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Abstract Many of the striking similarities which occur for the adjoint representation of groups in
the exceptional series (cf. [1-3]) also occur for certain representations of specific reductive
subgroups. The tensor algebras on these representations are easier to describe (cf. [4,5,7]),
and may offer clues to the original situation.

The subgroups which occur form a Magic Triangle, which extends Freudenthal’'s Magic

Square of Lie algebras. We describe these groups from the perspective of dual pairs, and
their representations from the action of the dual pair on an exceptional Lie alJelnize
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La série exceptionnelle, et sa descendance

Résumé Les articles [1-3] exhibent des ressemblances entre les propriétés des représentations
adjointes des groupes de la série exceptionnelle. Nous obtenons des ressemblances
analogues pour certaines représentations préférées de séries de sous-groupes. L'algebre
tensorielle de ces représentations est plus accessible (cf. [4,5,7]). Ceci pourrait aider a
comprendre ce qui se passe.

Les sous-groupes en question forment un «triangle magique» qui prolonge le carré
magique d'algébres de Lie de Freudenthal. Nous décrivons ces sous-groupes en termes
de paires duales, et leur représentations préférées en termes de leur action sur I'algébre de
Lie du groupe de la série exceptionnelle ambi&our citer cet article: P. Deligne, B.H.

Gross, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 877-881.
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We consider the series of algebraic groups
eCA1CA2CGrC DysC FaC EgC E7C Eg, D

where an indexed capital letter stands for the corresponding simple simply connected complex group. Each
group is a subgroup of the next, the inclusion morphism being unique up to conjugacy. The inclusions of
the trivial groupe in A1 in A2 and of Eg in E7 in Eg are given by inclusions of Dynkin diagram. The long

roots of Gz (resp.F4) form a root system of typd, (resp.Dy), providingA, C G2 and Dy C Fy. Finally,

G2 (resp.Fy) is the subgroup oD4 (resp.Es) fixed by the grougss (resp.S») of automorphisms respecting

a pinning (épinglage).
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Table 1. — The centralizer df in K.

A1 <« E7Du2
Gn A2 <« EgDus
“3 A1 Gy <« F4D01
u% G,z,, A:f Dg <« D4gD u%
13 A1/p2 Az C3 Fg <« G2D1
u3 G2, A2 A3 As  Eg <« A2Dpu3
Gm A1 A3 C3 As Dg E7 <« A1Dus
Aq Ao G» Dy Fy Eg E7 Eg <« eD1
1t 0 0 0 0
/n2  /u3).2 /13).83 /na).2 iz
v 13 12 2/3 1 32 2 3 5

The centralizers irtg of the subgroups (1) form (a conjugate of) the same series of subgroufys of
taken in the reverse order, giving rise to the dual p&ir€&s), (A1, E7), (A2, Es), (G2, F4) and(Da, Da)
in Eg.

For each paitH C K of distinct subgroups in (1), Table 1 gives the centralizeHoin K. Rows are
indexed byH, columns byK . If H' andK’ are the centralizers df andKX in Eg, the centralized’ N K
of H in K is also the centralizer o’ in H'. This explains the symmetry of the table. If we go over to Lie
algebras, the lower right 4 4 square is Freudenthal’s “magic square” of Lie algebras.

For each paitH C K, H injects into the automorphism group Autof the Lie algebra of K. Our
magic triangle is the system of the centralizetsof H in Aut k. As H is connected, the centralizer &f
in the adjoint groupk 2 is the image of the centralizer ¢f in K: to obtainG from the corresponding
entry of Table 1, one divides by the centeriofand takes an extension with, as quotient group, the group
of outer automorphisms @€ . This modifying isogeny is indicated under each column. In all but one case,
the required extension is a semi-direct product, with the quotient group acting as a group of automorphisms
respecting a pinning. The exception is the nonsplit exten&ry 13).2 atA1 C As.

As H injects into Autk), the centetiZ(H) of H is a central subgroup af. It is shown at the right of
Table 1. In most case&; and H form a dual pair in Autk), that is, they are each other’s centralizer, hence
have the same center. The exceptionskye E7 andF4 C Eg.

The last row of the magic triangle, correspondind#e= ¢, is the exceptional series of [2]: the groups of
automorphisms of the Lie algebras, az, g2, da, fa, es, €7, eg. Under each column, we also give the value
of a parameter. For the exceptional series, iths' /6, for ¥ the dual Coxeter number: the inverse of the
parametep used in [3].

For each paitH C K, giving rise toG, the representation af x H onk = Lie(K) has the following
structure:

k~g@1+1@h+ Y Vo ® We,

with W, running over the irreducible representationgbbccurring ink/(g + h). If H = A1, A2, D4, Es
or E7, theW,, are the minuscule representationgbfThey can be indexed by their central character, which
is an arbitrary nontrivial character of the center, and are conjugate by the outer automorphissoof
H = G, or Fy, there is only ondV: the representation whose nonzero weights are the short roéts of

The V,, are always irreducible. In this way, for each row of the magic triangle, we obtain a system of
irreducible representations @¢f. When H is simply laced, it is indexed by the nontrivial characters of
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Table 2. — The preferred representatiohsf G.

2
2 (1) A
3
3 (2 AVeV
3 2
1 3 7 (1) AS
8 (3) SZ,V/®V”®VW
21 5 8 14 26 (1) s2,83
1 31 6 9 15 27 (2 S v eV
2
21 4 8 14 20 32 56 (1) A, S84

Z(H). WhenH = G2 or Fy, itis reduced to a single representation. Ebe= ¢, it is empty. We call those
representations theeferred representations.

The preferred representations @Gfare conjugate by outer automorphisms and, when there are two of
them, are in duality. In particular, the preferred representatibasG are all of the same dimension, given
in Table 2. When the restrictio¥i|G° of V to the centralizeG® of H in K24 is reducible, the dimension
is given in the forma.b, a being the length o/ |G® andb the dimension of its irreducible constituents.
At G2 C D4 (resp.F4 C Es), we get the irreducible representation$f of dimension 2 (resp. the sign
character of57). In all other cases, there is a subgroupf indexa of Out(K) such thatV is induced from
a representatiofi; of A x G with A acting trivially on the dominant weight subspacelaf As could
be inferred from the knowledge of central charactersAatc F4 (resp.G2 C E7), the dominant weight
of the representation @3 is [0, 0, 1] (resp.[0, 1, 0]). For the rows 1 to 7, the group is the subgroup of
[ GL(V,) fixing tensors whose types depend only on the row. The number of preferred representations,
and those types, are given in Table 2 as well; an entry susfi agnds fors3(V,,), all .

One of us (B.G.) first encountered the Magic Triangle (for Lie algebras) in the Harvard Ph.D. thesis of
K. Rumelhart. The approach to it here was suggested by the work of G. Savin on dual pairs.

In each row, the dimension of a preferred representation is a linear function foi the row of
centralizerstcEz, ..., Ay, itis

E7:v—3, Eg. v—2, Fy: 2v — 3, Dy 2v — 2, o

Go. 6v—4, Az 6v—3, A1 12v—4.
If, in the definition of the magic triangle, one allow$ = K, prefixing each row by a trivial group and
taking for its preferred representation(s) the zero representation(s), the dimension formulas (2) remain valid.

Other representations correspond to each other across the groups in a row. They give rise to uniform

decomposition formulas, and their dimensions are the valueg@} of a rational function, which is
the quotient of products of rational linear factors. The case of the last row, the exceptional series, is
considered in [1-3]; the adjoint representations correspond to each other, and they have the dimension
2(5v — 1)(6v + 1)/(v + 1). This formula, due to Vogel, was the beginning of the story on the exceptional
series. The case of the seventh row, corresponding te A1, is strikingly similar. The vertices of the
Dynkin diagramE~ are labelled

2 6 75 31
4

and we writex (i), 2;, s(i) for the simple roots, fundamental weights, and generators of the Weyl group so
numbered. LeV, be the Q-) linear span of the&; (i < r); it is the orthogonal complement of th&i),
i >r.Forr=1,3,5, 6 the trace orV, of the E7-root system is empty, resp. a root systari] As, Dg.
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We take as its positive roots those which are positiveBer For r = 1, 3, the orthogonal projection to
V, of the E7-root system is a root systedy, resp.C3. We take as positive roots the nonzero projections
of positive roots. FoiG in row seven and of rank, this construction allows us to view the; (i <r) as
dominantweights of the connected compor@hbf G. To an irreducible representati®t()) of E7, whose
dominant weight: is linear combination of th&; (i < r), will correspond the following representation
V(G, 1) of G: take the irreducible representati®i{G°, 1) of the “same” dominant weight, and the
sum of its distinct conjugates by the component grauyiz°. This representation is the restriction@?
of an irreducible representation 6f. We expect there is a best choice for this representatian, gfiving
rise to nicer decomposition formulas, but we have not pinned it down. Corresponding representations have
the same central character and are orthogonal (resp. symplectic) whers the trivial (resp. nontrivial)
character ofu>.

For eachG, V(1) is the preferred representation. For ré@ik > 2, V(2») is the adjoint representation,

2
andS2V (1) = V(2Q21) + V(Q2). ForrankG) > 3, A V(Q1) = V(Q3) + 1. For rankG) > 3 andp >1
one has

VQD®V(pQ1) =) _ V(pQ1+ )

with « running over the weightQ1, —Q21, Q2 — Q1 andQ3 — Q1. Experiments using the program LIE [6]
suggest that more generally

V(pQ) ® V() =) V(a1 +bQ+cQ),

the sum being over the tripl€s, b, ¢) with a of the same parityag+q and|p—¢| <a < p+qg—2(b+¢),
and that for rankG) > 4, a similar formula holds foV (pQ21) ® V (g Q22).

We will exhibit rational functiongD (1; X) depending on a dominant weightof E7 which is a linear
combination of theQ; (i < 6), with the property that if the coefficient @2; in A vanishes whenever
i >rank(G), then

dimV (G, 1) =D (x,v(G))

for v(G) the parameter ofs, given in Table 1.

To describeD(A; X), we will use the language of multisets (sets with integer multiplicities, positive or
negative). FO€ a set, a multiseE in £ is simply a functionng: £ — Z, its multiplicity function. We will
only use multisets whose multiplicity function has finite support. &or £, the characteristic function of
{e} is noteds[e]. Multisets can be added, aftl= > m g (e)d[e].

Let(, ) be the Weyl group invariant symmetric bilinear form on fieroot system for which roots have
square length 2. It induces a bilinear fofm ) on V,., and hence on the root systems, A%, C3, As, Dg.
For those of rank> r, define

W(GO, 1) = (multiset of the(A + p, @), for « a positive root)
— (multiset of the(p, «), for o a positive root)

In this definition,p is the sum of fundamental weights 6 and the multiplicityn (x) of a rational number
x in W(GP, 1) is the number of positive roots such that+ p, @) = x, minus the number of positive roots
such that(p, o) = x. Weyl's dimension formula says

dimv (G2 a Hx xin W(GO% me“)

Itis not only the integers difii (G, A) which we will mterpolate from group to group, but also the multisets
W (GO, 1). Definew’(G9, 1) by its multiplicity function

m'(x) :=mx) —m(x + 1). 3)
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One hasn(x) = m/(x +n) (sum ovem > 0). We will exhibit a multise})’ of affine linear forms in the
coordinatey; (i < 6)of A =3 p;Q;, and an indeterminat®, such that each’(G°, 1) is deduced from
W' by specialization at andv(G). Further, for a given dominant weight= > p; Q;, if we specialize/V’
at to obtain a multisevV; of linear forms inX, WV, is derived by (3) from a finite multiseét;, and

DL X)=]Jw (winWy).

As in [3], the discrepancy between di{G©°, 1) and dimV (G, 1) is accounted for by true values of factors
0/0 (see example below).

Let W}, be the sum of the following contributions (“mv” is for “moving”™: linear forms actually
depending on.). A positive roote = > a;a (i) of E7 fixed bys(7) contributes

8[a7X+n+Zaipi} —8[a7X+n—1+Za,'p,},

with Ba7 +n = Zigai- A pair of positive roots exchanged by7), « = > a;a(i) ande’ = o — a(7) =
> aja(i), contributes

8{a7X+n+Zaipi} —S{aéX—i-n/—l-i-Za,{Pi},

withSa7+n=>";, ;a; and @7 +n' =3, ;a;.Onehas;y =a7—1,a/ =a; fori <6andn’—1=n+3.
Finally one obtaingV’ by adding toW,,, a sum of§[BX + n], such thadV’ specialized at = 0 is the
empty multiset of linear form8 X + n. It follows that

D(L, X) :H[(Bx+n+1)... (BX—}-n—f—Zaipi)],
the product being oveny,,,. Example: fork = pQq,
4X -341)...4X -3+ p).3X—-2+41)...3X -2+ p).2X+p-1)
X-1+1)...X-14+p).D...(p).2X -1
evaluated ak = v(G). For p = 1, we obtain the dimension of the preferred representation:
(4X — 2)(3X — 1)(2X)
X.1.2X —1)
evaluated aX = v(G). ForG = (G,;/u3).2, one has := v(G) = 1/2; the numbers#— 2 and 2 — 1,
3v —1 andv, as well as 2 and 1 cancel to giv&/ (G,,, 1) =¥, and & — 2/2X — 1 (=0/0 atX =1/2)

contributes the factor 2 in the dimensiol »f V.
We expect a similar story for row 6, if the vertices B4 are labelled

1 46 5 2
3

dimV (G, pQ1) =

dimV =
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