
Computing All Faces of the Minkowski Sum of V-Polytopes∗

K. Fukuda Ch. Weibel

June 29, 2005

Abstract

We consider the problem of listing faces of the
Minkowski sum of several V-polytopes in R

d. An al-
gorithm for listing all faces of dimension up to j is pre-
sented, for any given 0 ≤ j ≤ d − 1. It runs in time
polynomial in the sizes of input and output.

1 Introduction

Minkowski sums of V-polytopes have applications in
many domains ranging from mechanical engineering
[7] to algebra. Gritzmann and Sturmfels [6] studied
the problem and presented polynomial algorithms with
fixed number of polytopes or dimension. Fukuda [5]
developed polynomial algorithms for the general case
computing the vertices of the sum. Here, we use an
extended notion of polynomial algorithm: we call an al-
gorithm polynomial if it runs in time polynomial in both
the input and the output sizes. There is no known poly-
nomial algorithm that computes the facets of a polytope
from its vertices. The aim of this paper is to introduce
a polynomial algorithm for computing all faces of the
Minkowski sum of polytopes. This algorithm is an ex-
tension of Fukuda’s algorithm [5]. The new algorithm
lists higher dimensional faces by enumerating for each
vertex v the faces whose sink is v in a prescribed LP
orientation. The main advantage of this method is that
computed faces need not be kept in memory during the
course of the algorithm. Such an algorithm is called
compact, i.e. the memory size is bounded by a poly-
nomial in the size of the input only, unlike the time,
which is necessarily at least linear in the output size.
This allows the resolution of very large problems. This
work is motivated by the strong demand in polyhedral
computation and algebra, especially about mixed facets.

∗Supported by the Swiss National Science Foundation Project

200021-105202, “Polytopes, Matroids and Polynomial Systems”.

1.1 Introduction to polytopes

A polytope is the convex hull of a finite number of points
in R

d (V-representation):

P = conv{v1, . . . , vk}

= {x ∈ R
d : x =

k
∑

i=1

λivi,

k
∑

i=1

λi = 1, λi ≥ 0 ∀i}.

Alternatively, they can be described as the bounded in-
tersection of a finite number of closed half-spaces (H-
representation):

P = {x ∈ R
d : Ax ≤ b}, P bounded.

The Minkowski-Weyl theorem tells us those two defini-
tions are equivalent. In fact these two representations
are in many ways dual to each other, although known
algorithms to switch between those two representations
take an exponential time.

For any d-vector x and any scalar β, the linear equa-
tion 〈c, x〉 ≤ β is called valid if 〈c, x〉 ≤ β holds
for all x ∈ P . A subset F of a polytope P is a
face if there is a valid inequality 〈c, x〉 ≤ β so that
F = P ∩

{

x ∈ R
d| 〈c, x〉 = β

}

.
The set of all faces of P , denoted by F(P ), ordered by

set inclusion is called the face lattice of P . The smallest
element in the face lattice is the empty set, and the
largest is the polytope itself. These two faces are the
trivial faces.

The vertices are the minimal nontrivial faces, and the
facets are the maximal nontrivial faces..

If none of the points of a V-representation is redun-
dant, they form the vertices of the polytope, and if none
of the half-spaces of an H-representation is redundant
and the polytope is full-dimensional, they determine its
facets.

1.2 Minkowski sums

This section defines Minkowski sums of polytopes, and
reviews some results that will be useful later in the ar-
ticle.

The Minkowski sum P1 +P2 of two polytopes P1 and
P2 is defined as:

P1 + P2 =
{

x ∈ R
d | x = x1 + x2, x1 ∈ P1, x2 ∈ P2

}

1



This definition can be easily extended to sums of three
or more polytopes. The difficulty of dealing with
Minkowski sums is partly due to its exponential nature.
For instance, the sum of k line segments orthogonally
placed in R

d is the k-dimensional cube, which has 2k

vertices (and only 2k facets. To obtain an efficient al-
gorithm to list (a certain class of) faces of the sum, we
need to understand the interactions between faces of
different dimensions.

For a polytope P in R
d and any vector c ∈ R

d, we
write

S(P ; c) =

{

x ∈ P | 〈c, x〉 = max
y∈P

〈c, y〉

}

which means that S(P ; c) is the face of all maximizers
of the linear function defined by c. Conversely, for any
face F of P , we define N (F ; P ) as the set of vectors
c such that F = S(P ; c), which is called the (outer)
normal cone of P at F . Note that the normal cones are
relatively open.

The collection of the closures of normal cones
{N (F ; P )|F ∈ F(P )} forms a polyhedral cell complex
called the normal fan of P .

Faces of a polytope and their normal cones have dual
properties. In particular, if F is a i-dimensional face of
P , then the normal cone N (F ; P ) is a (d−i)-dimensional
cone. The closure of the normal cones can be ordered
by inclusion, and this order is the reverse of that of the
corresponding faces:

Observation 1 Let F and G be two faces of the poly-
tope P . Then F ⊆ G if and only if N (G; P ) ⊆ N (F ; P ).

For instance, if v is a vertex of a polytope, then its
normal cone N ({v}; P ) has the full dimension, and the
faces of the polyhedral cone N ({v}; P ) are the closures
of the normal cones of the faces contaning v. Let us
recall some basic theorems on Minkowski sums of poly-
topes, from Gritzmann & Sturmfels [6] and Fukuda [5].

Theorem 1 In a sum of polytopes, every face of the
result can be decomposed in a sum of faces from the
different summands. This decomposition is unique.

Proof. Outline: Any face of the sum polytope P can
be written as the set of maximizers over P of the linear
function 〈c, x〉 for some c, and this set is equal to the
Minkowski sum of the maximizer faces of the summand
polytopes:

S(P1 + · · · + Pk; c) = S(P1; c) + · · · + S(Pk; c).

One still needs to argue that there is no other way to
represent the sum. �

As a result of this, we can characterize the outer nor-
mal cones of the sum polytope:

Corollary 2 Outer normal cones of the sum polytope
P = P1 + · · ·+ Pk are intersections of the outer normal
cones of faces of the summands:

Fi = S(Pi; c) for all i, and

N (F1 + · · · + Fk; P ) =
k

⋂

i=1

N (Fi; Pi).

Corollary 3 If v is a vertex of the Minkowski sum
P = P1 + · · · + Pk, then it is uniquely decomposed as
v = v1 + · · · + vk, where vi is a vertex of Pi for all i.
Additionnally, there is a vector c so that {v} = S(P ; c)
and {vi} = S(Pi; c) for all i.

For the presentation of the algorithm, it is useful to
note the corresponding result for edges:

Proposition 4 If E is an edge of the Minkowski sum
P = P1 + · · · + Pk, then it is uniquely decomposed as
E = E1 + · · · + Ek, where Ei is either a vertex or an
edge of Pi for all i, and all edges are parallel. There is
also a vector c so that E = S(P ; c) and Ei = S(Pi; c)
for all i.

This means that all edges of the sum polytope inci-
dent to a vertex are parallel to an edge incident to some
vertex of the decomposition.

Proposition 5 If u and v are adjacent vertices of the
sum polytope P = P1 + · · · + Pk, decomposed as u =
u1 + · · · + uk and v = v1 + · · · + vk, then ui and vi are
either equal or adjacent vertices of Pi, and all adjacent
pairs are linked by parallel edges.

Proof. The edge E for u to v is decomposed as a sum of
faces E = E1 + · · ·+Ek, Ei are either vertices (ui = vi)
or parallel edges (ui and vi are adjacent). �

Therefore, if we have a vertex v of the sum polytope
P = P1 + · · · + Pk decomposed in v = v1 + · · · + vk,
the edges incident to the summands vi give us possible
candidates for edges incident to v in the sum polytope
P . Fukuda’s algorithm [5] to list all vertices of the sum
exploits this property together with reverse search, a
storage-free search technique. We shall review the algo-
rithm in the next section.

2 Face Enumeration and Complexity

2.1 Vertices

The algorithm [5] lists all vertices of the polytope by
moving from one to the other following the edges in the
sum. To enumerate all vertices without duplicates, it
employs the reverse search scheme [1, 2].

After choosing a generic linear function, every ver-
tex is given a unique parent, which would be the next

2



vertex visited in a simplex method. All vertices receive
such a parent, except for the sink vertex. This effec-
tively defines a rooted spanning tree of the graph of the
sum polytope. The algorithm enumerates all vertices by
starting from the root, and tracing the tree by depth-
first search.

2.2 Larger faces

Unfortunately, computing larger face from the vertices
of a polytope is a difficult problem, indeed there is no
known algorithm to compute even facets from vertices
in a polynomial time of the input and the output. To
get better results, it is necessary to have supplementary
information, e.g. the incidency between vertices and
facets ([3]). It is therefore desirable to find an algorithm
which finds larger faces during the computation of the
vertices of the Minkowski sum.

The key idea for enumerating faces of higher dimen-
sions is to extend Fukuda’s algorithm with a face enu-
meration procedure. For every face F of the polytope,
we define a unique parent vertex t(F ). Every time the
algorithm visits a vertex, it lists all faces whose parent
is the vertex (a partial face enumeration). Clearly, such
an algorithm lists all faces without repetition. Further-
more, if we can restrict the partial enumeration with
additional conditions, we have an algorithm that gener-
ates only such faces. We will see that a condition such
as “the dimension is at most j” (for a fixed j) can be
efficiently treated.

For the description of our algorithm, it is necessary
to specify two things: a parent function t and a way
to enumerate all faces whose parent is a given vertex
v. The parent function should be chosen in a way that
it is easy to evaluate and it is convenient for the face
enumeration.

The vertex enumeration algorithm already uses an
edge orientation of the graph, defined by augmentation
of a chosen linear function. It turns out that this ori-
entation defines a parent function t for all faces that
satisfies the desired properties above. For any face F of
the polytope, we define its parent t(F ) to be the vertex
from which no edge leaves in F , i.e. t(F ) is the unique
sink vertex of F . The edge orientation thus gives us a
natural, and as we will see, convenient for the partial
face enumeration.

To find the faces containing a vertex v, we will use
the properties of the outer normal cone of the vertex
N ({v}; P ). By the duality relation between the face
lattice and the normal fan of the polytope, the facets of
N ({v}; P ) are the normal cones of the edges incident to
v. The set of faces of N ({v}; P ) are the normal cones
of all faces containing v.

Therefore, the enumeration of faces containing v can
be done by enumerating all faces of its normal cone.
What we need to find is a way of enumerating only

those faces whose parent is v.

The edges incident to v can be partitioned into two
sets: those oriented towards v, and those oriented away
from v. If a face F has v as parent, all its edges con-
taining v are oriented towards it. This means that the
normal cone of F is the intersection of normal cones of
edges all oriented towards v. We now need to find a way
of enumerating all faces having that property.

This can easily be done in time polynomial in the in-
put and the output sizes, by using the backtrack method
presented in [4]. This method enumerates all those faces
of a H-polyhedron that are not lying on any of a pre-
scribed set of facets. Such a set S is specified as a set
of input inequalities that should be “inactive”. Fur-
thermore, this algorithm can incorporate the additional
condition such as the dimension is up to j, for any fixed
j. This means we can easily eliminate faces which are
not needed by adding appropriate inequalities to the set
S, restricting the search to the edges which are oriented
towards v. (Note taht when all edges incident to v are
computed, the normal cone N ({v}; P ) is clearly an H-
polyhedron.)

Let δi be the maximum degree of the graph G(Pi),
and let δ be the sum δ1 + · · · + δk of the maximum
degrees. We denote by l(d, m) time needed to solve any
linear program in d variables and m inequalities.

Theorem 6 There is a compact polynomial algorithm
to list all faces of the Minkowski sum P = P1 + · · ·+Pk

for given k V-polytopes in R
d whose time complexity is

O(δ l(d, m) f), where f is the number of all faces of P .
Moreover, it can be extended to an algorithm to list only
those faces of dimension up to j, for any fixed j, in time
O(δ l(d, m) f≤j), where f≤j is the number of faces of
dimension up to j.

Proof. First of all, listing of all vertices can be done by
Fukuda’s algorithm [5] in O(δ l(d, m) f0) time, where f0

denotes the number of vertices of P . The face enumer-
ation can be done by the partial face enumeration at
each vertex v. By the result [4, Theorem 3.1], the par-
tial enumeration can be done in O(δ l(d, m) fv) time,
where fv denotes the number of faces whose parent is v.
By summing this over all vertices v and the vertex enu-
meration complexity, we obtain the claimed complexity
O(δ l(d, m) f). By using a polynomial-time LP algo-
rithm, the resulting algorithm will be a compact polyno-
mial algorithm. Note that the time complexity depends
also on the binary encoding length of the LP in the Tur-
ing model of computation.

The claim for the extension is straightforward, as
the backtracking algorithm [4] can be terminated at any
specified dimension j. �

3



3 Algorithm

The proof of the main theorem, Theorem 6, contains
the key components of the algorithm we propose. In
this section, we give a structured description of the al-
gorithm.

The description is based on a recursive function,
called on the sink node of the polytope. The sum vertex
is given by its vertex decomposition in the summands.
t(v) : V → V is the parent function defined on the set
of vertices V .

procedure exploreSubTree(v = v1 + · · · + vk);
for all i = 1, . . . , k do

for all neighbor ui of vi in Pi do
if ui − vi is a valid edge do

Set u := vertex adjacent to v across ui − vi;
if t(u) = v then

enumerateFaces(u);
exploreSubTree(u);

endif
endif

endfor
endfor

A direction from a vertex can be determined as be-
ing a valid edge if it is possible to separate it from all
other possible edges by an hyperplane. The procedure
enumerateFaces(u) enumerates all faces of dimension
at least 1 which have u as sink node.

You’ll notice that a vertex adjacent to v is explored
only if v is its parent. This is the core of the reverse
search scheme.

4 Output size

Since the time of the algorithm will be polynomial in
the output size, it is natural to ask what will be the size
of the output.

The number of faces in a Minkowski sum can be ex-
ponential. Gritzmann and Sturmfels have found a max-
imal bound for the number of i-dimensional faces in a
Minkowski sum of k polytopes in terms of the number
of nonparallel edges in the input.

Theorem 7 ([6]) Let P1, . . . , Pk be polytopes in R
d,

and m the number of nonparallel edges of P1, . . . , Pk.
Then for i = 0, . . . , d − 1, we have:

fi(P1 + · · · + Pk) ≤ 2

(

m

i

) d−i−1
∑

h=0

(

m − i − 1
h

)

We should note that the number of faces need not be
even close to this limit. Indeed, as shown in [5], there is
an infinite family of Minkowski sum problems for which

the number of vertices (and faces) in the sum polytope
is bounded by those in the summands.

This explains why it is important to design algorithms
that are sensitive to the output size.

5 Conclusion

We have presented a compact polynomial algorithm for
enumerating all faces of a Minkowski addition of poly-
topes. This is a common extension of algorithms pro-
posed in [4, 5].

This algorithm has applications ranging from alge-
bra ([6],[8]) to automotive construction ([7]). Also this
tool allows us to significantly improve our knowledge of
Minkowski additions of polytopes.

References

[1] D. Avis and K. Fukuda. A pivoting algorithm for
convex hulls and vertex enumeration of arrange-
ments and polyhedra. In Discrete Comput. Geom.,
8:295-313, 1992.

[2] D. Avis and K. Fukuda. Reverse search for enumer-
ation. In Discrete Applied Mathematics, 65:21-46,
2004.

[3] K. Fukuda and V. Rosta. Combinatorial face enu-
meration in convex polytopes In Combinatorial Ge-
ometry, 4:191-198, Elsevier, 1994.

[4] K. Fukuda, Th. Liebling and F. Margot Analysis
of backtrack algorithms for linsting all vertices and
all faces of a convex polyhedron In Computational
Geometry, 8:1-12, Elsevier, 1997.

[5] K. Fukuda. From the zonotope construction to the
Minkowski addition of convex polytopes In Journal
of Symbolic Computation, 38(4):1261-1272, 2004.

[6] P. Gritzmann and B. Sturmfels. Minkowski addi-
tion of polytopes: computational complexity and
applications to Gröbner Bases In SIAM J. Disc.
Math., 6:246-269, 1993.

[7] J.-P. Petit. Spécification géometrique des produits
: Methode de détérmination des tolérances. Appli-
cation en conception assistée par ordinateur. Ph.D
Thesis, Univ. de Savoie, 2004.

[8] B. Sturmfels. Gröbner bases and convex polytopes
University Lectures Series, 8, Amer. Math. Soc.,
1996.

4


