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Abstract
Semi-supervised support vector machines is an ex-
tension of standard support vector machines with
unlabeled instances, and the goal is to find a label
assignment of the unlabeled instances, so that the
decision boundary has the maximal minimum mar-
gin on both the original labeled instances and unla-
beled instances. Recent studies, however, disclosed
that maximizing the minimum margin does not nec-
essarily lead to better performance, and instead, it is
crucial to optimize the margin distribution. In this
paper, we propose a novel approach ssODM (Semi-
Supervised Optimal margin Distribution Machine),
which tries to assign the labels to unlabeled in-
stances and to achieve optimal margin distribution
simultaneously. Specifically, we characterize the
margin distribution by the first- and second-order
statistics, i.e., the margin mean and variance, and
extend a stochastic mirror prox method to solve the
resultant saddle point problem. Extensive experi-
ments on twenty UCI data sets show that ssODM is
significantly better than compared methods, which
verifies the superiority of optimal margin distribu-
tion learning.

1 Introduction
Traditional supervised learning uses only labeled instances
to train the classifiers. However, labeled instances are often
difficult or expensive to obtain since they require the efforts
of experienced human annotators. On the other hand, unla-
beled instances are universal and relatively easy to collect.
To exploit the value of them, many semi-supervised learning
algorithms have been proposed, among which a very popu-
lar type of algorithms is the semi-supervised support vector
machines (S3VMs). Examples include the semi-supervised
SVM [Bennett and Demiriz, 1999], the transductive SVM
(TSVM) [Joachims, 1999], the Laplacian SVM [Belkin et al.,
2006], and the S3VM using label mean (MeanS3VM) [Li et
al., 2009a], just to name a few. Bennett and Demiriz’s S3VM
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and the TSVM are built upon the cluster assumption and
use the unlabeled instances to regularize the decision bound-
ary. Specifically, these methods prefer the decision boundary
that passes through low-density regions [Chapelle and Zien,
2005]. The Laplacian SVM is a S3VM that exploits the in-
stance’s manifold structure via the graph Laplacian. It en-
codes both the labeled and unlabeled instances by a connected
graph, where each instance is represented as a vertex and two
vertices are connected by an edge if they are quite similar to
each other. The goal is to find labels for the unlabeled in-
stances such that their inconsistencies with both the labeled
instances and the underlying graph structure are minimized.
The MeanS3VM bases on the observation that S3VMs with
knowledge of the means of the labels of the unlabeled in-
stances is closely related to the supervised SVM with known
labels on all the unlabeled instances. So the approach is con-
sist of two steps, i.e., first estimate the label means of the
unlabeled instances, and then build a SVM model. More-
over, several works also try to extend S3VMs for other learn-
ing settings, e.g., the CS4VM [Li et al., 2010] considers the
situation where different misclassification errors are associ-
ated with unequal costs, and the safe S3VM (S4VM) [Li and
Zhou, 2011] tries to exploit many candidate low-density sep-
arators simultaneously to reduce the risk of identifying only
one poor separator with unlabeled instances, so it always per-
formed better than S3VMs.

Aforementioned all kinds of S3VMs are all based on the
large margin principle, i.e., try to maximize the minimum
margin of training instances. However, recent studies on mar-
gin theory [Gao and Zhou, 2013] disclosed that maximiz-
ing the minimum margin does not necessarily lead to bet-
ter performance, and instead, it is crucial to optimize the
margin distribution. Inspired by this recognition, Zhang and
Zhou (2014) proposed ODMs (optimal margin distribution
machines) which can achieve better generalization perfor-
mance than large margin based methods. Later, Zhang and
Zhou (2017; 2018) extends the idea to multi-class learning
and clustering. The success of optimal margin distribution
learning suggests that there may still exist large space to fur-
ther enhance for S3VMs.

In this paper, we propose a novel approach ssODM (semi-
supervised optimal margin distribution machines), which
tries to learn the label assignments of unlabeled instances
and to achieve optimal margin distribution simultaneously.



Specifically, we characterize the margin distribution by the
first- and second-order statistics, i.e., the margin mean and
variance, and then apply the minimax convex relaxation pro-
posed in [Li et al., 2009b], which is proven to be tighter
than SDP relaxations [Xu et al., 2005], to get a convex refor-
mulation. For the optimization of the resultant saddle point
problem, we propose a stochastic mirror prox method which
can converge more quickly in practise than the general sub-
gradient descent for non-smooth problem. Extensive experi-
ments on twenty UCI data sets show that ssODM is signifi-
cantly better than compared methods, which verifies the su-
periority of optimal margin distribution learning.

The rest of this paper is organized as follows. We first
introduce some preliminaries and then present the ssODM
method. Next we show the experimental studies. Finally we
conclude this paper with future work.

2 Preliminaries
We start with the traditional supervised learning. DenoteX as
the instance space and Y = {+1,−1} as the label set. Let D
be an unknown (underlying) distribution overX ×Y . A train-
ing set S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X ×Y)m

is drawn identically and independently (i.i.d.) according toD.
Let φ : X 7→ H be a feature mapping associated to some posi-
tive definite kernel κ : X×X 7→ R. The hypothesis is defined
based on the linear model h(x) = w>φ(x) and the predicted
label of instance x is the sign of h(x), then the decision func-
tion naturally leads to the definition of margin for a labeled
instance, i.e., γ(x, y) = yw>φ(x) [Cristianini and Shawe-
Taylor, 2000]. Thus the higher the margin value, the more
confidence we will have that x’s label is y, and h misclassi-
fies (x, y) if and only if it produces a negative margin. Given
a hypothesis set H of functions mapping X to Y and the la-
beled training set S, our goal is to learn a function h ∈ H such
that the generalization error R(h) = E(x,y)∼D[1sign(h(x))6=y]
is small, where 1(·) is the indicator function that returns 1
when the argument holds, and 0 otherwise.

2.1 Optimal margin distribution machine
It is well known that SVM employs the large margin prin-
ciple to select h and tries to maximize the minimum margin
of training instance, i.e., the smallest distance from the in-
stances to the decision boundary. As a result, the solution of
SVM just consists of a small amount of instance, that is sup-
port vectors (SV), and the rest (non-SVs) are totally ignored,
which may be misleading in some situations. See Figure 1
for an illustration [Zhou, 2014].

A more robust strategy is to consider the whole instances,
i.e., optimizing the margin distribution. To characterize the
distribution, the two most straightforward statistics are the
first- and second-order statistics, that is, the margin mean and
variance. Moreover, a recent study [Gao and Zhou, 2013] on
margin theory proved that maximizing the margin mean and
minimizing the margin variance simultaneously can yield a
tighter generalization bound, so we arrive at the following
formulation,

min
w,γ̄,ξi,εi

1

2
‖w‖2H − ηγ̄ +

λ

m

m∑
i=1

(ξ2
i + ε2i ),

hmin

hdist

Figure 1: A simple illustration of linear separators optimizing the
minimum margin and margin distribution, respectively. Dotted
ellipses are two underlying distributions, from which circles and
squares are instances sampled. Solid circle and square are mean in-
stances (not necessarily real instances in the training data). hmin and
hdist are decision hyperplanes achieved by optimizing the minimum
margin and margin distribution, respectively.

s.t. γ(xi, yi) ≥ γ̄ − ξi,
γ(xi, yi) ≤ γ̄ + εi, ∀i,

where γ̄ is the margin mean, η and λ are trading-off param-
eters, ξi and εi are the deviation of γ(xi, yi) to the margin
mean. It’s evident that

∑m
i=1(ξ2

i + ε2i )/m is exactly the mar-
gin variance.

First, by scaling w which doesn’t affect the final classifi-
cation results, the margin mean can be fixed as 1, then the de-
viation of γ(xi, yi) to the margin mean is |yiw>φ(xi) − 1|.
Secondly, the hyperplane yiw>φ(xi) = 1 divides the fea-
ture space into two parts and for each instance, no matter
which part it lies in, it will suffer a loss which is quadratic
with the deviation. So it is more reasonable to set different
weights for the two kinds of deviations because the instances
lie in {x | yw>φ(x) < 1} are much easier to be misclas-
sified than the other. Thirdly, according to representer the-
orem [Schölkopf and Smola, 2001], the optimal solution is
spanned only by SVs. To achieve a sparse solution, we intro-
duce a θ-insensitive loss like SVR, i.e., the instances whose
deviation is smaller than θ are tolerated and only those whose
deviation is larger than θ will suffer a loss. Finally, we obtain
the formulation of ODM,

min
w,ξi,εi

1

2
‖w‖2H +

λ

m

m∑
i=1

ξ2
i + νε2i

(1− θ)2
,

s.t. yiw
>φ(xi) ≥ 1− θ − ξi,

yiw
>φ(xi) ≤ 1 + θ + εi, ∀i.

(1)

where ν is a parameter for trading-off different kinds of de-
viations, θ is a parameter for controlling the sparsity of the
solution, and (1 − θ)2 in the denominator is to scale the sec-
ond term to be a surrogate loss for 0-1 loss.

It can be found that the least square loss is a special case of
ODM’s loss fucntion by ignoring the asymmetry, so it is more



sensitive to outliers and can only be suitable for some specific
distribution. In addition, without θ-insensitivity, all the in-
stances will be support vectors, which can result in unneces-
sary computation cost. In other words, ODM is more flexible
and can characterize the margin distribution more adaptively.

3 ssODM
In semi-supervised learning setting, not all the training labels
are known. Let SL = {xi, yi}li=1 and SU = {xj}mj=l+1

be the sets of labeled and unlabeled instances, respectively.
L = {1, . . . , l} and U = {l + 1, . . . ,m} are the index sets
of the labeled and unlabeled instances. In semi-supervised
learning, unlabeled data are typically much more abundant
than labeled data, that is, m− l� l. Hence, one can obtain a
trivially “optimal” solution with infinite margin by assigning
all the unlabeled examples to the same label. To prevent such
a useless solution, Joachims (1999) introduced the balance
constraint:

e>ŷU
m− l

=
e>yL
l

where ŷ> = [ŷ1, . . . , ŷm] is the vector of learned labels on
both labeled and unlabeled examples, y>L = [y1, . . . , yl],
ŷ>U = [ŷl+1, . . . , ŷm], and e stands for the all-one vector.
The basic idea of ssODM is to minimize the objective func-
tion in Eq. (1) w.r.t. both the labeling ŷ and decision function
parameter w, ξi, εi. Hence, Eq. (1) is extended to

min
ŷ∈B

min
w,ξi,εi

1

2
‖w‖2H +

m∑
i=1

λi
ξ2
i + νε2i

(1− θ)2

s.t. ŷiw
>φ(xi) ≥ 1− θ − ξi,

ŷiw
>φ(xi) ≤ 1 + θ + εi, ∀i,

(2)

where B = {ŷ | ŷ = [ŷL; ŷU ], ŷL = yL, ŷU ∈
{0, 1}m−l, e

>ŷU

m−l = e>yL

l } is a set of candidate label assign-

ments. λi = λ1(m−l)−λ2l
l(m−l) 1i∈L + λ2

m−l , and λ1, λ2 trade off
empirical losses on the labeled and unlabeled data, respec-
tively.

To avoid the curse of dimensionality, the inner minimiza-
tion problem of Eq. (2) is usually cast in the dual form. De-
note X as the data matrix whose i-th column is φ(xi), i.e.,
X = [φ(x1), . . . , φ(xm)], and introduce the dual variables
α � 0, the Lagrangian of Eq. (2) leads to

min
ŷ∈B

max
α�0

−1

2
α>

[
K � ŷŷ> −K � ŷŷ>
−K � ŷŷ> K � ŷŷ>

]
α (3)

− (1− θ)2

4
α>

[
I � λ 0
0 1

ν I � λ

]
α−

[
(θ − 1)e
(θ + 1)e

]>
α,

whereK = X>X is the kernel matrix, λ> = [λ1, . . . , λm],
� and � denotes the element-wise product and division, re-
spectively. Note that the objective function is a negative defi-
nite quadratic form whose stationary point can’t locate at the
infinity, so we can replace the constraint {α | α � 0} by a
bounded box A = {α | 0 � α � τe}, where the auxiliary

parameter τ is introduced for the sake of mathematical sound-
ness. For a sufficiently large τ , the new problem is equal to
the original problem.

To overcome the difficulty of this mixed-integer program-
ming, many relaxations have been proposed, among which
the minimax convex relaxation proposed in [Li et al., 2009b;
2013] is proven to be the tightest. So in this paper, we also
employ this method to deal with the mixed-integer problem,
i.e., interchanging the order of maxα∈A and minŷ∈B, then
we can obtain

max
α∈A

min
ŷ∈B

G(α, ŷ),

where G(α, ŷ) is the objective function of Eq. (3), and this
can be further transformed into

max
α∈A

min
δ

(−δ) s.t. G(α, ŷk) ≥ δ, ∀ŷk ∈ B. (4)

For the inner optimization in Eq. (4), introduce the dual vari-
ables µ> = [µ1, . . . , µ|B|] � 0, the Lagrangian leads to

max
µ�0

min
δ

−δ − ∑
k:ŷk∈B

µk(G(α, ŷk)− δ)

 ,

By setting the partial derivative of δ to zero, we can obtain∑
k:ŷk∈B µk = 1 and the dual turns to

max
µ∈M

− ∑
k:ŷk∈B

µkG(α, ŷk)

 , (5)

whereM = {µ ∈ R|B|+ | e>µ = 1} is the simplex in R|B|.
By substituting Eq. (5) into Eq. (4) and denoting ϕ(µ,α) =∑
k:ŷk∈B µkG(α, ŷk), Eq. (4) can be rewritten as

max
α∈A

min
µ∈M

ϕ(µ,α).

Note that ϕ(µ,α) is a convex combination of negative def-
inite quadratic forms, so it’s convex in µ and concave in α.
According to Sion’s minimax theorem [Sion, 1958], there ex-
ists a saddle point (µ?,α?) ∈M×A such that

min
µ∈M

max
α∈A

ϕ(µ,α) ≤ max
α∈A

ϕ(µ?,α) = ϕ(µ?,α?)

= min
µ∈M

ϕ(µ,α?) ≤ max
α∈A

min
µ∈M

ϕ(µ,α),
(6)

By combining with the following minimax inequality [Kim
and Boyd, 2008],

max
α∈A

min
µ∈M

ϕ(µ,α) ≤ min
µ∈M

max
α∈A

ϕ(µ,α),

we can realize that all the equalities hold in Eq. (6) and arrive
at the final formulation of ssODM:

min
µ∈M

max
α∈A

ϕ(µ,α). (7)

4 Optimization
In this section, we commence with a simple introduction
to minimax problem, followed by a stochastic mirror prox
method to find the saddle point.



4.1 Minimax problem
Since ϕ(·,α) is convex and ϕ(µ, ·) is concave, according to
the convex inequality, for any pair (µ̄, ᾱ) ∈M×A we have

ϕ(µ̄, ᾱ)− ϕ(µ, ᾱ) ≤ ∂µϕ(µ̄, ᾱ)>(µ̄− µ), ∀µ ∈M,

ϕ(µ̄,α)− ϕ(µ̄, ᾱ) ≤ −∂αϕ(µ̄, ᾱ)>(ᾱ−α), ∀α ∈ A.

By adding the above two inequalities together we have

ϕ(µ̄,α)− ϕ(µ, ᾱ) ≤ g(u)>(u−w), ∀µ,α, (8)

where w = (µ,α),u = (µ̄, ᾱ) ∈ M × A, and g(u) =
(∂µϕ(u),−∂αϕ(u)), which plays a similar role as gradient
in general convex optimization. Note that Eq. (8) holds for
any µ and α, in particular we have

max
α∈A

ϕ(µ̄,α)− min
µ∈M

ϕ(µ, ᾱ) ≤ g(u)>(u−w). (9)

The left hand side is referred to as the “duality gap”, which
can be decomposed into two parts, i.e.,

max
α∈A

ϕ(µ̄,α)− min
µ∈M

ϕ(µ, ᾱ)

= max
α∈A

ϕ(µ̄,α)− ϕ(µ?,α?) + ϕ(µ?,α?)− min
µ∈M

ϕ(µ, ᾱ)

= max
α∈A

ϕ(µ̄,α)− min
µ∈M

max
α∈A

ϕ(µ,α)︸ ︷︷ ︸
primal gap

+ max
α∈A

min
µ∈M

ϕ(µ,α)− min
µ∈M

ϕ(µ, ᾱ)︸ ︷︷ ︸
dual gap

.

As can be seen, the primal gap and the dual gap are both non-
negative and the more closer to the saddle point, the smaller
both gaps. So duality gap can be viewed as a measure to
evaluate the closeness of current point (µ̄, ᾱ) to the saddle
point (µ?,α?).

4.2 Stochastic mirror prox method
For ssODM, the feasible set of µ and α are simplex and
bounded box, respectively, so the most suitable optimization
method is mirror descent [Beck and Teboulle, 2003], and the
corresponding mirror maps are ΦM(µ) =

∑
k µk logµk and

ΦA(α) = ‖α‖22/2, respectively. Further note that the objec-
tive of inner optimization is smooth function, mirror descent
can be accelerated to the rate O(1/t) by applying the mirror
prox technique in [Nemirovski, 2005].

Introduce the joint map Φ(w) = aΦM(µ) + bΦA(α),
where a = 1/

√
log |B| and b =

√
2/τ
√
m. It can be

shown that ∇ΦM(µ) = logµ + e, ∇ΦA(α) = α and
∇Φ(w) = (a logµ + ae, bα). At the t-th iteration, we
first map wt = (µt,αt) into the dual space ∇Φ(wt) =
(a logµt + ae, bαt), followed by one step of stochastic gra-
dient descent in the dual space,

∇Φ(ut) = ∇Φ(wt)− ηg̃(wt)

= (a logµt + ae− η∂µϕ̃(µt,αt), bαt + η∂αϕ̃(µt,αt))

where ∂µϕ̃, ∂αϕ̃ and g̃ are the noisy unbiased estimation of
∂µϕ, ∂αϕ and g, respectively, and η is the step size. Next,

we map ∇Φ(ut) back to the primal space, i.e., to find ut =
(µ̄t, ᾱt) such that

a log µ̄t + ae = a logµt + ae− η∂µϕ̃(µt,αt),

bᾱt = bαt + η∂αϕ̃(µt,αt),

which implies that µ̄t = µt exp(−η∂µϕ̃(µt,αt)/a) and
ᾱt = αt + η∂αϕ̃(µt,αt)/b. Finally, we project (µ̄t, ᾱt)
back to M× A based on Kullback-Leibler divergence and
Euclidean distance, respectively, i.e., we solve the following
two optimization problems:

µ̄t+1 = argminµ∈Mµ
> log

µ

µ̄t
,

ᾱt+1 = argminα∈A‖α− ᾱt‖22,

Fortunately, both problems have a closed-form solution. The
latter is to project ᾱt onto the bounded box, so we have
ᾱt+1 = max{min{ᾱt, τe},0}. For the former, the La-
grangian function leads to µ> log(µ/µ̄t) + ζ(e>µ − 1),
where ζ is the dual variable. By setting the partial derivative
of µ to zero, i.e., log(µ/µ̄t) + e+ ζe = 0, we have µ̄t+1 =
µ̄t exp(−1 − ζ). Since µ̄t+1 belongs to a simplex, hence
1 = e>µ̄t+1 = e>µ̄t exp(−1 − ζ) = ‖µ̄t‖1 exp(−1 − ζ),
which implies that exp(−1 − ζ) = 1/‖µ̄t‖1, thus we have
µ̄t+1 = µ̄t/‖µ̄t‖1. Once we have yt+1 = (µ̄t+1, ᾱt+1),
start the above procedures from wt again, but this time using
the gradient evaluated at yt+1 instead ofwt. In words, one it-
eration of mirror prox consists of two steps of mirror descent
starting from the same point, but using gradients evaluated at
different points. Figure 2 illustrates one iteration of stochastic
mirror prox method.

primal spacedual space

M×A

wt
∇Φ∇Φ(wt)

∇Φ(ut)

−ηg̃(wt)

ut(∇Φ)−1

yt+1

∇Φ(vt+1)

−ηg̃(yt+1)

vt+1

(∇Φ)−1

wt+1

projection

Figure 2: Illustration of one iteration of stochastic mirror prox
method.

The remaining question is how to find the stochastic gra-
dient ∂µϕ̃(µt,αt) and ∂αϕ̃(µt,αt). Note that ϕ(µ,α) =∑
k:ŷk∈B µkG(α, ŷk), so we have

∂µϕ(µt,αt) = [G(αt, ŷ1), . . . , G(αt, ŷ|B|)],

∂αϕ(µt,αt) = [∂αG(αt, ŷ1), . . . , ∂αG(αt, ŷ|B|)]µt.

By uniformly choosing an index it from {1, 2, . . . , |B|}, we
can obtain ∂µϕ̃(µt,αt, it) = [0, . . . , |B|G(αt, ŷit) . . . , 0].



Algorithm 1 Stochastic mirror prox for ssODM

1: Input: maximum iteration number T , ODM parameters
λ1, λ2, ν, θ, upper bound τ , stopping criteria ι.

2: Initialize µ0 ← [1/|B|, . . . , 1/|B|], α0 ← 0, t← 0.
3: while t < T do
4: Uniformly select it, i′t from {1, 2, . . . , |B|}.
5: ∂µϕ̃← [0, . . . , |B|G(αt, ŷit) . . . , 0].
6: Select jt from {1, 2, . . . , |B|} according to µt.
7: ∂αϕ̃← ∂αG(αt, ŷjt).
8: µ̄t ← µt exp(−η∂µϕ̃/a).
9: ᾱt ← αt + η∂αϕ̃/b.

10: µ̄t+1 ← µ̄t/‖µ̄t‖1.
11: ᾱt+1 ← max{min{ᾱt, τe},0}.
12: ∂µϕ̃← [0, . . . , |B|G(ᾱt+1, ŷi′t) . . . , 0].
13: Select j′t from {1, 2, . . . , |B|} according to µ̄t+1.
14: ∂αϕ̃← ∂αG(ᾱt+1, ŷj′t).
15: µ̄t+1 ← µt exp(−η∂µϕ̃/a).
16: ᾱt+1 ← αt + η∂αϕ̃/b.
17: µt+1 ← µ̄t+1/‖µ̄t+1‖1.
18: αt+1 ← max{min{ᾱt+1, τe},0}.
19: t← t+ 1.
20: if duality gap is smaller than ι then
21: Break.
22: end if
23: end while
24: Output: µ, α.

On the other hand, by randomly sampling an index jt accord-
ing to the distribution µt on {1, 2, . . . , |B|}, we can obtain
∂αϕ̃(µt,αt, jt) = ∂αG(αt, ŷjt). It can be shown that

E[∂µϕ̃(µt,αt, it) | µt,αt] = ∂µϕ(µt,αt),

E[∂αϕ̃(µt,αt, jt) | µt,αt] = ∂αϕ(µt,αt),

and g̃(wt) = (∂µϕ̃(µt,αt, it),−∂αϕ̃(µt,αt, jt)) is an un-
biased estimation of g(wt). Algorithm 1 summarizes the
pseudo-code of ssODM.

4.3 Recovering the label assignment
Once the saddle point (µ?,α?) is found, we can obtain
the label assignment of unlabeled instances according to
sign(

∑
k:ŷk∈B µ

?
kŷk).

5 Empirical Study
In this section, we empirically evaluate the proposed method
on twenty UCI data sets. Table 1 summarizes the statistics
of these data sets. As can be seen, the number of instance is
ranged from 62 to 72,309, and the dimensionality is ranged
from 6 to 20,958, covering a broad range of properties.

5.1 Setting
For each UCI data set, 75% of the examples are randomly
chosen for training, and the rest for testing. We investigate
the performance of each approach with varying amount of la-
beled data (namely, 5%, 10% of the labeled data). The whole
setup is repeated 10 times and the average accuracies as well
as the standard deviations on the test set are recorded.

Table 1: Characteristics of experimental data sets.

ID Data set #Instance #Feature

1 echocardiogram 62 8
2 house 232 16
3 heart 270 9
4 heart-statlog 270 13
5 haberman 306 14
6 live-discorders 345 6
7 ionosphere 351 33
8 vehicle 435 16
9 house-votes 435 16
10 clean1 476 166
11 wdbc 569 14
12 isolet 600 51
13 austra 690 15
14 australian 690 42
15 diabetes 768 8
16 german 1,000 59
17 optdigits 1,143 42
18 krvskp 3,196 36
19 sick 2,643 28
20 real-sim 72,309 20,958

We compare our method with 1) the standard SVM (us-
ing labeled data only) [Cortes and Vapnik, 1995], and
four state-of-the-art S3VMs, namely 2) Transductive SVM
(TSVM) [Joachims, 1999]; 3) Laplacian SVM [Belkin et
al., 2006]; 4)UniverSVM (USVM) [Collobert et al., 2006];
and 5) S4VM [Li and Zhou, 2011]. Note that TSVM and
USVM adopt the same objective but with different optimiza-
tion strategies (local search and constrained convex-concave
procedure, respectively), so they may converge to different
local minimum.

For all the methods, the parameters C, λ1, λ2 are se-
lected from {1, 10, 100, 1000}. For ssODM, ν and θ
are selected from [0.2, 0.4, 0.6, 0.8]. For all data sets,
both the linear and Gaussian kernels are used. In par-
ticular, the width σ of Gaussian kernel is picked from
{0.25

√
γ, 0.5

√
γ,
√
γ, 2
√
γ, 4
√
γ}, where γ is the average

distance between instances. All the experiments are repeated
10 times and the average performance is reported with the
best parameter setting.

5.2 Performance
Table 2 summarizes the results on the twenty UCI data sets.
As can be seen, for the two settings, i.e., 5% labeled data and
10% labeled data, ssODM achieves the best performance on
14 and 13 data sets, respectively. In addition, in comparing
with S3VMs which do not consider margin distribution, the
win/tie/loss counts show that ssODM is always better or com-
parable, almost never worse than S3VMs.

6 Conclusions
Semi-supervised support vector machines (S3VMs), which
employs the large margin heuristic from support vector ma-
chines, have achieved more accurate results than other semi-



Table 2: Accuracies on the various data sets with 5% and 10% labeled instances on twenty UCI data sets. The best performance on each
data set is bolded. •/◦ indicates ssODM is significantly better/worse than compared methods (paired t-tests at 95% significance level). The
win/tie/loss counts for ssODM are summarized in the last two rows.

Data set Label SVM TSVM LapSVM USVM S4VM ssODM

echocardiogram 5% .800±.071• .741±.082• .644±.221• .801±.061• .804±.078• .819±.011
10% .812±.077• .761±.087• .684±.201• .821±.063• .824±.073• .839±.015

house 5% .900±.041• .903±.056• .906±.067• .903±.068• .909±.073• .917±.014
10% .912±.047• .921±.057• .918±.171• .911±.053• .924±.066 .923±.018

heart 5% .700±.080• .752±.062• .733±.063• .762±.063• .772±.061• .783±.054
10% .751±.049• .783±.047• .756±.041• .779±.053• .784±.056 .798±.016

heart-statlog 5% .730±.010• .762±.061• .753±.068• .781±.053• .791±.061 .789±.054
10% .751±.008• .792±.062• .793±.058• .791±.041• .831±.056 .824±.045

haberman 5% .651±.071• .614±.053• .577±.112• .743±.123 .732±.121 .737±.141
10% .683±.067• .634±.047• .601±.098• .794±.113 .787±.111 .788±.011

live-discorders 5% .568±.051• .555±.053• .556±.055• .590±.052 .530±.071• .588±.048
10% .583±.067• .584±.047• .601±.088• .642±.103 .590±.091• .639±.008

ionosphere 5% .678±.061• .822±.113◦ .656±.058• .770±.064• .701±.064• .791±.041
10% .691±.057• .861±.047◦ .681±.058• .791±.043• .761±.054• .831±.015

vehicle 5% .748±.041• .751±.083• .773±.052• .741±.069• .789±.062 .791±.041
10% .761±.035• .772±.062• .791±.046• .760±.060• .819±.067 .823±.035

house-votes 5% .888±.031• .891±.043• .899±.032• .901±.053• .912±.041 .925±.035
10% .897±.026• .899±.031• .901±.032• .910±.045• .925±.035 .929±.031

clean1 5% .580±.061• .621±.074• .641±.065• .623±.065• .641±.041• .661±.045
10% .591±.054• .641±.054• .649±.055• .634±.542• .651±.038• .671±.035

wdbc 5% .813±.064• .803±.034• .808±.048• .820±.061• .821±.048 .829±.039
10% .831±.054• .823±.031• .818±.044• .825±.060• .829±.043 .835±.033

isolet 5% .970±.029• .976±.031• .980±.038• .987±.037• .988±.048 .991±.040
10% .973±.025• .978±.030• .985±.032• .989±.035• .989±.043 .992±.045

austra 5% .770±.059• .820±.030 .766±.033• .781±.045• .775±.041• .813±.040
5% .790±.051• .850±.032 .796±.031• .788±.037• .799±.036• .843±.034

australian 5% .672±.081• .681±.034• .782±.031• .789±.041• .788±.042• .799±.035
10% .681±.075• .692±.038• .791±.030• .792±.040• .797±.041• .805±.039

diabetes 5% .679±.080• .683±.039• .761±.069• .771±.049• .768±.048• .790±.049
10% .703±.071• .703±.034• .770±.063• .776±.040• .771±.044• .798±.040

german 5% .700±.030• .703±.010• .708±.021• .710±.029• .715±.041• .726±.045
10% .700±.030• .708±.010• .709±.016• .713±.023• .718±.043• .731±.037

optdigits 5% .922±.020 .891±.090• .902±.050• .913±.069• .918±.041 .919±.042
10% .925±.023 .894±.091• .912±.055• .917±.064• .913±.040 .921±.040

krvskp 5% .911±.023• .899±.091• .921±.054• .916±.068• .926±.042• .932±.040
10% .919±.020• .903±.090• .927±.050• .925±.069• .929±.040• .936±.045

sick 5% .941±.021 .932±.090• .939±.034• .935±.048• .929±.045• .948±.048
10% .946±.020 .938±.088• .941±.033• .939±.041• .934±.041• .955±.043

real-sim 5% .901±.022• .913±.065• .922±.035• .930±.043• .924±.049• .922±.033
10% .909±.020• .919±.062• .929±.031• .933±.040• .928±.043• .941±.028

ssODM: w/t/l 5% 18/2/0 18/1/1 20/0/0 18/2/0 13/7/0
10% 18/2/0 18/1/1 20/0/0 18/2/0 11/9/0

supervised methods. Recent studies disclosed that instead of
minimum margin, it is more crucial to optimize the margin
distribution for SVM-style learning algorithms. Inspired by
this recognition, we propose a novel approach ssODM for
semi-supervised learning by optimizing the margin distribu-
tion. To conquer the resultant saddle point problem, we ex-
tend a stochastic mirror prox method which can converge
more quickly in practise than general sub-gradient descent

for non-smooth problem. Experimental results in various data
sets show that our method achieves promising performance,
which further verifies the superiority of optimal margin dis-
tribution learning. In the future, we will apply importance
sampling [Schmidt et al., 2015] and variance reduction tech-
niques [Johnson and Zhang, 2013] to further accelerate our
method and extend it to other learning settings, i.e., multi-
instance multi-label learning.
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