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Abstract

We propose algorithms for pricing a transportation network

in such a way that the profit generated by the customers

is maximized. We model the transportation network as a

subset of the plane and take into account the fact that the

customers minimize their own transportation cost. The un-

derlying theory is a two-player game model called Stackel-

berg games. We propose algorithms for the cases where the

fare does or does not depend on the distance traveled. In

particular, we propose an O(n log n) algorithm for optimal

pricing of a highway, and an O(nk log n log3
k) algorithm for

orthogonally convex networks of complexity O(k) using the

Manhattan distance.

1 Introduction

Suppose a person wishes to go from one point to an-
other using public transportation. Taking into account
the transportation fare, this person may consider dif-
ferent routes, each with different costs in terms of time
and money, and choose the one considered best. In this
paper, we play the role of the transportation company
whose goal is to maximize the profit generated by the
customers. We propose algorithms for pricing the trans-
portation network, taking into account the fact that
each customer uses a minimum-cost route. This kind
of pricing problems is nicely modeled by games known
as Stackelberg games. These are games with two players:
a leader and a follower. The first decision is made by
the leader: in our case the transportation company fixes
the fare. Then the follower responds by optimizing its
own objectives, taking into account the decision of the
leader. In our case, customers decide of their optimal
route, taking into account the fare that has been fixed
by the transportation company. The problem is to find
an optimal strategy for the leader. Stackelberg games
have found applications in both transportation planning
and telecommunications: see Altman et al. for a survey
[4]. They are also known as bilevel programs or hier-
archical optimization problems. Labbé et al. [5] have
studied a family of such pricing problems on graphs.

We define geometric versions of these problems. We
let {(si, ti)}n

i=1 be a collection of pairs of points in the
plane, and define the transportation network N as a
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compact subset of the plane. Each single customer i
wishes to go from si to ti using a minimum cost path.
The cost is the sum of the distance traveled outside the
network and the fare.

We propose two distinct models for defining this fare.
In both cases the model is parameterized by a number
R and the profit B(R) is the sum of the amounts paid
by all customers. The algorithms we propose in the
following sections compute a value of R that maximizes
the profit.

In the first model, that we call fixed pricing, the fare
R that a customer has to pay for using the network
does not depend on the distance traveled within the
network. The total cost for one customer is the sum of
the distance traveled outside the network and R.

We call the other model proportional pricing. In that
case, when customers use the network, the fare is equal
to the length of their trajectory inside the network mul-
tiplied by the real number R ∈ [0, 1], that we call the
pricing factor. The total cost for one customer is the
sum of the distance traveled outside the network and
the distance within the network multiplied by R. Since
each customer minimizes its cost, the length of the tra-
jectory inside the network is a nonincreasing function of
R. Note that the algorithms presented in this paper for
the proportional pricing model can be easily adapted to
finer models in which, for instance, customers minimize
a weighted sum of the time and money spent on the trip.
The distance measure is also part of the model. We use
both Euclidean (L2) and Manhattan (L1) distances.

The cost of traveling between two points in the pro-
portional pricing model induces what is known as a time

distance: if we define v = 1/R, then the cost is equal
to the total trip time when v is the speed inside the
network. Time distances have been studied recently by
Aichholzer et al. [3], and Abellanas et al. [2, 1]. An-
other related problem is finding shortest paths in pla-
nar subdivisions, in which a speed is assigned to each
subdivision [6]. Snell’s law of refraction is known to ap-
ply to such shortest paths when the Euclidean distance
is used. The use of the Euclidean distance however
severely restricts the range of problems (e.g. network
shapes) that can be addressed: even the simplest exam-
ples may lead to computing high-degree polynomials or
inverse trigonometric functions [1]. This motivates the
use of the simpler, yet meaningful, Manhattan distance.

In section 2, we examine the fixed pricing case and
give simple algorithms that work for many different
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kinds of network shapes. Section 3 proposes a O(n log n)
algorithm for proportional pricing of a straight line (e.g.
a highway). In section 4 and 5, we consider proportional
pricing together with the Manhattan distance and pro-
pose O(nk log n polylog k) for orthoconvex networks of
complexity k.

2 Railpass

We first consider the fixed pricing case, where customers
have to pay a fixed fare R for using the network, inde-
pendently of the portion of the network they use. The
cost is then the sum of R and the distance traveled out-
side the network. We propose algorithms for finding the
value of R maximizing the profit B(R) for any metric.

We first assume that the network N is a connected
subset of the plane. Then if a customer uses the net-
work, the trajectory will enter the network at the near-
est neighbor of si and leave it at the nearest neighbor of
ti. Denote by n(x) the point of N that is the nearest to
x, and by d(x, y) the minimum length of a path between
x and y outside the network. The ith customer uses the
network whenever

d(si, n(si)) + R + d(n(ti), ti) ≤ d(si, ti)

⇔ R ≤ d(si, ti) − (d(si, n(si)) + d(n(ti), ti)).

We call breakpoints values of R for which equality holds,
i.e. values of R above which one customer decides not
to use the network. For any value of R, the overall
profit B(R) is the number of customers using the net-
work multiplied by R. By computing the breakpoints
given above for all i and sorting them, we obtain an al-
gorithm for finding a value of R maximizing the profit.
This algorithm is valid for any network shape and any
distance measure.

Theorem 1 When the network N is a connected subset

of the plane, we can find a fixed fare R maximizing B(R)
in O(n(log n + C)) time, where C is the cost of finding

the nearest neighbor in N of a point.

In cases where the Voronoi diagram of a network of
complexity k can be computed in O(k log k) time and
point location in this partition can be performed in
O(log k) time, we can proceed by first computing this
diagram and then using it to answer the nearest neigh-
bor queries. Hence for many networks, we can find an
optimal value of R in O(n log n+(n+k) logk) time. This
is true for instance when the network is a connected set
of line segments.

Finally, if the network is not connected, then it is not
true anymore that customers using the network will en-
ter and leave the network at the nearest neighbor points.
First, a shortest path using the network has to be com-
puted for each customer. The overall complexity of the
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Figure 1: minimum cost paths from si to ti

algorithm is O(n(log n+S)), where S is the cost of com-
puting a shortest path using the network.

3 Australian Highways

We now consider the model in which the network N
is a straight line, the Euclidean distance is used, and
proportional pricing is applied.

Denote by bi the distance between the orthogonal pro-
jections of si and ti on N , and by hi the sum of the
distances between si and its projection and ti and its
projection. This is illustrated in Fig. 1. Finally, let di

be the euclidean distance between si and ti. If si and ti
are separated by N , then di =

√

h2
i + b2

i . We denote by
li(R) the length of the highway segment in a minimum
cost path from si to ti. We wish to find a pricing factor
R maximizing the overall profit B(R) = R

∑n
i=1 li(R).

Let us first describe the behavior of the customers
when the pricing factor R is fixed.

Snell’s law of refraction implies that in a minimum
cost path from si to ti using the highway, the angles
of the trajectory from si to the highway and from the
highway to ti are the same. It is observed in [1] that
the minimum cost of a path from si to ti is actually
the minimum between their Euclidean distance and the
distance between si and the two halflines through ti (or
its symmetrical point with respect to N ) with slopes
respectively R and −R. In the following, we call α the
angle such that sinα = R.

We omit the proof of the following lemma.

Lemma 2 The ith customer will use the highway if and

only if R ≤ ri, with ri = (bidi−hi

√

b2
i − d2

i + h2
i )/(b2

i +
h2

i ). Moreover, If the trajectory of the ith customer uses

the highway, then it is composed of a highway segment of

length li(R) = bi−hi tanα, and its total cost is Ji(R) =
hi cosα + bi sin α.

Note that the expression for ri has a special form
when si and ti are separated by N . In that case, we
have di =

√

h2
i + b2

i and ri is equal to bi/di = cosβ,
where β is the angle between N and the segment [si, ti].
Hence the decision of the customer is only based on
whether sin α ≤ cosβ, and is independent of the dis-
tance between si and ti. Also note that in this case, the
breakpoint is also the solution of the equation li = 0,
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which means that as R increases, the trajectory of the
customer tends to the straight line segment [si, ti] in a
continuous fashion.

Theorem 3 When the network N is a straight line and

the L2 distance is used, we can find a pricing factor R
maximizing B(R) in O(n log n) time.

Proof. The algorithm first sorts the pair (si, ti) accord-
ing to the values ri in O(n log n) time. The breakpoints
partition the interval [0, 1] 3 R in subintervals of the
form [ri, ri+1]. Between two successive subintervals, the
number of minimum cost paths using the highway de-
creases by one. Hence as we walk from one interval to
the next, the sum

∑

i:li(R)>0 li(R) can be maintained in
constant time using the decomposition:

∑

i:li(R)>0

li(R) =





∑

i:li(R)>0

bi



 −





∑

i:li(R)>0

hi



 tan α.

The values in brackets are constant in each inter-
val, hence we have a closed form of the function
R

∑

i:li(R)>0 li(R) to maximize in each interval. We can
show that it can be solved analytically in constant time
by letting the unknown be Z = tan α. The minimization
step therefore takes O(n) time, and the whole algorithm
is O(n log n). �

4 Manhattan Buses

In this section, we consider proportional pricing of more
complex networks but simpler shortest paths, since
we allow customers to move only following Manhattan
paths and switch thus to the L1 distance. Consider the
network N having the shape of an isothetic staircase
defined by an origin (u, v), and a sequence of length k
of pairs (xi, yi) of positive real numbers.

We define the profit function Bi(R) for a customer
i as the fraction of the profit that is generated by this
customer. We use Ji(R) to denote the minimum cost
of a path from si to ti for a pricing factor R. We de-
scribe an algorithm that finds the optimal pricing factor
by computing each function Ji(R) recursively. The cost
and profit functions are both piecewise linear. To repre-
sent such functions, we store the breakpoints in increas-
ing order together with the slope and offset of the sup-
porting line between each pair of successive breakpoints.
This representation makes it easy to compute the sum
f1(R) + f2(R) or the lower envelope min{f1(R), f2(R)}
of two functions f1(R) and f2(R) in linear time.

A first observation is that each customer may en-
ter the network only at a discrete number of entrance
points. These points are a subset of the staircase cor-
ners that are oriented towards the point si, together
with the vertical and horizontal projections of si on N .
Similarly, a customer always leaves the network at one

of the corners that are oriented towards ti or one of the
projection of ti on N .

We start the description of the algorithm with a spe-
cial case.

Lemma 4 If ti ∈ N , then a description of Ji(R) can

be computed in O(k) time.

Proof. We assume without loss of generality that the
staircase defining the network N is going down and from
left to right, and that si is above N . We consider the
rectangle having si and ti as two opposite corners.

When si is on the right of ti this rectangle does not
intersect N and the trajectory of the customer always
contains one of the two other corners s′ and s′′ of the
rectangle. This is illustrated on Fig. 2(a). The cost
function Ji can be constructed in linear time from the
function obtained by replacing si first by s′ and then by
s′′. The two cases are symmetric and equivalent to the
case where si has the same y-coordinate as ti, as shown
on Fig. 2(c).

When si is on the left of ti, then the intersection of
the rectangle and N contains the vertical projection t′

of si on N . This case is illustrated on Fig. 2(b). We
can safely assume that any minimum cost trajectory
of the ith customer contains t′. The cost function Ji

can be constructed from the cost function obtained by
replacing ti by t′. Since t′ has by definition the same
x-coordinate as si, this case is again symmetric to that
shown on Fig. 2(c). Overall, considering only the case
on Fig. 2(c) is sufficient.

We assume without loss of generality that ti is the
origin of the staircase and that the last point of the
staircase is the vertical projection of si on N . We call
Lc(R) the function giving the minimum cost of the path
from si to ti given that the customer enters the network
at the cth corner of the staircase:

Lc(R) = R
c

∑

j=1

(yj + xj) +
c

∑

j=1

yj +
k

∑

j=c+1

xj .

The profit generated in that case equals the first term
R

∑c
j=1(yj + xj). The functions Lc are linear in R.

We also define L0(R) as the horizontal line whose y-
coordinate is equal to the horizontal distance between
si and ti. This value corresponds to the case where the
customer does not use the network. The cost function
Ji(R) is the lower envelope of the set of lines with equa-
tions {Lc(R) : c = 0, 1, . . . , k}. Since

∑c

j=1(yj + xj) is
strictly increasing with respect to c, the slopes of these
lines are found in increasing order. Computing the lower
envelope is equivalent to finding the convex hull of the
corresponding set of points after the dual transforma-
tion that maps the line y = ax + b to the point (a, b).
Since the slopes of the lines Lc are increasing with re-
spect to c, this is equivalent to finding the lower convex
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Figure 2: Special case when ti is on the network.

hull of a set of points given in increasing order of their
x-coordinates. This can be done in linear time using
Graham scan. �

We now lift the assumption that ti is on the network.

Lemma 5 A description of Ji(R) can be computed in

O(k log k) time.

Proof. We fix a point p on N that splits N in two
equal-sized parts A and B. We call f1(R) the function
giving the minimum cost of a path from si to p, and
f2(R) the function giving the minimum cost of a path
from p to ti. From the previous lemma, these two func-
tions can be computed in O(k) time. We can also obtain
their sum f1(R) + f2(R) in linear time. We call fA(R)
and fB(R) the functions giving the minimum cost of a
path from si to ti using only the portions A or B of the
network. These can be computed recursively. Now hav-
ing computed the three functions f1(R) + f2(R), fA(R)
and fB(R), we can find the actual minimum cost Ji(R)
of a path from si to ti by computing their lower en-
velope in linear time. The total number of operations
per recursion level is linear and the depth of the recur-
sion is O(log k), so the complexity of computing Ji(R)
is O(k log k). �

Theorem 6 When the network N is a staircase and

the L1 distance is used, we can find a pricing factor R
maximizing B(R) in O(nk log n log k) time.

Proof. We first compute the functions Ji(R) for all
i, which takes O(nk log k) time, then sum them in
O(nk log n log k) time by sorting their breakpoints. We
obtain the piecewise linear cost function J(R). The
function B(R) is obtained from J(R) by letting the off-
sets of the supporting lines between two breakpoints be
zero. Then we can find a maximum of B(R) in linear
time. �

5 Manhattan Polygons

We now consider the case where the network N is a
polygon having all its edges either horizontal of vertical,
and such that the intersection of any horizontal or verti-
cal line with N is a line segment (orthoconvex polygon).

We stick to the proportional pricing model with the L1

distance. We proceed as previously by computing a de-
scription of the cost function Ji(R) for each customer
i.

The boundary of N can be divided in four staircases,
each having a different orientation. This division in turn
divides the points outside N in four quadrants accord-
ing to the location of their nearest neighbor in N with
respect to the L1 distance. In the case where both si

and ti do not belong to N and are in the same quad-
rant, we can assume without loss of generality that the
customer uses only the boundary of N , and we find our-
selves in the same situation as in the previous section.
The function Ji in this case can therefore be computed
in O(k log k) time.

We now state three lemmas corresponding to differ-
ent cases. All three consist of divide-and-conquer algo-
rithms similar to the algorithm of Lemma 5.

Lemma 7 If si 6∈ N and ti ∈ N , then a description of

Ji(R) can be computed in O(k log k) time.

Lemma 8 If si and ti do not belong to N and are in

adjacent quadrants, then a description of Ji(R) can be

computed in O(k log2 k) time.

Lemma 9 If si and ti do not belong to N and are in

opposite quadrants, then a description of Ji(R) can be

computed in O(k log3 k) time.

Now having computed all cost functions Ji(R), we can
sum them, deduce the profit function B(R) and find its
maximum.

Theorem 10 When the network N is an orthoconvex

polygon and the L1 distance is used, we can find a

pricing factor R maximizing B(R) in O(nk log n log3 k)
time.
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