Summary of the paper

Title Improving a Multi-Source Neural Machine Translation Model with Corpus Extension for Low-Resource Languages
Authors Gyu Hyeon Choi, Jong Hun Shin and Young Kil Kim
Abstract In machine translation, we often try to collect resources to improve performance. However, most of the language pairs, such as Korean-Arabic and Korean-Vietnamese, do not have enough resources to train machine translation systems. In this paper, we propose the use of synthetic methods for extending a low-resource corpus and apply it to a multi-source neural machine translation model. We showed the improvement of machine translation performance through corpus extension using the synthetic method. We specifically focused on how to create source sentences that can make better target sentences, including the use of synthetic methods. We found that the corpus extension could also improve the performance of multi-source neural machine translation. We showed the corpus extension and multi-source model to be efficient methods for a low-resource language pair. Furthermore, when both methods were used together, we found better machine translation performance.
Topics Corpus (Creation, Annotation, Etc.), Other
Full paper Improving a Multi-Source Neural Machine Translation Model with Corpus Extension for Low-Resource Languages
Bibtex @InProceedings{CHOI18.139,
  author = {Gyu Hyeon Choi and Jong Hun Shin and Young Kil Kim},
  title = "{Improving a Multi-Source Neural Machine Translation Model with Corpus Extension for Low-Resource Languages}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA