Summary of the paper

Title A Fast and Accurate Vietnamese Word Segmenter
Authors Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark Dras and Mark Johnson
Abstract We propose a novel approach to Vietnamese word segmentation. Our approach is based on the Single Classification Ripple Down Rules methodology (Compton and Jansen, 1990), where rules are stored in an exception structure and new rules are only added to correct segmentation errors given by existing rules. Experimental results on the benchmark Vietnamese treebank show that our approach outperforms previous state-of-the-art approaches JVnSegmenter, vnTokenizer, DongDu and UETsegmenter in terms of both accuracy and performance speed. Our code is open-source and available at: https://github.com/datquocnguyen/RDRsegmenter.
Topics Morphology, Tools, Systems, Applications, Other
Full paper A Fast and Accurate Vietnamese Word Segmenter
Bibtex @InProceedings{NGUYEN18.55,
  author = {Dat Quoc Nguyen and Dai Quoc Nguyen and Thanh Vu and Mark Dras and Mark Johnson},
  title = "{A Fast and Accurate Vietnamese Word Segmenter}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA