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Abstract Many of the striking similarities which occur for the adjoint representation of groups in
the exceptional series (cf. [1–3]) also occur for certain representations of specific reductive
subgroups. The tensor algebras on these representations are easier to describe (cf. [4,5,7]),
and may offer clues to the original situation.

The subgroups which occur form a Magic Triangle, which extends Freudenthal’s Magic
Square of Lie algebras. We describe these groups from the perspective of dual pairs, and
their representations from the action of the dual pair on an exceptional Lie algebra.To cite
this article: P. Deligne, B.H. Gross, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 877–881.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

La série exceptionnelle, et sa descendance

Résumé Les articles [1–3] exhibent des ressemblances entre les propriétés des représentations
adjointes des groupes de la série exceptionnelle. Nous obtenons des ressemblances
analogues pour certaines représentations préférées de séries de sous-groupes. L’algèbre
tensorielle de ces représentations est plus accessible (cf. [4,5,7]). Ceci pourrait aider à
comprendre ce qui se passe.

Les sous-groupes en question forment un « triangle magique » qui prolonge le carré
magique d’algèbres de Lie de Freudenthal. Nous décrivons ces sous-groupes en termes
de paires duales, et leur représentations préférées en termes de leur action sur l’algèbre de
Lie du groupe de la série exceptionnelle ambiant.Pour citer cet article : P. Deligne, B.H.
Gross, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 877–881.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

We consider the series of algebraic groups

e⊂ A1⊂A2⊂G2⊂D4⊂ F4⊂E6⊂E7⊂E8, (1)

where an indexed capital letter stands for the corresponding simple simply connected complex group. Each
group is a subgroup of the next, the inclusion morphism being unique up to conjugacy. The inclusions of
the trivial groupe in A1 in A2 and ofE6 in E7 in E8 are given by inclusions of Dynkin diagram. The long
roots ofG2 (resp.F4) form a root system of typeA2 (resp.D4), providingA2⊂G2 andD4⊂ F4. Finally,
G2 (resp.F4) is the subgroup ofD4 (resp.E6) fixed by the groupS3 (resp.S2) of automorphisms respecting
a pinning (épinglage).
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Table 1. – The centralizer ofH in K .

A1 ← E7⊃ µ2

Gm A2 ← E6⊃ µ3

µ3 A1 G2 ← F4⊃ 1

µ2
2 G2

m A3
1 D4 ← D4⊃ µ2

2

µ2
2 A1/µ2 A2 C3 F4 ← G2⊃ 1

µ3 G2
m A2 A2

2 A5 E6 ← A2⊃ µ3

Gm A1 A3
1 C3 A5 D6 E7 ← A1⊃ µ2

A1 A2 G2 D4 F4 E6 E7 E8 ← e⊃ 1

↑ ↑ ↑ ↑ ↑
/µ2 /µ3).2 /µ2

2).S3 /µ3).2 /µ2

ν: 1/3 1/2 2/3 1 3/2 2 3 5

The centralizers inE8 of the subgroups (1) form (a conjugate of) the same series of subgroups ofE8,
taken in the reverse order, giving rise to the dual pairs(e,E8), (A1,E7), (A2,E6), (G2,F4) and(D4,D4)

in E8.
For each pairH ⊂ K of distinct subgroups in (1), Table 1 gives the centralizer ofH in K. Rows are

indexed byH , columns byK. If H ′ andK ′ are the centralizers ofH andK in E8, the centralizerH ′ ∩K

of H in K is also the centralizer ofK ′ in H ′. This explains the symmetry of the table. If we go over to Lie
algebras, the lower right 4× 4 square is Freudenthal’s “magic square” of Lie algebras.

For each pairH ⊂ K, H injects into the automorphism group Autk of the Lie algebrak of K. Our
magic triangle is the system of the centralizersG of H in Aut k. As H is connected, the centralizer ofH

in the adjoint groupKad is the image of the centralizer ofH in K: to obtainG from the corresponding
entry of Table 1, one divides by the center ofK and takes an extension with, as quotient group, the group
of outer automorphisms ofK. This modifying isogeny is indicated under each column. In all but one case,
the required extension is a semi-direct product, with the quotient group acting as a group of automorphisms
respecting a pinning. The exception is the nonsplit extension(Gm/µ3).2 atA1⊂A2.

As H injects into Aut(k), the centerZ(H) of H is a central subgroup ofG. It is shown at the right of
Table 1. In most cases,G andH form a dual pair in Aut(k), that is, they are each other’s centralizer, hence
have the same center. The exceptions areE6⊂E7 andF4⊂E6.

The last row of the magic triangle, corresponding toH = e, is the exceptional series of [2]: the groups of
automorphisms of the Lie algebrasa1, a2, g2, d4, f4, e6, e7, e8. Under each column, we also give the value
of a parameterν. For the exceptional series, it ish∨/6, for h∨ the dual Coxeter number: the inverse of the
parameterµ used in [3].

For each pairH ⊂K, giving rise toG, the representation ofG×H on k = Lie(K) has the following
structure:

k 
 g⊗ 1+ 1⊗ h+
∑

Vα ⊗Wα,

with Wα running over the irreducible representations ofH occurring ink/(g + h). If H =A1,A2,D4,E6
orE7, theWα are the minuscule representations ofH . They can be indexed by their central character, which
is an arbitrary nontrivial character of the center, and are conjugate by the outer automorphisms ofH . For
H =G2 or F4, there is only oneW : the representation whose nonzero weights are the short roots ofH .

TheVα are always irreducible. In this way, for each row of the magic triangle, we obtain a system of
irreducible representations ofG. WhenH is simply laced, it is indexed by the nontrivial characters of

878



To cite this article: P. Deligne, B.H. Gross, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 877–881

Table 2. – The preferred representationsV of G.

2 (1)
2∧

1 3 (2)
3∧,V ′ ⊗ V ′′

1 3 7 (1)
3∧, S2

1 2.1 4 8 (3) S2,V ′ ⊗ V ′′ ⊗ V ′′′

2.1 5 8 14 26 (1) S2, S3

1 3.1 6 9 15 27 (2) S3,V ′ ⊗ V ′′

2.1 4 8 14 20 32 56 (1)
2∧, S4

Z(H). WhenH =G2 or F4, it is reduced to a single representation. ForH = e, it is empty. We call those
representations thepreferred representations.

The preferred representations ofG are conjugate by outer automorphisms and, when there are two of
them, are in duality. In particular, the preferred representationsV of G are all of the same dimension, given
in Table 2. When the restrictionV |G0 of V to the centralizerG0 of H in Kad is reducible, the dimension
is given in the forma.b, a being the length ofV |G0 andb the dimension of its irreducible constituents.
At G2 ⊂ D4 (resp.F4 ⊂ E6), we get the irreducible representation ofS3 of dimension 2 (resp. the sign
character ofS2). In all other cases, there is a subgroupA of indexa of Out(K) such thatV is induced from
a representationV1 of A � G0 with A acting trivially on the dominant weight subspace ofV1. As could
be inferred from the knowledge of central characters, atA1 ⊂ F4 (resp.G2 ⊂ E7), the dominant weight
of the representation ofC3 is [0,0,1] (resp.[0,1,0]). For the rows 1 to 7, the groupG is the subgroup of∏

GL(Vα) fixing tensors whose types depend only on the row. The number of preferred representations,
and those types, are given in Table 2 as well; an entry such asS3 stands forS3(Vα), all α.

One of us (B.G.) first encountered the Magic Triangle (for Lie algebras) in the Harvard Ph.D. thesis of
K. Rumelhart. The approach to it here was suggested by the work of G. Savin on dual pairs.

In each row, the dimension of a preferred representation is a linear function ofν: for the row of
centralizers toE7, . . . ,A1, it is

E7: ν − 3, E6: ν − 2, F4: 2ν − 3, D4: 2ν − 2,

G2: 6ν − 4, A2: 6ν − 3, A1: 12ν − 4.
(2)

If, in the definition of the magic triangle, one allowsH = K, prefixing each row by a trivial groupe and
taking for its preferred representation(s) the zero representation(s), the dimension formulas (2) remain valid.

Other representations correspond to each other across the groups in a row. They give rise to uniform
decomposition formulas, and their dimensions are the values atν(G) of a rational function, which is
the quotient of products of rational linear factors. The case of the last row, the exceptional series, is
considered in [1–3]; the adjoint representations correspond to each other, and they have the dimension
2(5ν − 1)(6ν + 1)/(ν + 1). This formula, due to Vogel, was the beginning of the story on the exceptional
series. The case of the seventh row, corresponding toH = A1, is strikingly similar. The vertices of the
Dynkin diagramE7 are labelled

2 6 7 5 3 1
4

and we writeα(i), �i , s(i) for the simple roots, fundamental weights, and generators of the Weyl group so
numbered. LetVr be the (Q-) linear span of the�i (i � r); it is the orthogonal complement of theα(i),
i > r. For r = 1,3,5,6 the trace onVr of theE7-root system is empty, resp. a root systemA3

1, A5, D6.
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We take as its positive roots those which are positive forE7. For r = 1,3, the orthogonal projection to
Vr of theE7-root system is a root systemA1, resp.C3. We take as positive roots the nonzero projections
of positive roots. ForG in row seven and of rankr, this construction allows us to view the�i (i � r) as
dominant weights of the connected componentG0 of G. To an irreducible representationV (λ) of E7, whose
dominant weightλ is linear combination of the�i (i � r), will correspond the following representation
V (G,λ) of G0: take the irreducible representationV (G0, λ) of the “same” dominant weightλ, and the
sum of its distinct conjugates by the component groupG/G0. This representation is the restriction toG0

of an irreducible representation ofG. We expect there is a best choice for this representation ofG, giving
rise to nicer decomposition formulas, but we have not pinned it down. Corresponding representations have
the same central characterχ , and are orthogonal (resp. symplectic) whenχ is the trivial (resp. nontrivial)
character ofµ2.

For eachG, V (�1) is the preferred representation. For rank(G) � 2,V (�2) is the adjoint representation,

andS2V (�1)= V (2�1)+ V (�2). For rank(G) � 3,
2∧V (�1)= V (�3)+ 1. For rank(G) � 3 andp � 1,

one has

V (�1)⊗ V (p�1)=
∑

V (p�1+µ)

with µ running over the weights�1,−�1, �2−�1 and�3−�1. Experiments using the program LiE [6]
suggest that more generally

V (p�1)⊗ V (q�1)=
∑

V (a�1+ b�2+ c�3),

the sum being over the triples(a, b, c) with a of the same parity asp+q and|p−q|� a � p+q−2(b+c),
and that for rank(G) � 4, a similar formula holds forV (p�1)⊗ V (q�2).

We will exhibit rational functionsD(λ;X) depending on a dominant weightλ of E7 which is a linear
combination of the�i (i � 6), with the property that if the coefficient of�i in λ vanishes whenever
i >rank(G), then

dimV (G,λ)=D
(
λ, ν(G)

)

for ν(G) the parameter ofG, given in Table 1.
To describeD(λ;X), we will use the language of multisets (sets with integer multiplicities, positive or

negative). ForE a set, a multisetE in E is simply a functionmE: E→ Z, its multiplicity function. We will
only use multisets whose multiplicity function has finite support. Fore in E , the characteristic function of
{e} is notedδ[e]. Multisets can be added, andE =∑

mE(e)δ[e].
Let ( , ) be the Weyl group invariant symmetric bilinear form on theE7 root system for which roots have

square length 2. It induces a bilinear form( , ) onVr , and hence on the root systemsA1, A3
1, C3, A5, D6.

For those of rank� r, define

W(G0, λ)= (multiset of the(λ+ ρ,α), for α a positive root)

− (multiset of the(ρ,α), for α a positive root).

In this definition,ρ is the sum of fundamental weights ofG0 and the multiplicitym(x) of a rational number
x in W(G0, λ) is the number of positive roots such that(λ+ ρ,α)= x, minus the number of positive roots
such that(ρ,α)= x. Weyl’s dimension formula says

dimV
(
G0, λ

)=
∏

x
(
x in W

(
G0, λ

)) :=
∏

xm(x).

It is not only the integers dimV (G,λ) which we will interpolate from group to group, but also the multisets
W(G0, λ). DefineW ′(G0, λ) by its multiplicity function

m′(x) :=m(x)−m(x + 1). (3)

880



Pour citer cet article : P. Deligne, B.H. Gross, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 877–881

One hasm(x)=∑
m′(x + n) (sum overn � 0). We will exhibit a multisetW ′ of affine linear forms in the

coordinatespi (i � 6) of λ=∑
pi�i , and an indeterminateX, such that eachW ′(G0, λ) is deduced from

W ′ by specialization atλ andν(G). Further, for a given dominant weightλ=∑
pi�i , if we specializeW ′

atλ to obtain a multisetW ′λ of linear forms inX, W ′λ is derived by (3) from a finite multisetWλ, and

D(λ,X)=
∏

w (w in Wλ).

As in [3], the discrepancy between dimV (G0, λ) and dimV (G,λ) is accounted for by true values of factors
0/0 (see example below).

Let W ′mv be the sum of the following contributions (“mv” is for “moving”: linear forms actually
depending onλ). A positive rootα =∑

aiα(i) of E7 fixed bys(7) contributes

δ
[
a7X+ n+

∑
aipi

]
− δ

[
a7X+ n− 1+

∑
aipi

]
,

with 5a7+ n=∑
i�7ai . A pair of positive roots exchanged bys(7), α =∑

aiα(i) andα′ = α − α(7)=∑
a′iα(i), contributes

δ
[
a7X+ n+

∑
aipi

]
− δ

[
a′7X+ n′ − 1+

∑
a′ipi

]
,

with 5a7+n=∑
i�7 ai and 5a′7+n′ =∑

i�7a′i . One hasa′7= a7−1,a′i = ai for i � 6 andn′ −1= n+3.
Finally one obtainsW ′ by adding toW ′mv a sum ofδ[BX+ n], such thatW ′ specialized atλ= 0 is the

empty multiset of linear formsBX+ n. It follows that

D(λ,X)=
∏[

(BX+ n+ 1) . . .
(
BX+ n+

∑
aipi

)]
,

the product being overW ′mv. Example: forλ= p�1,

dimV (G,p�1)= (4X− 3+ 1) . . . (4X− 3+ p).(3X− 2+ 1) . . . (3X− 2+ p).(2X+ p− 1)

(X− 1+ 1) . . . (X− 1+ p).(1) . . . (p).(2X− 1)

evaluated atX = ν(G). Forp = 1, we obtain the dimension of the preferred representation:

dimV = (4X− 2)(3X− 1)(2X)

X.1.(2X− 1)

evaluated atX = ν(G). ForG = (Gm/µ3).2, one hasν := ν(G) = 1/2; the numbers 4ν − 2 and 2ν − 1,
3ν − 1 andν, as well as 2ν and 1 cancel to giveW(Gm,�1)= ∅, and 4X− 2/2X− 1 (= 0/0 atX = 1/2)
contributes the factor 2 in the dimension 2.1 of V .

We expect a similar story for row 6, if the vertices ofE6 are labelled

1 4 6 5 2
3
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