CCCG 2003, Halifax, Nova Scotia, August 11-13, 2003

Computing the Closest Point to a Circle

Pinaki Mitra
NIMC, Alipore
Calcutta, India
e-mail: pinaki m@hotmail.com

Asish Mukhopadhyay *
School of Computer Science

University of Windsor, Windsor, Canada

e-mail: asishm@uwindsor.ca

S. V. Rao
Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati, India
e-mail: svrao@iitg.ernet.in

Abstract

In this paper we consider the problem of computing the
closest point to the boundary of a circle among a set
S of n points. We present two algorithms to solve
this problem. One algorithm runs in O(n®) prepro-
cessing time and space and O(log2 n) query time. The
other algorithm runs in O(n'*¢) preprocessing time and
O(nlogn) space and O(n?/3+€) query time. Thus we ex-
hibit a trade-off between preprocessing and query times
For dimensions d > 3 we present an algorithm with
O(n(d/ 2H6/) preprocessing time to report an approx-
imate closest point to the boundary of d-dimensional
query sphere R in O(n'~/(4+D+€) query time.

1 Introduction

The problem of preprocessing a set S, of n points in the
plane to determine the closest point to a query line was
initially addressed by Cole and Yap [2], who obtained a
solution with preprocessing time and space in O(n?) and
query time in O(logn). Lee and Ching [6] obtained the
same result using geometric duality. In [8] an algorithm
was presented with O(nlogn) preprocessing time and
space and O(n%%%) query time. The space complexity
was improved to O(n) in a subsequent result by Mi-
tra and Chaudhuri [9]. In [10], the simplicial partition
technique of [7] was used to improve the query time to
O(n'/?*€) for arbitrary ¢ > 0, with preprocessing time
and space in O(n'*™¢) and O(nlog n) respectively.

In this paper, we consider a natural extension of the
above problem - determining a point in S that is closest
to the boundary of a query circle. Our first algorithm
precomputes all higher order Voronoi diagrams. The
preprocessing time and space complexities of this algo-
rithm are in O(n?), while the query time is in O(log® n).
We propose another algorithm that uses the simplicial
partition idea of Matousek [7]. The preprocessing time
and space complexities of this algorithm are in O(n'*¢)

*Research supported by an NSERC Operating Grant

and O(nlogn) respectively, while the query time is in
O(n2/3+6).

The second approach generalizes to higher dimen-
sions. Here, however, point location turns out to be a
bottleneck. Recently, some attempts have been made
to overcome this problem by computing an approxi-
mate nearest neighbor in higher dimensions [4]. Tak-
ing a cue from this, for dimension d > 3, we propose
an algorithm that finds an approximate closest point,
according to two different approximation schemes, with
preprocessing time in O(n[d/ 2H6/) and query time in
O(nl_l/(d+l)+€).

2 Geometric Insight for High Preprocessing and Low
Query Algorithm

In a preprocessing step, we compute all higher order
Voronoi diagrams. The cost of this is in O(n?®) [11]. The
main idea of the query procedure is a binary search on
the pre-computed higher-order Voronoi diagrams. Let
the query circle have centre at p and radius a.

Algorithm Query(R)

1. Compute the nearest neighbor of p from Vori(S)
and check if its distance from p is less than a. If not,
we report the nearest neighbor of p as the answer
to the query since in this case all points of S lies
outside or on the boundary of the circle R. Stop.

2. Compute the furthest neighbor of p from Vor,(5)
and check if its distance from p is greater than a. If
not, we report the furthest neighbor as the answer
to the query since in this case all points of S lies
inside or on the boundary of the circle R. Stop.

3. Perform a binary search within the interval
(1...n). Compute |n/2]-th nearest neighbor of p
from Vor, /) and determine its distance from p.
If it is equal to a this point is the answer to our
query. If it is greater than a recurse in the interval

15th Canadian Conference on Computational Geometry, 2003

(1...[n/2]). Otherwise, if it is less than a recurse
in the interval [n/2]...n. Thus determine the k-th
and (k + 1)-th nearest neighbors s and ¢ of p such
that (dist(p,s) < a) and (dist(p,t) > a).

4. For each of the the two points s and ¢ determined
in Step III, we compute the absolute difference of
their distance from p and a. The point having the
least value of the absolute difference is the answer
to our query.

Thus we have the following theorem.

Theorem 1 Given a set S of n points, the closest point
from the boundary of a query circle R can be computed
in O(log®n) time with O(n®) preprocessing time and
space.

In the next section, we propose an alternate algo-
rithm based on the simplicial partition technique of Ma-
tousek [7] to improve the preprocessing time.

3 Simplicial Partitions

A simplicial partition of S is a collection of pairs

U(S) = {(S1,t1), (S2,t2),. .., (Sritr)} (1)
where the 5;’s are mutually disjoint subsets of S whose
union is S, and each t; is a tetrahedron that contains S;
(see Fig. 1).

A simplicial partition is fine if |S;| < 2% n/r for each
1. For a given simplicial partition ¥(S), the crossing
number of a plane @ is the number of tetrahedrons of
U(S) that the plane properly intersects. The crossing
number of ¥(S) is the maximum crossing number over
all planes that intersect the simplicial partition.

The following theoretically important result by Ma-
tousek [7] shows how to construct a fine simplicial par-
tition with a low crossing number.

Theorem 2 For any given set S of n d-dimensional
points and a parameter v, 1 < r < n, a fine simplicial
partition of size r, with O(rlfl/d) crossing number, ex-
ists. Further, for any given ¢ > 0, such a simplicial
partition can be constructed in time O(n'™c).

Figure 1: Plane @ cuts a simplicial partition.

We lift the set S of n points and the query circle
R, onto the surface of a paraboloid [3] z = 22 4+ y?. S’
denotes the lifted set of points and R’ the plane through
the image of the query circle. Points inside the circle R
gets mapped to one halfspace and points outside the ring
R gets mapped to the other halfspace. We construct
a fine simplicial partition of S” of size r with crossing
number O(r?/3). What is important for our problem
is that each tetrahedron that is not intersected by R’,
traps a set of points whose projections lie completely
inside or outside the query circle.

We use the simplicial partition of the lifted set of
points to create a r-way partition tree on the set of
points S, keeping with each subset of points the corre-
sponding tetrahedron that enclosed their lifted images
in 3-space.

4 Algorithmic Details

The constructibility of a fine simplicial partition in 3-
space with a low crossing number implies that the pro-
jections of the point sets enclosed by at least 7 —O(r%/3)
simplices are not intersected by a query circle R. For
the remaining at most O(r?/3) simplices that are inter-
sected by S’ ;we proceed recursively on the respective
partitions of the projections of the point sets enclosed
by these tetrahedra.

The preprocessing phase of the algorithm maintains
both the nearest neighbor and furthest neighbor Voronoi
diagrams of the point set corresponding to each node of
the partition tree. Then preprocess each of the Voronoi
diagram using the algorithm of Kirkpatrick [5] to per-
form point location.

Given a query circle R with center p and radius a,
we answer the closest point query, using the following
algorithm.

Algorithm Q

1. Initialize ¢ to (0o, 00), the nearest point to the the
query ring.

2. If the tetrahedron associated with the node of the
partition tree lies below R’, use the furthest neigh-
bor Voronoi diagram of the projection of the point
set inside the tetrahedron to detect the region in
which the center p lies. Let t; be the point asso-
ciated with this region. In Fig. 2a, since p lies in
V(p;) the closest point to the boundary of R is p;
and thus t; = p;. If the absolute difference of the
distance of t; from p and a is less than that of ¢
update q to t;.

3. If the tetrahedron associated with the node of the
partition tree lies above R’, use the nearest neigh-
bor Voronoi diagram of the projection of the point
set inside the quadrilateral to detect the region in

CCCG 2003, Halifax, Nova Scotia, August 11-13, 2003

@ (b)

Figure 2: (a) Furthest neighbor Voronoi diagram is
queried when the tetrahedron lies below R’. (b) Nearest
neighbor Voronoi diagram is queried when the tetrahe-
dron lies above R'.

which the center p lies. Let t5 be the point asso-
ciated with this region. In Fig. 2b, since p lies in
V(p;) the closest point to the boundary of R is p;
and thus ¢» = p;. If the absolute difference of the
distance of ty from p and a is less than that of ¢
update ¢ to ts.

4. If the tetrahedron associated with the node of the
partition tree intersects R’ we recurse on the sub-
trees rooted at that node of the partition tree.

The complexity of the algorithm is summarized in the
following theorem.

Theorem 3 Given a set S of n points and a query cir-
cular circle R the closest point from the boundary of R
in the set S can be answered in O(n?/3+€) query time
with O(n'™¢) preprocessing time and O(nlogn) prepro-
cessing space.

The approach of the previous section extends to
higher dimensions in exactly the same way.

5 Approximate nearest point

If an approximate closest point is acceptable, we can
avoid point location in higher dimensional Voronoi di-
agrams required for an exact solution. We preprocess
each partitioned point set using Clarkson’s [1] random-
ized algorithm for the nearest neighbor query. For a set
S of n points in d-dimension we can preprocess this set
in O(nw/ 21“') time to perform nearest neighbor query
in O(logn) time. Now, for the furthest point query in
the preprocessing phase we will maintain the furthest
point from each point in the simplicial partition. For a
partition with m points this computation can be easily
done using any brute force algorithm in O(m?) time in
any dimension. Given a query sphere, if the whole par-
tition lies completely inside, we will use the algorithm
of Clarkson to compute the nearest neighbor ¢ of the

Figure 3: Diagram for the worst case: (a) first approxi-
mation (b) second approximation.

center p. Then use this furthest neighbor of ¢ as an
approximate furthest neighbor of p.

Fig. 3a illustrates the worst case situation if we adopt
this approach. In this diagram we see that the actual
furthest neighbor of p, i.e., t is at a distance which is
almost 3 times the distance of p from the reported fur-
thest neighbor s.

The constant of approximation can be improved if we
increase the preprocessing overhead by maintaining the
furthest neighbor of each data point in each of the 2¢
quadrants around that point. Again for a partition with
m points this computation can be easily done using any
brute force algorithm in O(m?) time in any dimension.
Now given the query circle we locate the nearest neigh-
bor g of the center p. Then from O(2¢) furthest points
maintained for ¢ we choose the one which is at maxi-
mum distance from p. For fixed d thus we have to spend
an additional O(1) time besides the O(logn) time near-
est neighbor query. Fig. 3b illustrates the worst case
situation if we adopt this approach. In this diagram we
see that the actual furthest neighbor of p, i.e., t is at
a distance which is almost /5 times the distance of P
from the reported furthest neighbor s.

Now if we try to bound the error of approximation
from the boundary of the query sphere the error ratio
is roughly (a —1/2 — €1)/(a — kl/2 + €3), where k = 3
in the first approximation and k& = /5 in the second
approximation. Thus for a >> [we have constant ap-
proximation. But for values of a close to kl/2 the error
of approximation is high.

The time complexity of preprocessing each partition
using Clarkson’s algorithm [1] would dominate the time
complexity of construction of the partition tree. Fol-
lowing a similar analysis as done for two dimension, we
establish the following theorem.

Theorem 4 Given a set of n points and a query sphere
R in d dimensions, an approximate nearest neighbor
from the boundary of the sphere can be computed in
O(n=Y+0+e) query time with O(n[%21+<") prepro-
cessing.

15th Canadian Conference on Computational Geometry, 2003

6 Conclusions

In this paper we have shown that the results of Mitra
and Chaudhuri [9] can be generalized to answer the cir-
cle query problem. We have presented two algorithms
one with high preprocessing and low query time and the
other one with low preprocessing and high query time.

References

[1] K. L. Clarkson. A randomized algorithm for
closest-point queries. SIAM J. Comput., 17:830—
847, 1988.

[2] R. Cole and C. K. Yap. Geometric retrieval prob-
lems. In Proc. 2/th Annu. IEEE Sympos. Found.
Comput. Sci., pages 112-121, 1983.

[3] H. Edelsbrunner and R. Seidel. Voronoi diagrams
and arrangements. Discrete Comput. Geom., 1:25—
44, 1986.

[4] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annu. ACM Sympos.
Theory Comput., page to appear, 1998.

[5] D. G. Kirkpatrick. Optimal search in planar sub-
divisions. STAM J. Comput., 12(1):28-35, 1983.

[6] D. T. Lee and Y. T. Ching. The power of geometric
duality revisited. Inform. Process. Lett., 21:117—
122, 1985.

[7] J. Matousek. Efficient partition trees. Discrete
Comput. Geom., 8:315-334, 1992.

[8] P. Mitra. Finding the closest point to a query
line. In G. Toussaint, editor, Snapshots in Compu-
tational Geometry, volume II, pages 53—63. 1992.

[9] P. Mitra and B. B. Chaudhuri. Efficiently com-
puting the closest point to a query line. Pattern
Recognition Letters, 19:1027-1035, 1998.

[10] Asish Mukhopadhyay. Using simplicial paritions to
determine a closest point to a query line. Pattern
Recognition Letters, 24:1915-1920, 2003.

[11] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, 3rd
edition, October 1990.

