 1012, 102,
and 1 for 3, 2, and 1 bit precision, respectively.

2

1st row| ABCD | EFGH | IJKL |[MNOP|RSTU | VXYZ | 1010 | 0101
2ndrow| abcd | efgh | ijkl | mnop| rstu | vxyz | 1100 | 0011
(a) Full-precision fixed-point table Ts = T4+
Istrow |ABC|EFG | IUK | MN | RST | VXY | 101 | 010
2ndrow| abc | efg | ijk [mno| rst | vxy | 110 | 001
(b) 3-bit fixed-point table T3
Istrow |AB|EF | IJ | M |[RS|VX |10 |01 A|E| I [MR|V|1|0
2ndrow|ab | ef | ij |[mn|rs |vx|11|00 ale|i|mr|v|1]0

(c) 2-bit fixed-point table T2 (d) 1-bit fixed-point table T+

Figure 1: Four fixed-point quantized tables (T4, T3, T2, T1) con-
taining 2 data points with 8 features. Each table has two rows and
eight columns, and each element has four bits, where the symbol
(e.g., A-Z, a-z) is binary, O or 1.

2.2 Low-precision SGD

SGD is a popular algorithm to train generalized linear models.
Given a relation A, the full precision SGD solves the following
optimization problem:

N
. 1 -
minimize : E_l f(Z-di,b;),

where a; is one row in the input relation, b; is the corresponding
training label, & is the model, and f(—) is a loss function. SGD
solves this problem by iteratively scanning the input relation A —
for each row aj, it calculates the gradient with respect to &, and
updates the model. Each pass over the input data is called an epoch.
SGD usually runs for multiple epochs until convergence.

'f=1.0leadstoa = 2° — 1.
“We use three pairs of words (table, training dataset), (row, sample)
and (column, feature) interchangeably within each pair.



Training SGD over low precision representation of the input data
using a generalized linear model targets the following function:

N
S 1 S -
minimize : ;f(x -Qs(ai), bs),
where the i-th sample consists of a vector of quantized s-bit val-
ues (Qs(a;) € FHM),

Low-Precision Mini-batch SGD on FPGAs. One variant of
SGD that is popularly implemented in many systems is mini-batch
SGD [57] - instead of calculating the gradient using a single sam-
ple, mini-batch SGD uses multiple samples, called a “mini-batch”,
to calculate the average gradient. Mini-batch SGD can be easier
to accelerate because all samples in a mini-batch share the same
model and thus can be processed independently in parallel. For
applications such as distributed deep learning for image classifica-
tion, mini-batch SGD, instead of the standard SGD, is the de facto
training algorithm. When deploying SGDs on FPGAs, we also use
mini-batch SGD [45].°

Algorithm 1 illustrates the flow of low-precision mini-batch
SGD, which is iteratively evaluated in £ epochs (Line 1). In each
epoch, the entire low-precision training dataset is scanned, one
mini-batch of B samples per iteration (Line 2). Inside a mini-batch,
we initialize the average gradient (§) to zero at the beginning (Line
3), and compute the average gradient of this mini-batch (Lines 4-
13).* Each sample is processed as follows. First, we compute the
dot product of two vectors: the i-th low-precision sample Qs(a3)
and the full-precision model’ Z (Line 8). Its output a_dot_z is a
full-precision scalar value. Second, we compute the scaling value
scale, based on the derivative (i.e., df) of the given loss function
(Line 9). For different learning algorithms, we only need to modify
this function to compute the scaling value, while keeping the other
parts unchanged. Third, the gradient (g;3 ) of this sample is com-
puted (Line 10). Fourth, g;3 is accumulated into the gradient of
this mini-batch (Line 11). Fifth, the model (%) is updated with the
average gradient g (Line 14).
Performance Metrics. The end-to-end performance of SGD can
be measured as the time that it takes to achieve the target loss. This
can be further decomposed into two metrics [107] that we will use
throughout this paper. Hardware efficiency measures the time that
SGD requires to finish one epoch. Statistical efficiency represents
the number of epochs that SGD requires to converge.

2.3 Hardware Acceleration

Most ML algorithms are known to be compute- and data-
intensive. Not surprisingly, in recent years, we have seen a sig-
nificant increase in the number of specialized hardware solutions
for ML, from GPUs to FPGAs to specialized processors such as
TPUs [41]. In this paper, we focus on FPGAs since they pro-
vide a higher degree of versatility in exploring possible algo-
rithms and designs, something important in an area that is evolv-
ing as quickly as ML. Since the early pioneer work exploring the
use of FPGAs on databases [68, 69, 70], a growing number of
database operations accelerated with FPGAs have been proposed
[36, 37,40, 47, 86, 95,97, 98, 104]. FPGAs are also increasingly
available, specially in cloud platforms such as Microsoft’s Cata-
pult [8] and Brainwave [15,26] projects, or Amazon F1 instances,
making them a suitable target for hardware acceleration.

3We explain more in Section 4.

“In this context, we assume that Bank is 1 for ease of understand-
ing such that one sample is processed at a time. Bank is 8 in
MLWeaving that addresses the constraints encountered when de-
ploying any-precision SGD on an FPGA (Subsection 4.3).

>In this paper, we do not consider the quantization of the model.
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Algorithm 1: LOW-PRECISION MINI-BATCH SGD

: N: number of samples,
E: number of epochs,
7: learning rate,
Qs(ay): s-bit quantized data set of the i-th sample, €
b;: label value of the n-th sample, b; € R'.
Output : Z: model with a set of parameters.
/+ Evaluate the e-th epoch.
fore = 1to E do
/* Mini-batch processing
2 for(i = 0,7 < N; i+ = B)do
/* Zero the gradient of this mini-batch
3 g=0;
4 for(j =0;j < B, j+ = #Bank)do
/+ Multi-bank processing
5 ##pragma parallel in hardware
6 for (k = 0, k < #Bank; k + +) do
7 int32t =i+ 5+ k;
/+ Dot product
8 int32 a-dot-x = Qs(at) - T;
/+ Serial part
9 int32 scale = v x df (a-dot_x, biyjix):
/* Gradient computation
9i+k = scale X Qs (ay);
/+ Gradient accumulation
G=G+ 9%k

Input

1x M
F ,

*/

-

*/

*/

*/

*/

*/

*/
10
*/

11
12
13

end

end

/+ Model update
f=1-§/B;

*/

14
15

end
end

The degree of microarchitectural freedom in designing an algo-
rithm is much higher on an FPGA than in software in general as
it is possible to design specialized compute units from scratch and
tailor the hardware to the application at hand [91]. The limiting
constraints in FPGA designs are meeting timing (how fast the hard-
ware design can be clocked) and resource usage as the FPGA is
a physical device and, at a certain point, there are no more gates
available to implement additional function. Often, designs have to
balance one against the other and strive for an efficient trade-off
between parallelism on the one hand and FPGA resource usage on
the other hand.

3. SYSTEM OVERVIEW

Target Platform. The target platform (Figure 2) for this work is
the 2nd generation Intel Xeon+FPGA [28], combining a Broadwell
14-core CPU E5-2680v4 with an Arria 10 FPGA. The FPGA has
cache-coherent access to the main memory (DDR4: 64GB) of the
CPU via 1 QPI link and 2 PCle links, resulting in around 20 GB/s
combined read and write bandwidth. We perform all our experi-
ments on this machine.

Database Integration. We integrate our FPGA-accelerated train-
ing designs into DoppioDB [87], an open source solution for
FPGA-accelerated databases, based on MonetDB [35]. DoppioDB

(1) CREATE INDEX mlweaving_on_t1 ON create_mlweaving(‘t1’);

(2) CREATE INDEX model_on_t1 ON train_mlweaving(‘t1’, numEpochs, ...);
(3) SELECT * FROM infer_mlweaving(model_on_t1, ‘t1’, labellndex);

[ Intel Endpoint |

Intel Libraries |

3 P MLWeaving UDFs
1x QPI, 2x DoppioDB
PCle Xeon Broadwell ES

up to 20
GB/s 14 Cores @ 2.4 GHz

DoppioDB HW Libs

MLWeaving
Accelerator

DRAM

FPGA - Intel Arria 10 (64 GB)

Figure 2: Target platform (Intel Xeon+FPGA Gen2), overview of
DoppioDB on this platform and sample queries with MLWeaving
UDFs in DoppioDB.



enables easy integration of FPGA-based accelerators through a set
of software and hardware libraries [73]. The hardware libraries ex-
pose a native memory interface, via which the FPGA accelerators
use to access the main memory of the host CPU. On the software
side, FPGA accelerators can be started and monitored as separate
threads. These FPGA threads run in parallel to software threads.

We implement three User Defined Functions (UDFs) in Doppi-
oDB, as shown in Figure 2. (1) The first UDF is to initiate the cre-
ation of the MLWeaving index that is associated with a certain table
and kept internal in the database. (2) The second UDF is to initiate
training using MLWeaving. Under the hood, DoppioDB will look
for the MLWeaving index that belongs to the table given by this
UDF. If found, the FPGA thread is started. It uses the MLWeav-
ing index to train a model which then gets transferred to the main
memory. (3) The third UDF is to perform inference on tuples using
the model that has been trained before. Similar to the MLWeaving
index, the trained model is also associated with a certain table and
will check during query execution if inference can be performed,
conditioned on a model having been trained before.

MLWeaving combined with DoppioDB offers users a SQL front-
end for learning models from relational data in a seamless manner
as the data selection and transformation needed for the learning can
be done using SQL and without incurring expensive data transfers
in and out of the database.

4. MLWEAVING DESIGN

MLWeaving involves many aspects that interact in a tight man-
ner. To make it easier to understand how it works, we develop ML-
Weaving in three stages: “Quantized” (Subsection 4.1), “BWeav-
ing” (Subsection 4.2) and “MLWeaving” (Subsection 4.3). Table 2
summarizes the comparison results.

€90

Table 2: Comparison of three approaches. #C'L is 512. “n” rep-

resents any positive integer.

[ Hardware Metrics [[ Quantized | BWeaving [ MLWeaving |
Supported precision levels 1 32 32
Required memory layouts Per any s-bit 1 1
Bitwidth (bits) of model & [312] % 32 16K 2K

Number of banks, # Bank 1 1 8
Mini-batch size, B n n 8*n

4.1 Quantized

Understanding of MLWeaving requires understanding the inter-
play between the data representation and the processing required
by the accelerator. In the case of SGD, the most important compo-
nents in the design are the computing circuits, how the input data
is transferred from the external memory, and how the model is ac-
cessed on the FPGA’s local memory. In the following, we discuss
the hardware properties of Quantized [45].

Computing Circuits. Quantized employs a fixed circuit for each
precision level. It, thus, requires the data to be available at the cor-
responding precision. ‘Quantized” processes features using fixed-
point bit-parallel multipliers and can only support one precision
level per hardware design.

Memory Layouts. In the Xeon+FPGA platform [73] used to im-
plement ML.Weaving, the FPGA has cache coherent access to the
main memory of the CPU. The data arrives to the FPGA in the form
of cache lines, #CL (512 bits per cache line). Efficiency is achieved
by processing in parallel as many elements within that cache line
as possible. How many elements are within a cache line depends
on how the data is stored in memory. Quantized stores each data
point at a given precision in a consecutive manner. If the preci-
sion is 16 bits, every cache line brings in 512/16 data points (i.e.,
features or columns) to be processed. Because the value for each
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data point arrives as a whole, the multipliers needed for the gradi-
ent computation are based on the 16-bits used to represent a value.
Such 16-bit wide multipliers are complex and take up significant
hardware space. Besides, Quantized requires one memory layout
for each precision level.

Accessing the Model on FPGAs. The SGD hardware reads not
only the input data from the external memory but also the corre-
sponding entry in the model on the FPGA. In particular, the SGD
hardware that operates on each dimension needs to read a value
from the model as a whole. Since the SGD hardware processes
a great number of dimensions concurrently, an additional design
factor we should consider is how to efficiently access the corre-
sponding values of the model. This is referred to the bitwidth of
the model. The bitwidth is a very important parameter in an FPGA
design because it affects the complexity of the interconnects and
the way data has to move from the model storage to the comput-
ing units. The higher the bitwidth, the more complex the design
and, thus, the higher the probability that it will not meet timing at
higher clock rates. Quantized processes data points as a whole, so
its model bitwidth is [ %2 ] x 32 bits, where the precision of the
model is 32 bits and s is the precision level of input data.

4.2 BWeaving

BWeaving extends Quantized [45] such that both memory access
and computation time linearly decrease with a lower number of bits
used for ML training. To do so, we propose a bit-serial memory lay-
out (Subsection 4.2.1) and a specialized hardware design powered
by bit-serial multipliers (Subsection 4.2.2).

4.2.1 BWeaving Memory Layout (Software)

The BWeaving memory layout is based on ideas proposed by
BitWeaving [59,60]. In a nutshell, we transpose the training dataset
to allow the runtime selection of the precision level and to reduce
memory traffic for lower precision levels. Contrary to BitWeaving
that performs the weaving on one column, BWeaving transposes
each row (a sample) to preserve access locality, since the training
dataset is accessed by SGD in a sample-at-a-time manner.

The transposition of the data used in BWeaving is shown in Fig-
ure 3. M S-bit features of a sample are transposed into .S M -bit
words (where M is 8 and S is 4 in the example shown). Inside the
first row, eight 4-bit features are transposed into four 8-bit words.
The first bits (i.e., AEIMRV10) of the first sample are stored in an
8-bit word. The second word BFJNSXO01, which contains the sec-
ond bits, is stored next to the first word, and so on. Between rows,
the second row is stored consecutively to the first row.

Under the BWeaving memory layout, data at any level of preci-

sion can be retrieved by following a different access pattern over the
same data structure. In Figure 3(b), we show the accesses needed
to retrieve the data set at a precision of 3 bits. The first bits in the
first row are accessed, followed by the second and third bits in the
first row. Then, the access jumps to the first bits of the second row,
skipping the fourth bits of each row.
Instantiation of Memory Layout. Table 3 shows an example of
a BWeaving memory layout with #CL = 512 and M (number of
features) = 2048. For instance, the first memory slot (with index =
0) is populated with the first bits of the first 512 features of the first
sample, while the second memory slot (with index = 1) is populated
with the second bits of the first 512 features of the first sample. If
M is not a multiple of 512, we use padding to fit a 512-bit boundary
such that we can easily retrieve bits.

4.2.2 BWeaving Arithmetic (Hardware)

Using a bit-serial multiplier operating on the data one bit per cy-
cle [33,43,66,88,93,102,105], we design the BWeaving arithmetic



(a) Full-precision fixed-point table TS = T4

7strow| ABCD‘ EFGH‘ IJKL ‘MNOP‘ RSTU ‘ VXYZ ‘ 1010 ‘ 0101 I

abcd‘ efgh ‘ ijkl ‘mnop‘ rstu ‘ VXyz ‘ 1100 ‘ 0011

|

1t bit AEIMRV10 >
Ist row 2nd bit BFJNSX01 >
3rd bit CGKOTY10 Example memory
4th bit DHLPUZ01 access pattern
1st bit aeimrv10 >
2nd bit bfjnsx10 >
3rd bit cgkotyO1
4th bit dhlpuz01

(b) BWeaving memory layout

Figure 3: Full-precision fixed-point memory layout (a) converted
into the BWeaving memory layout (b). Each symbol (e.g., A-Z, a-z)
in the table is binary, 0 or 1. The BWeaving memory layout enables
the flexible selection of precision in memory. As an example, we
show the “memory access pattern” with a 3-bit precision (s = 3).

Table 3: BWeaving memory layout: x_y:z-w denotes the w-th bits
of 512 features (from z-th to y-th) in the x-th sample.

[ Description [ Index [[ C (#CL=512bits) |

0 0.511:0.0
1 0.511:0_1
First 512 features of 2 0.511:02
the first sample 3 0-511:03
31 0511031

32 0.1023:512.0

Second 512 features 33 0.1023:512_1

of the first sample 34 0.1023:5122
. N . 128 1.511:0-0
First 512 features of 139 1351101

the second sample

that provides bit-level flexibility (i.e., supporting any precision with
a single hardware design) while maintaining a processing rate of a
cache line per clock cycle. We now present the difference between
bit-serial and bit-parallel multipliers, followed by the SGD hard-
ware design powered by a bit-serial multiplier.

Bit-serial Multiplier vs. Bit-parallel Multiplier. Figure 4 il-
lustrates the difference between a bit-parallel multiplier and a bit-
serial multiplier with one example multiplying 3-bit Q3(a) (low-
precision) by 4-bit x (full-precision).

In a bit-parallel multiplier, each clock cycle can enable the mul-
tiplication of two numbers, in this case the quantized input Q3 (a)
and the corresponding value from the model x (Figure 4a). This is
the type of multiplier used in conventional CPUs and also previous
specialized hardware solutions [45].

In a bit-serial multiplier, one multiplication result is produced
every three cycles, a bit of Q3(a) per cycle. After Q3(a) is re-
placed with Zle all x 27 (Equation 2), the product Q3(a) X
(Equation 3) is computed to be the sum of the product of all and
(z >> 1), where the binary value all represents the i-th bit of a (0
or 1), >> means signed right shift, and ¢ is from 1 to 3. In terms of
cycles, the product Q3(a) X z is set to be al) x (x >> 1) in the first
cycle, al? x (z >> 2) is added to the product in the second cycle,
and af®! x (z >> 3) is added in the third cycle. The advantage
of bit-serial multiplier is that shift-and-add operations are enough
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Cycle | 1 2 3 1] 2 3 4|5 6
@@ | Q) | Q) | Qala) | | ol &P QP dT G o
xT x b} x3 1 €2
Qa(a) * x| Qs(a1) * 71 Qa(az) * 22 Qa(az) * x5 Qs(ar) * 2 Qs(az) * 3

(a) Bit-parallel multiplier (b) Bit-serial multiplier

Figure 4: Multipliers: bit-parallel (a) vs. bit-serial (b). Bit-parallel
multiplier produces one multiplication result per cycle, while bit-
serial multiplier produces every three cycles, e.g., on cycle 3 or 6.

‘ External memory ‘

I Software
A4 o Hardware
| 512-way parallelism (512 bits)
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Figure 5: Fully pipelined BWeaving hardware design with 1 bank
(#Bank = 1), according to Algorithm 1.

for the calculation, considerably simplifying the design. The disad-
vantage is that multiple cycles are needed to complete an operation
due to its inherent bit-serial nature.

3
all x 27t = Za“] X (z3>14)  (3)
=1

Hardware Design of BWeaving. The goal of BWeaving arithmetic
is to consume 512-bit data per cycle from the BWeaving memory
layout described above. We implement the fully-pipelined hard-
ware design for the BWeaving arithmetic in Figure 5, according to
Algorithm 1 with #Bank = 1. The design has four stages, each
of which occupies unique hardware resources of an FPGA. In the
following, we discuss the detailed implementation for each stage.
In the “dot product” stage, 512 bit-serial multipliers are instanti-
ated (@) to consume the 512-bit data stream (€)) from the BWeav-
ing memory layout per cycle, where each bit-serial multiplier can
handle a bit from a feature per cycle. At the same time, the data
stream is also fed to the “FIFO” (@®). In the first cycle, the first bit
of each of the first 512 features from a sample enter the pipeline
in a lock-step manner, and 512 values are read from the architec-
tural model (labelled & in Figure 5), where the architectural model
stores the committed state of the model Z to preserve the semantics
of mini-batch SGD. After processing s bits of the first 512 features
(where s is the precision level used in the execution), 512 mul-
tiplication results are passed to the fully-pipelined adder tree (@),
whose depth is log2(512). The output of the adder tree is connected

to an accumulator (@), which aggregates | 5]\1/12] valid results from




the adder tree and then computes the final result (Qs(&@) - Z) of the
dot product,® where M is number of features in the sample.

In the “serial part” stage, the scaling value scale (@) is computed
to be A x df (Q+(@) - Z,b), where X is the learning rate (parame-
terizable at runtime), df is the derivative of the given loss function,
and b is the label” of the sample.

In the “gradient computation” stage, we again instantiate 512
bit-serial multipliers (@) to compute the full-precision gradient
with comparable throughput to the “dot product” stage. The scal-
ing value scale is broadcast to each bit-serial multiplier as its bit-
parallel input, while the bit-serial input (&) can be read from the
“FIFO” (@)). The bit-serial multipliers in this stage require exactly
the same bit stream order of Q(@) as that required by the “dot
product” stage.

In the “model update” stage, the part of the gradient from the first
512 features is computed after s cycles, and then used to update
the working model (z-b). The working model keeps the temporary
model updated after each data sample is processed (@).® Later, Z_
is updated with the part of gradient from the second 512 features
after next s cycles, and so on. T is updated at the rate of every
sample, while the architectural model (Z) is updated only after a
mini batch (B) of samples (@), where B is the mini batch size
(parameterizable at runtime). Therefore, the semantics of mini-
batch SGD is preserved.

Instantiation of Hardware Design. “BWeaving” has a really high
model bitwidth of 16K (32*512), making it unsuitable in real
FPGA implementations.’

4.3 MILWeaving

MILWeaving develops the ideas behind BWeaving so as to make
them implementable. In particular, MLWeaving changes both the
memory layout and the design on the FPGA to dramatically reduce
the required bitwidth of the model. Inspired by the mini-batch SGD
that uses the same model to process one mini batch of B samples,
we can process multiple samples in the same mini-batch simultane-
ously such that we can reduce the model bitwidth without compro-
mising on throughput: 512 bits per cycle. As shown in Algorithm 1,
MLWeaving instantiates 8 physical banks to accommodate 8 sam-
ples (#Bank = 8) in the same mini-batch simultaneously (Lines
5-6) such that 8 samples reading the same portion of the model are
processed in a lock-step manner. This is why B must be a multiple
of 8.1 At the same time, we adjust the related memory layout such
that the data stream from the memory flows into the MLWeaving
hardware without any transposition overhead.

®In the actual implementation, we adopt the distributed arithmetic
computation approach [43, 102] to compute the dot product, since
it produces the same result with fewer hardware resources. Here,
we use the basic bit-serial multiplier for ease of understanding.

"In our actual implementation, we also load the label b from mem-
ory. However, we omit the related data path in Figure 5 for clarity.
8The pair (architectural model, working model) is only used in the
hardware design (Figures 5, 7), analogous to the pair (architectural
register, physical register) in computer architecture. The architec-
tural register indicates the register specified by instruction set ar-
chitecture (ISA), visible to the programmer. The physical register
is used to store temporary results, invisible to the programmer.

°In Intel Arria 10 FPGA, the model is implemented with 20-Kb
memory blocks (i.e., M20Ks). Each M20K can provide a 32-
bitwidth with ECC (or 40 without ECC) for the model, so a 16K-
bitwidth requires 512 M20Ks with ECC (or 410 without ECC). It
is extremely difficult to access 410 M20Ks in a lock-step manner
(e.g., sharing the same read/write address) while maintaining high
frequency, as M20Ks are uniformly distributed inside an FPGA.

9The larger # Bank leads to less complexity of hardware design
but more limitation on mini-batch size.
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Figure 6: BWeaving memory layout (a) converted to MLWeaving
memory layout (b): M =8, #CL =8 and #Bank = 2.

Table 4: Instantiation of MLWeaving memory layout. x_y:z-w de-
notes the w-th bits of 64 features (from z-th to y-th) in the z-th
sample and y — z = 63. A row contains a cache line (512 bits).

[ Description [ Index [ Bank7 [ .. [ Bankl [ Bank0 |
0 7.63:0-0 1.63:0-0 0-63:0-0
. N 1 7-63:0-1 1-63:0_1 0.63:0_1
First 64 features . . .
of the first 8 2 7.63:02 1.63:02 0.63:02
samples 31 763:031 163:031 | 0.63:031
Second 64 32 7.127:64_0 1.127:64.0 | 0-127:64.0
features of the 33 7-127:64_1 1.127:64_1 | 0-127:64_1
first 8 samples
First 64 features | 1024 15-63:0-0 9.63:0-0 8.63:0_0
of the second 8 1025 15.63:0_1 9.63:0_1 8.63:0_1
samples

4.3.1 MLWeaving Memory Layout (Software)

Starting from the BWeaving memory layout in Figure 3, we
show the memory layout transition to MLWeaving in Figure 6.
BWeaving populates each memory transaction with eight bits from
the same row, e.g., AEIMRV10 of the first row. In contrast, the
first/second row contributes four bits for each memory transaction
under MLWeaving. For instance, the first bits of the first four fea-
tures of two rows assemble into the first memory transaction, e.g.,
AEIMaeim. Since the bits AEIM and aeim share the same weights,
the model only needs to provide four weights within a cycle.
Instantiation of Memory Layout. We instantiate the MLWeaving
memory layout by setting #C L (or # Bank) to be 512 (or 8). Now
we use the case with M = 2048 as an example in Table 4. For
instance, the first memory transaction is populated with the first
bits of the first 64 features of the first eight samples. If M is not
a multiple of 64, we use padding to align it to 64 bits. Thus, the
memory traffic M7 (in terms of bits) for each sample consists of
two parts, as shown in Equation 4. The first equality shows the
memory traffic from all the features, evaluated to be the precision
level s multiplied by the value that rounds up M to the nearest
multiple of 64. The second equality (32 bits) comes from the label
of each sample.

MT:sx[G—]\Z}x64+32 4)

4.3.2 MLWeaving Arithmetic (Hardware)

Following Algorithm 1, we present the fully-pipelined hardware
design of MLWeaving arithmetic in Figure 7. The targeted through-
put of MLWeaving arithmetic is 512 bits per cycle. It consists of
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Figure 7: Fully pipelined MLWeaving hardware with 8 banks (# Bank = 8), according to Algorithm 1. Its throughput is 512 bits per cycle.

three main pipeline stages. In the following, we explain the design
details of each pipeline stage.

In the “multi-bank processing” stage, the 512-bit computing
pipeline is divided into 8 banks, each of which consumes 64 bits
from one sample (@), as shown in Figure 7a. The most important
property of this stage is that 8 banks read the same portion of the
model at a given time. Each bank behaves the same as that in the
BWeaving arithmetic in Figure 5, except that each bank instantiates
64 bit-serial multipliers in the “dot product” and “gradient compu-
tation” stages (Figure 7b). Since we instantiate 8 banks, the total
throughput of the ML Weaving arithmetic is still 512 bits per cycle.

In the “gradient accumulation” stage, a portion of the gradient
(64 32-bit elements) from 8 banks is fed to 64 element-wise adder
trees, each of which generates one element of the average gradient
within a cycle (@).

In the “model update” stage, the average gradient is used to up-
date the working model (ﬁ) (@) for every 8 samples. The archi-
tectural model (%) is updated only after a mini batch (B) of samples
is finished.

Instantiation of Hardware Design. Table 5 shows the re-
source consumption in our FPGA when we implement the comput-
ing pipeline of MLWeaving. MLWeaving achieves high clock fre-
quency (400MHz) while requiring a reasonable amount of FPGA
resources. This is because 1) the proposed multi-bank architecture
of MLWeaving leads to fewer BRAMs (on-chip memory blocks on
FPGAs) for the architectural and working models in Figure 7, and
2) the memory layout allows MLWeaving to directly consume data
from memory, without auxiliary hardware modules for transposi-
tion. The theoretical throughput of MLWeaving’s hardware design
is roughly 25.6GB/s (400M * 512 bits per cycle), much larger than
the available memory read bandwidth: 15GB/s.

Table 5: FPGA resource consumption

[ Name [[ Logic (ALMs) [ DSPs | BRAMs [ Frequency |
[ BWeaving || N.A [ NA ] N.A [ NA

[ MLWeaving || 35670 84%) | 0(0%) | 3.25Mb (6.1%) | 400MHz |

5. PRESERVATION OF PRECEDENCE

We propose a simple yet efficient scheme to keep SGD hardware
design synchronous, without compromising processing speed. Our

scheme is orthogonal to the BWeaving and MLWeaving designs, so
it can be applied to both."! Our aim is three-fold. G1: it lets SGD
read the up-to-date model. G2: it supports various batch sizes. G3:
it exploits the greatest possible overlap between computation (i.e.,
dot product) and communication (i.e., model update). Next, we
identify the performance issue of synchronous SGD, followed by
our mechanisms to achieve three goals.

Performance Issue of Synchronous SGD. According to Algo-
rithm 1, model reading (Line 8) and model update (Line 14) has
a Read After Write (RAW) dependency, due to the inherently se-
quential nature of synchronous SGD. For example, the model read
by the second batch (B samples) should be up-to-date such that the
gradient from the first batch has already been accumulated into the
model, as illustrated in Figure 8a. In other words, the second batch
has to wait until the model is updated. The performance issue is
not trivial, as it takes [M/64] * s cycles to update the model for
each batch, where M is the number of features, 64 is the number of
elements written to the model within a cycle, and s is the number
of cycles to do one multiplication with a bit-serial multiplier.

Basic Mechanism. The goal of the basic mechanism is to preserve
the precedence for synchronous SGD (G1 and G2). In particu-
lar, our mini-batch SGD reads the up-to-date model. The key idea
of the basic mechanism is to record the read/write operations per-
formed on the model & such that MLWeaving will not read the out-
of-date model and wait until the model becomes up-to-date. To do
so, we introduce two 16-bit registers: wr_counter and rd_counter.
Table 6 illustrate how to manipulate such two counters to preserve
the dependency. The wr_counter records the times of writing oper-
ations performed on the model & in the “model update” stage. Its
initialization value is B, where B is the input batch size. It means
that B credits are provided at the beginning for B samples to read &
in the “dot product” stage. wr_counter is incremented by B when
the model Z is updated, indicating that Z is updated by the aver-
age gradient from every B samples in Algorithm 1. We can update
the wr_counter once the average gradient is ready, since there is no
WAR or WAW dependency. The rd_counter records the times of
reading operations performed on the model Z in the “dot product”

"In the following, we describe our scheme for MLWeaving. The
scheme can easily generalize to BWeaving.
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Table 6: Basic mechanism to preserve RAW dependency

[ [[ Init Value | Step Size |
B [ B [ Always ok |
[ 8 [ rd_counter = wr_counter ]

Updating Condition |

[ wr_counter “
[ rd_counter “

stage. Its initialization value is 0, indicating that Z has not been
read yet. It is incremented by 8 when the model is read, since ML-
Weaving processes 8 samples concurrently. Its updating condition
is that rd_counter is not equal to wr_counter, indicating there are
still enough credits for samples to read Z. This is the critical step
to preserve the dependency.

Chaining-Enhanced Mechanism. To increase the overlap be-
tween computation and model update (G3), we propose the chain-
ing enhanced mechanism for synchronous SGD. The key idea is to
allow computation when updating the model, while preserving the
dependency. To do so, we treat the model & as a vector register
that requires multiple cycles to read/write and follows a sequential
access pattern. Then, we use the chaining technique [23,51,52,80]
of vector processing to maximally overlap computation and model
update. In particular, the model updated with the gradient from the
first batch can be forwarded to the second batch before the entire
updating operation completes, as shown in Figure 8b. The second
batch can begin to read after s cycles, where s is the precision level.
‘We observe that it is safe for the second batch to read the model af-
ter the first part of the model (e.g., 64 values) is updated into the
model. The data dependency is preserved since the model updating
speed is not slower than the model reading speed.

6. PER-EPOCH TUNING OF PRECISION

MLWeaving introduces one tuning knob for the user: the preci-
sion level to be used for training. Most existing work assumes that
it is the user’s responsibility to set the right precision level. This is
understandable, as the right level depends on both the data and the
error tolerance and as no tight theory can map error tolerance back
to the right precision level.

In this paper, we do not address the problem of determining the
right precision level for the user, as it goes well beyond the scope of
the work. Instead, we provide a simple, dynamic schedule of pre-
cision that harvests the potential of MLweaving. Such a schedule
works robustly on all data sets we have.

Dynamic Precision Schedule. Our schedule is based on a very
simple observation: at the beginning of the training, the system is
less sensitive to the error introduced by low precision data repre-
sentation; at the end of the training, the system often requires more
bits to converge. MLWeaving allows us to dynamically change the
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number of bits to use for each epoch. We exploit this flexibility
and build a simple dynamic precision schedule: use 2 bits for the
1st-4th epochs, 3 bits for the 5th-8th epochs, 4 bits for the 9th-16th
epochs, 5 bits for the 17th-32nd epochs, and so on. That is, the
number of bits grows over time until we reach the targeted loss.

This simple schedule is inspired by the following theoretical ob-
servation: for SGD to converge with O(1/+v/K) rate, at each itera-
tion K, it only requires that the bias introduced by the low precision
representation decreases faster than O(1/K). The above schedule
is one example that satisfies this property, as the bias introduced by
low precision is halved when one more bit is used.

Remarks. Note that the above schedule is far from optimal and
perfect. One can design more adaptive schedules by, for exam-
ple, monitoring the speed of the decrease of loss and dynamically
choosing when to switch to the next level of precision. MLWeav-
ing allows this possibility by providing an end-to-end solution that
enables dynamic precision schedule. We will explore more sophis-
ticated precision schedule schemes as well as the problem of map-
ping precision and error levels as part of future work.

7. EXPERIMENTAL EVALUATION
7.1 Experimental Setup

Workloads. We carry out our experiments with the five data sets
shown in Table 7. For the multi-class dataset TL [46], we use 10
classes of ImageNet [53]. Instead of directly using the images in
ImageNet, we use 2048 features per sample extracted by a neural
network (InceptionV3 [90]) that can be used for transfer learning,
and we train binary classifiers using the one-vs-one strategy [78].
For the dataset Madelon, the training samples are duplicated 10
times so that the size exceeds the capacity of the last level cache in
the CPU. For the dataset KDD, since its original dataset is highly
skewed, i.e., 93% samples are labelled 0, we uniformly delete the
samples labelled O so that the final dataset is balanced.

Table 7: Evaluated datasets.

[ Dataset [[ Features | Training samples | Testing samples [ Classes |
Gisette [9] 5000 6000 1000 2
TL [46] 2048 26,000 5200 10
Epsilon [9] 2000 40,000 10,000 2
KDD [63] 2399 40,000 44772 2
Madelon [9] 500 20,000 600 2

FPGA Implementations. There are two FPGA implementations.
First, MLWeaving (sync) represents the MLWeaving hardware that
satisfies the RAW dependency. Second, MLWeaving (async) repre-
sents the MLWeaving hardware that violates the RAW dependency
such that it directly reads the model even when the model is still
out-of-date.'?

CPU Baselines. Since SGD is inherently sequential, keeping con-
sistency when running SGD leads to no parallelism among cores.
Two first-order variants of SGD (“Hogwild” and “ModelAverage”)
have been proposed to parallelize SGD on modern CPUs and we
use both as baselines, employing existing optimization methods on
CPUs: multi-core (14 cores), low-precision (8-bit) and AVX2 in-
struction (256-bit).

“Hogwild” [71, 107] allows each core to compute the gradient
from its own portion of dataset and then to perform asynchronous
update on a single copy of the model without any synchronization.
Therefore, the parallelism among cores is exploited at the cost of
low statistical efficiency due to asynchronous updates. Even though
no synchronization is required, Hogwild still suffers from cache co-
herence overhead, i.e., invalidating the model copies in the private

"In the following experiments, by default, MLWeaving means ML-
Weaving (sync) on FPGAs and with chaining enabled.



caches of other cores before the real write operation. The cache
coherence overhead is so severe on a multi-core CPU that Hogwild
cannot benefit from using low-precision (Figure 14b).
“ModelAverage” [109] allows each core to have its own copy of
the model so that no costly invalidation among cores occurs. It av-
erages the models at the end of each epoch and then broadcasts the
aggregated model to each core at the beginning of the next epoch.
Therefore, its multi-core implementation can saturate the maxi-
mum memory bandwidth of the CPU (leading to high hardware
efficiency). However, ModelAverage has relatively lower statisti-
cal efficiency since each worker uses its local (not global) model
to compute the gradient. Since its 32-bit floating-point implemen-
tation is memory-bound, ModelAverage can significantly benefit
from a low-precision dataset that requires less memory traffic. In
our experiment, we choose 8-bit precision because 1) the small-
est bank width of a SIMD register is 8 bits and 2) ModelAverage
becomes compute-bound when the dataset is quantized to 8 bits,
indicating lower performance for a lower-than-8-bit precision.

Learning Rate Schedules. During training, the learning rate de-
cays based on a pre-defined schedule to achieve a higher conver-
gence rate. We describe our concrete learning rate schedules on
FPGAs and CPUs. On CPUs, the schedule determines the learn-
ing rate (\¢) of the e-th epoch to be A x BY*, where \ is the ini-
tial learning rate while (8 is the decay factor. In our experiment,
a more aggressive decay policy, e.g., A/+/e or A/e, slows down
the convergence rate. We find that a constant learning rate leads
to the best performance on several datasets. On FPGAs, we em-
ploy a relatively simple schedule, as shown in Equation 5, where «
is the threshold to decay the learning rate, because 1) on FPGAs,
we apply the learning rate (A.) as a right-shift operator and thus
Ae = 277, where 7 is an integer; and 2) ML Weaving needs a lower
number of epochs to converge to the same training loss versus its
CPU rivals that are not synchronous.

A= { 5)

Comparison Methodology. Our evaluations mainly validate three
hypotheses. First, MLWeaving can achieve linear speedup when a
smaller number of bits is used in the training (Subsection 7.2). Sec-
ond, MLWeaving converges faster than its first-order counterparts
on CPUs (Subsection 7.4). Third, using a dynamic precision sched-
ule further accelerates the convergence process (Subsection 7.5).

7.2 Hardware Efficiency: Throughput

In this subsection, we demonstrate the hardware efficiency of
MLWeaving, i.e., elapsed time for each epoch.'® Our objective is
two-fold. First, we analyze the performance characteristics of ML-
Weaving on FPGAs. Second, we compare MLWeaving with the
state-of-art implementations on CPUs.

7.2.1 Hardware Characteristics of MLWeaving

We analyze five different hardware properties of MLWeaving. In
our analysis, we typically run 50 epochs and get the average time
for each epoch.

Effect of Chaining. We examine the effect of our chaining tech-
nique that relaxes the unnecessary RAW dependency for MLWeav-
ing (Section 5). Figure 9a decipts the speedup of “chaining” over
“no chaining” for two datasets. The batch size is 8. The x-axis de-
picts the precision s. We observe that with chaining, we can achieve
up to 1.4X speedup over no chaining for different combinations of
precision level (s) and number of features, since chaining can fully

A

s e<a
A 0.5,

e>«

3The elapsed time for each epoch is inversely proportional to the
throughput that each implementation can achieve. In the following,
we use both terms interchangeably to illustrate hardware efficiency.
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Figure 9: Hardware characteristics on hardware efficiency.

overlap computation and memory access. We conclude that chain-
ing significantly increases the hardware efficiency. In order to fully
understand the trend, we develop an analytical cost model to pre-
dict the performance for both chaining and no chaining settings, as
shown in Appendix of our technical report [96].

Effect of Mini Batch Size. We examine the effect of mini batch
size (B) on hardware efficiency. Figure 9b illustrates the speedup
of various batch sizes over “B=8" on the dataset Gisette. We ob-
serve that performance is roughly stable for different batch sizes,
since MLWeaving is able to maximally overlap computation and
memory access, regardless of mini batch size. We conclude that
the batch size has a negligible effect on hardware efficiency.

MLWeaving (sync) vs. MLWeaving (async). We examine the
effect of the RAW dependency on hardware efficiency. Intu-
itively, MLWeaving (async) would achieve more throughput than
MLWeaving (sync), since MLWeaving (async) does not need to
wait the RAW dependency to be resolved. However, since both
approaches are memory-bound on the targeted FPGA, their rela-
tive performance difference, i.e., (MLWeaving (sync)- MLWeaving
(async))/MLWeaving (sync), is small, as shown in Figure 10. We
conclude that MLWeaving (sync), which preserves the RAW de-
pendency, has little effect on hardware efficiency, with the help of
our chaining technique.
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Figure 10: Relative performance difference between MLWeaving
(sync) and MLWeaving (async). B is 16. s is 8.

Effect of Precision Level on Execution Time. Figure 11 provides
the performance improvement of various precision levels over the
full-precision implementation “32-bit” under MLWeaving for two
datasets. We make two observations. First, the performance of
MLWeaving improves roughly linearly as bit precision reduces, es-
pecially when s is larger than 4. Second, when s is less than 4, the
speedup is sub-linear since the benefit from our chaining technique
cannot fully amortize the negative impact of the inherent pipeline
latency. We conclude that MLWeaving significantly reduces the
elapsed time when using a smaller number of bits.

Effect of Precision Level on Memory Traffic. Figure 12 illus-
trates the memory traffic required by each sample for two datasets,
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Figure 11: Relative performance improved with various precision
levels over “32-bit”, where “32-bit” is the case with s = 32.

as s is varied. We observe that the required memory traffic almost
increases linearly as the precision level increases, consistent with
the trend demonstrated in Equation 4. We conclude that the ML-
Weaving memory layout enables efficient data retrieval from exter-
nal memory for any precision level at runtime.

7.2.2  Comparison with CPU Implementations

We compare the throughput of MLWeaving with two state-of-art
CPU algorithms: Hogwild and ModelAverage. Figure 13 shows
the comparison result. Both CPU algorithms are fully optimized.
They use a low-precision dataset, employ all the 14 cores and are
AVX2-enhanced. “x-FP” (or “x-char”) indicates “x” with floating-
point (or char) dataset, where “x” is Hogwild or ModelAverage.
We use two metrics for comparison: time and memory traffic.
“MLWeaving-32bit” (or “MLWeaving-8bit”) means MLWeaving
with s =32 (or 8) on FPGAs.

Time. Figure 13a illustrates the normalized throughput of two
CPU approaches and MLWeaving. We make two major obser-
vations. First, ModelAverage-FP achieves roughly 4 times more
throughput than MLWeaving-32bit, since both are memory-bound
and the achievable memory read bandwidth of the CPU (i.e.,
60GBY/s) is roughly four times as much as that of the FPGA (i.e.,
15GB/s). ModelAverage-FP and MLWeaving-8bit roughly have
the same throughput, while Model Average-char (which is compute-
bound) achieves obviously more throughput than MLWeaving-8bit.
Second, even though Hogwild-FP achieves more throughput than
MILWeaving-32bit, it is still compute-bound since it suffers from
severe cache coherence overhead due to the fact that multiple cores
try to update the same memory address. When the model dimen-
sion becomes smaller, the overhead becomes larger as cache inval-
idation occurs more frequently among cores.'*

Memory Traffic. Figure 13b illustrates the normalized memory
traffic, where the memory traffic on the CPU is collected using the
Intel Performance Counter Monitor [103]. We observe that both
Hogwild-FP and ModelAverage-FP require roughly the same mem-
ory traffic as MLWeaving-32bit, since their datasets are all full-
precision (32-bit), while Hogwild-char and ModelAverage-char re-
quire roughly the same amount of memory traffic as MLWeaving-
8bit. We conclude that low-precision datasets causes less memory
traffic on both CPUs and FPGAs.

To sum up, due to the small amount of memory bandwidth avail-
able on FPGAs, MLWeaving has raw throughput advantage over
CPU approaches only when the chosen precision level is relatively
low, e.g., less than 4.

“In our technical report [96], we add the experiments about ML-
Weaving on CPUs, where the lack of hardware instructions makes
it hard to exploit MLWeaving on the CPU.
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Figure 13: Hardware efficiency: MLWeaving vs. CPU rivals.

7.3 Statistical Efficiency: Loss vs. Epochs

We analyze the statistical efficiency of MLWeaving. We mainly
validate that MLWeaving requires significantly fewer number of
epochs to converge than its state-of-the-art CPU rivals.

MLWeaving vs. CPUs. We compare the statistical efficiency be-
tween MLWeaving and two full-precision CPU approaches for two
datasets Epsilon and KDD" in Figures 14a,14d. We observe that
MLWeaving requires a smaller number of epochs to converge than
its CPU counterparts, even though MLWeaving uses 3-bit precision
while CPU approaches use full precision. For example, MLWeav-
ing requires only 40 epochs to converge for the dataset Epsilon,
while ModelAverage (or Hogwild) needs 392 (or 199) epochs to
converge to the same loss in Figure 14a. The underlying reason is
that MLWeaving is always working on the up-to-date model while
ModelAverage and Hogwild are not.

Impact of Mini Batch Size. We examine the impact of batch size
B on statistical efficiency under MLWeaving. Figure 15 compares
the convergence trend with different batch sizes for the datasets
Gisette and KDD. We run 40 epochs and observe the training loss
for each epoch. We find that a larger batch size leads to a slightly
slower convergence speed. Thus, we prefer to use a small mini-
batch size to train with MLWeaving.

SWe do not examine lower-precision (i.e., less than 8 bits) CPU
approaches, as a lower precision always leads to a slightly worse
statistical efficiency.
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7.4 End-to-End Comparison: Loss vs. Time

In this subsection, we validate that ML.Weaving outperforms its
CPU rivals in terms of end-to-end performance (training loss vs.
time), even though the evaluated CPU has 4 times more achiev-
able memory bandwidth than the targeted FPGA. We employ two
datasets Epsilon and KDD to demonstrate the comparison result, as
shown in Figure 14.'® We make three observations.

First, MLWeaving uses a low-precision dataset to converge to
the same training loss as ModelAverage or Hogwild, each of which
works on the full-precision dataset. For example, 3-bit precision
is good enough for MLWeaving to train the dataset Epsilon, in-
dicating great potential for low-precision training. Second, low-
precision Hogwild slightly slows down the training. Since Hogwild
is bounded by cache coherence overhead, low precision, which
potentially speeds up other parts of SGD, causes more cache co-
herence traffic among cores and then slows down the convergence
speed, as shown in Figure 14b. Third, MLWeaving requires up
to 25X less data movement to converge to the same loss, com-
pared to its low-precision CPU counterpart, as illustrated in Fig-

5We only put the results of the two datasets with the largest and
smallest speedups in Figure 14, while the results of all the other
datasets are in Appendix of our technical report [96].

ures 14c. Thus, MLWeaving could provide 25X speedup if the
FPGA had comparable memory bandwidth. It means that ML-
Weaving does significantly more energy-efficient training than its
low-precision CPU counterparts. We conclude that MLWeaving,
with its low-precision and synchronous training on FPGAs, greatly
outperforms the state-of-the-art low-precision and asynchronous
first-order training on CPUs for training linear models.

7.5 Effect of Flexible Precision Schedule

In this subsection, we examine the effect of our flexible pre-
cision schedule (in Section 6) that increases the level of preci-
sion with a simple fixed schedule during training. Table 8 illus-
trates the speedup that MLWeaving with dynamic precision sched-
ule achieves over MLWeaving with fixed precision schedule and
over the fastest CPU method with fixed precision. The CPU ap-
proach is fully optimized. We make two observations.

First, the dynamic precision schedule (i.e., “adaptive” approach)
reduces end-to-end training time on average by 1.19x, compared
with the “non-adaptive” approach that uses fixed precision under
MLWeaving, indicating great potential of dynamic precision sched-
ule.'” Second, the dynamic precision schedule sometimes can lead
to slowdowns, for instance for Epsilon. The reason is that Ep-
silon needs only 40 epochs to train with a low-precision (i.e., 3-bit)
dataset to converge to the targeted loss, while our dynamic preci-
sion schedule (in Section 6) uses the high precision (above 3 bits)
after the first 8 epochs. The training that uses the high precision
(above 3 bits) needs the same number of epochs to converge as us-
ing the 3-bit precision, while the throughput of using the 3-bit pre-
cision is much higher. Therefore, we need a sophisticated precision
schedule to fully utilize MLWeaving. We conclude that even a sim-
ple dynamic precision schedule can significantly reduce end-to-end
training time.

"The exact per-epoch tuning process for the dataset Gisette is
shown in Appendix of our technical report [96].
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Table 8: End-to-end speedup due to flexible precision schedule.

[ Adaptive Approach [ TL | Gisette | KDD | Madelon [ Epsilon |
[ Vs. non-adaptive [ 1.26x [ 1.5x [ 0.92x [ 1.35x | 0.9x |
| Vs. fastest CPU [ 10.7x [ 16.56x |  3x |  6.Ix [ 9.9x |

8. RELATED WORK

To our knowledge, MLWeaving is the first novel solution for data
representation and hardware acceleration for ML in database en-
gines. MLWeaving builds on previous work from multiple commu-
nities: databases, machine learning, and computer architecture.

Bulk bitwise operations. Bulk bitwise operations [1, 25,49, 58,
59,60,72,79,82,83,99] have been used in a variety of applications,
including database scans [25, 59,60, 83]. Among them, MLWeav-
ing is inspired by BitWeaving [59], a transposed columnar stor-
age layout designed for predicate evaluation on a per-column basis.
BitWeaving is very efficient when answering a subfamily of rela-
tional queries. The memory layout used in MLWeaving is different
from BitWeaving to accommodate the access pattern of batch SGD
and the hardware implementation on an FPGA.

FPGA-accelerated ML/DL. MLWeaving builds on a growing line
of research accelerating machine learning with FPGAs [5, 6, 8, 14,
15, 17, 26, 45, 61, 64, 65, 67, 84]. Closest to MLWeaving is the
work by De Sa et al. [17] and Kara et al. [45] using FPGAs to
implement low-precision generalized linear models, and they are
asynchronous. These previous methods achieve good performance
using individual circuits for each level of precision. Microsoft
Brainwave [15] leverages FPGAs to implement low-precision pro-
grammable Neural Processing Unit for DNN inference at scale. It
can support four low precision levels: 8/16-bit int and ms-fp9/8. In
contrast, MLWeaving provides a single, flexible hardware design
for all precision levels. We believe that MLWeaving has great po-
tential to be used in Brainwave to enable any-precision inference.

Low-Precision DNNs. One specific application whose low-
precision implementation on hardware has been intensively studied
is Deep Neural Networks. Prior efforts [3, 18,19,21,42,43,50,85]
explore the fine-grained variation in bit-level precision for DNN
inference, so their computation time is proportional to the bitwidth
used. Since the computation time dominates the overall perfor-
mance for their DNN inference, the overall performance scales lin-
early with the bitwidth. Other research [2,4,7,10,11,12,16,20,29,
30,38,39,41,41,54,62,77,106] focuses on using a fixed-point, low-
precision data representation and arithmetic to accelerate DNNs,
instead of using full-precision. For example, Google’s TPU [41]
features 64K 8-bit fixed-point MACs to accelerate neural network
inference. More information about DNNs can be found in the sur-
vey [89]. Compared with these efforts, MLWeaving focuses on a
different workload, i.e., generalized linear models. We do not focus
on the fixed quantization of the input data, but on flexible data re-
trieval. As part of future work we would like to investigate whether
the design in MLWeaving can also be used to reduce memory traffic
for DNNs.

Compression on DB/ML. Previous work [13,24,27,31,34,55,72,
74,75,76,79,81,101] employs compression techniques, e.g., dictio-
nary encoding, to compress the data such that the further memory
traffic can be significantly reduced at the cost of lightweight de-
compression overhead. Previous work [22, 48] directly performs
compressed operations on sparse data representations to accelerate
linear algebra. In contrast, MLWeaving exploits the low precision
of dataset to accelerate machine learning training.

9. CONCLUSION

MILWeaving is an innovative solution for embedding machine
learning in relational engines and taking advantage of modern hard-
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ware. It consists of an in-memory data storage layout that allows
efficient retrieval of quantized data at any level of precision, an
efficient implementation of SGD on an FPGA, and an adaptive al-
gorithm to learn a model using lower precision without having to
determine the level of precision in advance. MLWeaving achieves
linear speedup as precision level is decreased, and provides up to
a 16X performance improvement compared to the state-of-the-art
low-precision first-order CPU implementation. We make the ML-
Weaving design open-source.'®

Future Directions and Limitations. The current prototype of ML-
Weaving has a number of limitations that will require additional
work to make learning of generalized linear models possible in all
cases. Some of these limitations are methodological and affect the
ML algorithms used. Others are a question of exploring the design
space enabled by MLWeaving in more detail, which cannot be done
in this paper due to page limit. A first methodological limitation of
MLWeaving is that, as is, it only supports dense, numerical data.
This is fine in some applications as it is not uncommon for sparse
and categorical values (e.g., YouTube video IDs) to be mapped to
a dense embedding. However, there are cases where training di-
rectly on sparse or categorical data is still necessary. To support the
latter case, MLWeaving would need to be extended by potentially
combining it not only with other lossless compression strategies but
also with ML techniques such as feature hashing [100] and weight
sharing [31]. A very interesting future research direction MLWeav-
ing opens is the development of a unified data structure supporting
dense, sparse, categorical, or numerical data while providing simi-
lar level of flexibility as MLWeaving.

Another methodological limitation of MLWeaving is that it cur-
rently only supports generalized linear models. However, as long as
the loss function is Lipschitz continuous over the input data and the
data access pattern is row-wise, it is likely that similar techniques
could still be applied with some adjustments. Thus, another inter-
esting future direction is to adapt MLWeaving to problems such as
matrix factorization [56] or clustering using K-Means [44].

An area where MLWeaving needs more work is dynamic preci-
sion scheduling. The current strategy is based on a simple intuition
just to illustrate the benefit provided by MLWeaving. More sophis-
ticated dynamic schedules will require a systematic analysis of the
convergence properties with the dynamic precision changes. For
example, one could use a technique similar to how AdaComm [94]
dynamically adjusts communication frequencies. In particular, we
can determine the convergence upper bound with respect to the pre-
cision schedule and choose the schedule that minimizes the conver-
gence upper bound. We leave this direction to future work.

Limitations of MLWeaving caused by the current implementa-
tion and hardware can be solved by using different platforms or
more complex designs. For example, MLWeaving currently sup-
ports models up to 32K dimensions due to the available on-chip
memory capacity. It is reasonable to expect that the capacity will
increase in future FPGAs. Also, the learning rate supported by ML-
Weaving can only be 277, where j is an integer, since MLWeaving
uses a right-shift operator to control the learning rate. It is not clear
how limiting this is in practice given the current results, but we will
explore different hardware designs to provide more flexibility as
part of future work.
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