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ABSTRACT
Searching a community containing a given query vertex in an on-

line social network enjoys wide applications like recommendation,

team organization, etc. When applied to real-life networks, the

existing approaches face two major limitations. First, they usually

take two steps, i.e., crawling a large part of the network first and

then finding the community next, but the entire network is usu-

ally too big and most of the data are not interesting to end users.

Second, the existing methods utilize hand-crafted rules to measure

community membership, while it is very difficult to define effective

rules as the communities are flexible for different query vertices. In

this paper, we propose an Interactive Community Search method

based on Graph Neural Network (shortened by ICS-GNN) to locate

the target community over a subgraph collected on the fly from an

online network. Specifically, we recast the community membership

problem as a vertex classification problem using GNN, which cap-

tures similarities between the graph vertices and the query vertex

by combining content and structural features seamlessly and flexi-

bly under the guide of users’ labeling. We then introduce a 𝑘-sized

Maximum-GNN-scores (shortened by kMG) community to describe

the target community. We next discover the target community it-

eratively and interactively. In each iteration, we build a candidate

subgraph using the crawled pages with the guide of the query ver-

tex and labeled vertices, infer the vertex scores with a GNN model

trained on the subgraph, and discover the kMG community which

will be evaluated by end users to acquire more feedback. Besides,

two optimization strategies are proposed to combine ranking loss

into the GNNmodel and search more space in the target community

location.We conduct the experiments in both offline and online real-

life data sets, and demonstrate that ICS-GNN can produce effective

communities with low overhead in communication, computation,

and user labeling.
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1 INTRODUCTION
Community search [4] aims to find communities containing the

given query vertex, and the discovered communities can be used

as an effective candidate set in the applications such as item/friend

recommendations, fraudulent group discovery, etc. Although the

problem is well studied, there are no widely accepted definitions of

community in the literature. Most of researchers assume that the

vertices in the community share structural and content similarities.

They propose community models such as 𝑘-core [20], 𝑘-truss [9],

𝑘-clique [2], etc, from the viewpoint of structural constraints, or

attributed community queries [3, 10] which attempt to combine the

structural and content features.

Although significant progress is achieved, the current methods

still face challenges when applied to real-life social networks. First,

nearly all these methods assume that the data have already been

crawled, and they only perform analysis on those collected data.

However, we cannot separate the data crawling and community

search clearly. As there are massive active accounts and messages

each day in the online network, the crawler will find a large number

of irrelevant pages as a result if the collecting policy is not con-

trolled, which incurs high and unnecessary resource consumptions

in storage, network transfer, and computation in the following com-

munity search. The focused search methods [16, 18] are alternative

choices. But they are too coarse for the community search as they

guide crawling using a classifier trained only on local features such

as the content of Web pages.

Second, the community search is flexible in nature, and it is

nearly impossible to produce high-quality community directly us-

ing the predefined community rules. Also, it is not trivial for exist-

ing methods to refine communities incrementally to achieve the

goal of community search. Compared with community detection

which finds all communities in a graph sharing general patterns

[4], community search relies on the given query vertex to locate

the communities with specific patterns. Some communities have

the dense structural relationships, which can be captured by the

existing community search models [2, 9, 20], but it is challenging

to locate communities with weak structural relationships and high

content similarities. For example, users in the same company may

roughly take a hierarchical form in an online network with rel-

atively sparse structural relationships but similar users’ content

features. In addition, it incurs heavy burdens if existing rule-based
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Figure 1: Sample Graph.

methods are employed to find the community progressively. Gen-

erally, based on each result presented, users may need to adjust

𝑘 in the structural constraints [2, 9, 20], select representative at-

tributes, and balance the weights between content and structural

features [3, 10], as there is usually tension between the content

and structural requirements on communities. However, the num-

ber of candidate communities changes significantly even if 𝑘 is

increased or decreased by 1. The rule adjustment poses more chal-

lenges if we consider massive content keywords and their complex

relationships.

We illustrate these challenges using a toy graph example in Fig-

ure 1. The keywords annotated on vertices represent their content.

Suppose 𝑎 is the query vertex. The vertices belong to the same com-

munity share the same color. We can see that there are two major

communities around 𝑎, one for research in yellow, and the other

one for sports in blue. However, neither of them can be easily cap-

tured by the current structure or keyword based communities. Take

the research community (with vertices 𝑎, ℎ, 𝑖, 𝑗, 𝑘) as an example. It

cannot meet 𝑘-core or 𝑘-truss requirement when 𝑘 is larger than

2. The sparsity of relationships may be due to the initial subgraph

collected by an incremental crawler. In addition, we observe that

there are no shared keywords on different vertices in the research

community. For example, the keywords “k-core" and “acq" are to-

tally different, although both are closely related to the community

search.

This paper attempts to address the challenges above from the

viewpoint of ICS (interactive community search). In order to avoid

the unnecessary cost in crawling a large part of an online network,

we allow theWeb crawling and community search to be interleaved,

which are progressed iteratively, and guided by the feedback to end

users. We expect that the target community becomes increasingly

more clear than it in the previous iterations with more feedback.

Still take Figure 1 as an example. If an end user selects vertex 𝑘 as a

member in the target community, the crawler will extend the search

from 𝑘 , and enrich the candidate subgraph from the underlying

graph. In addition, rather than using a fixed rule to combine the

structural and content features, we choose machine learning meth-

ods to determine which vertices should be in the target community.

In the example, the community membership rules are learned from

the data to combine the content and structural features, by using

the query vertex 𝑎 and the vertex 𝑘 as positive instances, and vertex

𝑑 as a negative instance in a classification problem,

We argue that our method is lightweight thanks to the following

reasons. First, the Web crawler only acquires the potentially useful

data from the Web, which lowers the cost in communication as

well as in the following community search. Second, end users only

label whether vertices should be in the community or not, which is

much easier than adjusting parameters in rules. Third, the method

can leverage the pre-trained keyword representations which have

already captured relationships from massive data.

To the best of our knowledge, we are the first to study the prob-

lem of ICS. The method proposed combines techniques from data-

base, WWW, and machine learning fields. Community search is a

well-studied problem in the database area. The interactive crawling

for communities can be viewed as a significant extension of focused

search in an online social network. The machine learning methods,

particularly GNN (Graph Neural Network) [7, 24], can provide a

unified way to combine the structure and the content features. The

contributions of this paper are summarized as follows:

(1) We model the community as a 𝑘-sized subgraph with maxi-

mumGNN scores (shortened by the kMG community), which

combines content and structural features by leveraging a

GNN model, and incorporates users’ feedback easily. We

show that the location of kMG community is NP-hard. (Sec-

tion 2)

(2) We design an approach, called ICS-GNN, to search commu-

nity iteratively. In each iteration, the candidate subgraph

is built with BFS (breadth-first-search) and a partial edge

enhancement strategy, a GNN model is trained on the sub-

graph to infer the vertices’ probabilities in the community,

and a kMG community is located by a vertex-swapping based

method. (Section 3)

(3) We further propose optimization strategies of ICS-GNN in-

cluding, i) incorporation of a ranking based loss function into

the GNN model to simplify the labeling tasks, ii) a greedy

method based on global relative benefits to locate the kMG
community to fit various data distributions. (Section 4)

(4) We conduct extensive experiments on offline (with ground-

truth communities) and online datasets to show the effec-

tiveness and efficiency of ICS-GNN. (Section 5)

The remainder of this paper is organized as follows. We review

preliminaries and formulate the problem in Section 2. Then, we

describe the basic ICS-GNN method in Section 3, and devise its

optimization strategies in Section 4. Section 5 reports experimental

results in the offline and online setting. We review related works in

Section 6, and conclude the paper in Section 7.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we first review crawling operations over a social

network and its data model, and introduce graph neural network.

Then, we give our community definition, and formulate the problem

in this paper.

2.1 Open Social Network
This paper aims at the community search in an open social network,

in which the messages posted by 𝑢 can be accessed by others, and

therefore can be processed by applications. In addition, the popular

platforms, like Sina Weibo
1
, Twitter,

2
etc, facilitate third-party

applications to visit users’ data if allowed. The basic APIs used in

1
http://open.weibo.com/wiki/

2
https://apiwiki.twitter.com/

1007

http://open.weibo.com/wiki/
https://apiwiki.twitter.com/


our paper can be summarized in Table 1. Note that the messages

and the relationships of a user 𝑢 are organized in multiple pages,

and then the page index is needed in APIs.

Table 1: Web APIs in Social Network
API Meanings

GetProfile(𝑢) get the profile of user 𝑢.

GetPost(𝑢, 𝑖) get messages posted by 𝑢 in the 𝑖-th page.

GetFollower(𝑢, 𝑖) get followers of 𝑢 in the 𝑖-th page.

GetFan(𝑢, 𝑖) get fans of 𝑢 in the 𝑖-th page.

Note that APIs in Table 1 are abstract. We can find similar APIs

in different social networks. Even if the social networks do not

provide these functions, we can achieve similar results by accessing

the Web page first and extracting the target items next. Without

loss of generality, we can use these operation APIs, and build a

subgraph from the underlying social network on-the-fly.

For an online social network𝐺 , it can bemodeled as𝐺 = (𝑉 , 𝐸, 𝐹 ).
The vertex set𝑉 represents users in the network. The edge set 𝐸 rep-

resents the relationships between users. The structure of 𝐺 can be

represented by an adjacent matrix 𝐴 = {0, 1} |𝑉 |× |𝑉 | , where 𝐴[𝑖, 𝑗]
indicates whether the 𝑖-th vertex and the 𝑗-th vertex is connected

(𝐴[𝑖, 𝑗] = 1) or not (𝐴[𝑖, 𝑗] = 0). 𝐹 is the content features of vertices.

𝐹 = R |𝑉 |×𝑑 is a content feature matrix, where 𝐹 [𝑖] is a 𝑑-sized
feature vector for the 𝑖-th vertex.

2.2 Graph Neural Network
GNN [7, 24] is proposed to learn high-dimensional representa-

tion (embedding) of vertices by capturing both content features

and structure relationships. GNN achieves this goal via encoding

content and structural features into a function, and optimizes the

function with the guide of (supervised or un-supervised) training

signals. Different from the image data where a pixel has a fixed

number of neighbors with fixed positions, a vertex’s neighbors and

their positions in a general graph are arbitrary. Such features pose

high challenges in designing functions in the neural network.

From the viewpoint of a vertex 𝑢 with its features 𝐹 (𝑢) and its

hidden embedding𝐻 (𝑢), GNN involves twomajor functions namely

the aggregate function 𝑓 (.) and the update function 𝑔(.) [24]. The
aggregate function 𝑓 (.) collects embeddings from neighbors with

different weights. Since the number of the neighbors is flexible,

and there is no fixed order in neighbors, 𝑓 (.) is required to be a

permutation invariant. That is, the results of 𝑓 (.) should be the

same even if the neighbors are processed in different orders. Usu-

ally, the aggregation functions, like sum, mean, can be used in the

message collection. The update function𝑔(.) transforms the current

embedding into a new one.

Different GNN variants have been proposed, with their differ-

ences in assigning the weights of the neighbors and aggregating

information from the neighbors. For example, GCN [12] is a sim-

plified version of the spectral based GNN model, and assigns the

weights of neighbors related to their degrees. GraphSage [6] per-

forms a sampling operation over the neighbors. GAT [21] uses an

attention mechanism in determining the weights of neighbors.

GNN model works as follows. The embeddings for vertices are

initialized by 𝐻0 = 𝑔(𝐹,𝑊0) on the content features, where𝑊0 are

parameters in functions. Then, the embeddings are updated from

those of neighbors recursively. The embeddings 𝐻 𝑖+1
in the (𝑖 + 1)-

th layer can be computed as𝐻 𝑖+1 = 𝑔(𝐻 𝑖 , 𝑓 (𝐴,𝐻 𝑖 ,𝑊 𝑖
1
),𝑊 𝑖

0
) , where

𝐴 is the adjacent matrix, and𝑊 𝑖
0
and𝑊 𝑖

1
are parameters. Under

the supervised setting, the loss function measures the differences

between the labeled results and the predicted ones. The parameters

in the model are learned with strategies like the gradient-descent

to minimize the loss.

This paper recasts the community membership as a supervised

classification problem [1]. End users label vertices in the target com-

munity (including the query vertex) with 1, and label the vertices

which are not in the community with 0. The labeling operations on

vertices can be performed iteratively on the currently-discovered

community. The model can be abstracted by 𝑃 =GNN(𝐴, 𝐹,𝑊 ),
where 𝐴, 𝐹 and𝑊 are for adjacent matrix, features, and learnable

parameters, respectively. 𝑃 = R |𝑉 | , and 𝑃 [𝑖] stands for the mem-

bership probability of the 𝑖-th vertex. We also use 𝑃 [𝑢] for the
GNN score of the vertex 𝑢. Obviously, the larger 𝑃 [𝑢] is, the higher
chance that 𝑢 is in the community. The cross-entropy loss function

is used to measure the probability distribution differences between

the labeled and the predicted results. The graph 𝐺 = (𝑉 , 𝐸, 𝐹 ) can
be enriched into 𝐺 = (𝑉 , 𝐸, 𝐹, 𝑃) with the inferred GNN scores on

the vertices obtained upon the convergence of GNN training.

2.3 k-Sized Community of Maximum GNN
Scores

We give our definition of the target community in the context of

the interactive search. Based on the enriched subgraph with GNN

scores 𝐺 = (𝑉 , 𝐸, 𝐹, 𝑃), we define the community as follows:

Definition 1. 𝑘-SizedCommunitywithMaximumGNNScores.
Let 𝐺 = (𝑉 , 𝐸, 𝐹, 𝑃), 𝑞 ∈ 𝑉 be the query vertex, and 𝑘 be the commu-
nity size. The 𝑘-sized community with maximum GNN scores, called
kMG community, is an induced subgraph 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 , 𝐹𝑐 , 𝑃𝑐 ) of 𝐺
with the following requirements:

(1) The query vertex 𝑞 ∈ 𝑉𝑐 , and 𝐺𝑐 is connected;
(2) |𝑉𝑐 | = 𝑘 ;
(3) The sum of GNN scores

∑
𝑢∈𝑉𝑐 𝑃 [𝑢] is maximum.

In the first condition, we require that the query vertex is in

the target community, as we focus on community search rather

than community detection. In addition, we make a relaxation in

the structural relationships of the target community. Instead of

posing rigid structural constraints like 𝑘-core [20], 𝑘-clique [2], we

only require that the community𝐺𝑐 is connected. The relaxation is

due to the following reasons: i) The initial subgraph in the inter-

active community search may not be dense due to the controlled

crawling policy; ii) In some cases, there are no densely connected

relationships inside a real-life community even if the data is fully

collected.

We enforce a restriction on the size of the community in the

second condition. It is easy for end users to adjust 𝑘 according to

the quality of the discovered results. In addition, some applications

require a restriction on the community size. For example, there

are at most 𝑘 persons in an organized team, and there are at most

𝑘 vertices for clear visualization in tools. Note that the previous
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definitions cannot control the size of community incrementally and

precisely.

The third condition is about the similarities of the vertices inside

the community. Under the guide of labeled vertices, the GNNmodel

learns the rules to infer the vertex membership probabilities in a

community using the content and structural features, capturing the

similarities between vertices and the positive vertices (with label

1).

Note that the discovered community can be refined progressively.

When an end user is not satisfied with the currently-discovered

community, he can perform labeling to tell which vertices should

(not) be in the target community. Then, the crawler will search

around the labeled positive vertices to enhance the candidate sub-

graph, and the GNN model is re-trained over the new candidate

subgraph. With more feedback and more features, end users have

more chances to get the desired target community.

We show that the decision version of location of kMG community

is NP-hard, that is, to check whether there exists a 𝑘-sized subgraph

with its sum of GNN scores larger than a threshold. First, it takes a

polynomial time to verify the discovered results. Second, we make

a reduction from an NP-hard problem, the Knapsack problem [11],

to the decision problem of kMG. A Knapsack problem is selecting a

sub-set of items 𝐼 ′ ⊆ 𝐼 under the budget 𝑏 and the sum of 𝑖𝑣 (𝑖 ∈ 𝐼 ′)
larger than 𝑡 , given an item set 𝐼 with each item 𝑖 ∈ 𝐼 having its cost
𝑖𝑐 (an integer) and value 𝑖𝑣 . For a Knapsack problem, we construct

a tree 𝑇 as follows. For each 𝑖 ∈ 𝐼 , we build an 𝑖𝑐 -length path from

the root of 𝑇 to a leaf vertex 𝑙𝑣 , with GNN score 𝑖𝑣 on 𝑙𝑣 and 0 on

other vertices in the path. The root vertex is selected as the query

vertex. Obviously, an item sub-set 𝐼 ′ ⊆ 𝐼 containing 𝑘 items and

the sum of values larger than 𝑡 exists iff there exists a (𝑘 + 1)MG
community (including the query vertex) in 𝑇 with the sum of GNN

scores larger than 𝑡 .

2.4 Problem Formulation
We study the interactive community search from an online social

network. Given a query vertex 𝑞, we construct a candidate sub-

graph containing 𝑞, train a GNN model to infer probabilities of

vertices in the community, and locate the kMG community in the

subgraph. Such a process repeats with the incorporation of the

user’s feedback. We expect that the proposed method can achieve

higher effectiveness and efficiency, while lower human labeling

burden.

The effectiveness means that the vertices in the discovered com-

munity aremeaningful to the end users.We perform the case studies

in the online network. Besides, we conduct tests in the offline net-

works. The effectiveness can be measured against the ground-truth

communities or some simulated communities based on vertices’

labels, which is discussed in the experimental part.

The efficiency measures the time cost of the method. The interac-

tive community search involves different phases in multiple rounds.

The Web crawling task is mainly related with the network transfer

speed. The labeling task on the currently-discovered community

may wait for human operations. We then focus on the efficiency of

the GNN model training and the location of kMG community.

The labeling cost is another important factor. Supervised GNN

models need the labeled data, while labeling task is a burden to end

Candidate Sub-graph
Construction from Online Network

Query Vertex

GNN Model Training and

Inference

Community Discovery with GNN

Scores

Labeled Vertices

Figure 2: The Framework of ICS-GNN

users. Then we expect to lower the number of labeled instances.

The way of labeling is another concern. For example, end user may

take more time to determine explicit labels, but may find it easier

to rank two instances in terms of their membership of community.

Thus, we need to incorporate different kinds of feedback in the

same framework.

3 ICS-GNN: GNN BASED INTERACTIVE
COMMUNITY SEARCH

In this section, we first illustrate the framework of ICS-GNN, and

then focus on different components of ICS-GNN. Finally, we per-

form the analysis of the algorithm.

3.1 Framework
We illustrate the basic framework of ICS-GNN in Figure 2. It in-

volves multiple rounds of the community search. In each round,

ICS-GNN attempts to locate a candidate subgraph using a query

vertex and positively labeled vertices from a large online social

network. The challenge here is to collect candidate vertices, as

well as to provide sufficient relationships among them. The next

component is to build a GNN model on the candidate subgraph.

The messages posted by the users are transformed into the content

features of the vertices. The label of a vertex 𝑢 indicates whether 𝑢

should be in the community or not. GNN model is first trained on

the candidate subgraph, and then is used to infer the probabilities

for all vertices in the subgraph. The final step is to locate the kMG
community based on the GNN scores on vertices, which requires

approximate methods due to the problem complexity. End users

may perform labeling over the located community, which will guide

the crawling and model training in the next round. The symbols

frequently used in this paper are listed in Table 2.

Table 2: Frequently Used Symbols and Meanings
Symbols Meanings

𝐺 = (𝑉 , 𝐸, 𝐹 ) Underlying graph.

𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 , 𝑃𝑠 ) Candidate subgraph with features and in-

ferred GNN scores.

𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 , 𝑃𝑐 ) Located community.

𝑞 The query vertex.

𝑆 , 𝑆𝑝 𝑆 for labeled vertices, 𝑆𝑝 ⊆ 𝑆 for positive

vertices (including the query vertex).

𝑢 [𝑖𝑐 ], 𝑢 [𝑖𝑒 ], 𝑢 [𝑖𝑝 ] Vertex 𝑢’s index of pages for messages,

edges, and partial edges.

𝑙𝑐 , 𝑙𝑒 , 𝑙𝑝 # pages for messages, edges and partial

edges in each crawling.
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3.2 Candidate Sub-Graph Construction
The candidate subgraph construction is to locate the potentially

useful vertices and their relationships from a large social network,

which can be implemented by crawling around the query vertex

and the labeled positive vertices rather than expanding from them

into deep levels. The candidate subgraph can be viewed as an initial

coarse community.

We discuss design choices in the candidate subgraph construc-

tion. The first issue is the crawling strategy. It is straightforward

to construct the initial subgraph using 1-hop neighbors from posi-

tively labeled vertices (including the query vertex) by BFS as they

are more likely to be included in the community than distant ver-

tices. We should note that the initial subgraph constructed can only

form a tree-like graph with limited structural relationships. How-

ever, if we allow further searching from 1-hop neighbors, we will

encounter exponentially increased number of vertices, and most

of them may be unrelated with the target community. In order to

handle this issue, we take a partial edge enhancement strategy for

the 1-hop neighbors. That is, we still allow BFS searching from

1-hop neighbors but only include their edges with existing vertices,

and exclude the newly encountered vertices from the subgraph.

Algorithm 1: Candidate Sub-Graph Construction

Input: Labeled positive vertices 𝑆𝑝 , previous candidate

subgraph 𝐺 ′𝑠 .
Output: Candidate subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 ).

1 Initialize 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 ) by loading 𝐺 ′𝑠 from disk;

2 for vertex 𝑢 in 𝑉𝑠 do
3 if 𝑢 ∈ 𝑆𝑝 then
4 for 𝑖 from 𝑢 [𝑖𝑒 ] to 𝑢 [𝑖𝑒 ] + 𝑙𝑒 do
5 Invoke getFollows(𝑢, 𝑖);
6 Extract newly-visited vertices and edges, and

add them into 𝑉𝑠 and 𝐸𝑠 respectively;

7 𝑢 [𝑖𝑒 ] ← 𝑢 [𝑖𝑒 ] + 𝑙𝑒 ;
8 if 𝑢 ∉ 𝑆𝑝 then
9 for 𝑖 from 𝑢 [𝑖𝑝 ] to 𝑢 [𝑖𝑝 ] + 𝑙𝑝 do
10 Invoke getFollows(𝑢, 𝑖);
11 Extract edges from 𝑢 to 𝑉𝑠 , and add edges to 𝐸𝑠 ;

12 𝑢 [𝑖𝑝 ] ← 𝑢 [𝑖𝑝 ] + 𝑙𝑝 ;
13 for 𝑖 from 𝑢 [𝑖𝑐 ] to 𝑢 [𝑖𝑐 ] + 𝑙𝑐 do
14 Invoke getPost(𝑢, 𝑖);
15 Add messages to features 𝐹 [𝑢];
16 Invoke getProfile(𝑢) if not done;

17 Save 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 ) into the disk.

Second, we need to record the status of vertices to support the in-

cremental crawling strategy. The vertices in online social networks

have a various number of neighbors. It is not feasible to reach all

neighbors in one time crawling when the neighbors are massive.

Things are similar when the messages posted by a user occupy

many pages. We then make a restriction on the number of pages

scanned in each crawling. That is, we introduce𝑢 [𝑖𝑐 ], 𝑢 [𝑖𝑒 ], 𝑢 [𝑖𝑝 ] to
record the indices of starting pages in finding messages, edges, and
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Figure 3: Candidate Sub-Graph Construction

partial edges, respectively. In each crawling, we scan the predefined

𝑙𝑐 , 𝑙𝑒 , 𝑙𝑝 pages for these purposes correspondingly. These starting

indices are then updated and stored into the disk (file or database).

Thus, a limited number of Web pages are scanned and processed

each time the crawler is invoked. Such a crawling strategy can also

be viewed as a sampling from the large underlying graph, which

plays an important role in reducing the training cost in GNN while

preserving its effectiveness [6].

We present Algorithm 1 to build the candidate subgraph. The

candidate subgraph is loaded for the incremental update in Line

1. We distinguish the labeled positive vertices from others as they

perform different operations. For each labeled vertex 𝑢, we locate 𝑙𝑒
pages from the starting page indexed by 𝑢 [𝑖𝑒 ] to find new vertices

and edges in Line 4 to 7. Note that we only invoke the function get-
Follow while getFan is omitted due to the space. For each unlabeled

vertex 𝑢, only the partial edges between 𝑢 and the existing vertices

are added into the graph. The incremental crawling for the content

pages for all vertices are performed from Line 13 to 15.

We illustrate a running example in Figure 3. Given a data graph

in Figure 3(a) and the query vertex 𝑎, we take a BFS from 𝑎, and

build the candidate subgraph in Figure 3(b). Suppose at that time,

end users make a positive label on vertex 𝑏. In the next round of

crawling, we continue the BFS from 𝑎 with the stored status, and

start a new BFS from 𝑏, during which 𝑐 is encountered and added.

Note that we also start a new BFS from the non-labeled vertices,

such as vertex 2. However, we only build an edge between vertex 2

and existing vertices, such as 𝑜 , but do not add newly encountered

vertices, like vertex 5, into the subgraph.

3.3 GNN Model Training and Inference on the
Candidate Subgraph

Based on the candidate subgraph constructed, we build a GNN

model to measure the probabilities of vertices belonging to the

community. Before doing that, we need to build the content features

of vertices and choose a loss function in the GNN model.

We first convert messages with varied-length for different ver-

tices into fixed-length features, and at the same time handle the

issue of different keywords having similar meanings. Let 𝑢 be a ver-

tex in the candidate subgraph. 𝐹 (𝑢) contains the messages posted

by 𝑢, and for each message 𝑚 ∈ 𝐹 (𝑢), 𝑚 contains multiple key-

words. To build the content feature of 𝑢 requires the representation

of each keyword and the combination of all representations. One

way is to learn the keyword representations directly on the col-

lected messages using the model like word2vec [13, 17]. However,

learning from scratch may not yield high-quality representations

due to insufficient training instances. In this paper, we locate the
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keyword representation from pre-trained embeddings, which have

been learned from massive data sets and can measure the relation-

ships between different keywords precisely.

Inspired by a simple but efficient method used by GraphSage

on Reddit [6], we aggregate the content features of 𝑢 by averaging

𝑒𝑚𝑏 (𝑡) for each keyword 𝑡 in all messages posted by 𝑢, where

𝑒𝑚𝑏 (𝑡) is the embedding in a pre-trained embedding set. We can

take other sophisticated aggregation functions, but they are not

the focus of this paper. The profile information of 𝑢, such as the

name, location, and age, can also be concatenated with the content

features to produce rich content features.

The community search needs to measure the probabilities of

all vertices in the subgraph, which can be modeled as a 0/1 clas-

sification problem. With the labeled vertices, the GNN model is

trained on the subgraph to yield 𝑃 , a |𝑉𝑠 |-sized vector for commu-

nity membership probabilities of all vertices. Let 𝑃 [𝑢] indicate the
probability of a labeled vertex 𝑢. We use the cross-entropy as the

loss function of GNN (Equation 1), where𝑢.𝑦 is for its labeled result.

To minimize the loss, we need to update the hidden embedding of

𝑢 and propagate the updates to its neighbors, which then impacts

the prediction results of other vertices.

𝐿𝑜𝑠𝑠𝑙 =
∑
𝑢∈𝑆
−𝑢.𝑦 ∗ log(𝑃 [𝑢]) − (1 − 𝑢.𝑦) ∗ log(1 − 𝑃 [𝑢]) (1)

Algorithm 2 illustrates the GNN model training and GNN score

inference. We preprocess the messages and convert them into the

fix-sized vectors. We then build the model with an adjacent matrix

𝐴𝑠 , features 𝐹𝑠 and parameters𝑊 . We compute the loss function in

Equation 1 using all labeled (positive and negative) vertices. When

the training converges, we use the trained model to infer GNN

scores on other vertices, which serve as a basis for locating the

kMG community.

Algorithm 2: GNN Model Training and Inference

Input: Candidate subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 ), labeled vertex

set 𝑆 , pre-trained embedding set 𝐷 .

Output: Candidate subgraph with GNN Scores

𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 , 𝑃𝑠 ).
1 for vertex 𝑢 in 𝑉𝑠 do
2 Build 𝑢 ′𝑠 content features from messages using 𝐷 ;

3 Build a GNN modeM with 𝑃𝑠 =GNN(𝐴𝑠 , 𝐹𝑠 ,𝑊 ) using the
loss function in Equation 1;

4 TrainM until convergence;

5 ApplyM to infer GNN scores 𝑃𝑠 on vertices, and obtain

𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 , 𝑃𝑠 ).

We take an incremental crawling strategy to build candidate sub-

graphs, but train the model fully on each candidate subgraph. This

is because that by controlling the size of the candidate subgraph,

the time cost in model training is not the bottleneck, compared

with the time required by human labeling and the page crawling.

In addition, the model trained fully usually has better performance

to support community search than the model trained incrementally.

Due to the same reason, we do not consider the inductive models

such as GraphSage [6], although they are capable of handling the

newly added vertices.

3.4 Search for K-Sized Community with
Maximum GNN scores

Due to the problem complexity, we design approximate methods

to find the kMG community from the subgraph graph with GNN

scores. The community certainly contains the query vertex. Intu-

itively, the vertices near the query vertex have more chances to be

included in the community. The community then can be initialized

by a BFS from the query vertex until 𝑘 vertices are encountered.

In the following, we swap the vertices with the lower scores in-

side the current community for the vertices with higher scores

outside, while at the same time preserving the connectivity of the

community.

Algorithm 3: Search for kMG Community

Input: Candidate subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 , 𝑃𝑠 ), query
vertex 𝑞.

Output: Community 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 , 𝑃𝑐 ).
1 𝑢 [𝑡𝑒𝑠𝑡] ← False for each vertex 𝑢 ∈ 𝑉𝑠 ;
2 Initialize 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 , 𝑃𝑐 ) with an empty graph;

3 for vertex 𝑢 encountered in a BFS in 𝐺𝑠 from 𝑞 do
4 𝑢 [𝑝𝑎𝑟 ] ← the parent vertex of 𝑢 in the BFS;

5 Add 𝑢 to 𝑉𝑐 if |𝑉𝑐 | < 𝑘 with 𝑢 [𝑡𝑒𝑠𝑡] ← True;

6 for vertex 𝑢 ∈ 𝑉𝑐 do
7 Find a vertex 𝑣 ∈ 𝑁 (𝑢) and 𝑣 ∉ 𝑉𝑐 and 𝑣 [𝑡𝑒𝑠𝑡] is False;
8 Find a vertex 𝑐 ∈ 𝑉𝑐 with 𝑃 [𝑐] smallest in 𝑉𝐶 and 𝑐 ≠ 𝑢;

9 if 𝑃 [𝑣] > 𝑃 [𝑐] & ∄𝑑 ∈ 𝑉𝑐 (𝑑 [𝑝𝑎𝑟 ] = 𝑐) then
10 𝑉𝑐 ← 𝑉𝑐 − {𝑐} + {𝑣};
11 𝑣 [𝑡𝑒𝑠𝑡] ← True;

12 Return an induced graph 𝐺𝑐 with 𝑉𝑐 .

Algorithm 3 describes the community search method. We intro-

duce 𝑢 [𝑡𝑒𝑠𝑡] indicating whether 𝑢 has been considered swapping

or not in Line 1. Each vertex can be considered one time, as the

sum of GNN scores increases monotonically along with the vertex

swapping. We start a BFS from the query vertex, and initialize the

vertex set in the community with the first 𝑘 vertices encountered

from Line 2 to 5. We record the parent vertex𝑢 [𝑝𝑎𝑟 ] during the BFS
which will be used to preserve the connectivity in the following.

The vertex swapping is implemented from Line 6 to 11 iteratively.

For each vertex 𝑢 in the community, we search a vertex pair (𝑣, 𝑐),
where 𝑣 is in the neighbors 𝑁 (𝑢) of 𝑢 outside the community, and

𝑐 is the vertex in the community with the smallest GNN score

𝑃 [𝑐]. The community is updated by adding 𝑣 and removing 𝑐 , if the

swapping can increase the sum of GNN scores in 𝐺𝑐 and does not

break the connectivity in 𝐺𝑐 (indicted by the fact that 𝑐 is not the

parent of a vertex in𝐺𝑐 ). We keep swapping until no proper vertex

pair can be found.

Figure 4 illustrates the basic idea of the search for kMG commu-

nity. Suppose that the query vertex is 𝑎, and an end user makes a

positive label on 𝑘 and a negative label on 𝑑 . Thus, the probabili-

ties of vertices in research community are relatively higher than
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Figure 4: Location of kMG (𝑘=5) Community
those on other vertices. The community with 5 vertices is initialized

by BFS from the query vertex 𝑎 in Figure 4(b). Then we swap the

vertices with the lowest GNN scores out of the community. For

example, 𝑗 is a neighbor of 𝑘 , 𝑃 [𝑏] = 0.4 is lower than 𝑃 [ 𝑗] = 0.8,

and then we remove 𝑏 and add 𝑗 into community. Finally, we obtain

the desired research community in Figure 4(c).

3.5 Algorithm Analysis
We discuss the time/space cost of the ICS-GNN, the quality of the

discovered community, and the number of Web API calls. Besides

the symbols in Table 2, we use 𝑙 be the number of layers of GNN

model, and 𝑛𝑒 be the number of users in each relationship page.

Time complexity of ICS-GNN. Each round of ICS-GNN in-

volves subgraph construction, GNN training and inferring, and the

location of kMG community. In the first step, each labeled posi-

tive vertex in 𝑆𝑝 scans 𝑙𝑒 pages for edges, each other vertex scans

𝑙𝑝 pages for partial edges, and all vertices scan 𝑙𝑐 pages for mes-

sages. These operations take at most𝑂 ( |𝑆𝑝 |𝑙𝑒𝑛𝑒 + |𝑉𝑠 |𝑙𝑝𝑛𝑒 + |𝑉𝑠 |𝑙𝑐 ).
In the GNN training, the message propagation between vertices

takes 𝑂 ( |𝑉𝑠 |2𝑙), where 𝑙 is the number of layers. For the commu-

nity discovery, the initial community is constructed via BFS with

𝑂 ( |𝐸𝑠 |) time cost. In the vertex swapping, each vertex is consid-

ered at most one time, during which the vertex with the lowest

probability in the community is located. The vertex swapping then

takes 𝑂 ( |𝑉𝑠 | |𝑉𝑐 |) time cost. In summary, the total time complexity

is 𝑂 ( |𝑉𝑠 |𝑙𝑝𝑛𝑒 + |𝑉𝑠 |2𝑙), when 𝑙𝑝 equals 𝑙𝑒 .

Space complexity of ICS-GNN. In the candidate subgraph con-
struction, each positively labeled vertex 𝑢 will search 𝑙𝑒 pages for

new vertices. The number of new vertices is𝑂 ( |𝑆𝑝 |𝑙𝑒𝑛𝑒 ). The other
vertices enrich the edge set 𝐸𝑠 which is bounded by𝑂 ( |𝑉𝑠 |2). All ver-
tices will scan 𝑙𝑐 pages for messages. Thus, the candidate subgraph

takes 𝑂 ( |𝑆𝑝 |𝑙𝑒𝑛𝑒 + |𝑉𝑠 |2 + |𝑉𝑠 |𝑙𝑐 ) space cost. For the GNN training,

we need to store parameters between layers and the embeddings

for all vertices. It requires at most 𝑂 (𝑑2𝑙) to store the parameter

matrix and𝑂 (𝑑 |𝑉𝑠 |) for the space of vertex embeddings, where 𝑑 is

the feature dimension for each vertex. The annotation of attributes

on vertices does not impact the space cost complexity in the com-

munity location, which is still 𝑂 ( |𝐸𝑠 |). In summary, the total space

requirement is 𝑂 ( |𝑆𝑝 |𝑙𝑒𝑛𝑒 + |𝑉𝑠 |2 + |𝑉𝑠 |𝑙𝑐 + 𝑑2𝑙 + 𝑑 |𝑉𝑠 |). Usually, it
can be reduced to 𝑂 ( |𝑆𝑝 |𝑙𝑒𝑛𝑒 + |𝑉𝑠 |2 + |𝑉𝑠 |𝑙𝑐 ), when the size of the

feature dimension is less than the total number of vertices, and 𝑙 is

2.

Quality of the discovered community 𝐺𝑐 . 𝐺𝑐 is connected,

as the initial community 𝐺𝑐 via a BFS in Algorithm 3 is connected,

and the following swapping operations are allowed only when𝐺𝑐 is

still connected. GNN model can combine the structural and content

features. Usually, larger GNN scores indicate denser cohesiveness

in structural and content features in the community. The swapping

operations in Algorithm 3 are carried out only when the sum of

GNN scores in 𝐺𝑐 increases.

Number of Web API calls. The number of Web API calls in

each candidate subgraph construction is in linear to 𝑂 ( |𝑉𝑠 |). From
Algorithm 1, each positively labeled vertex searches 𝑙𝑒 pages for

new vertices and edges, and each other vertex scans 𝑙𝑝 pages for

partial edges. The number of Web API calls in this part is at most

𝑂 ( |𝑉𝑠 |max(𝑙𝑒 , 𝑙𝑝 )). For any vertex 𝑢, we search 𝑙𝑐 pages for mes-

sages. In all, the number ofWeb API calls is𝑂 ( |𝑉𝑠 | (max(𝑙𝑒 , 𝑙𝑝 )+𝑙𝑐 ))
in the worst case. Compared with the exponential number of API

calls without control, the crawling policy is friendly to the online

social network.

4 OPTIMIZATION
In this section, we allow end users to rank two vertices as feedback

besides making explicit labels. In addition, we discuss the kMG
community location when the query vertex is not the core of the

target community.

4.1 Ranking Loss in ICS-GNN
The GNN model in this paper is trained with the labeled vertices

indicating whether the vertices should be in the community or

not. In some cases, end users may be not certain that one vertex

must be in the community. Instead, it is easy for end uses to make

a ranking over two candidates, that is, to express the statement

like “compared with user A, user B should be more likely in the

community".

Such kinds of users’ feedback can be captured by the margin

ranking loss [23]. Suppose end users assign a set of ranking vertex

pairs in the form of 𝑅 = {(𝑣0, 𝑣1)}, where 𝑣0 should have a higher

GNN score than 𝑣1. The loss function can be formulated in Equation

2. It means that the loss equals 0 and no parameter adjustment is

needed, when the predicted result is correct (the GNN score of 𝑣0
is larger than that of 𝑣1). However, the loss function will guide the

parameter optimization if 𝑃 [𝑣0] < 𝑃 [𝑣1]. 0 ≤ 𝑚 ≤ 1 is the margin

to allow a tolerance of the error in the ranking. A higher ranking

confidence of end users corresponds to a lower𝑚.

𝐿𝑜𝑠𝑠𝑟 =
∑

(𝑣0,𝑣1) ∈𝑅
max(0, 𝑃 [𝑣1] − 𝑃 [𝑣0] −𝑚) (2)

By combining Equation 1 and 2, the overall loss function takes

the form of Equation 3. 𝜆 is a hyperparameter to adjust weights

between the label loss and the ranking loss.

𝐿𝑜𝑠𝑠𝑎 = 𝑙𝑜𝑠𝑠𝑙 + 𝜆𝑙𝑜𝑠𝑠𝑟 (3)

Another reason to introduce the ranking loss into the interactive

community search lies in its ability to incorporate implicit feedback

of end users. When the target community is generated and pre-

sented to end users, end users may take more operations (like click,

view, search) on some vertices than others. Once collected, these

behavior hints can compose a ranking order on vertex pairs, which

guides GNN model to yield higher scores on these vertices that are

interesting to end users. The margin can be with a relatively large

value, as the captured feedback is implicit and imprecise.
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4.2 Relative Benefit Based Greedy Community
Search

The search method for the kMG community in Subsection 3.4 works

well when the query vertex is in the core of discovered community.

However, the method faces difficulty in handling the cases when the

query vertex is a boundary vertex of the community. For example,

suppose that a vertex 𝑣 is labeled positive but it is far from the query

vertex. 𝑣 may be not included in the final community, if 𝑣 is not

connected directly with any vertex in intermediate communities

and thus has no chance to be swapped into the final community by

Algorithm 3.

Algorithm 4: Relative Benefit Based Greedy Community

Search

Input: Candidate subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 , 𝐹𝑠 , 𝑃𝑠 ), the query
vertex 𝑞.

Output: Community 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 , 𝑃𝑐 ).
1 Add 𝑞 into 𝑉𝑐 ;

2 while |𝑉𝑐 | < 𝑘 do
3 Initialize an vertex queue 𝑄 with all vertices 𝑉𝑐 ;

4 𝑖 ← 0;

5 while 𝑖 < the length of 𝑄 do
6 𝑢 ← 𝑄 [𝑖];
7 for each neighbor 𝑣 ∈ 𝑁 (𝑢) and 𝑣 ∉ 𝑄 do
8 𝑣 [𝑝𝑎𝑟 ] ← 𝑢;

9 Locate the shortest path 𝑝𝑎𝑡ℎ(𝑣,𝐺𝑐 ) from 𝑣 to

𝐺𝑐 with [𝑝𝑎𝑟 ] links;
10 Compute the relative benefit of 𝑣 using

𝑝𝑎𝑡ℎ(𝑣,𝐺𝑐 );
11 Add 𝑣 into 𝑄 ;

12 𝑖 ← 𝑖 + 1;
13 Locate the vertex 𝑣𝑚 ∉ 𝑉𝑐 with the largest relative

benefit;

14 Add vertices in the shortest path 𝑝𝑎𝑡ℎ(𝑣𝑚,𝐺𝑐 ) into 𝑉𝑐 ;
15 Return the induced subgraph 𝐺𝑐 with vertex set 𝑉𝑐 ;

Here, we do not assume that the query vertex is the center of the

community, but enable the community to follow its distribution. In

order to do so, we introduce a global measure of all vertices to decide

whether the vertex should be in the community. As the query vertex

may not be the center of the community, the measurement needs to

be adjusted each time a vertex is selected into the community. Let

𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 , 𝑃𝑐 ) be an intermediate community. For a vertex 𝑣 ∉ 𝑉𝑐 ,

𝑣 finds the shortest path 𝑝𝑎𝑡ℎ(𝑣,𝐺𝑐 ) from 𝑣 to any vertex in the

𝐺𝑐 . We have to add all vertices in 𝑝𝑎𝑡ℎ(𝑣,𝐺𝑐 ) to keep connectivity

if we want to add 𝑣 into 𝑉𝑐 . Thus, the relative benefit of 𝑣 can be

defined by

∑
𝑢∈𝑝𝑎𝑡ℎ (𝑣,𝐺𝑐 ) 𝑃 [𝑢 ]
𝑙𝑒𝑛 (𝑝𝑎𝑡ℎ (𝑣,𝐺𝑐 )) , which reveals the benefit and cost if

𝑣 is selected. We select the vertex with the largest relative benefit

into the community.

The location of shortest paths from any vertices outside 𝐺𝑐 to

𝐺𝑐 takes a cost of𝑂 ( |𝑉𝑠 | |𝐸𝑠 |), and then the computation of relative

benefit in all iterations takes 𝑂 (𝑘 |𝑉𝑠 | |𝐸𝑠 |) cost in determining 𝑘

vertices in the final community, if the shortest paths are located

separately. In order to handle the issue, we start a BFS from all

vertices in 𝑉𝑐 to the remaining vertices from Line 4 to 12 in Algo-

rithm 4 in each iteration, and locate the shortest path 𝑝𝑎𝑡ℎ(𝑣,𝐺𝑐 )
from any vertex 𝑣 outside 𝐺𝑐 to 𝐺𝑐 with the aid of the parent ver-

tices recorded in the BFS. With the above strategy, the time cost in

computing relative benefit is reduced to 𝑂 (𝑘 |𝐸𝑠 |).
We discuss the case of a labeled vertex 𝑣 far from the query vertex

𝑞 using the rules above. Initially, the community𝐺𝑐 contains 𝑞 only,

and the relative benefit of 𝑣 is low since the length of 𝑝 (𝑣,𝐺𝑐 ) is
large. The relative benefit of 𝑣 is recomputed after each vertex is

selected into the community. When the intermediate community

is extended toward 𝑣 , the path length can be reduced and then the

relative benefit increases, which enables 𝑣 to have more chances to

be selected.

5 EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to evaluate ICS-

GNN in terms of effectiveness and efficiency.

5.1 Experiment Setup
We perform our experiments on both offline and online networks.

Table 3: The Statistics of the offline graphs
DataSet |𝑉 | |𝐸 | Scenario
Cora 2,708 5,278 Paper citation relationships

CiteSeer 3,327 4,676 Paper citation relationships

PubMed 17K 44K Paper citation relationships

Reddit 232K 114M Post co-commented relationships

Fb-Egonet 4,039 88K User friendship relationships

DBLP 317K 1M User co-author relationships

Amazon 334K 925K Product co-purchased relation-

ships

Offline Setting.We use 7 real-life graphs in our experiments with

their statistics in Table 3. These graphs are divided into 3 repre-

sentative groups. The graphs in the first group have content fea-

tures/vertex class labels but without ground-truth communities.

We select Cora, CiteSeer and PubMed, which are widely used in

GNN model performance study (they can be downloaded from

project [5]). These graphs describe research papers and their ci-

tation relationships. The vertex class labels reveal the research

areas/topics that papers belong to, from which we simulate commu-

nities. We can select a vertex 𝑢 as the query vertex, and a subgraph

around 𝑢 can then be constructed. The vertices in the subgraph are

labeled with 1 if they share the same class as 𝑢, or are labeled with

0 otherwise. Intuitively, the vertices with the label of 1 are for the

paper community in the same research area.

Graphs in the second group have content features and ground-

truth communities. We select Reddit [6] and Fb-Egonet (Facebook

Egonet) [10, 22] in this group. Reddit graph is collected from an

online discussion forum, where vertices refer to posts, and an edge

between two post vertices exists if a user comments on both posts.

The vertex labels reveal the communities that posts belong to. Face-

book Egonets are collected in [22] and used in [10]. Each Egonet

𝑓𝑥 contains an induced subgraph including a query vertex 𝑥 and its

neighbors. The vertices with the similar interest form social circles

or communities in Egonets.
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Graphs in the third group have ground-truth communities but

without content attributes. These graphs can be found in SNAP

project [22]. We select DBLP and Amazon graphs in this group

due to the space limitation. As ICS-GNN can search communities

by considering both content and structural features, we generate

content features using Gaussian distribution with a mean value of

0 and a standard deviation of 1. Note that some previous methods

[10] also generate content features on these graphs.

There are few works in interactive community search, and the

extension of existing community search methods [3, 10] to an inter-

active scenario is not trivial. End users have to adjust the parameters

in rules in each round. Take LocATC (Attributed Truss Community)

as an example. End users may need to refine the parameters in

(𝑘,𝑑)-truss, and select the representative attributes in each round

to locate the desired community. Thus, we study the performance

of one-time community search of ICS-GNN in an offline data set,

and choose LocATC as our competitor.

The community search in the offline graphs can be simulated as

follows: We first randomly select a query vertex 𝑞 in the graph, and

perform a BFS from 𝑢 to build a candidate subgraph. The vertex

community membership comes from the ground-truth or label-

generated communities, according to different graphs. We select the

training data according to a training ratio 𝑝𝑡 . That is, we randomly

select a labeled positive vertex set 𝑆𝑝 (including the query vertex 𝑢)

containing |𝑉𝑠 |𝑝𝑡/2 vertices with the label of 1, and randomly select

the same number of negative examples with the label of 0. Next, we

train a GNN model on the subgraph using the labeled vertices, and

infer the GNN scores for other vertices. Finally, we locate the kMG
community 𝐺𝑐 (the size of the community actually equals 𝑘+|𝑆𝑝 |
including labeled positive vertices) using different methods, and all

vertices in the discovered community have a predicted value of 1.

We compute the precision of the discovered community 𝐺𝑐 as

|𝑉 ′𝑐 − 𝑆𝑝 |/|𝑉𝑐 − 𝑆𝑝 | to evaluate different methods, where𝑉 ′𝑐 − 𝑆𝑝 ⊆
𝑉𝑐 − 𝑆𝑝 contains all newly discovered vertices in the community

but excludes the labeled positive vertices. Usually, a larger sub-

graph with more structural and content features indicates a more

stable result and a higher precision. The size of the community

also impacts the precision, since the number of vertices with label

1 may be smaller than the size of the community. Then, a larger

community may lead to a lower precision. Note that it is easy for

end users to adjust the size of community in ICS-GNN according

to the discovered results.

We implement all the algorithms in ICS-GNN using Python 3.7,

and run experiments on a machine having two Intel(R) Xeon(R)

Gold 2.30GHz CPU, 256GB memory, and 2 GeForce RTX 2080 Ti

Graphics Cards (GPU), with Ubuntu 18.04 installed. We choose

Pytorch Geometric implementation [5] of GCN [12] in the GNN

training. GNN and GCN are used interchangeably in the following.

Online Setting.We take Sina Weibo in our online test. The Web

crawler follows the Scrapy framework
3
, and the candidate sub-

graph is constructed using Algorithm 1 with a given query vertex.

The content embeddings for users are initialized based on the Gauss-

ian distribution first. We then pre-process the message posts using

pre-trained 300 dimension embeddings in Fasttext
4
. Since both

3
https://scrapy.org/

4
https://fasttext.cc/

Chinese and English sentences may exist in the message posts, the

total size of each user’s content features is 600. We do not include

the profile of users in this test. The communities are located using

the method following the offline settings above, and the located

community is visualized by Gephi
5
.

Table 4: Default Values for Parameters
Parameter Values Parameter Values

Size of subgraph 400 Training Epochs 200

Size of community 30 Drop out 0.5

Training ratio 2% Learning-rate 0.01

𝜆 in Equation 3 1 Layers in GCN [16,2]

We list the default values of parameters in Table 4. The left col-

umn contains the default values of the parameters in ICS-GNN,

while the right column contains those in GCN training. These

parameter values are used in the following tests unless stated oth-

erwise.

5.2 Experimental Results on Offline Networks
In this subsection, we first determine the hyper-parameters of the

GCN model. With the selected parameters, we study the effective-

ness of incorporating the ranking loss into GNN model, and show

the effectiveness and efficiency of the community search methods.

Finally, we compare with the competitor in term of effectiveness.
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Figure 5: Studies of Hyper-parameters of GCN

Figure 5 shows the results of different hyper-parameters in the

one-time community search using GCN model on different data

sets. We first test the GCN models with different layers (2, 3, 4)

with the size of layer 16. It is observed that more layers cannot

result in significant advantages, at least using the current version

of the GCN. We can reach a similar conclusion from the related

works [8]. That is, without the extra optimization, the increase of

layers in GCN will oversmooth the vertex embeddings, and weaken

their classification abilities. Thus, we select 2-layer GCN models as

the default. We then test the results with different sizes (64, 32, 16)

of the hidden layer, and find that we achieve similar results using

these parameters. We then take 16 as the default size of hidden

layers to lower the training cost.

We simulate the incorporation of ranking loss into the interactive

setting using 2-round searching as follows: We train a modelM0

on a subgraph with 2% labeled vertices (including the positive and

negative examples) in the first round. We then infer the vertex

5
https://gehpi.org/
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Figure 6: Effectiveness of Ranking Loss

membership probabilities for other vertices. As an end user may

quickly find these vertices with obvious errors, we simulate the

process by locating false positive vertices with high GNN scores

and false negative vertices with low GNN scores, and composing

2% vertex pairs in ranking loss for the modelM1 in the second

round. We also compare a modelM2 using 4% training vertices in

the first round.

Figure 6 shows the effectiveness of the ranking loss on two data

sets with varying settings. The data presented as “200, 30" in the

x-axis is for the size of subgraph 200 and the size of community

30. From the results, we can see that the ranking loss function

works well in nearly all settings. It boosts the performance ofM0

significantly, and achieves similar or even better results thanM2,

although the ranking task is relatively easy compared with the

explicit labeling.

We implement 4 methods to locate the community. We are in-

terested in whether the BFS with only structural information can

produce a community with a high precision. The method based on

the BFS with the vertex swapping, denoted by BFS-S, is described in
Algorithm 3. The method in Algorithm 4 is named as Greedy-G. We

also implement a simplified version Greedy-T that shares a similar

idea to Greedy-G, but computes the relative benefit using a path to

the query vertex directly, which can be accelerated by the cached

results of one-time BFS from the query vertex.

Figure 7(a)-(f) report the precision results on community dis-

covered on different networks. The symbols of “30,400, 4%" in the

figures describe the size of the community, the size of the subgraph,

and the training ratio in GNN, respectively. We can see that Greedy-
G achieves the best performance compared with other methods in

the same setting in general. BFS alone does not yield the precise

community, showing that only structural features are insufficient.

A small subgraph always indicates incomplete features, which im-

pacts the effectiveness of GNN models and the following results.

The increase of the training ratio can improve the performance

of GNN model on the one hand, but may lower the precision of

community on the other hand, when the number of vertices with

the label of 1 is smaller than the size of the community.

Figure 7(g) illustrates the training cost of the GNN model on

different sizes of the subgraphs from various networks. We can see

that the absolute time of the model training on all test graphs is less

than 1.5 seconds with the aid of GPU. Note that we train the GNN

model on the subgraphs collected from the underlying graph, and

then the size of the underlying graph has no impact on the model

training.

Figure 7(h) shows the efficiency of our community discovery

methods. Greedy-G computes the relative benefit for all vertices

multiple times, each of which a BFS from the intermediate commu-

nity to the remaining vertices is required. By contrast, Greedy-T
also computes the relative benefit for all vertices multiple times,

but relies on the same cached BFS results from the query vertex

to the remaining vertices. Such an optimization strategy shows its

advantage only in dense graphs such as Reddit. We also note that

the absolute execution time of Greedy-G is acceptable due to that

we limit the size of the underlying subgraph. By considering the

previous results on community precision, we choose Greedy-G as

our default community discovery method.

Figure 8 studies the community’s precision achieved by the in-

crease of iterations. At each time, one positive and one negative

vertex are labeled. As expected, GNNmodel becomes more effective

with more labeled vertices, which results in more precise communi-

ties generally. Note that the precision does not necessarily increase

with more iterations from Figure 8(a), as the limited labeled vertices

cannot ensure stable results. The symbols such as “30, 1" in Figure

8(b) refer to the community size and the number of newly labeled

positive (negative) vertices in each iteration. We select Amazon

graph to test the impacts of these two factors along with the num-

ber of iterations on the community precision, and find the similar

trends.

Figure 9 shows the performances of our method and LocATC

method [10] (codes provided by authors) over Fb-Egonets. In or-

der to make the comparison fair, we follow the same experimental

setting in [10]. For each community (with its size larger than 8),

LocATC selects 8 vertices randomly as the query vertices. Cor-

respondingly, ICS-GNN uses 4 positive and 4 negative vertices.

LocATC chooses two attributes which are common in the current

community but rare in other communities, while ICS-GNN does not

need to select attributes. After LocATC yields a 𝑘-sized community,

ICS-GNN utilizes the same value of 𝑘 in the kMG community search,

from which we compute the precision, recall, and F1 over discov-

ered communities [10] but excluding positively labeled vertices. As

labeled vertices are randomly selected, we average scores after 20

rounds of community search for both methods. We illustrate F1, P

(Precision), and R(Recall) in each Egonet using the two methods,

and find that ICS-GNN achieves better F1 scores in 9 out of 10

Egonets. The scores of LocATC are lower than those reported [10],

as we focus on community with size larger than 8 and exclude the

labeled vertices in score computation.

5.3 Experimental Results on Online Network
We use SinaWeibo, the largestWeibo system in China, as our online

context. Prof Xuemin Lin is a well-known researcher in the database

field, and we select Xuemin as the query vertex. We set 2 for all

page limitations, including 𝑙𝑐 , 𝑙𝑒 , 𝑙𝑒 in Table 2 in the incremental

crawler. The size of community is 40.

Figure 10 (a) shows the first round community discovered over

the subgraph containing about 200 vertices, after 3 rounds of in-

cremental crawling. We then train a GNN model with positive

examples (Bin Cui, and Xiaoyong Du), and negative examples (Ping

Lang, the coach of a volleyball team). Guided by the examples, most

members in the initial community are also researchers, including
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Figure 7: Effectiveness and Efficiency of Location of the kMG Community
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Figure 8: Impact of Iterations in Interactive Search
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Figure 9: F1, Precision and Recall Scores on Fb-Egonets

Xiaofang Zhou, Hengtao Shen, etc. The size of the circle is related

to the degree of the vertices in the final community.

Figure 10 (b) illustrates the second round of sports community.

Based on the subgraph in Figure 10 (a), we swap the positive and

negative examples (Xueming is still a positive example), and invoke

another 3 rounds of incremental crawling from the volleyball coach

(Ping Lang). We retrain the GNN model to find the sports commu-

nity. We can see that Xueming now is not the core of discovered

community, as most researchers have no direct relationships with

the players in the currently collected data. As discussed above, our

method supports the community search with various forms, like

the tree form in the organization.

Figure 10 (c) shows the second round of research community.

Based on the subgraph in Figure 10 (a), we make another 3 rounds

of incremental crawling to get more pages from the labeled positive

vertices, Bin Cui and Xiaoyong Du. We perform the community

search in the new subgraph, and can see that the newly discovered

community becomes dense in structure. Professors like Jeffery Yu,

Haixun Wang, Jiangliang Xu are active in the community discov-

ered.

Summary. From the above experimental results, we can draw the

following conclusions: i) ICS-GNN can effectively capture the con-

tent and structural features by GNN, and yield a high-quality com-

munity with the limited labeling efforts. ii) The margin ranking

loss is effective in the context of interactive community search. iii)

The greedy community discovery method with the global relative

benefit can produce communities fitting various distributions.

6 RELATEDWORK
We review the progress of related works, including the community

search, the focused crawler, GNN models and their impacts on the

community search.

Community Search.Most existing methods assume that the com-

munity should satisfy both content similarity and structural cohe-

siveness. In order to capture the structural constraints, different 𝑘-*
related measurements [2, 9, 14, 20] are proposed from the perspec-

tives of the degree, the number of triangles, the maximum diameter,

etc, in the community. Usually, the communities meeting these

structural constraints achieve good precision. However, it is not

easy for end users to set a proper 𝑘 . A higher 𝑘 fails to produce

any communities, while a smaller 𝑘 results in massive candidate

communities. Other works [3, 10] measure the communities by

combining both structural and content features using rules. As dis-

cussed above, the interactive adjustment of these rules is not trivial

due to complex relationships among features, as well as tension

between content and structural requirements.
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(a) 1-st round Research Community (b) 2-nd round Sports Community (c) 2-nd round Research Community

Figure 10: Case Study in Sina Weibo. We translate Chinese names into English when we know the persons, and keep their
original forms in other cases.

Focused Crawler. Focused crawlers [16, 18] are designed to collect
relevantWeb pages with a classifier trained on the local information

(links and content of Web page), which determines the next link

to be searched. Although interactive community search shares a

similar purpose as focused crawlers, we use the GNN to train a

model on the entire subgraph instead of local information in one

vertex. In addition, focused crawler collects a set of pages, while

the interactive community search finds meaningful subgraphs.

GNN for Community. GNN encodes the content and structural

features into the vertex embeddings, which are used in down-

streaming tasks like classification. Various GNN variants and mod-

els [6, 12, 21] are proposed with their differences in aggregate

functions, update functions, and transductive/inductive settings,

etc. Besides the works discussed before, Addgraph [23] utilizes a

margin loss function to handle imprecise labeled examples. Light-

GCN [8] studies the impacts of different factors like deep layers on

the model performance, and proposes a simple but effective model.

In this work, we exploit the similar ranking based loss function to

provide end users with a simple labeling mechanism. For the hyper-

parameters used in GCN, we choose 2-layer GCN as default, as

more layers cannot improve the precision of community obviously

if no extra optimization is adopted.

The roles of deep learning in community detection have been

studied, and the challenges and opportunities are summarized

in [15]. In the work of LGCN [1], the vertex’s community member-

ship is modeled as a vertex classification problem, and a combined

GNN model on the original graph and its line graph is proposed to

predict probabilities on each vertex. The overlapping community

detection method is proposed [19] by incorporating Bernoulli Pois-

son probabilistic model into the loss function in GNNs. Similar to

these works, ICS-GNN relies on GNN model to infer community

membership probabilities on vertices. The differences between our

work and the existing ones are that we abstract a kMG model for

communities, and locate the kMG community incrementally and

interactively rather than yielding the probabilities on vertices only.

7 CONCLUSIONS
This paper proposes ICS-GNN to support the interactive community

search in an online social network. We first model the community

as a 𝑘-sized subgraph with maximum GNN scores, which com-

bines content and structural features by leveraging a GNN model,

and incorporates users’ feedback easily. Second, we design an in-

teractive framework with incremental crawling and community

search to progressively refine the results and avoid unnecessary

communication and computation cost. Third, we introduce various

optimization strategies to reduce the labeling burden of end users,

and a greedy method to locate communities with flexible forms.

Offline and online experimental results illustrate the effectiveness

and efficiency of ICS-GNN.
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