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Here is it.

Let x be a positive rational number written as x = a/(b — a) for
0 < a < b coprime.
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Here is it.
Let x be a positive rational number written as x = a/(b — a) for
0 < a < b coprime. Then we define the Catalan number

1 a+b a+b—1)!

alb! '
Please note the a, b-symmetry.
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Special cases.



Special cases.

> Eugéne Charles Catalan (1814-1894)

(a < b) = (n < n+ 1) gives the good old Catalan number

Cat(n) = Cat (2)

1
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Special cases.

> Eugéne Charles Catalan (1814-1894)

(a < b) = (n < n+ 1) gives the good old Catalan number

Cat(n) = Cat (2)

1
» Nicolaus Fuss (1755-1826)

1 (241
C2n+1 n )
(a < b) = (n < kn + 1) gives the Fuss-Catalan number

Cat ((kn +n1) - n> -

1

(k+1)n+1<(k+1)n+1>'

n




Again let x = a/(b — a) for 0 < a < b coprime.
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Euclidean Algorithm & Symmetry.

Definition
Again let x = a/(b — a) for 0 < a < b coprime. Then we define the
derived Catalan number

ooy b\ _ JCat(l/(x—1)) ifx>1
Catl) =3 (a) B {Cat(x/(l —x)) ifx<1

This is a “categorification” of the Euclidean algorithm.



Euclidean Algorithm & Symmetry.
Definition

Again let x = a/(b — a) for 0 < a < b coprime. Then we define the
derived Catalan number

Cat'(x) = %(:) - {Cat(l/(x -1))

Cat(x/(1 — x))

if x <1
This is a “categorification” of the Euclidean algorithm.

If we define Cat: Q\ [-1,0] — N by Cat(—x — 1) := Cat(x) then the
formula is simpler:

Cat/(x) = Cat(1/(x — 1)) = Cat(x/(1 — x)).

if x>1




Catalan “Number Theory”?

Describe a recurrence for the Cat function, perhaps in terms of the
Calkin-Wilf sequence
1

1

2 1 3 2 3 1 4
> — > — > — > — > — > — > — > —
1 2 1 3 2 3 1 4 3
which is defined by
X = 1

x| +1—{x}

See Aigner and Ziegler: “Proofs from THE BOOK”, Chapter 17.




Well, that was fun. But perhaps untethered to reality. . .
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» An integer partition A = (A; > Ay > -+ ) F nis called p-core if it
has no cell with hook length p.

» Say AF nis (a, b)-core if it has no cell with hook length a or b.

«O>» «Fr «=)»

<

it
o

DA



Motivation 1: Cores

Definition

» An integer partition A = (A > Ay > ---) F nis called p-core if it
has no cell with hook length p.

» Say A nis (a, b)-core if it has no cell with hook length a or b.

The partition (5,4,2,1,1) - 13 is (5, 8)-core.
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The number of (a, b)-cores is finite if and only if a, b are coprime, in
which case the number is

a 1 fa+b
Cat(b—a) - a+b< a,b)'
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The number of (a, b)-cores is finite if and only if a, b are coprime, in
which case the number is

a 1 a+b
G (525) = 5 (an )

:a-l-b

2 2
For a, b coprime 3 unique largest (a, b)-core of size (a —1%gb =Y which
contains all others as subdiagrams.
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A few facts.

Theorem (Anderson, 2002)

The number of (a, b)-cores is finite if and only if a, b are coprime, in
which case the number is

Cat a 1 a+tb
b—a) a+b\ ab)

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

2 2
For a, b coprime 3 unique largest (a, b)-core of size (a _1%21’ =Y which
contains all others as subdiagrams.

Study Young's lattice restricted to (a, b)-cores.




A few facts.




For a, b coprime, the number of self-conjugate (a, b)-cores is (
Note: Beautiful bijective proof! (omitted)
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A few facts.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is (
Note: Beautiful bijective proof! (omitted)

T
(L%J + L§J> 1
150513

CEE [aafbb}

qg=-1



A few facts.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is (
Note: Beautiful bijective proof! (omitted)

T
<L§J + L§J> 1
150513

CEE [a:bb}

g=—1

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate
(a, b)-core are both equal to

(a+b+1)(a—1)(b—1)
24 0
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» Bijection: (a, b)-cores < Dyck paths in a x b rectangle
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Anderson’s beautiful proof of Ilb(a:é’).

Step 1

» Bijection: (a, b)-cores < Dyck paths in a x b rectangle

40 35 30 25 20 15 10 5 O

9le|4|3]1] 32 pis
7 211 2 1
411 16

12 ,
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Anderson’s beautiful proof of Ilb(a:é’).

Step 1

» Bijection: (a, b)-cores < Dyck paths in a x b rectangle

40 35 30 25 20 15 10 5 O

9le6fa]3]1]| s2]er|22fir|i2| 72| }
7 211 24(19(14| 9 | 4
411 16116 | 1|

2 3 ‘ i

I 7




Anderson’s beautiful proof of Ilb(a:f)'

Step 1

» Bijection: (a, b)-cores < Dyck paths in a x b rectangle

40 35 30 25 20 15 10 5 O

9l6]4]3]1]| s2]er|22fir|i2| 72| }
7 211 24(19(14| 9 | 4
411 16116 | 1|

2 3 ‘ i

Z —=




Anderson’s beautiful proof of ﬁ(":f).

Step 1

» Bijection: (a, b)-cores < Dyck paths in a x b rectangle

40 35 30 25 20 15 10 5 0’

9le6|4|3]1] s2]er|221rfi2]7[2] }
7 2|1 2419|149 [ 4| | T
41 16|11 6

2 3

[




Anderson’s beautiful proof of ﬁ(":f).

Step 1

» Bijection: (a, b)-cores < Dyck paths in a x b rectangle

40 35 30 25 20 15 10 5 0’

9le6|4[3]1] s2]2r|22f1rfr2[7 2] }
7 201 24(19(1409 (4| [
411 16|11] 6

2 3

- [ 4




» Theorem (Bizley, 1954): # Dyck paths is

1 (a+b
a+b
» See Loehr's book: “Bijective Combinatorics”, page 497.

a,b)'
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a+b)

Anderson’s beautiful proof of a+b ( b

Step 2

» Theorem (Bizley, 1954): # Dyck paths is aib(fé’).

» See Loehr's book: “Bijective Combinatorics”, page 497.

Proof idea.

» The ("’:b) lattice paths break into cyclic orbits of size a + b.
» Each orbit contains a unique Dyck path.

» Coprimality of a, b is necessary.



(with Haglund, Haiman, Loehr, Warrington et al.)
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(with Haglund, Haiman, Loehr, Warrington et al.)

Again let x = a/(b — a) with 0 < a < b coprime.
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Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition
Again let x = a/(b — a) with 0 < a < b coprime.

» An x-parking function is a “decorated” Dyck path in the a X b
rectangle. (Decorate the vertical runs with the labels {1,2,..., a}.)



Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition
Again let x = a/(b — a) with 0 < a < b coprime.

» An x-parking function is a “decorated” Dyck path in the a X b
rectangle. (Decorate the vertical runs with the labels {1,2,..., a}.)

» Classical form: (z, 2, ..., z,) where label i occurs in column z;.



Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition
Again let x = a/(b — a) with 0 < a < b coprime.

» An x-parking function is a “decorated” Dyck path in the a X b
rectangle. (Decorate the vertical runs with the labels {1,2,..., a}.)

» Classical form: (z, 2, ..., z,) where label i occurs in column z;.

» Symmetric group &, acts on classical forms by permutation. Let
PF(x) denote the corresponding &,-module.



Motivation 2: Parking Functions

> Here's the 5/3-parking function with classical form (3,1,4,4,1).

> Here's the 5/3-parking function with

classical form (3,1, 1,4, 4).

7




» +# x-parking functions is !

» # x-Dyck paths with r; vertical runs of length / is

PF(x) =) _

hy,
r—a
where the sum is over r = 01"

a® Fawith )., =b.
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» # x-parking functions is h?~ .

# x-Dyck paths with r; vertical runs of length / is

PF(x) =) _ B,

r—a

where the sum is over r = 01" .

# x-parking functions fixed by 0 € &, is
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» # x-parking functions is h?~ .

» # x-Dyck paths with r; vertical runs of length / is %(

PF(x):Zl( b

he,
o b\rn,n,..., ra)

where the sum is over r = 0°1" ... a" - a with ). r; = b.

b

ro,rl,...,ra)'
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A few facts.

Theorems
» # x-parking functions is b L.
» # x-Dyck paths with r; vertical runs of length i is l( b )

b \ry,r,...,ra/) "
1 b
PF(x) = : <r0A r) he,

r-a
where the sum is over r = 071" ... 3% - a with >, r; = b.

» # x-parking functions fixed by o € &, is b#cles(@)—1

PF(x) =3 50 %
ra f



Define a quasisymmetric function with coefficients in N[q, t] by

PFq_t(X) — Z qqstat(P)ttstat(P)/_—iDeS(P)
P

Sum over x-parking functions P.
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d g and t?

Define a quasisymmetric function with coefficients in N[q, t] by

PFq,t(X) o Z qqstat(P) ttStat(P)FiDes(P)-
P



d g and t?

Define a quasisymmetric function with coefficients in N[q, t] by

PFq,t(X) o Z qqstat(P) ttStat(P)FiDes(P)-
P

» Sum over x-parking functions P.



d g and t?

Define a quasisymmetric function with coefficients in N[q, t] by

PFq,t(X) — Z qqstat(P) ttStat(P)FiDeS(P)'
P

» Sum over x-parking functions P.

» F is fundamental (Gessel) quasisymmetric function.
— natural refinement of Schur functions




d g and t?

Define a quasisymmetric function with coefficients in N[q, t] by

PFq,t(X) o Z qqstat(P) ttStat(P)FiDeS(P)'
P

» Sum over x-parking functions P.

» F is fundamental (Gessel) quasisymmetric function.
— natural refinement of Schur functions

» Must define gstat, tstat, iDes for x-parking function P.
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gstat is easy.

Definition

> Let gstat := area := # boxes between the path and diagonal.

» Note: Maximum value of area is (a — 1)(b — 1)/2. (Frobenius)
— see Beck and Robins, Chapter 1

» This 5/3-parking function has area = 6.
4
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» Read labels by increasing “height” to get permutation o € G,.
» iDes := the descent set of o~ 1.
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iDes is reasonable.

Definition
» Read labels by increasing “height” to get permutation 0 € G.,.

» iDes := the descent set of o 1.

» Remember the “height”?

40 35 30 25 20 15 10 5 0
32(27|22|17]12] 7 [ 2 |-3}<8
24(19(14] 9| 4 |-1[-6711]-16

16[11] 6 | 1 |-4179 |-14|-19]-24
3 | -2|-7-12]-17|-22]-27|-32
-51°10|-15|-20|-25/-30|-35|-40
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iDes is reasonable.

Definition

» Read labels by increasing “height” to get permutation 0 € G.,.
» iDes := the descent set of o~ 1.

> Look at the heights of the vertical step boxes.

40 35 30 25 20 15 10 5 O

32 12
24 4
16 1

3|

= —




iDes is reasonable.

Definition

» Read labels by increasing “height” to get permutation o € &,.
» iDes := the descent set of o~ 1.

» Remember the labels we had before.

40 35 30 25 20 15 10 5 O

32 4

24 3

16 1| 17
5| |
o




iDes is reasonable.

Definition

» Read labels by increasing “height” to get permutation 0 € G.,.
» iDes := the descent set of o~ 1.

> Read them by increasing height to get o = 21534 € Gs.

40 35 30 25 20 15 10 5 O

32 4
24 3
16 1

5|

Py —




iDes is reasonable.

Definition

» Read labels by increasing “height” to get permutation 0 € G.,.
» iDes := the descent set of o~ 1.

> Read them by increasing height to get o = 21534 € Gs.

40 35 30 25 20 15 10 5 O

32 4
24 3
16 1

5|

Py —

> iDes = {1,4}.
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» “Blow up” the x-parking function.

» Compute “dinv" of the blowup.
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tstat is bizarre (as usual).

Definition

» “Blow up” the x-parking function.
» Compute “dinv” of the blowup.

» Remember our friend the 5/3-parking function.
4

,»"/.




tstat is bizarre (as usual).

Definition

» “Blow up” the x-parking function.
» Compute “dinv” of the blowup.

» Since 2-8—3-5=1 we “blow up” by 2 horiz. and 3 vert....
4 ps




tstat is bizarre (as usual).

» To get this!

W W | W | ==

(o[ |ot|a| ot




tstat is bizarre (as usual).

» To get this! Now compute “dinv’. (Computation omitted.)

W W | W |k &=

(o[ oo ot




» PF11(x) = PF(x).
: PFQ.I(X) is

— via LLT polynomials

with coeffs € NJg, t].
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» PFy1(x) = PF(x).
> PFq:(x) is

— via LLT polynomials

with coeffs € NJg, t].
> Probably PF, :(x) = PF: 4(x).

— this will be impossible to prove (see Loehr's Maxim)
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» PFy1(x) = PF(x).

» PF, :(x) is symmetric and Schur-positive with coeffs € Nq, t].
—via LLT pOIynomials
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» PFy1(x) = PF(x).

> PFg :(x) is symmetric and Schur-positive with coeffs € N|q, t].
— via LLT polynomials

> Probably PF, :(x) = PF; ¢(x).

— this will be impossible to prove (see Loehr's Maxim)
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» PFy1(x) = PF(x).

> PFg :(x) is symmetric and Schur-positive with coeffs € N|q, t].

— via LLT polynomials

> Probably PF, :(x) = PF; ¢(x).
— this will be impossible to prove (see Loehr's Maxim)

> The coefficient of sgn is some Catg ¢(x).
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Some things.

Things

> PF171(X) = PF(X)
PF,.+(x) is symmetric and Schur-positive with coeffs € N[g, t].
—via LLT polynomials

Probably PF, ¢(x) = PF; q(x).
— this will be impossible to prove (see Loehr's Maxim)

v

v

v

The coefficient of sgn is some Catg +(x).

Probably q(®=D(=1/2Cat_ 1 (x) = ﬁ {a:ﬂq'
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Some things.

Things

> PFL]_(X) = PF(X)
PFg,:(x) is symmetric and Schur-positive with coeffs € N|q, t].
— via LLT polynomials

Probably PF, ¢(x) = PF; q(x).
— this will be impossible to prove (see Loehr's Maxim)

v

v

v

The coefficient of sgn is some Catg +(x ( ).

Probably g(a—1)(b= 1)/2Cat 1(X) [‘”‘b}

v

o [3+b]q q

» Does PFg +(x) occur “in nature”?
» How are PF, ¢(x) and PFg, ¢:(—x — 1) related?
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(quoting from: Cellini-Papi, Haiman, Shi, Sommers et al.)
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Consider Weyl group &, with a, b coprime.

» These are the weight and root lattices A < Q of &,.




Consider Weyl group &, with a, b coprime.

» Here is a fundamental parallelepiped for A/bA.

e
S
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Consider Weyl group &, with a, b coprime.

» It contains b° ! elements (the “parking functions”).

e
S

AVAVA




Consider Weyl group &, with a, b coprime.

» But they look better as a simplex...




Consider Weyl group &, with a, b coprime.

» ...which is congruent to a nicer simplex.




Consider Weyl group &, with a, b coprime.

» There are ﬁ(ajf) elements of the root lattice inside.




Consider Weyl group &, with a, b coprime.

» These are called (a, b)-cores (or x-Dyck paths).




“The same” works for all Weyl groups...

Definition
Consider a Weyl group W with Coxeter number h and let p € N coprime
to h. We define the Catalan number

Catgwop) = [ 5 e

where e2™i/h are the eigenvalues of a Coxeter element.



but I'm out of time.
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