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When Can A Graph Form An Orthogonal Polyhedron?

ThereseBiedl*

1 Introduction

Polyheda areanimportantbasicstructurein compuational
geonetry. Oneof themostbeatiful resultsconceningpoly-
hedrais Cauchys theorem which stateghata convex poly-
hedran is uniquely definedby its graph edgelengtts and
facial angles. (SeeSection2 for definitiors.) The proof
of Cauchys theoem (seee.g. [2]) unfortundely is non-
constrietive, and the only knowvn algoiithm to recanstruct
the corvex polyhedronis very slow (seealso[5].)

In this paperwe studysimilar topicsfor orthogonalpoly-
hedra Thus,givena graph edgelengthsandfacial angles,
whenis this the gragh of an orthagondly convex polyhe-
dror? We give an algoiithm that answersthis questionin
polynomial time, andreconstrats the polyhedronif oneex-
ists. In particular ouralgoiithm impliesa Cauchytypetheo-
remfor orthogorally corvex polyhedra:they aredeternined
by theirgraph edg lengtls andfacialanglesalone.We also
studygeneralorthagonalpolyhedra,andshaw thatit is NP-
hardto decidewhethe a graph (with edgelengthsandfacial
angles)s thegragh of anorthogoral polyhedron

Our researchwas motived by the questionhow to repre-
sentpolyhedra(and especiallyorthognal polyhedra) effi-
ciently. Onecomnonway is the vertex basednodel,where
onestoresthe gragh andthe coordnatesof eachvertex. For
orthayonalpolyhedra,it sufficesto storecooidinatesfor ver
ticesof odddegree,se€e[4, 1].

Thevertex basednodelis rathercumbersomefor manip-
ulation of polyhedra,sinceevery translationor rotationre-
quiresan updde of all coordnates. A more versatileap-
proad is to storeedgelengtts, facial anglesand dihedal
anglesonly. Thepolyhedronis thenuniqudy deterninedby
the coodinatesof threevertices. The resultsin our paper
shawv that for orthagonally corvex polyhedra,we canomit
thedihedal anglessincethey areuniqlely determiredfrom
theotherparaneters.

2 Definitions

We assumedamiliarity with polygons and polyhedra. The
vertices edgsandfacesof a polyhedronform a graphwith

afixedcomhnatorialembedihg given by theorderof edges
arourd thevertex. Furthernore,thepolyhedra definesedge
lengths, facial angles(the angle betweentwo consective
edgesatavertex) anddihedral andes (theinterioranglebe-
tweentwo facesatacomman edge.)
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An orthogonal polyhedon is a polyhedran for which all
dihedal angles(andhencealsoall facial angles) are multi-
plesof /2. After a suitablerotatin, every faceof anor-
thogonal polyhedronis perpadicularto one of the coord-
nateaxisandcanbeclassifiedas X -face Y -faceor Z-face.

An orthogonally convex polygm is a polygm for which
all edgesarehorizontalor verticalandary hotizontalor ver
tical line intersectghe polygon in at mostoneinterval. An
orthogonally convex polyhedionis anorthognalpolyhedran
for which every intersectionwith a planeperpeulicularto a
coodinateaxisis a singleorthagonally corvex polygon.

Given a graph with a fixed comhnatorial embedling
(whichdefineghefaces)gedgelengtts andfacialangleswe
call it anOP-gaph(OCP-gaph) if thereexistsanorthayo-
nal polyhedron(orthogorally corvex polyhedran) with this
graph. This paper addesseghefollowing questions:

Given a graphwith fixed conbinatorial em-
beddng, edgelengthsand facial angles,is this
graph an OP-grgh? Is it an OCP-grap? And if
theansweiis positive,canwe recorstructthe poly-
hedon?

Our resultscan thus be summaized as follows: Testing
whethe a graphis an OP-grap is NP-had, but testing
whethe it is an OCP-grap (andrecorstructingthe polyhe-
dron if it is) canbedore in polynomialtime.

3 Recognizing OCP-graphs

In thissectionwe studyhow to recognize OCP-graps. Solet
G beagraphwith afixedcombnatorialembedling. We may
assumehatG is planar (it canbedrawn without crossingn
the plane)and conneted, othewise it canna be an OCP-
graph. We will alsoassumehatevery faceof G hasdegree
4. Our algorithm thusworks for orthagonal polyhedrafor
whicheveryfaceis arectande. Thisis notarestrictionif we
allow for anincreasedime comgexity: by subdviding faces
(usingthe edgelengthinformation),we cancornvertG into a
graph G’ with facesof degree4 suchthatG is anOP-graj
(OCP-grah)if andonly if G' is anOP-grajn (OCP-grap).
Unfortunately thesizeof G' maybe quadaticin the sizeof
Gl

Thedualgraph of aplana graph(which,asalwaysin this
pape, we assumeo have a fixed combinatorialembedéthg)
is obtaired by takinga vertex for every faceandconrecting
two verticesof facesif andonly if the facessharean edce.

Iveryrecently, we have developeda differentalgorithm thatavoids sub-
dividing andhaslinear time complexity.
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A graph is calleda DOP-graph (DOCP-giaph) if it is the
dualof anOP-grajmn (OCP-grap). Figurel illustratesanor-
thogaal polyhedron,how to subdvide to obtainrectanglar
faces,andthe correspnding DOCP-graphwhich is neces-
sarily 4-reguar (all verticeshave degree4.)
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Figurel: A polyhedra andits 4-regularDOCP-graph

Fromnow on, we will studyhow to recogiize whethera
givengragh is aDOCP-graphwhichis equvalentto recog-
nizingan OCP-grap.) Solet G be a4-regular graphwith a
fixed combnatorial emkedding A straightcycleof G is a
setof verticesandedgesej vy es . . . vgervg+1 €541 SUChthat
er+1 = e andforall 1 < ¢ < k, edgee; ande; 1 arenot
consective atv; in thecombiratorialembelding. SinceG is
4-regular, every vertex is ontwo straightcycles(or maylke on
onestraightcycle twice, but thenG for sureis nota DOCP-
graph) We saythattwo straightcyclescrossif they have a
vertex in comnon. We will not considerary othercycles,
andoftendrop“straight” from now on.

An X -stripeof anorthagonalpolyhedra with rectangilar
faceds aconrectedsetof facesvhosecentemointshavethe
sameX -coadinate.An X -stripecontainsonly Y -facesand
Z-faceswewill therefaealsocallit aY Z-stripe Similarly
define XY -stripesand X Z-stripes If G is the DOP-Graph
of apolyhedronP, theneachstraightcycle of G correspods
to a stripeof P. We call a cycle an XY -cycleif it corre-
spondto an X Y -stripe,andsaythatthecycle hascycle-type
XY. Likewise,we define X Z-cyclesandY Z-cycles The
following obsevationsarestraightfoward.

Lemmal LetG bea DOP-graph.

1. Notwocyclesthat crosscanhavethe sametype

2. If threestraight cyclesmutuallycross,thenthetypesof
two of themdeterminghetypeof thethird.

3. A vertex correspond to an X -faceiff the two cycles
contairing it arean XY -cycleandan X Z-cycle

4. For anystraightcycleC, all dud edgsof edgesin C
havethesameedce length

3.1 Identifying face types

Lemmal(3) impliesthatto identify facetypes,it suficesto
determire cycle types. Theideaof our algorithmto do so
is very simple. First, arbitrarily fix thetypesof two straight
cyclesthat cross,sincewe canrotatethe polyhedra suit-
ably. Assumethatwe know the type of a cycle C, sayit is
an XY-cycle. Thenary cycle C' thatcrossesC' canrot be
an XY-cycle. Sowe exclude thetype“XY” from the list
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T(C") of possibletypesof C"'. If now |T'(C")| = 1 (initially
|T(C")| = 3 for all cycles),thenwe know the type of C".
We repeauntil all cyclesareidentified;if thisis notpossible
then(aswe will see)the graph wasnota DOCP-graph See
Figure2 for pseudecode.

(1) Picktwo straightcyclesC; andC, thatcross.
(2) SetT(Cy) = {XY}andT(Cs) = {X Z}.
(3) Forall C; # Cy,Cy; setT(C))={XY,YZ,XZ}
(4) Fork =1,...,3, createtheemptysetsDOF[ k] .
(5) foreach C;, putC; into DOF[ | T'(C;) | ]
(6) while DOF[ 2] # @ or DOF[ 3] # @
(7) if DOF[ 1] is empty output anerrormessage.
(8) eseremoveacycleC from DOF[ 1] .
(9) foreach cycle C' thatcrosses”
(10 SetT'(C") =T(C") -T(C)
11 Move C' to DOF[ | T(C") | ]

Figure2: Algorithm IDENTIFYCYCLETYPES.

Onecanshav thatall stepsof this algorithm aswell as
the prepocessingstepsto compue the dual graphandthe
straightcycles, canbe donein lineartime. (This assumes
thatthe givengraphhasfacesof degree4; thepregocessing
stepto achieve facesof degree4 maytake quadatictime.)

The correctnesf this algoithm will be provedin a se-
querce of lemmas but mostprods have to be sketchedfor
spacereasos. Thefirst two lemmasfollow easilyfrom pla-
narity.

Lemma 2 For aplanar 4-reguar graph, two straightcycles
crossan evennumberof times.

Lemma3 LetG bea 4-reguar planargraphandlet C' be
a straight cyclein G. Fori = 1,2, let C; be a straight
cyclethat crossesC' at u; andv;. Assume{u,v;} inter-
leaves{us,v2} on C; i.e., the orderis eitheruy, us, v, vs
or u1,v2,v1, us Whilegoingalong C. ThenC, andC> cross
ead othetr

The following two lemmasare crucialto show thatcycle
typescanbe propagatedrom thefirst two to all straightcy-
cles.

Lemma4 LetG bea DOCP-graphwith a straightcycleC.
Definea graph H with avertex for eat cycleC'; thatcrosses
C andanedg (C;, C;) iff C; andC; crossead othetr Then
H is conneted.

Proof. The striperepesentedy cycle C prgectsto anor-
thogonally corvex polygan p. EachC'; crosses” attwo ver-
ticeswhich correspndto parallelalignededges of p andwe
repiesentC; by therectande betweertheseedgesasin Fig-
ure 3. If two suchrectamlesintersectthentheir endpants
interleave, and by Lemma3 the correspondimg straightcy-
clescrosseachotherandareconnetedby anedgein H. We
cangetfrom ary point on p to ary otherpoint on p via a
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sequene of rectanglessuchthat consective rectamlesin-
tersect(seealsoFigure3). Theserectandes form a pathin
H, thusary two verticesin H areconrectedby apath. O

P4 Ps

Figure3: An orthagond pathbetweentwo points on p and
the corresponihg rectamles (which represenstraight cy-
cles.)

Lemma5 LetG beaDOCP-gaphandletC andC' betwo
straight cyclesthat crossead otherandfor which thetypes
are known. Thenwe canidentify the type of all cyclesthat
crossC.

Proof. LetC" beacyclethatcrosseg”. We canfind apath
from C' to C" in the graph H defined in Lemma 4. Let
C4 bethefirst cycle after C’ onthis path. Cy crosse<' by
definition of H, soapplying Lemmal(2)to C,C' andC;
givesthetypeof C,. Iteratirg this, we canidentify thetypes
of all cyclesonthepath andin particdar thetypeof C". O

Theorem 6 For a DOCP-gaph algorithm IDENTIFY CY-
CLETYPES correctlyidentifiesall cycle-types.

Proof. We startknowing the typesof two cycles that cross
eachother FromLemmab, we canidentify all cyclesthat
crosseitheroneof thesecycles. Thenin turnwe canidentify
thetypesof all cyclesthat crossthesecycles. This process
evertually mustreachall cycles,becagea DOCP-graphs
conrected andwe cangetfrom ary cycleto ary othercycle
via a pathof cyclesthatcrosseachother O

3.2 Identifying coordinates

Now we shov how to compue coodinatesfor the center
pointsof all faces.This hapgnsby orderingcyclesof each
type suitablyandaddng up theedgelengthsto getthe coor
dinate.SeeFigure4 for thealgoithm.

Lemma 7 For any DOCP-glaph G, theY Z-cyclescanbe
orderedas(i, ..., Cy sudthatfor anyi < j < k, anypath
fromC; to C}, intersectsC).

(1) LetC4,...,C; betheY Z-cycles,
ordaedsuchthatforaryi < j < k
ary pathfrom C; to Cy, intersect<;.
(2) Fori =1,...,t, set{(C;) to betheedgelength
of thedualedgesf C;. (RecallLemmal(4)).
(3) Setz(Cy) = 0.
@ Fori=1,...,t—1
(5)  Setz(Cit1) = z(Cy) + 5(¢(Cy) + £(Ciy1)).
(6) Forary faceF' inaY Z-cycle C,
the centerpoint of F' hasz-coordnatez(C).

Figure4: Algorithm IDENTIFY COORDINATES.

Proof. Let P be the orthagonally corvex polyhedronwith
grafh G. A Y Z-cycle of G correspndsto a setof facesof
P whosecenterpointsall have the sameX -coadinate. For
ary z € R the(X = z)-planeintersectsP in oneconnectd
region, soonly oneY Z-cycle canexist for which afacehas
coodinatez. Hence,sort the cycles by the z-coordnates
of the correspondig stripes. To getfrom stripe C'; to stripe
Cy, we thennecessarilymustgo through a facethathasan
z-coodinateof stripeC';, andhercebelorgsto C;. O

We visualize this lemma by thinking of the stripes
Ci, ..., Cypasforming “onionrings” (two halvesof anonion)
in the planarembedthg. SeeFigure5. Sincewe know all
Y Z-cycles, testingwhetherthey form onion rings can be
dorein lineartime by doinga modifiedbreadh-first search.
Therestof algoithm IDENTIFY COORDINATES alsocanbe
implementedin lineartime.
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Figure5: Thestripesof anorthagonally corvex polyhedrm
form anoniontring structure.

From the onionring structure algorithm IDENTIFY CO-
ORDINATES correctlyretrieves the z-coordnatesof thecen-
ter poirts of all verticesonaY Z-cycle, sincethesearede-
termired by the width of eachstripe,which correspndsto
theedgelengthsin theoriginal graph.

Fromthis, we canget z-coordnatesof all verticesof the
polyhedran in lineartime. Note that not all verticesareon
a 'Y Z-stripe, however, the coordnate informationfor such
velticescanberetrieved from their neightor verticesin lin-
eartime. Similarly we candetermire the y-coadinatesand
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the z-coordinatesof all verticesusing X Z-cyclesand XY -
cyclesrespectiely.

Theorem 8 If G is an OCP-graph thenour algorithm re-
constructsan orthogonally corvex polyhedmon for which G
is thegraph

Notethatouralgorithmcanbeusedo testwhethreragraph
isanOCP-grap. If it succeedin construting apolyhedron,
thenwe simply verify whetherits graphis G. If this is not
the caseor if the algorithmfails, thenG canrot have been
anOCP-graph

4 Recognizing OP-graphs

In this section,we shav thatrecoqizing OP-grapk is NP-
hard.Our corstructionusesa polyhedran of genusl, but can
begenertizedto polyhedraof gerus0.

The rediction is from PARTITION, which is known to
be NP-hard[6]. In this prablem, we are given numbes
ai,...,a,, andwe wantto find asetS C {1,...,n} such
thaty >, ga; = £+ i, a;. Givensuchaninstancewe de-
scribehow to constret anorthogonal polyhedran (or really
thegraph of this polyhedron) thepolyhedroncanberealized
if andonly if PARTITION hasasolution Thecrucialideais
takenfrom [3]. Let L bea suitablylarge numker, andcon-
sideranorthogoral polygonwith thefollowing edgelengths:
L,1,a1,1,as,1,...,a,,1,L,n+ 1. Seetheleft half of Fig-
ure6. It wasshawn in [3] thatsucha polygon existsif and
only if the PARTITION instancehasa solution

-

n + 1>
Figure6: Thecross-section

For spacereasonswe canonly sketchthe constrution.
We corvert this polygon into a polyhedronby applying an
“orthogonalizel revolution”. More precisely we constrict
a polyhedra that consistsof “stacked cubes” of height
L,ay,...,a,, L. Eachcubecaneitherbe setatopthe pre-
vious oneor be sunkinsideit. The top surfaceof the last
cubeis actuallya hole insidethe bottam surfaceof thefirst
cube. SeeFigure7 for anillustration The cross-sectiomf
this polyhedran with the (Z = 0)-planeis thenthetwo poly-
gonsin Figure6. Hencethis polyhedrm existsif andonly if
PARTITION hasa solution. Testingwhetherthe gragh of our
constrietionis anOP-graphs therefae NP-had.

5 Conclusion

In this pape, we studiedhow to recogiize whethera given
graph(with edgelengthsandfacialangles)s thegragh of an
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Figure 7. Stacled cubes, and the polyhedronif PARTI-
TION hasasolution.

orthogoral polyhedran. This canbe deciced in polynomial
time for orthogonally corvex polyhedra,but is NP-hardfor
geneal orthogona polyhedra.

It remairs openwhethe we canat leastidentify the face
types(Section3.1)for agivenOP-grah. We conjectue that
thecrucialLemma 4 holdsfor all orthagyonalpolyhedra,but
ourprod depadson convexity.

Anotherinterestingcaseoccusif edgelengthsarenotpart
of the input. Our algoithm for orthagonally convex poly-
heda with rectamgular facesstill works. The NP-harahess
proof requies given edgelengtrs. Is it NP-hardto test
whethe a givengraphwithout edgelengtts is the graph of
someorthogoral polyhedror?
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