
Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience

Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath,
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,

Santhosh Srinivasan, Utkarsh Srivastava

Yahoo!, Inc.
∗

ABSTRACT
Increasingly, organizations capture, transform and analyze
enormous data sets. Prominent examples include internet
companies and e-science. The Map-Reduce scalable dataflow
paradigm has become popular for these applications. Its
simple, explicit dataflow programming model is favored by
some over the traditional high-level declarative approach:
SQL. On the other hand, the extreme simplicity of Map-
Reduce leads to much low-level hacking to deal with the
many-step, branching dataflows that arise in practice. More-
over, users must repeatedly code standard operations such
as join by hand. These practices waste time, introduce bugs,
harm readability, and impede optimizations.

Pig is a high-level dataflow system that aims at a sweet
spot between SQL and Map-Reduce. Pig offers SQL-style
high-level data manipulation constructs, which can be as-
sembled in an explicit dataflow and interleaved with custom
Map- and Reduce-style functions or executables. Pig pro-
grams are compiled into sequences of Map-Reduce jobs, and
executed in the Hadoop Map-Reduce environment. Both Pig
and Hadoop are open-source projects administered by the
Apache Software Foundation.

This paper describes the challenges we faced in develop-
ing Pig, and reports performance comparisons between Pig
execution and raw Map-Reduce execution.

1. INTRODUCTION
Organizations increasingly rely on ultra-large-scale data

processing in their day-to-day operations. For example,
modern internet companies routinely process petabytes of
web content and usage logs to populate search indexes and
perform ad-hoc mining tasks for research purposes. The
data includes unstructured elements (e.g., web page text;
images) as well as structured elements (e.g., web page click

∗Author email addresses: {gates, olgan, shubhamc,
pradeepk, shravanm, olston, breed, sms, utkarsh}
@yahoo-inc.com.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

records; extracted entity-relationship models). The process-
ing combines generic relational-style operations (e.g., fil-
ter; join; count) with specialized domain-specific operations
(e.g., part-of-speech tagging; face detection). A similar sit-
uation arises in e-science, national intelligence, and other
domains.

The popular Map-Reduce [8] scalable data processing frame-
work, and its open-source realization Hadoop [1], cater to
these workloads and offer a simple dataflow programming
model that appeals to many users. However, in practice, the
extreme simplicity of the Map-Reduce programming model
leads to several problems. First, it does not directly sup-
port complex N -step dataflows, which often arise in prac-
tice. Map-Reduce also lacks explicit support for combined
processing of multiple data sets (e.g., joins and other data
matching operations), a crucial aspect of knowledge discov-
ery. Lastly, frequently-needed data manipulation primitives
like filtering, aggregation and top-k thresholding must be
coded by hand.

Consequently, users end up stitching together Map-Reduce
dataflows by hand, hacking multi-input flows, and repeat-
edly implementing standard operations inside black-box func-
tions. These practices slow down data analysis, introduce
mistakes, make data processing programs difficult to read,
and impede automated optimization.

Our Pig system [4] offers composable high-level data ma-
nipulation constructs in the spirit of SQL, while at the same
time retaining the properties of Map-Reduce systems that
make them attractive for certain users, data types, and
workloads. In particular, as with Map-Reduce, Pig pro-
grams encode explicit dataflow graphs, as opposed to im-
plicit dataflow as in SQL. As one user from Adobe put it:

“Pig seems to give the necessary parallel pro-
gramming constructs (FOREACH, FLATTEN,
COGROUP .. etc) and also give sufficient control
back to the programmer (which a purely declara-
tive approach like [SQL on top of Map-Reduce]1

doesn’t).”

Pig dataflows can interleave built-in relational-style op-
erations like filter and join, with user-provided executables
(scripts or pre-compiled binaries) that perform custom pro-
cessing. Schemas for the relational-style operations can be
supplied at the last minute, which is convenient when work-
ing with temporary data for which system-managed meta-
data is more of a burden than a benefit. For data used

1Reference to specific software project removed.



exclusively in non-relational operations, schemas need not
be described at all.

Pig compiles these dataflow programs, which are written
in a language called Pig Latin [15], into sets of Hadoop Map-
Reduce jobs, and coordinates their execution. By relying
on Hadoop for its underlying execution engine, Pig benefits
from its impressive scalability and fault-tolerance properties.
On the other hand, Pig currently misses out on optimized
storage structures like indexes and column groups. There
are several ongoing efforts to add these features to Hadoop.

Despite leaving room for improvement on many fronts, Pig
has been widely adopted in Yahoo, with hundreds of users
and thousands of jobs executed daily, and is also gaining
traction externally with many successful use cases reported.
This paper describes the challenges we faced in developing
Pig, including implementation obstacles as well as challenges
in transferring the project from a research team to a devel-
opment team and converting it to open-source. It also re-
ports performance measurements comparing Pig execution
and raw Hadoop execution.

1.1 Related Work
For the most part, Pig is merely a combination of known

techniques that fulfills a practical need. That need appears
to be widespread, as several other systems are emerging that
also offer high-level languages for Map-Reduce-like environ-
ments: DryadLINQ [20], Hive [3], Jaql [5], Sawzall [16] and
Scope [6]. With the exception of Sawzall, which provides
a constrained filter-aggregate abstraction on top of a single
Map-Reduce job, these systems appear to have been devel-
oped after or concurrently with Pig. Some of these systems
adopt SQL syntax (or a close variant), whereas others in-
tentionally depart from SQL, presumably motivated by sce-
narios for which SQL was not deemed the best fit.

1.2 Outline
Rather than trying to be comprehensive, this paper fo-

cuses on aspects of Pig that are somewhat non-standard
compared to conventional SQL database systems. After giv-
ing an overview of the system, we describe Pig’s type sys-
tem (including nested types, type inference and lazy cast-
ing), generation, optimization and execution of query plans
in the Map-Reduce context, and piping data through user-
supplied executables (“streaming”). We then present per-
formance numbers, comparing Pig execution against hand-
coded Map-Reduce execution. At the end of the paper, we
describe some of our experiences building and deploying Pig,
and mention some of the ways Pig is being used (both inside
and outside of Yahoo).

2. SYSTEM OVERVIEW
The Pig system takes a Pig Latin program as input, com-

piles it into one or more Map-Reduce jobs, and then exe-
cutes those jobs on a given Hadoop cluster. We first give
the reader a flavor of Pig Latin through a quick example,
and then describe the various steps that are carried out by
Pig to execute a given Pig Latin program.

Example 1. Consider a data set urls: (url, category,

pagerank). The following Pig Latin program finds, for each
sufficiently large category, the top ten urls in that category
by pagerank.

Figure 1: Pig compilation and execution stages.

urls = LOAD ‘dataset’ AS (url, category, pagerank);

groups = GROUP urls BY category;

bigGroups = FILTER groups BY COUNT(urls)>1000000;
result = FOREACH bigGroups GENERATE

group, top10(urls);

STORE result INTO ‘myOutput’;

Some of the salient features of Pig Latin as demonstrated
by the above example include (a) a step-by-step dataflow
language where computation steps are chained together
through the use of variables, (b) the use of high-level trans-
formations, e.g., GROUP, FILTER, (c) the ability to specify
schemas as part of issuing a program, and (d) the use of user-
defined functions (e.g., top10) as first-class citizens. More
details about Pig Latin and the motivations for its design
are given in [15].

Pig allows three modes of user interaction:

1. Interactive mode: In this mode, the user is pre-
sented with an interactive shell (called Grunt), which
accepts Pig commands. Plan compilation and exe-
cution is triggered only when the user asks for out-
put through the STORE command. (This practice en-
ables Pig to plan over large blocks of program logic.
There are no transactional consistency concerns, be-
cause Hadoop data is immutable.)

2. Batch mode: In this mode, a user submits a pre-
written script containing a series of Pig commands,
typically ending with STORE. The semantics are iden-
tical to interactive mode.

3. Embedded mode: Pig is also provided as a Java li-
brary allowing Pig Latin commands to be submitted
via method invocations from a Java program. This
option permits dynamic construction of Pig Latin pro-
grams, as well as dynamic control flow, e.g. looping for
a non-predetermined number of iterations, which is not
currently supported in Pig Latin directly.

In interactive mode, two commands are available to help
the user reason about the program she is using or creating:
DESCRIBE and ILLUSTRATE. The DESCRIBE command displays
the schema of a variable (e.g. DESCRIBE urls, DESCRIBE

bigGroups). The ILLUSTRATE command displays a small
amount of example data for a variable and the variables in



its derivation tree, to give a more concrete illustration of
the program semantics; the technology behind Pig’s exam-
ple data generator is described in [14]. These features are
especially important in the Pig context, given the complex-
ity of dealing with nested data, partially-specified schemas,
and inferred types (see Section 3).

Regardless of the mode of execution used, a Pig program
goes through a series of transformation steps before being
executed, depicted in Figure 1.

The first step is parsing. The parser verifies that the pro-
gram is syntactically correct and that all referenced vari-
ables are defined. The parser also performs type checking
and schema inference (see Section 3). Other checks, such
as verifying the ability to instantiate classes correspond-
ing to user-defined functions and confirming the existence
of streaming executables referenced by the user’s program,
also occur in this phase. The output of the parser is a canon-
ical logical plan with a one-to-one correspondence between
Pig Latin statements and logical operators, arranged in a
directed acyclic graph (DAG).

The logical plan generated by the parser is passed through
a logical optimizer. In this stage, logical optimizations such
as projection pushdown are carried out. The optimized
logical plan is then compiled into a series of Map-Reduce
jobs (see Section 4), which then pass through another opti-
mization phase. An example of Map-Reduce-level optimiza-
tion is utilizing the Map-Reduce combiner stage to perform
early partial aggregation, in the case of distributive or alge-
braic [12] aggregation functions.

The DAG of optimized Map-Reduce jobs is then topologi-
cally sorted, and jobs are submitted to Hadoop for execution
in that order (opportunities for concurrent execution of in-
dependent branches are not currently exploited). Pig mon-
itors the Hadoop execution status, and periodically reports
the progress of the overall Pig program to the user. Any
warnings or errors that arise during execution are logged
and reported to the user.

3. TYPE SYSTEM AND TYPE INFERENCE
Pig has a nested data model, thus supporting complex,

non-normalized data. Standard scalar types of int, long,
double, and chararray (string) are supported. Pig also
supports a bytearray type that represents a collection of
uninterpreted bytes. The type bytearray is also used to
facilitate unknown data types and lazy conversion of types,
as described in Sections 3.1 and 3.2.

Pig supports three complex types: map, tuple, and bag.
map is an associative array, where the key is a chararray and
the value is of any type. We chose to include this type in Pig
because much of Yahoo’s data is stored in this way due to
sparsity (many tuples only contain a subset of the possible
attributes). tuple is an ordered list of data elements. The
elements of tuple can be of any type, thus allowing nesting
of complex types. bag is a collection of tuples.

When Pig loads data from a file (and conversely when it
stores data into a file), it relies on storage functions to de-
limit data values and tuples. The default storage function
uses ASCII character encoding. It uses tabs to delimit data
values and carriage returns to delimit tuples, and left/right
delimiters like { } to encode nested complex types. Pig also
comes with a binary storage function called BinStorage. In
addition, users are free to define their own storage function,
e.g., to operate over files emitted by another system, to cre-

ate data for consumption by another system, or to perform
specialized compression. To use a storage function other
than the default one, the user gives the name of the desired
storage function in the LOAD or STORE command.

3.1 Type Declaration
Data stored in Hadoop may or may not have schema in-

formation stored with it. For this reason, Pig supports three
options for declaring the data types of fields. The first op-
tion is that no data types are declared. In this case the
default is to treat all fields as bytearray. For example:

a = LOAD ‘data’ USING BinStorage AS (user);

b = ORDER a BY user;

The sorting will be done by byte radix order in this case. Us-
ing bytearray as the default type avoids unnecessary casting
of data that may be expensive or corrupt the data.

Note that even when types are undeclared, Pig may be
able to infer certain type information from the program. If
the program uses an operator that expects a certain type
on a field, then Pig will coerce that field to be of that type.
In the following example, even though addr is not declared
to be a map, Pig will coerce it to be one since the program
applies the map dereference operator # to it:

a = LOAD ‘data’ USING BinStorage AS (addr);

b = FOREACH a GENERATE addr#‘state’;

Another case where Pig is able to know the type of a field
even when the program has not declared types is when op-
erators or user-defined functions (UDFs) have been applied
whose return type is known. In the following example, Pig
will order the output data numerically since it knows that
the return type of COUNT is long:

a = LOAD ‘data’ USING BinStorage AS (user);

b = GROUP a BY user;

c = FOREACH b GENERATE COUNT(a) AS cnt;

d = ORDER c BY cnt;

The second option for declaring types in Pig is to provide
them explicitly as part of the AS clause during the LOAD:

a = LOAD ‘data’ USING BinStorage

AS (user:chararray);

b = ORDER a BY user;

Pig now treats user as a chararray, and the ordering will
be done lexicographically rather than in byte order.

The third option for declaring types is for the load func-
tion itself to provide the schema information, which accom-
modates self-describing data formats such as JSON. We are
also developing a system catalog that maintains schema in-
formation (as well as physical attributes) of non-self-
describing data sets stored in a Hadoop file system instance.

It is generally preferable to record schemas (via either self-
description or a catalog) for data sets that persist over time
or are accessed by many users. The option to forgo stored
schemas and instead specify (partial) schema information
through program logic (either explicitly with AS, or implic-
itly via inference) lowers the overhead for dealing with tran-
sient data sets, such as data imported from a foreign source
for one-time processing in Hadoop, or a user’s “scratch” data
files.



Figure 2: Pig Latin to logical plan translation.

3.2 Lazy Conversion of Types
When Pig does need to cast a bytearray to another type

because the program applies a type-specific operator, it de-
lays that cast to the point where it is actually necessary.
Consider this example:

students = LOAD ‘data’ USING BinStorage

AS (name, status, possiblePoints, earnedPoints);

paid = FILTER students BY status == ‘paid’;

gpa = FOREACH paid GENERATE name,

earnedPoints / possiblePoints;

In this example, status will need to be cast to a chararray

(since it is compared to constant of type chararray), and
earnedPoints and possiblePoints will need to be cast to
double since they are operands of the division operator.
However, these casts will not be done when the data is
loaded. Instead, they will be done as part of the comparison
and division operations, which avoids casting values that are
removed by the filter before the result of the cast is used.

4. COMPILATION TO MAP-REDUCE
This section describes the process of translating a logical

query plan into a Map-Reduce execution plan. We describe
each type of plan, and then explain how Pig translates be-
tween them and optimizes the Map-Reduce plan.

4.1 Logical Plan Structure
Recall from Section 2 that a Pig Latin program is trans-

lated in a one-to-one fashion to a logical plan. Figure 2
shows an example. Each operator is annotated with the
schema of its output data, with braces indicating a bag of
tuples.2 With the exception of nested plans (Section 5.1.1)
and streaming (Section 6), a Pig logical query plan resem-
bles relational algebra with user-defined functions and ag-
gregates.

Pig currently performs a limited suite of logical optimiza-
tions to transform the logical plan, before the compilation
into a Map-Reduce plan. We are currently enriching the
set of optimizations performed, to include standard System-

2Note that the keyword “group” is used both as a com-
mand (as in “GROUP D BY ...”) and as the automatically-
assigned field name of the group key in the output of a group-
by expression (as in “FOREACH E GENERATE group, ...”).

Figure 3: Map-Reduce execution stages.

R-style heuristics like filter pushdown, among others. Join
ordering does not appear to be an important issue in the
Pig/Hadoop context, because data is generally kept in non-
normalized form (after all, it is read-only); in practice Pig
programs seldom perform more than one join. On the other
hand, due to the prevalence of “wide” data tables, we do
expect to encounter optimization opportunities of the form
studied in the column-store context (e.g. deferred stitching),
once column-wise storage structures are added to Hadoop.

4.2 Map-Reduce Execution Model
A Hadoop Map-Reduce job consists of a series of execution

stages, shown in Figure 3. The map stage processes the
raw input data, one data item at a time, and produces a
stream of data items annotated with keys. A subsequent
local sort stage orders the data produced by each machine’s
map stage by key. The locally-ordered data is then passed
to an (optional) combiner stage for partial aggregation by
key.

The shuffle stage then redistributes data among machines
to achieve a global organization of data by key (e.g. globally
hashed or ordered). All data received at a particular ma-
chine is combined into a single ordered stream in the merge
stage. If the number of incoming streams is large (relative
to a configured threshold), a multi-pass merge operation is
employed; if applicable, the combiner is invoked after each
intermediate merge step. Lastly, a reduce stage processes
the data associated with each key in turn, often performing
some sort of aggregation.

4.3 Logical-to-Map-Reduce Compilation
Pig first translates a logical plan into a physical plan, and

then embeds each physical operator inside a Map-Reduce
stage to arrive at a Map-Reduce plan.3

3Pig can also target platforms other than Map-Reduce. For
example, Pig supports a “local” execution mode in which
physical plans are executed in a single JVM on one machine
(the final physical-to-Map-Reduce phase is not performed in
this case). A student at UMass Amherst extended Pig to
execute in the Galago [19] parallel data processing environ-
ment.



Figure 4: Logical plan to physical plan translation.

Figure 4 shows our example logical plan translated to a
physical plan. For clarity each logical operator is shown with
an id. Physical operators that are produced by the transla-
tion of a logical operator are shown with the same id. For
the most part, each logical operator becomes a correspond-
ing physical operator.

The logical (CO)GROUP operator becomes a series of three
physical operators: local rearrange, global rearrange, and
package. Rearrange is a term that stands for either hashing
or sorting by key. The combination of local and global rear-
range results in the data being arranged such that all tuples
having the same group-by key wind up on the same machine
and adjacent in the data stream. In the case of cogrouping
multiple incoming streams, the local rearrange operator first
annotates each tuple in a way that indicates its stream of
origin. The package operator places adjacent same-key tu-
ples into a single-tuple “package,” which consists of the key
followed by one bag of tuples per stream of origin.

The JOIN operator is handled in one of two ways: (1)
rewrite into COGROUP followed by a FOREACH operator to per-
form “flattening” (see [15]), as shown in Figure 4, which
yields a parallel hash-join or sort-merge join, or (2) fragment-
replicate join [10], which executes entirely in the map stage
or entirely in the reduce stage (depending on the surround-
ing operations). The choice of join strategy is controlled
via syntax (a future version of Pig may offer the option to
automate this choice).

Having constructed a physical plan, Pig assigns physical
operators to Hadoop stages (Section 4.2), with the goal of
minimizing the number of reduce stages employed. Figure 5
shows the assignment of physical operators to Hadoop stages
for our running example (only the map and reduce stages are
shown). In the Map-Reduce plan, the local rearrange opera-
tor simply annotates tuples with keys and stream identifiers,

Figure 5: Physical plan to map reduce plan transla-
tion.

and lets the Hadoop local sort stage do the work. Global
rearrange operators are removed because their logic is im-
plemented by the Hadoop shuffle and merge stages. Load
and store operators are also removed, because the Hadoop
framework takes care of reading and writing data.

4.3.1 Branching Plans
If a Pig Latin program contains more than one STORE com-

mand, the generated physical plan contains a SPLIT physical
operator. The following program contains a logical SPLIT
command and ends with two STORE commands, one for each
branch of the split:

clicks = LOAD ‘clicks’

AS (userid, pageid, linkid, viewedat);

SPLIT clicks INTO

pages IF pageid IS NOT NULL,

links IF linkid IS NOT NULL;

cpages = FOREACH pages GENERATE userid,

CanonicalizePage(pageid) AS cpage,

viewedat;

clinks = FOREACH links GENERATE userid,

CanonicalizeLink(linkid) AS clink,

viewedat;

STORE cpages INTO ‘pages’;

STORE clinks INTO ‘links’;

The Map-Reduce plan for this program is shown in Figure 6
(in this case, we have a “Map-only” plan, in which the Re-
duce step is disabled). Pig physical plans may contain nested
sub-plans, as this example illustrates. Here, the split opera-
tor feeds a copy of its input to two nested sub-plans, one for
each branch of the logical split operation. (The reason for
using a nested operator model for split has to do with flow
control during execution, as discussed later in Section 5.1.)



Figure 6: Split operator with nested sub-plans.

The situation becomes tricker if the split propagates across
a map/reduce boundary, which occurs in the following ex-
ample:

clicks = LOAD ‘clicks’

AS (userid, pageid, linkid, viewedat);

goodclicks = FILTER clicks BY

viewedat IS NOT NULL;

bypage = GROUP goodclicks BY pageid;

cntbypage = FOREACH bypage GENERATE group,

COUNT(goodclicks);

STORE cntbypage INTO ‘bypage’;

bylink = GROUP goodclicks BY linkid;

cntbylink = FOREACH bylink GENERATE group,

COUNT(goodclicks);

STORE cntbylink INTO ‘bylink’;

Here there is no logical SPLIT operator, but the Pig compiler
inserts a physical SPLIT operator to duplicate the
goodclicks data flow. The Map-Reduce plan is shown in
Figure 7. Here, the SPLIT operator tags each output tu-
ple with the sub-plan to which it belongs. The MULTIPLEX

operator in the Reduce stage routes tuples to the correct
sub-plan, which resume where they left off.

The SPLIT/MULTIPLEX physical operator pair is a recent
addition to Pig motivated by the fact that users often wish
to process a data set in multiple ways, but do not want to
pay the cost of reading it multiple times. Of course, this
feature has a downside: Adding concurrent data processing
pipelines reduces the amount of memory available for each
pipeline. For memory-intensive computations, this approach
may lead to spilling of data to disk (Section 5.2), which can
outweigh the savings from reading the input data only once.
Also, pipeline multiplexing reduces the effectiveness of the
combiner (discussed next, in Section 4.4), since each run of
the combiner only operates on as much data as it can fit into
memory. By multiplexing pipelines, a smaller portion of a
given pipeline’s data is held in memory, and thus less data
reduction is achieved from each run of the combiner.

Pig does not currently have an optimizer sophisticated
enough to reason about this tradeoff. Thus, Pig leaves the
decision to the user. The unit of compilation and execution
is a Pig program submitted by the user, and Pig assumes
that if the program contains multiple STORE commands they
should be multiplexed. If the user does not wish them to be

Figure 7: Split and multiplex operators.

multiplexed, she can submit the pipelines independently as
separate Pig programs.

4.4 Map-Reduce Optimization and
Job Generation

Once a Map-Reduce plan has been generated, there may
be room for additional optimizations. Currently only one
optimization is performed at this level: Pig breaks distribu-
tive and algebraic [12] aggregation functions (such as
AVERAGE) into a series of three steps: initial (e.g. gener-
ate (sum, count) pairs), intermediate (e.g. combine n (sum,
count) pairs into a single pair), final (e.g. combine n (sum,
count) pairs and take the quotient).4 These steps are as-
signed to the map, combine, and reduce stages respectively.5

We have found that using the combiner as aggressively
as possible has two benefits. The first is obvious: it typi-
cally reduces the volume of data handled by the shuffle and
merge phases, which often consume a significant portion of
job execution time. Second, combining tends to equalize the
amount of data associated with each key, which lessens skew
in the reduce phase.

The final compilation step is to convert each Map-Reduce
combination (or just Map, if there is no final Reduce) into

4The separation of initial from intermediate is necessary be-
cause recent versions of Hadoop do not guarantee that every
tuple will pass through the combiner (these semantics lead
to greater flexibility in the Hadoop layer, e.g. bypassing the
combiner in cases of a single data item for a given key).
5Although we could have included this optimization as part
of the main plan generation process (i.e. create separate
physical operators for the three aggregation steps), we opted
to implement it as a separate transformation to make it more
modular and hence easier to interleave with other (future)
optimizations, and also easy to disable for testing and mi-
crobenchmarking purposes.



a Hadoop job description that can be passed to Hadoop for
execution. This step involves generating a Java jar file that
contains the Map and Reduce implementation classes, as
well as any user-defined functions that will be invoked as
part of the job. Currently, the Map and Reduce classes con-
tain general-purpose dataflow execution engines (described
next in Section 5), which are configured at runtime to imple-
ment the designated plan. In the future we plan to consider
code generation (see Section 10).

5. PLAN EXECUTION
This section describes the way Pig executes the portion

of a physical plan that lies inside a Map or Reduce stage.

5.1 Flow Control
To control movement of tuples through the execution

pipeline, we considered both a push model and a pull (iter-
ator) model [11]. We were attracted to the iterator model,
which has a simple single-threaded6 implementation that
avoids context-switching overhead. Another advantage of
the iterator model is that it leads to simple APIs for user-
defined functions, which are especially important in the
Pig/Hadoop context because of the prevalence of custom
processing needs. A push model especially complicates the
API (and implementation) of a UDF with multiple inputs.
For the same reason, implementing binary operators like
fragment-replicate join can be more difficult in the push
case.

On the other hand, two drawbacks of the iterator model
caused some concern. One drawback in the Pig context is
that for operations over a bag nested inside a tuple (e.g.
duplicate elimination on a nested bag, aggregation follow-
ing group-by), the entire bag must be constituted before
being passed to the operation. If the bag overflows mem-
ory, the cost of spilling to disk must be paid. In practice
most operations over bags can make use of the combiner,
such that memory overflows are handled by combining tu-
ples rather than spilling the raw data to disk. Indeed, if
an operation is not amenable to a combiner (e.g. a holis-
tic UDF) then materializing the entire bag is generally an
intrinsic requirement; a push-based implementation would
lead to the operation performing its own bag materializa-
tion internally. It is preferable for spilling to be managed as
part of the built-in infrastructure, for obvious reasons.

Another potential drawback of the iterator model is that
if the data flow graph has multiple sinks, then depending on
the mechanism used to “pull” data from the sinks, operators
at branch points may be required to buffer an unbounded
number of tuples. We sidestepped this problem by extending
the iterator model as follows. When an operator is asked to
produce a tuple, it can respond in one of three ways: (1)
return a tuple, (2) declare itself finished, or (3) return a
pause signal to indicate that it is not finished but also not
able to produce an output tuple at this time. Pause signals
propagate down the chain of operators. Their purpose is to
facilitate synchronization of multiple branches of a data flow
graph, and thereby minimizing buffering of tuples at branch
points.

In a Pig physical plan, the outermost data flow graph
always has exactly one sink and makes no use of pause sig-

6“Streaming” constitutes an exception to our single-
threaded execution model; see Section 6.

nals. Our SPLIT and MULTIPLEX operators (Section 4.3.1) are
special operators that behave the same as regular operators
from the point of view of the outermost data flow graph, but
internally they manage nested, branching data flows with
buffering and pause signals. We describe the mechanics of
the SPLIT operator (the MULTIPLEX case is similar).

During execution, SPLIT maintains a one-tuple input
buffer for each branch of its nested data flow graph (called
a sub-flow). If a sub-flow issues a read request to an empty
buffer, it receives a pause signal. Each time the SPLIT op-
erator is asked to produce a tuple, it selects a sub-flow and
asks the sub-flow’s sink operator to produce a tuple. If this
operator returns a pause signal, the SPLIT operator moves
on to another sub-flow that is not currently paused. If all
sub-flows are paused, the SPLIT operator requests a tuple
from its parent in the outer data flow graph, places a copy
of the returned tuple in each sub-flow’s input buffer,7 sets
the status of all sub-flows to “not paused,” and proceeds.

5.1.1 Nested Programs
Pig permits a limited form of nested programming,

whereby certain Pig operators can be invoked over bags
nested within tuples. For example:

clicks = LOAD ‘clicks’

AS (userid, pageid, linkid, viewedat);

byuser = GROUP clicks BY userid;

result = FOREACH byuser {
uniqPages = DISTINCT clicks.pageid;

uniqLinks = DISTINCT clicks.linkid;

GENERATE group, COUNT(uniqPages),

COUNT(uniqLinks);

};

This program computes the number of distinct pages and
links visited by each user. The FOREACH operator consid-
ers one “user tuple” at a time, and the DISTINCT operators
nested inside it operate over the bag of “click tuples” that
have been placed into the “user tuple” by the preceding
GROUP operator.

In the physical plan Pig generates for the above Pig Latin
program, there is an outer operator graph containing a
FOREACH operator, which contains a nested operator graph
consisting of two pipelines, each with its own DISTINCT and
COUNT operator. Execution occurs as follows. When the
outer FOREACH operator is asked to produce a tuple, it first
requests a tuple T from its parent (in this case it will be
a PACKAGE operator compiled from the GROUP logical oper-
ator). The FOREACH operator then initializes a cursor over
the bag of click tuples inside T for the first DISTINCT–COUNT
pipeline and requests a tuple from the bottom of the pipeline
(the COUNT operator). This process is repeated for the sec-
ond DISTINCT–COUNT pipeline, at which point the FOREACH

operator constructs its output tuple (the group key plus the
two counts) and returns it.

A more complex situation arises when the nested plan is
not two independent pipelines (as above), but rather a single
branching pipeline, as in the following example:

7The semantics of the pause signal ensure that if all sub-
flows are paused, then all input buffers are empty and ready
to be populated with a new tuple.



clicks = LOAD ‘clicks’

AS (userid, pageid, linkid, viewedat);

byuser = GROUP clicks BY userid;

result = FOREACH byuser {
fltrd = FILTER clicks BY

viewedat IS NOT NULL;

uniqPages = DISTINCT fltrd.pageid;

uniqLinks = DISTINCT fltrd.linkid;

GENERATE group, COUNT(uniqPages),

COUNT(uniqLinks);

};

Pig currently handles this case by duplicating the FILTER

operator and producing two independent pipelines, to be
executed as explained above. Although duplicating an op-
erator obviously leads to wasted CPU effort, it does allow us
to conserve memory by executing only one pipeline at a time
and thus reduces the danger of triggering a spill. (Indeed,
in the above examples, each pipeline may have a substan-
tial memory footprint due to the DISTINCT operator, which
buffers tuples internally.) This approach seems to work well
for the use cases we have encountered so far.

5.2 Memory Management
Following Hadoop, Pig is implemented in Java. We have

encountered many of the same difficulties related to Java
memory management during query processing as [18]. The
difficulties stem from the fact that Java does not allow the
developer to control memory allocation and deallocation di-
rectly, whereas traditional database memory management
techniques rely on the ability to control memory allocation
to individual tasks, control when memory is deallocated, and
accurately track memory usage.

A naive option is to increase the JVM memory size limit
beyond the physical memory size, and let the virtual mem-
ory manager take care of staging data between memory and
disk. Our experiments have confirmed the common wisdom
that doing so leads to very severe performance degradation.

Even the appealing option of specifying a large JVM size
but attempting to spill large bags before the physical mem-
ory size is reached turns out to be problematic. We have
found that in practice it is generally better to return an
“out-of-memory” error so that an administrator can adjust
the memory management parameters and re-submit the pro-
gram, compared to getting mired in long periods of thrash-
ing that may go undetected. This trial-and-error approach
to memory management is rare but does occur, and appears
difficult to avoid altogether when running in a Java environ-
ment.

Most memory overflow situations in Pig arise due to ma-
terialization of large bags of tuples between and inside op-
erators, and our memory management approach focuses on
dealing with large bags. As alluded to in Section 5.1.1, Pig
sometimes needs to materialize large bags inside its execu-
tion pipeline for holistic bag-wise computations. (Examples
include the median function, and production of the cross-
product of two bags of tuples with a common key for the
inner loop of sort-merge join.) The collective size of bags in
the system at a given time may exceed available memory.

Pig uses Java’s MemoryPoolMXBean class to be notified of
a low memory situation. This class allows the program to
register a handler which gets notified when a configurable
memory threshold is exceeded. In the event of a notification,

Pig scans the list of registered bags (sorted in descending
order of their estimated memory size) and spills the bags
in sequence until it has recovered a configurable fraction of
memory.

In the general context there is no efficient way to deter-
mine the number of bytes used by a particular bag. Hence
Pig estimates bag sizes by sampling a few tuples, determin-
ing their size (by walking the nested data structures until
primitive types of known size are encountered), and scaling
up by the bag’s cardinality.

Pig’s memory manager maintains a list of all Pig bags
created in the same JVM, using a linked list of Java
WeakReferences. (The use of WeakReference ensures that
the memory management list does not prevent garbage col-
lection of bags no longer in use (dead bags), and also permits
the memory manager to discover that a bag is dead so that
it can be removed from the list.) The list of registered bags
can grow very large and can itself consume significant mem-
ory resources. (Most bags turn out to be small and do not
require spilling, but it is difficult to differentiate them a pri-
ori.) The size of the bag list is controlled in two ways: (1)
when the memory manager adds a bag to the list, it looks
for dead bags at the head of the list and removes them, (2)
when the low-memory handler is activated and the list is
sorted by bag size for spilling, all dead bags are removed.
The process of sorting the bag list can be time-consuming,
and blocks concurrent access to the list. New bags cannot
be created during the sort and spill operations.

6. STREAMING
One of the goals of Pig is to allow users to incorporate cus-

tom code wherever necessary in the data processing pipeline.
User-defined functions (UDFs) provide one avenue for in-
cluding user code. But UDFs must be written in Java8 and
must conform to Pig’s UDF interface. Streaming9 allows
data to be pushed through external executables as part of
a Pig data processing pipeline. Thus users are able to in-
termix relational operations like grouping and filtering with
custom or legacy executables.

Streaming executables receive their input from standard
input or a file, and write output either to standard output
or to a file. Special Pig Latin syntax is used to designate
a streaming executable, specify the input and output path-
ways (including filenames, if applicable), and specify the
input and output data formats used by the executable. In
Pig Latin, inputs and outputs of streaming steps are seman-
tically and syntactically the same as regular Pig data sets,
and hence streaming operations can be composed with other
Pig operations like FILTER and JOIN.

6.1 Flow Control
A UDF has synchronous behavior: when invoked on a

given input data item, it produces an output data item (the
output may be of a complex type, e.g. bags of tuples) and
then returns control to the caller. In contrast, a streaming
executable behaves asynchronously. It may consume many
tuples before outputting any (blocking behavior), or con-
versely it may generate many tuples while consuming few.

8We would like to expand UDFs to allow languages beyond
Java; see Section 10.
9Pig Streaming is inspired by Hadoop Streaming, which per-
mits an external executable to serve as a Map or Reduce
function.



Figure 8: Data flow between a stream operator and
its external executable.

One of the challenges in implementing streaming in Pig
was fitting it into the iterator model of Pig’s execution
pipeline (Section 5.1). Due to the asynchronous behavior of
the user’s executable, a STREAM operator that wraps the ex-
ecutable cannot simply pull tuples synchronously as it does
with other operators because it does not know what state
the executable is in. There may be no output available at
the moment, and the cause may be either: (1) the executable
is waiting to receive more input, or (2) the executable is still
busy processing prior inputs. In the former case, the stream
operator needs to push new data to the operator in order
to induce it to produce data. In the latter case, the stream
operator should wait.

In a single-threaded operator execution model, a dead-
lock can occur if the Pig operator is waiting for the exter-
nal executable to consume a new input tuple, while at the
same time the executable is waiting for its output to be con-
sumed (to control its output buffering). Hence we made an
exception in our single-threaded execution model to han-
dle STREAM operators. Each STREAM operator creates two
additional threads: one for feeding data to the external ex-
ecutable, and one for consuming data from the executable.
Incoming and outgoing data is kept in queues, as shown in
Figure 8. When a STREAM operator is asked to produce an
output tuple, it blocks until a tuple is available on the exe-
cutable’s output queue (or until the executable terminates).
Meanwhile, the STREAM operator monitors the executable’s
input queue; if there is space it requests a tuple from the
parent operator and places it in the queue.

7. PERFORMANCE
In the initial implementation of Pig, functionality and

proof of concept were considered more important than per-
formance. As Pig was adopted within Yahoo, better perfor-
mance quickly became a priority. We designed a publicly-
available benchmark called Pig Mix [2] to measure perfor-
mance on a regular basis so that the effects of individual
code changes on performance could be understood. Pig Mix
exercises a wide range of Pig’s functionality, and is roughly
representative of the way Pig is used in Yahoo. (Actual
programs and data could not be used, for confidentiality
reasons.) Pig Mix consists of a suite of Pig programs and
associated data sets, and also includes a raw Map-Reduce-
level implementation of each of the programs.

7.1 Pig Features Exercised
The Pig features included in the Pig Mix benchmark were

selected by developers, based on inspecting Pig programs
collected from users. The aim was to include features that
are representative of typical use cases. Some key features
included in Pig Mix at present include:

• Joins (distributed hash-sort-merge join as well as
fragment-replicate join).

• Grouping and cogrouping, including GROUP ALL in which
all tuples are collected into a single group (e.g. to enable
summing of values across all tuples).

• Distinct aggregation.

• Nested statements inside a FOREACH expression (see Sec-
tion 5.1.1).

• ORDER BY, both on single and multiple fields.

• UNION, DISTINCT and SPLIT.

• Data containing nested types.

The Pig Mix benchmark consists of twelve Pig programs
designed to collectively test the above features. For each Pig
program, the Pig Mix has a corresponding group of Hadoop
Map-Reduce programs (with the Map and Reduce functions
written in Java). These Java Map-Reduce programs were
written assuming a basic level of Map-Reduce programming
expertise. In most of the cases, it would be possible to write
a more performant Java program given additional time and
effort. The decision to use a “basic” Map-Reduce program-
ming style is based on the assumption that this is the typi-
cal alternative to writing Pig Latin programs. For example,
many users do not have knowledge of advanced sorting and
join algorithms. Even users who have this knowledge often
are unwilling to spend additional time and effort to optimize
their programs and debug the resulting complex designs.

7.2 Data Generator
Pig Mix includes a data generator that produces data with

similar properties to Yahoo’s proprietary data sets that are
commonly processed using Pig. Some salient features of
real data used by Pig, which the data generator attempts to
emulate, are:

• A mixture of string, numeric (mostly integer), and map
types.

• The use of doubly-nested types, particularly bags of
maps.

• While 10% of the fields in user data are complex types
such as maps and bags, the data in these fields often
accounts for 60-80% of the data in the tuple.

• Fields used as group and join keys typically have a heavy-
tailed distribution. (This aspect is especially important
to capture, as it poses a particular challenge for parallel
group-by and join algorithms due to skew.)

7.3 Benchmark Results
Figure 9 shows the result of running the Pig Mix bench-

mark on different versions of Pig developed over time. These
benchmarks were run on a cluster of 26 machines; each ma-
chine has two dual-core Xeon processors, 4GB RAM, and
was running Linux RHEL4. The key improvements associ-
ated with each version are:



Figure 9: Pig Mix benchmark results, across several
versions of the Pig software.

• September 11, 2008: Initial Apache open-source release.

• November 11, 2008: Enhanced type system, rewrote ex-
ecution pipeline, enhanced use of combiner.

• January 20, 2009: Rework of buffering during data pars-
ing, fragment-replicate join algorithm.

• February 23, 2009: Rework of partitioning function used
in ORDER BY to ensure more balanced distribution of keys
to reducers.

• April 20, 2009: Branching execution plans (Sec-
tion 4.3.1).

The vertical axis of Figure 9 shows the ratio of the to-
tal running time for the twelve Pig programs (run in serial
fashion), to the total running time for the corresponding
Map-Reduce programs, on the same hardware. A value of
1.0 would represent parity between the Pig execution times
and the raw Map-Reduce times, and our goal is to reach and
then exceed10 that mark. The current performance ratio of
1.5 represents a reasonable tradeoff point between execution
time and code development/maintenance effort that many
users have found acceptable, as our adoption numbers show.

8. ADOPTION
Pig has reached wide adoption in Yahoo. At the time

of this writing (June 2009), roughly 60% of ad-hoc Hadoop
jobs are submitted via Pig. Moreover, several production
system projects have adopted Pig for their data processing
pipelines, with 40% of production Hadoop jobs now coming
through Pig. We expect adoption to increase further with
many new users moving to Hadoop, and Pig becoming more
robust and performant.

Projects that construct data processing pipelines for pro-
duction systems are attracted to Pig by the fast develop-
ment cycle, extensibility via custom code, protection against
Hadoop changes, and ease of debugging. Ad-hoc data anal-
ysis projects such as user intent analysis are attracted to

10In the future Pig may incorporate sophisticated database-
style optimizations that a typical Map-Reduce programmer
would not undertake due to lack of time or expertise. Addi-
tionally, Pig removes the requirement of hard-coded query
execution strategies that raw Map-Reduce programming im-
poses, raising the possibility of adjusting query execution
plans over time to suit shifting data and system properties.

Pig because it is easy to learn, results in compact read-
able code, provides fast iteration through different versions
of algorithms, and allows for easy collaboration among re-
searchers.

We have also seen steady user growth outside of Ya-
hoo. Uses of Pig we have head about include log processing
and aggregation for data warehousing, building text indexes
(a.k.a. inverted files), and training collaborative filtering
models for image and video recommendation systems. Quot-
ing from a user who implemented the PLSA E/M collabo-
rative filtering algorithm [13] in Pig Latin:

“The E/M algorithm was implemented in pig in
30-35 lines of pig-latin statements. Took a lot less
compared to what it took in implementing the
algorithm in Map-Reduce Java. Exactly that’s
the reason I wanted to try it out in Pig. It took
3-4 days for me to write it, starting from learning
pig.”

9. PROJECT EXPERIENCE
The development of Pig is different from projects worked

on by many in the Pig team in that it is a collaboration
between research and development engineering teams, and
also that it is an open-source project.

Pig started as a research project at Yahoo. The project
attracted a couple of high-profile customers that were able
to accomplish real work using the system. This convinced
management to convert the prototype into a production sys-
tem and build a dedicated development engineering team.
While transitioning a project from one team to another can
be a tricky process, in this case it went well. The teams were
able to clearly define their respective roles, establish good bi-
directional communication, and gain mutual respect. Shar-
ing a common background helped. Both teams spoke the
same language of relational databases. While an asset for
the transition, this proved to be a mild limitation for fur-
ther work as neither team had a good understanding of non-
database workloads such as building search indices or do-
ing web crawls. During the transition period that lasted
for about six months, both teams were actively involved
in the process. The research team transitioned the project
knowledge while still supporting the customers and the de-
velopment team gradually took over the development and
support. The research team is still actively involved in the
project by building systems that rely on Pig, providing sug-
gestions for future work, and promoting Pig both within
Yahoo and outside.

Being open-source was a stated goal of the project from
the beginning. In September 2007, Pig was accepted as a
project by the Apache Incubator. This required Pig devel-
opers to learn the Apache methodology and to adapt to the
open-source collaborative model of decision making. This
resulted in the Pig committers being slow to integrate new
users, review patches, and answer user and developer ques-
tions. As a result, Pig lost some potential developers and
users in the process. With time and some frank and helpful
feedback from users, the situation improved and we devel-
oped a small but fairly active user and development commu-
nity. The project’s first non-Yahoo committer joined after
eight months. He contributed several significant modules to
Pig including the initial implementation of the typechecker
and a framework for comparing and validating execution



plans. Our progress allowed the project to successfully grad-
uate from the Apache Incubator and in October 2008 Pig
became a Hadoop subproject. As noted in Section 8, we have
an active user community that is doing interesting work with
the system and providing mostly positive feedback. The de-
velopment community, on the other hand, consists mostly of
Yahoo engineers—a trend we have not been able to change
so far. Pig is a very young project and we are hoping that
being part of Hadoop will help us to attract new users as
well as engineering talent.

We have found that being an open-source project has sev-
eral benefits. First, being out in the open means that Pig is
known both in the academic and development communities.
Universities are teaching courses and sponsoring projects re-
lated to Pig. This helps our recruiting efforts as more po-
tential developers are familiar with the project, think it is
exciting, and want to be part of it.

A second, related benefit to being open is that we are
able to collaborate across various companies. An example of
this collaboration is a joint undertaking by Cloudera [7] and
Yahoo to provide training for Pig. We have also been able
to work with other Apache projects, such as Hive, sharing
experiences and ideas.

Choosing Apache in particular as an open-source com-
munity has benefits. Apache provides firm guidance on an
open-source development methodology (such as requiring
code reviews, making decisions by consensus, and rigorous
use of unit tests) that helped smooth our transition from a
corporate development methodology to an open-source com-
munity based methodology. We feel that, as a team, we have
taken the first steps in this conversion, though we need to
become better at making sure all decisions are made in an
open, community based manner.

10. FUTURE WORK
There are a number of areas under consideration for future

development:

• Query optimization. We have begun work on a rule-
based query optimizer that allows simple plan rearrange-
ment optimizations (such as pushing inexpensive filters
below joins) and very basic join selection. Research is be-
ing done on a more sophisticated optimizer that would
enable both rule- and cost-based optimizations.

• Non-Java UDFs. We have begun work on removing
the restriction that UDFs must be written in Java. We
plan to write this in such a way that adding bindings for
new languages will be minimal.

• SQL interface. SQL is a good fit for many scenarios,
and is an established standard. We plan to add a SQL
parser to Pig so that it will be able to accept programs
in either Pig Latin or SQL.

• Grouping and joining of pre-partitioned/sorted
data. Many data sets are kept partitioned and/or sorted
in a way that can avoid having to shuffle data to perform
grouping and joining. We are developing a metadata fa-
cility for Hadoop to keep track of such physical data at-
tributes (as well as logical schema information), as a first
step for Pig to be able to exploit physical data layouts.

• Skew handling. Parallel query processing algorithms
like group-by and join are susceptible to skew, and we
have experienced performance problems due to data skew

with Pig at Yahoo. One particularly challenging scenario
occurs when a join is performed, and a few of the join
keys have a very large number of matching tuples, which
must be handled by a single node in our current imple-
mentation, sometimes causing Pig to spill to disk. We
are studying skew handling options, including ones that
divide the responsibility for a single join key among mul-
tiple nodes [9].

• Code generation. Recall from Section 4.4 that Pig
currently relies on a generic dataflow engine inside the
Map and Reduce portions of a Hadoop job. We are con-
sidering the option of code generation [17], which might
yield substantial performance benefits and enable Pig to
close the gap with raw Map-Reduce.

Acknowledgements
Pig is an open-source project, and thus has numerous users
and contributors from many organizations, all of whom we
would like to thank for their contributions and feedback. In
particular, we would like to acknowledge Arun Murthy for
his work doing the initial implementation of Pig Streaming,
Pi Song for contributing the type checker to Pig 0.2.0, Paolo
D’alberto for his many suggestions on how to improve Pig’s
parsing and semantic checking, Daniel Dai for his work on
LIMIT and his tireless support for running Pig on Windows,
and Gunther Hagleitner and Richard Ding for their work
on branching plans. We would also like to thank Prasen-
jit Mukherjee for sharing his experience implementing Hoff-
mann’s PLSI algorithm in Pig Latin.

We are particularly grateful to our early-adopter user base
at Yahoo, especially David “Ciemo” Ciemiewicz for his will-
ingness to try early prototypes and provide a great deal of
useful feedback, and for being a tireless advocate of Pig.

Lastly, we thank Sihem Amer-Yahia and Mike Carey for
valuable feedback on an earlier draft of this paper.

11. REFERENCES
[1] Hadoop: Open-source implementation of MapReduce.

http://hadoop.apache.org.

[2] Pig Mix Benchmark.
http://wiki.apache.org/pig/PigMix.

[3] The Hive Project. http://hadoop.apache.org/hive/.

[4] The Pig Project. http://hadoop.apache.org/pig.

[5] K. Beyer, V. Ercegovac, and E. Shekita. Jaql: A
JSON query language. http://www.jaql.org/.

[6] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and
efficient parallel processing of massive data sets. In
Proc. VLDB, 2008.

[7] Cloudera. http://www.cloudera.com.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. OSDI, 2004.

[9] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In Proc. VLDB, 1992.

[10] R. Epstein, M. Stonebraker, and E. Wong. Distributed
query processing in a relational data base system. In
Proc. ACM SIGMOD, 1978.

[11] G. Graefe. Volcano – an extensible and parallel query
evaluation system. IEEE TKDE, 6(1), 1994.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and



H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. J. Data Mining and Knowledge Discovery,
1(1), 1997.

[13] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Information Systems, 22(1),
2004.

[14] C. Olston, S. Chopra, and U. Srivastava. Generating
example data for dataflow programs. In Proc. ACM
SIGMOD, 2009.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In Proc. ACM SIGMOD, 2008.

[16] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.

Scientific Programming Journal, 13(4):227–298, 2005.

[17] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman.
Compiled query execution engine using JVM. In Proc.
ICDE, 2006.

[18] M. A. Shah, M. J. Franklin, S. Madden, and J. M.
Hellerstein. Java support for data-intensive systems:
Experiences building the telegraph dataflow system.
ACM SIGMOD Record, 30(4), 2001.

[19] T. Strohman. Efficient Processing of Complex Features
for Information Retrieval. PhD thesis, University of
Massachusetts Amherst, 2007.

[20] Y. Yu, M. Isard, D. Fetterly, M. Badiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing
using a high-level language. In Proc. OSDI, 2008.


