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Drawing some planar graphs with integer edge-lengths

Therese Biedl ∗

Abstract

In this paper, we study drawings of planar graphs such
that all edge lengths are integers. It was known that
such drawings exist for all planar graphs with maxi-
mum degree 3. We give a different proof of this result,
which is based on a simple transformation of hexagonal
drawings as created by Kant. Moreover, if the graph is
3-connected then the vertices have integer coordinates
that are in O(n). We then study some other classes of
planar graphs, and show that planar bipartite, series-
parallel graphs, and some other graphs also have planar
drawings with integer edge lengths.

1 Introduction

A planar graph is a graph that can be drawn without
crossing. Fáry, Stein and Wagner [4, 13, 15] proved
independently that every planar graph has a drawing
such that all edges are drawn as straight-line segments.
Sometimes additional constraints are imposed on the
drawings. The most famous one is to have integer co-
ordinates while keeping the area small; it was shown in
1990 that this is always possible in O(n2) area [5, 12].

In this paper, we study a different restriction that was
first posed by Kemnitz and Harborth [8]: Does every
planar graph admit a straight-line drawing with integer
edge lengths? This question remains open in general,
but was answered in the positive for planar graphs with
maximum degree 3 by Geelen, Guo and McKinnon [6].

In this paper, we first give a different proof of the
result for planar graphs with maximum degree 3. In
particular, our proof is constructive and yields a linear-
time algorithm to find the drawing. (In contrast to this,
Geelen, Guo and McKinnon require a theorem about
rational distances that does not lend itself to an algo-
rithm easily.) For 3-connected 3-regular graphs, our al-
gorithm is very easy: Use the drawings with few slopes
that are known to exist, and modify them so that all
edge lengths are integers. In the resulting drawing all
vertices are also at (integer) grid points, and the grid
has width and height O(n). For graphs that are not
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3-connected, we split them into subgraphs, draw these
separately, and paste them together suitably. The proof
here is still algorithmic, but no bound on the grid-size
of the resulting drawing is apparent.
We also study some other graphs classes, such as pla-

nar bipartite graphs and series-parallel graphs. As it
turns out, the proof of Geelen et al. [6] actually works
for these graphs as well, and so they also can be drawn
with integer edge lengths. This was also shown inde-
pendently (with a different proof) by Sun [14].

2 Drawing 3-connected 3-regular planar graphs

We first study graphs with maximum degree 3 that are
also 3-connected, i.e., cannot be separated by removing
at most 2 vertices. Such graphs are in fact 3-regular,
i.e., every vertex has degree 3. In 1993, Kant [7] showed
how to create hexagonal grid drawings of 3-connected
3-regular graphs. His results (cf. Theorem 9 and Figure
5 of [7]) imply:

Theorem 1 [7] Let G be a 3-connected 3-regular graph,
and let vo be an arbitrary vertex on the outer-face of G.
Then G− vo has a straight-line drawing Γ such that
• all edges are drawn horizontally, vertically or with

slope −1,

• the drawing is contained in a triangle with corners
at (0, 0), (n−2

2
− 1, 0) and (0, n−2

2
− 1),

• the three neighbours of vo are placed at the three
corners of the triangle.

Such a drawing can be found in linear time.

See also Figure 1. A similar result was also proved
later by Dujmovic et al. [3] using the so-called canonical
ordering.
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Figure 1: Kant’s drawing (from [7].)

To convert Γ into a drawing with integer edge lengths,
skew it suitably, and then add vo. There are many ways
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to do such a skew. The most intuitive one would be to
convert the drawing back to the hexagonal grid (with
angle 0, π/3 and 2π/3.) This would make the edge
lengths integers, but vertices would not be at grid points
(and in fact, would have irrational coordinates.)

We hence use a different skew that maps grid points
to grid points and lines to slopes that are part of a
Pythagorean triplet. More precisely, define the linear
mapping ψ : (x, y) → (7x − 3y, 24y) and note that it
maps grid points to grid points. Consider any line seg-
ment s in Γ; say s connects grid points (x1, y1) and
(x2, y2):

• If s is horizontal, then y1 = y2, and hence ψ(s) is
also horizontal. Since grid points are mapped to
grid points, ψ(s) hence has integer length.

• If s has slope −1 then x2 − x1 = y1 − y2. Hence
ψ(s) has slope

24y1 − 24y2
(7x1 − 3y1)− (7x2 − 3y2)

=
24(x2 − x1)

7(x1 − x2)− 3(x2 − x1)

=
24

−10
= −12

5

Say ψ(s) projects to length X in x-direction and
length Y in y-direction, then Y = 12

5
X and both X

and Y are integers (since ψ maps grid points to grid
points.) Hence X = 5A for some integer A, and the
length of ψ(s) is

√
X2 + Y 2 =

√

(5A)2 + (12A)2 =√
169A2 = 13A, which is an integer.

• If s is vertical, then x1 = x2. Similar calculations
show that ψ(s) has slope −24/7, its x-projection
has length 7A for some integer A, and the length
of ψ(s) is

√

(7A)2 + (24A)2 = 25A, an integer.

Therefore ψ(Γ) is a drawing of G− vo where all edges
have integer length. Hence it only remains to add vo
suitably. In ψ(Γ) the three neighbours of vo are placed
at (0, 0), (7n−2

2
, 0) and (−3n−2

2
, 24n−2

2
). Place vo at

(−3n−2

2
,−24n−2

2
), which is a grid point. The three

edges to its neighbours than have slope 12/5, 24/7 and
+∞, respectively. Since the neighbours are also at grid
points, this implies (as above) that the edge lengths are
integers.

Theorem 2 Every 3-regular 3-connected planar graph
has a planar straight-line drawing such that

• all edges have integer length,

• all edges are horizontal, vertical or have slope ± 5

12

or ± 7

24
,

• the width is 5(n− 2) and the height is 24(n− 2).

Such a drawing can be found in linear time.

ψ(Γ)

−3n−2

2
7n−2

2

−24n−2

2

24n−2

2

Figure 2: Applying ψ and adding vo.

Without going into details, we note here that a dif-
ferent skew to apply would have been ψ′ : (x, y) →
(7x− 9y, 12y). This maps segments of slope −1 to seg-
ments of slope −3/4, and vertical segments to segments
of slope −4/3; since 32 + 42 = 52 one easily shows that
edge lengths are then integers. The area of the final
drawing then can be shown to be 8(n− 2)× 12(n− 2),
which is less than in Theorem 2 and also has a better
aspect ratio. But this drawing would have a larger angle
at the “top tip”, which will be undesirable later.

In fact, any two Pythagorean triplets a < b < c and
a′ < b′ < c′ where {a, b} and {a′, b′} have a term in
common can provide a suitable skew. For example, if
a′ = b, then use the skew (x, y) → (b′x − ay, a′y) to
obtain a drawing of area (b′ + a)a′ · ((n− 2)/2)2. There
are many such pairs of Pythagorean triples, and any of
them give O(n2) area, but is ψ′ the best one for the
constant in the area-bound?

3 Max-degree-3 graphs

The previous section studied graphs that have maxi-
mum degree 3 and are 3-connected. In this section,
we now extend this to all graphs of maximum degree
3, i.e., we explain how to deal with a bridge (an edge
whose removal disconnects the graph) and with a cutting
edge-pair (a pair of edges whose removal disconnected
the graph.) Since the graph has maximum degree 3, it
must have either a bridge or a cutting edge-pair or must
be 3-connected.

Our approach is the “standard” approach in graph
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drawing, also used in [7]: Cut the graph apart at such
an edge/pair, draw each part separately, and paste the
drawings together suitably. The idea of this is very sim-
ple, but the details are a bit more complicated since we
need to add invariants to the drawing to ensure that
they can be merged.
We will only explain how to obtain a drawing with

rational coordinates; this implies the result after scaling.

3.1 Bridges

We will show how to draw any planar graph G with
maximal degree 3 with rational edge lengths such that
additionally one pre-specified vertex w of G is on the
convex hull of the resulting drawing. We proceed by
induction on the number of bridges. In the base case,
G has no bridge, so it is 2-connected. We will show an
even stronger statement for 2-connected graphs in the
next subsection.
For the induction step, assume now that G has a

bridge e = (v1, v2), and let G1 and G2 be the two sub-
graphs that result from removing e, with vi in Gi. As-
sume that w belongs to graph G1.
Draw G1 recursively with rational edge lengths such

that w is on the convex hull. In this drawing, find an
open disk D that is inside the face where G2 used to be,
and such that any point inside D can be connected to
v1 without intersecting other edges of G1. Furthermore,
if v1 is on the outer-face of G1, choose D so small that
w is still on the convex hull of the union of G1 and D.
Draw G2 with rational edge lengths such that v2 is on

the convex hull. Shrink the drawing of G2, if necessary,
so that it can fit inside the open disk D. Then connect
v2 and v1, rotating G2 so that the edge (v1, v2) does
not intersect it, and shifting G2 as needed to achieve
rational length of the edge (v1, v2). See Figure 3.

v2

w

v1

G1

G2

Figure 3: Merging the drawing of G2 into the drawing
of G1.

3.2 Cutting edge-pairs

So now assume that G has no bridge, but it may have
a cutting edge-pair.

In this case, we will show how to draw G with ratio-
nal edge lengths such that additionally one pre-specified
edge (v, w) on the outer-face of G is drawn as the base
of a strictly enclosing half-square1 . By this we mean
that there exists a triangle T such that (v, w) is drawn
on one edge of T , the angles of T at v and w are π/4,
and the rest of the drawing is in the interior of T .

If G has no cutting edge-pair, then it is 3-connected
and we can apply the construction of Section 2. Recall
that Kant’s algorithm allows to choose vo. If we choose
it to be the clockwise first of v and w, then these two
vertices will be the leftmost vertices (connected verti-
cally) in Figure 2. By choice of the slopes, the rays of
slope −1 and +1 from these vertices will form a half-
square that contains the whole drawing. So (v, w) is the
base of a strictly enclosing half-square as desired.

Now assume that G has cutting edge-pair e1, e2 whose
removal splits G into graphs G1 and G2. Furthermore,
assume that ei = (vi, wi) and vi ∈ G1 while wi ∈ G2.
Assume first that neither e1 nor e2 is the edge (v, w)
to be drawn as base of a strictly enclosing half-square.
After possible renaming, we can then assume that (v, w)
belongs to G1.

Let G′

1
be the graph obtained from G1 by adding

(v1, v2), if it did not exist already, and draw G′

1 recur-
sively with rational edge lengths and with (v, w) as base
of a strictly enclosing half-square. Locate a triangle T ′

with base at (v1, v2) and small enough that it fits inside
the face of G1 where G2 used to be. Furthermore, if
(v1, v2) was on the outer-face of G1, choose T

′ so small
it fits inside the half-square that strictly encloses the
drawing and has (v, w) as base.

Let G′

2
be the graph obtained from G2 by adding

(w1, w2), if it did not exist already, and draw G′

2
recur-

sively with rational edge lengths and with (w1, w2) as
base of a strictly enclosing half-square.

Shrink the drawing of G′

2
small enough so that it

fits inside the interior of T with (w1, w2) is parallel to
(v1, v2), and then connect v1 to w1 and v2 to w2. See
Figure 4.

We can justify that this can be done with rational
distances for all edges as follows. Let α be the smaller
of the angles of T ′ at v1 and v2. Let 0 < β < α be an
angle such that sin(β) is rational. It is easy to find such
a β: Since (2i)2 + (i2 − 1)2 = (i2 + 1)2, simply choose
β = arctan(2i/(i2 − 1)) for large enough integer i; then
sin(β) = 2i/(i2 + 1), which is rational.

Now form an isosceles trapezoid with base (v1, v2) and
angle β at v1 and v2. Make the non-parallel sides to be
of rational length. Then the top edge (the shorter of the
parallel edges) has also rational length since sin(β) is
rational and (v1, v2) has rational length. Also, choose
the non-parallel sides long enough such the top edge is

1The term “isosceles right triangle” would be more accurate

than “half-square”, but also more cumbersome.
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so short that a half-square with the top edge as base
would still be inside T ′. This is possible since β < α.

Scale the drawing of G2 such that the (rational-
length) edge (w1, w2) fits onto the (rational-length) top-
edge; hence all edges in G2 are scaled by a rational as
desired. The drawing of G2 then fits entirely inside the
half-square on top of the top-edge of the trapezoid, and
hence is inside T ′ and creates no crossings. Therefore
the resulting drawing is planar.

wv

w2

v1 v2
w1

T

T ′

Figure 4: Merging the drawing of G2 into the drawing
of G1.

A special case occurs if edge (v, w) is one of the edges
of the cutting pair, say v = v1 and w = w1. Define the
graphs G1 and G2 as before, and draw them recursively,
drawing (v1, v2) and (w1, w2) as bases of their respective
strictly enclosing half-squares.

Consider the drawing of G1. Since it is strictly en-
closed by a half-square, we can in fact enclose it in an
isosceles triangle where the isosceles angles have size
α1 < π/4. Similarly define α2 < π/4 as the isosceles
angle of an isosceles enclosing triangle of G2.

Choose β such that max{α1, α2} < β < π/4 and such
that sin(β) is rational. Such a β exists since there are
infinitely many Pythagorean triplets for which the two
shorter lengths differ by one [1].

Scale the drawings of G1 and G2 such that the edges
(v1, v2) and (w1, w2) have length 1. Now place the draw-
ings of G1 and G2 in a trapezoid where the angles at
the larger parallel side are β, the non-parallel sides have
length 1, and the parallel sides are rational. See Fig-
ure 5. One easily verifies all conditions.

rational

G2

w = w1

G1

v = v1

sin(β)· rationalsin(β)· rational

w2v2

α1

β

Figure 5: Merging the drawings of G1 and G2 if (v, w)
is part of the cutting edge-pair.

This ends the proof that there exists an rational edge-
length drawing in all cases. Since breaking apart a
graph can be done in constant amortized time, and
finding the appropriate coordinates for placing the sub-
graphs can be done in constant time, we hence have:

Theorem 3 Any planar graph with maximum degree 3
has a planar drawing with integer edge lengths. More-
over, such a drawing can be found in O(n) time.

We note here that no bound on the coordinates re-
quired to achieve integer edge lengths are apparent if the
graph has a bridge or a cutting edge-pair. The ‘O(n)’
run-time hence only holds under the assumption that
arbitrarily small rationals can be handled in constant
time. Finding a bound for the coordinates remains an
open problem.

4 Graphs with a 3-elimination order

The algorithm that we gave above for finding integer
edge-length drawings very much relies on the graph hav-
ing maximum degree 3. In contrast to this, the proof
given by Geelen, Guo and McKinnon [6] only needs a
much weaker property of graphs, which we paraphrase
as follows:

Definition 1 Let G be a graph. We say that G has a
3-elimination order v1, . . . , vn if

• G has only the 2 vertices v1, v2, or

• vn has degree at most 2, and v1, . . . , vn−1 is a 3-
elimination order for G− vn, or

• vn has degree 3, and v1, . . . , vn−1 is a 3-elimination
order for G′ = G− vn ∪ (u,w), where u and w are
two of the neighbours of vn.

We note here that the neighbours u and w of a vertex
vn of degree 3 can be chosen arbitrarily. Also, this edge
is added only if G− vn does not contain it already.
This 3-elimination order is a stronger concept than

the 3-acyclic edge orientation (see for example [2]),
where it is only required that vn has degree at most
3, but no edge between its neighbours is added. On the
other hand, it is a weaker concept than the vertex order
that defines a 3-tree. Since we will need this concept
later, we define it briefly here. A graph is a k-tree if it
has a vertex order v1, . . . , vn such that vi, for i > k, has
exactly k predecessors and they form a clique. A graph
is a partial k-tree if it is a subgraph of a k-tree.
Geelen, Guo andMcKinnon did not phrase their proof

in terms of a 3-elimination order, but following their
steps, one can see that this is in fact all they needed,
and so they proved:

Theorem 4 [6] Every graph G that has a 3-elimination
order has a straight-line drawing Γ with rational edge
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lengths. Moreover, we can create Γ such that the vertices
are placed arbitrarily close to a given drawing Γ′ of G.
In particular, if G is planar then Γ can be made planar.

Geelen et al. then used the fact that every graph with
maximum degree 3 has a 3-elimination order. They also
point out that every partial 3-tree has such an order.
But actually, this holds for even more graphs, as we will
argue now.

Call a graph G (k, ℓ)-sparse if any induced subgraph
H of G has |E(H)| ≤ max{0, k|V (H)| − ℓ}. Indepen-
dently of the research in this paper, Sun [14] showed
that any (2, 3)-sparse graph has an integer edge-length
drawing, using results from rigidity theory. But in fact,
it can even be shown for (2, 1)-sparse graphs.

Lemma 5 Any (2, 1)-sparse graph G has a 3-
elimination order.

Proof: We prove this by induction; the claim is trivial
if G has only 1 vertex. So assume n ≥ 2. Since G has at
most 2n−1 edges, it has a vertex v of degree at most 3,
and we choose this vertex as vn. G − v is (2, 1)-sparse
and so if deg(v) ≤ 2, we can find a 3-elimination order
for G− v by induction, add vn to it and are done.

If deg(v) = 3 then we add an edge between two neigh-
bours u,w of v, so (2, 1)-sparseness of G′ = G − v ∪
{(u,w)} is not immediately obviously. But we claim
that it holds as follows.

Let H ′ be any induced subgraph of G′. If H ′ does
not contain both u and w, then H ′ is also an induced
subgraph of G and hence |E(H ′)| ≤ 2|V (H ′)|− 1. If H ′

does contain both u and w, then consider the graph H
that is induced by the vertex V (H ′) ∪ {v} in graph G.
Since G is (2, 1)-sparse, |E(H)| ≤ 2|V (H)| − 1. There-
fore, |E(H ′)| = |E(H)|+1− 3 ≤ 2|V (H)| − 1+ 1− 3 =
2|V (H)| − 3 = 2|V (H ′)| − 1 as desired.

So G′ is also (2, 1)-sparse and we can find a 3-
elimination order of it by induction. Adding v = vn
to it gives the desired order. ✷

There are numerous graphs that are known to be
(2, 1)-sparse, and we list here just a few:

Theorem 6 Any (2, 1)-sparse graph G has a straight-
line drawing with rational edge lengths that is planar if
G is planar. This includes the following graph classes:

1. Connected graphs with maximum degree 4 that are
not 4-regular.

2. Graphs with arboricity 2.

3. Planar bipartite graphs.

4. Series-parallel graphs, which are the same as graphs
of treewidth 2, which are the same as partial 2-trees.

5. Outer-planar graphs.

Proof: The main claim follows immediately by com-
bining Theorem 4 with Lemma 5 and scaling to make
edge lengths into integers. It remains to argue that the
given graph classes are actually (2, 1)-sparse.

1. Any connected graph G with maximum degree 4 is
(2, 1)-sparse unless it is 4-regular. For G itself has
at most 2n− 1 edges, and any strict subgraph H of
G has at least one vertex with an edge into G−H
and hence is also not 4-regular.

2. A graph of arboricity 2 is a graph whose edges can
be split into two forests. It is well-known that this
is the same as the set of (2, 2)-sparse graphs [9],
which are hence (2, 1)-sparse.

3. Any planar bipartite graph has arboricity 2 [10].

4. A k-tree can easily be shown to have arboricity k:
for each vertex vi, assign the (at most) k edges to
predecessors to different forests. Therefore a partial
2-tree has arboricity 2.

5. Every outer-planar graph is a series-parallel graph.

✷

5 Conclusion and open problems

In this paper we studied planar straight-line drawings
that have integer edge lengths for all edges. It was al-
ready known that this exists for all graphs with max-
imum degree 3; we provided a different proof of this,
which is simpler and constructive, especially for 3-
connected 3-regular graphs. Then we proved the same
result for some other classes of planar graphs.

The most pressing open problem concerns whether
such drawing exists for all planar graphs. Two sub-
classes of planar graphs where we strongly believe this
to be true are the 4-regular graphs and graphs that
are acyclic 3-orientable [2]. How can this be proved
for them?

For graphs that have an integer edge-length drawing,
can we assume that vertices are additionally at integer
coordinates? (This holds for the drawings of Theorem 4,
and hence for all graphs classes studied thus far.) If so,
are the coordinates bounded as a function of n, and how
small can they be made? (We proved linear bounds for
3-connected 3-regular graphs only.)

Other modification of this problem are possible. For
example, we could define graphs on a given set of points
by adding only those edges that are integers, or perhaps
even only in a given set of integers (see also the work
by Schnabel [11].) What kind of graphs define these,
and do they include all planar graphs? In other words,
can we draw any planar graph such that the distance
between two points is an integer if and only if the edge
between them exists?
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