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This talk will advertise a definition.

Here is it.

Definition

Let x be a positive rational number written as x = a/(b − a) for
0 < a < b coprime. Then we define the Catalan number

Cat(x) :=
1

a + b

(
a + b

a, b

)
=

(a + b − 1)!

a!b!
.

!!!

Please note the a, b-symmetry.
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Special cases.

When b = 1 mod a . . .

I Eugène Charles Catalan (1814-1894)

(a < b) = (n < n + 1) gives the good old Catalan number

Cat(n) = Cat
(n

1

)
=

1

2n + 1

(
2n + 1

n

)
.

I Nicolaus Fuss (1755-1826)

(a < b) = (n < kn + 1) gives the Fuss-Catalan number

Cat

(
n

(kn + 1)− n

)
=

1

(k + 1)n + 1

(
(k + 1)n + 1

n

)
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Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b − a) for 0 < a < b coprime. Then we define the
derived Catalan number

Cat′(x) :=
1

b

(
b

a

)
=

{
Cat(1/(x − 1)) if x > 1

Cat(x/(1− x)) if x < 1

This is a “categorification” of the Euclidean algorithm.

Remark

If we define Cat : Q \ [−1, 0]→ N by Cat(−x − 1) := Cat(x) then the
formula is simpler:

Cat′(x) = Cat(1/(x − 1)) = Cat(x/(1− x)).
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Catalan “Number Theory”?

Problem

Describe a recurrence for the Cat function, perhaps in terms of the
Calkin-Wilf sequence

1

1
7→ 1

2
7→ 2

1
7→ 1

3
7→ 3

2
7→ 2

3
7→ 3

1
7→ 1

4
7→ 4

3
7→ · · ·

which is defined by

x 7→ 1

bxc+ 1− {x}
.

See Aigner and Ziegler: “Proofs from THE BOOK”, Chapter 17.



What?

Well, that was fun. But perhaps untethered to reality. . .



Motivation 1: Cores

Definition

I An integer partition λ = (λ1 ≥ λ2 ≥ · · · ) ` n is called p-core if it
has no cell with hook length p.

I Say λ ` n is (a, b)-core if it has no cell with hook length a or b.

Example

The partition (5, 4, 2, 1, 1) ` 13 is (5, 8)-core.
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A few facts.

Theorem (Anderson, 2002)

The number of (a, b)-cores is finite if and only if a, b are coprime, in
which case the number is

Cat

(
a

b − a

)
=

1

a + b

(
a + b

a, b

)
.

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For a, b coprime ∃ unique largest (a, b)-core of size (a2−1)(b2−1)
24 , which

contains all others as subdiagrams.

Problem

Study Young’s lattice restricted to (a, b)-cores.
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A few facts.

Example (The poset of (3, 4)-cores.)



A few facts.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is
(b a

2 c+b
b
2 c

b a
2 c,b

b
2 c

)
.

Note: Beautiful bijective proof! (omitted)

Observation/Problem(b a
2c+ b b

2 c
b a

2c, b
b
2 c

)
=

1

[a + b]q

[
a + b

a, b

]
q

∣∣∣∣∣
q=−1

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate

(a, b)-core are both equal to (a+b+1)(a−1)(b−1)
24 .
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Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 1

I Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (NB: Conjugation is weird, but...)



Anderson’s beautiful proof of 1
a+b

(
a+b
a,b

)
.

Step 2

I Theorem (Bizley, 1954): # Dyck paths is 1
a+b

(
a+b
a,b

)
.

I See Loehr’s book: “Bijective Combinatorics”, page 497.

Proof idea.

I The
(
a+b
a,b

)
lattice paths break into cyclic orbits of size a + b.

I Each orbit contains a unique Dyck path.

I Coprimality of a, b is necessary.
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Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let x = a/(b − a) with 0 < a < b coprime.

I An x-parking function is a “decorated” Dyck path in the a× b
rectangle. (Decorate the vertical runs with the labels {1, 2, . . . , a}.)

I Classical form: (z1, z2, . . . , za) where label i occurs in column zi .

I Symmetric group Sa acts on classical forms by permutation. Let
PF(x) denote the corresponding Sa-module.
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Motivation 2: Parking Functions

Examples for x = 5/(8− 5). (Cat(x) = 99.)

I Here’s the 5/3-parking function with classical form (3, 1, 4, 4, 1).

I Here’s the 5/3-parking function with classical form (3, 1, 1, 4, 4).



A few facts.

Theorems

I # x-parking functions is ba−1.

I # x-Dyck paths with ri vertical runs of length i is 1
b

(
b

r0,r1,...,ra

)
:

PF(x) =
∑
r`a

1

b

(
b

r0, r1, . . . , ra

)
hr,

where the sum is over r = 0r01r1 · · · ara ` a with
∑

i ri = b.

I # x-parking functions fixed by σ ∈ Sa is b#cycles(σ)−1:

PF(x) =
∑
r`a

b`(r)−1 pr

zr
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∃ q and t?

Idea

Define a quasisymmetric function with coefficients in N[q, t] by

PFq,t(x) :=
∑
P

qqstat(P)ttstat(P)FiDes(P).

I Sum over x-parking functions P.

I F is fundamental (Gessel) quasisymmetric function.
— natural refinement of Schur functions

I Must define qstat, tstat, iDes for x-parking function P.
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qstat is easy.

Definition

I Let qstat := area := # boxes between the path and diagonal.

I Note: Maximum value of area is (a− 1)(b − 1)/2. (Frobenius)
— see Beck and Robins, Chapter 1

Example

I This 5/3-parking function has area = 6.
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iDes is reasonable.

Definition

I Read labels by increasing “height” to get permutation σ ∈ Sa.

I iDes := the descent set of σ−1.

Example

I This is a secret message.

I iDes = {1, 4}.
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iDes is reasonable.

Definition

I Read labels by increasing “height” to get permutation σ ∈ Sa.

I iDes := the descent set of σ−1.

Example

I Look at the heights of the vertical step boxes.

I iDes = {1, 4}.
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I iDes := the descent set of σ−1.

Example

I Remember the labels we had before.

I iDes = {1, 4}.
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I Compute “dinv” of the blowup.

Example

I What?
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tstat is bizarre (as usual).

Definition

I “Blow up” the x-parking function.

I Compute “dinv” of the blowup.

Example

I Since 2 · 8− 3 · 5 = 1 we “blow up” by 2 horiz. and 3 vert....
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tstat is bizarre (as usual).

Example

I To get this! Now compute “dinv”. (Computation omitted.)



Some things.

Things

I PF1,1(x) = PF(x).

I PFq,t(x) is symmetric and Schur-positive with coeffs ∈ N[q, t].
— via LLT polynomials

I Probably PFq,t(x) = PFt,q(x).
— this will be impossible to prove (see Loehr’s Maxim)

I The coefficient of sgn is some Catq,t(x).

I Probably q(a−1)(b−1)/2Catq, 1
q
(x) = 1

[a+b]q

[
a+b
a,b

]
q
.

Problems

I Does PFq,t(x) occur “in nature”?

I How are PFq,t(x) and PFq,t(−x − 1) related?
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Motivation 3: Lie Theory

(quoting from: Cellini-Papi, Haiman, Shi, Sommers et al.)



Consider Weyl group Sa with a, b coprime.

I Please disregard this.



Consider Weyl group Sa with a, b coprime.

I These are the weight and root lattices Λ < Q of Sa.



Consider Weyl group Sa with a, b coprime.

I Here is a fundamental parallelepiped for Λ/bΛ.



Consider Weyl group Sa with a, b coprime.

I It contains ba−1 elements (the “parking functions”).



Consider Weyl group Sa with a, b coprime.

I But they look better as a simplex...



Consider Weyl group Sa with a, b coprime.

I ...which is congruent to a nicer simplex.



Consider Weyl group Sa with a, b coprime.

I There are 1
a+b

(
a+b
a,b

)
elements of the root lattice inside.



Consider Weyl group Sa with a, b coprime.

I These are called (a, b)-cores (or x-Dyck paths).



“The same” works for all Weyl groups...

Definition

Consider a Weyl group W with Coxeter number h and let p ∈ N coprime
to h. We define the Catalan number

Catq(W , p) :=
∏

j

[p + mj ]q
[1 + mj ]q

where e2πimj/h are the eigenvalues of a Coxeter element.



...but I’m out of time.


