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DIVISIBILITY OF REDUCTION IN GROUPS
OF RATIONAL NUMBERS

FRANCESCO PAPPALARDI

ABSTRACT. Given a multiplicative group of nonzero rational numbers and a
positive integer m, we consider the problem of determining the density of
the set of primes p for which the order of the reduction modulo p of the
group is divisible by m. In the case when the group is finitely generated the
density is explicitly computed. Some examples of groups with infinite rank are
considered.

1. INTRODUCTION

It is a well known result due to Hasse [5] and others that the probability that 2
generates a subgroup of Fy with even order is 17/24 while the probability that 3
generates a subgroup of [, with even order is 2 /3. So, it might not be a surprise to
read that the probability that 2 and 3 together generate a subgroup of F, with even
order is 195/224 and that the probability that 3 and 5 together generate a subgroup
of I}, with even order is 6/7. In general, groups of rational numbers containing 2
have a slightly higher tendency, than those not containing 2, to generate subgroups
of I}, with even order. This phenomenon is related to the fact that the size of the
Galois group of 28 — 2 is half of the size of the Galois group of z® — ¢ where ¢ is an
odd prime. This paper deals with these properties in a fairly general context.

Let I' C Q* be a multiplicative subgroup and define the support SuppI' of T’
to be the set of primes p such that the p-adic valuation of some elements of I" is
nonzero. In the special case of finitely generated I' (see [15]) it is easy to see that
Suppl is finite. For any prime p ¢ Suppl’, we denote by I', the reduction of I
modulo p. That is,

'y ={g(modp): geT}.
It is clear that since p & Supp[', I', C F} is a subgroup. As usual we also denote
by ind,(I") and ord,(T') the index and the order of I',. That is,

ord, (") = #I', and ind,(T') = [F, : T')] = (p — 1)/ ord,(T").
Here, for m € Z, we consider the function

Ar(z,m) =#{p <z: p & Suppl, m |ord,(I)}.
The special case of I' generated by a rational number in Q* \ {1,—1} has been
extensively considered in the literature. For a complete and updated account we
refer to Moree’s survey paper [I1 Sections 9.2 and 9.3]. Moree [12], Wiertelak
[20] and the author [I6], give several asymptotic formulas for Ay (z,m) with

Received by the editor October 30, 2012 and, in revised form, May 25, 2013.
2010 Mathematics Subject Classification. Primary 11N37; Secondary 11N56.
This project was supported in part by G.N.S.A.G.A of LN.D.A.M..

(©2014 American Mathematical Society
Reverts to public domain 28 years from publication

385

Licensed to Universita Degli Studi Roma Tre. Prepared on Mon Mar 21 08:12:34 EDT 2016 for download from IP 193.205.142.115.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02872-X

386 F. PAPPALARDI
g € Q*\ {1,—1}. More general results have been considered by Moree [13] and
by Chinen and Murata [2]. In this paper we propose the following:

Theorem 1. Let I' C Q* be a finitely generated group of rank r and let m € N.
Then, as x — oo, uniformly in m,

1 1 2 1+ﬁ
Ar(xz,m) = or mi +Or|7(m)m x x M ,
logx log =

where if y(f,t) =[]y, 0O,
m = {n € N: Rad(n) | m and m | n}

and if Q(Cy, TV is the extension of Q generated by Cx = e*™/* and by the h—th
roots of all the elements of I', then

u(f)
Z Z Q(Cnas rl/v(f,m)) :Ql

nESm d|n
fin

In the case when I' C QT, the group of strictly positive rational numbers, we
express or,m, in terms of the orders of the groups

Theorem 2. Assume that T is a finitely generated subgroup of Q1 and that m € N.
For any squarefree integer n, let t,, = oo if either m is odd or for all t > 0,

772tQ*2t+l ¢ I'(2'*!) and t,, = min {t eEN: 772t(@”‘2tJr1 € F(2t+1)} otherwise. Fur-
thermore, let s, = vo (%), where §(n) is the discriminant of Q(\/n) and let

or = [Lesuppr ¢- Then

1 -1
o mo— T N 1_ AT 0N 1_ 1/1 ’
T p(m) g ;WIF(@) 2

nlged(m,or)
£>2
where
0 if t, = oo,
Z 1 if sp <t < o0
k k n—=sn )
by = iy, 28]
1
1 .
_W-FZW ZfST,>t77.
k>sy
Remarks. (1) The condition I' C Q% is not essential. It is mainly due to the

fact that the group (I'N Q((jm)*?x) .Q**” /Q*Qa is easy to describe when
I' ¢ Q. This is done in Corollary [l However, similar expressions for
or,m as in Theorem [B]should be derived also for groups containing negative
numbers and, in particular, containing —1.

(2) Tt is plain that the Generalized Riemann Hypothesis for the Dedekind zeta
functions of the fields Q((m, T'Y?) (d | m) allows a sharper error term
in Theorem [[I In fact, applying the Generalized Riemann Hypothesis,
and proceeding along the lines of the proof of Theorem [ and applying
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 387

[I7, Lemma 5] rather than Lemma Ml it can be shown that, as * — oo,
uniformly in m,

Ar(z,m) = or n li(z )—l—Or( (m )3x3/4logas>.

(3) All the series involved in the expression for gr ,, are convergent since they
are bounded by geometric series. In the case when I is finitely generated
with rank 7, for every prime power £/, the following identity holds (see (H)):

|I‘(€j)| — pmax{0,j—v¢(Ar1), 7(T71)j7v14(A7'71)srjfvﬂ(AT‘)}’
where for ¢ = 1,...,r, A; is the i—th exponent of " (defined in (#])). There-

fore,
é*T’U@(AT)

1 1
_ pue(Ay) _
(1) Z ZINGTE e Z por+1)3 — g+l 1

j>ve(Ar) i>ve(Ar)

This implies that gr,, € Qt. Another immediate consequence of () is
that if ged(m, A,_1) = 1 and either m is odd or ged(m,or) = 1, then

(2) an—$%5£1<y_£:a{L_ﬁmiigildﬂ>'

(4) If one sets Ag = 1, then () holds also for » = 1. More precisely, if I' = (a),
where a € Q* \ {£1}, a = b" where b is not the power on any rational
number so that h = A, we write (in a unique way) b = aja3, where a; is
a squarefree integer. Then

/-1 1 14 1 1
1= Z /i (bh)QfU gw(h) +1 and Z ok (bh)Q*2F = 39v2(h)
.721 Q*U k‘>’r’a Q*Z’k

since 1o, = va(h), 1 = 0 and since s,, = vo (%) By Theorem [2] we

obtain that gy ., equals:

(i) i if [2,a1] | m and v2(8(a1)) < va(mh),
—JT1-— x {1+ —5z if[2,a1] | m and v(6(a1)) > va(mh),
m 2 -1 2202 ()

tm 1 if [2,a1] t m.

This formula is consistent with the formula in [I6, Theorem 1.3].

(5) An immediate consequence of the previous remark is that gr ., # 0 for any
group I' and for any m. In fact, 0(4),» > 0 for any a € Q* and if I" C Q*
is a subgroup with I'" C T, then ord, I'" | ord, I" for any prime p ¢ SuppT.
Therefore, or m > or/m > 0.

(6) In the special case when I' = (dq,ds) with di,ds € QF, multiplicatively
independent, we have that rankI" = 2. So for ¢ > 3,

1 lfj S ’Ug(Al),
F(fj) = éjfw(Al) if U@(Al) < j < ’Ug(AQ/Al),
£2j7ve(A2) lf] > ’Ug(AQ/Al).

Hence

E: (-1 1 ¢ N 1 (B0 1
< 0 |T(69))] T 01 2e(Ba/A) (+1  2P4i+1)°
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388 F. PAPPALARDI

This identity can be used in Theorem [ to explicitly compute o(q 4,),m in
the case when m is odd or when ged(m, o4 4,)) = 1.

(7) ¥ I' ¢ Q is the multiplicative subgroup generated by r distinct prime
numbers py,...,p., then |T(#)] = ¢ for all j, and if n is a divisor of
ged(m, pi - - - py), then ¢, = 0. We deduce that

Lol - v

£>2

where up = #{n e N: n|ged(m,p1---p;), n = k(mod 4)}

0 if 24 m,

3) ¥ = Viprpa potm = ul—l-(%r—l) [;%—Fuﬂ ?fQHm,
el ur + (2 — 1) ug + ug if 4{|m,

w1 + us + us if 8 | m.

Several computations of the densities o,
tion 8

(8) Among the various consequences of Theorem [Il one can also compute the
density of the set of primes for which ord, I' is k—free (i.e., not divisible
by the k—power of any prime). More precisely, if & > 2 and T is finitely
generated with rank r, then

#{p <z: p&gSuppl, ord,(T) is k—free}

B (loglog z)3 x
- (ﬁf”“ +Okr (10g<k—1)/<<k+1)(3r+3>> +) ) logz’

- p),m are presented in Sec-

where
oo
Pr = Z (m) or k-
m=1
In the special case when I' = (p1,--- ,p,) C Q, where p; is prime for all

j=1,...,rand p; <pjyi forall j =1,...,7 — 1, we have that

Br.x = Bre X Br ks

B =] (1 =T _grl)_(élr“ - 1))

£>2

where

and fr € QT. Furthermore, if & > 3 or p; > 3, then fr 4 equals

1 d(2 r T
1- 9k—1 1= g20r+(1 7pll) H Dy p:+1 r
i p; (pj — 1)(pj -1) - (pj -1

while, if k = 2 and p; = 2, frx equals

1 1 - pj—1
5+mn<1_<pj—1><p;“—1>—<p;—1>>'

j=1
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 389

The proof of the above statement is carried out along the lines of [16]
Theorem 1.2]. Indeed, one starts from the identity

#{p <z: pegSuppl, ord,(T) is k—free} = Z p(m)Ap(z, m"b).
m=1

The mail term is obtained by applying Theorem [ to the values of m <
log!/ kB3 2. For logt/ ZkG™+3) o « m < log? 2, one uses the bound
Ar(z,mF) < w(z,m*, 1) and the Brun-Titchmarch Theorem. We will omit
further details.

As for most of the results regarding properties of the index and the order of sub-
groups of 7, the techniques are those of the pioneering work by C. Hooley [7], where
Artin’s Conjecture for primitive roots is established as one of the consequences of
the Generalized Riemann Hypothesis.

The first to consider higher rank groups in relation to the Lang—Trotter Conjec-
ture were Gupta and Ram Murty in [4]. Their approach led to the quasi-resolution
of the Artin’s Conjecture by Gupta, Ram Murty and Heath-Brown [3,[6].

2. NOTATIONAL CONVENTIONS

Throughout the paper, the letters p and ¢ always denote prime numbers. As
usual, we use 7(z) to denote the number of p < x and

T dt
li(z) = [ —
i@) A log ¢

denotes the logarithmic integral function.

o, and 7 are, respectively, the Euler, the Mébius and the number of divisors
functions. An integer is said to be squarefree if it is not divisible for the square of
any prime number and more generally it is said k—free if it is not divisible by the
k—th power of any prime number.

For n € N, Rad(n) denotes the radical of n, the largest squarefree integer dividing
n. For oo € Q*, vg(«v) denotes the £—adic valuation of o and if n € Q*, 6(n) denotes
the field discriminant of Q(,/1). So, if

do(ar) = sgn(a) H l,

14
ve(a)=1 mod 2

then d(n) = do(n) if do(n) = 1(mod 4) and §(n) = 4¢(n) otherwise.

For functions F' and G > 0 the notations F' = O(G) and F < G are equivalent
to the assertion that the inequality |F| < ¢G holds with some constant ¢ > 0. In
what follows, all constants implied by the symbols O and < may depend (where
obvious) on the small real parameter e but are absolute otherwise; we write O, and
<, to indicate that the implied constant depends on a given parameter p.

3. FINITELY GENERATED SUBGROUPS OF Q*

Let T be a finitely generated subgroup of Q* of rank r and let (aq,...,a,) be
a Z-basis of I'. We write Supp(I') = {pi1,...,ps}. Then we can construct the

Licensed to Universita Degli Studi Roma Tre. Prepared on Mon Mar 21 08:12:34 EDT 2016 for download from IP 193.205.142.115.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



390 F. PAPPALARDI

s X r—matrix with coefficients in Z:

Q11 Ol
M(ala"'va’T): )

dg1 o Qgp

)

defined by the property that |a;| = pi™" - ps>. It is clear that the rank of

M(aq,...,a.)) equals r. This of course implies r < s. For alli =1,...,r, we define
the i—th exponent of T by
(4) A; = Ay(T) = ged (det A : A is a i x i—minor of M(ay,...,a,)).

So A; is the nonnegative greatest common divisor of all the minors of size i of
M(ai,...,a.). We also set Ay, = Ap(T') =1 for £ < 0 and Ay = Ag(T") = 0 for
k > r. It can be shown (see [I, Section 3]) that Aq,..., A, are well defined and do
not depend on the choice of the basis (a1, ..., a,) and on the ordering of the support
{p1,...,ps}. Furthermore, from the Dedekind formula expansion for determinants,
we deduce that

NiA; | Ay ViG> 0.
For m € N, we have the following identity (see [I, Proposition 2, page 129 and the
preceding pages])
wm £m Em,I X m"
(5) [D(m)l = [1Q™/Q™] = ged (m7,m=DA, ... mA, 1, A,

1 ifmisoddorif —1¢T'Q*™,
EmD =
T 2 ifmiseven and — 1 € 'Q*™.

Finally, from (B and (@), we deduce the bounds

(7) o’ 2P| > 5y

4. LOCALLY FINITE SUBGROUPS OF Q*

The case when I' is not finitely generated is also of interest. In order to apply
the machinery used for finitely generated groups, we shall make some necessary
assumptions. We say that I' has thin support if SuppD’ has 0 density in the set
of prime numbers. This hypothesis assures that ord,(I') is defined for almost all
primes p. Furthermore, we say that I is locally finite if I'(m) = TQ*"™ /Q*™ is finite
for every m € N.

If T is locally finite, we know that the exponent of finite group I'(m) is a divisor
of m. We denote by rr(m) the finite group rank of I'(m). This means that

Z Z
r ~ N
(m) miZ @ @ m,Z’
where r = rp(m), my | ma | -+ | my | my my > 1. If nQ*™, ... ,nrr(m)(@*m is a set

of generators for I'(m), we define the m—th local support as

Supp,, I' = {p € SuppT': v,(n;) #0, for some j =1,... 704}
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 391

and

Orym = H p-

p€Supp,, '
Furthermore, it is easy to check that

L(m) = (N1, s Mgy ) Q7 /Q™.
So we can apply the identity of (B obtaining
Em,T X mTT(m)

ged (mreem, mrremTUAL(E), - m Ay 1(F), Ay, (D)

IT'(m)| =
Tr<m>(

where ' = (m ... mr(m)> and e, r is defined in (@).

The free subgroup of Q* generated by any fixed set of primes S with zero density
is a thin support subgroup. However, if S is infinite, such subgroup is not locally
finite. Here we consider the following family of locally finite, thin support, not
finitely generated subgroups of Q*:

Definition 1. Let S be a set of primes with 0 density and write

S = {p17p27" '}a

where p; < p;41 for all ¢ € N. Let I'g be the subgroup of Q* generated by the
k!'-powers of the pg’s. That is,

Ts=(p1,p5,.. .,k )

It is plain that I'g is a free Z-module of infinite rank. Furthermore, S = SuppI'g
so that I's has thin support. However, for every m € N, we have the identity:

! m
— FSQ*m _ <p17p%!a co apv(vT 11) >Q*

Hence

Proposition 1. Let m € N and let S be a set of prime numbers. Then I's is locally
finite and satisfies the following properties:
(1) 7rg@m) = r(m) = max{k € N: m{kl} <m—1;
(2) if € is prime, then r(£*) < al — 1;
3) r(f*)=al —1 fora < {;
(4) #Ls(m) =T;<,m) Zd(mgn s @ multiplicative function;
(5) Suppm FS = {pl, .. aprps(m)} C {plv e ,pm71}~

Proof. The first statement is clear from the definition and, for the second, observe

that ve((al)!) satisfies
ve((a)) = a+ Z [%} > o

This observation also implies that r(¢*) = af — 1 for a < £. As for the fourth
statement, it is enough to observe that
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392 F. PAPPALARDI

and to apply the fact that
<p§!>@*m _ m
Q™ ged(m, )

is a multiplicative function of m which is identically 1 if j > r(m). The last
statement is also clear from the definition of Supp,, I's. (]

#

Theorem 3. Let S be a set of prime numbers with 0 density and let m € N be
either an odd number or such that ged(m,org.m) = 1. Then, as x — oo,

XT's,m X
A ~ NS
rs (@,m) o(m) logz’

where

f—1

Llm a>1

We will omit the proof of Theorem Blsince it is similar to the proof of Theorem [}
where the main ingredient Lemma [4] is replaced with Lemma Bl

Remarks. (1) When T is not finitely generated, the rationality of or,, does
not hold in general. In fact, if £ is an odd prime, I' = (p1, p52, ..., D%, ...)
where {py,ps...} is a zero density set of primes and ap = ¢%k!/¢ve(K)
where $; = 0 and for k > 2, 8y is defined by

Br=jifand onlyif j! —j <k < (j+ 1) —j—1,
then I" has thin support and it is locally finite. Furthermore,
Iw([j) _ gmax{kEN BrL<j} _ gj!—j.

Hence
ore=1-(-1) 7
Jj=>1
is rationally dependent to the Liouville transcendental number.

(2) The conditions that either m is odd or that ged(m,orgm) = 1 in the
statement of Theorem [B] can be removed at the cost of complicating the
expression for xrg m.

(3) It was proven in [I] that if ' C Q* is a finitely generated subgroup, the
Generalized Riemann Hypothesis implies that the set of primes for which
ind,(I") = 1 has a density dr that equals

1 1
H(l‘ww—n) ey 2 i f—l)

£>2 cer(2) ¢
£=1mod 4
This formula also holds for thin support, locally finite subgroups. In par-
ticular, if S = {p1,p2,...} is a set of prime numbers with zero density,
then

<p17p%!a"'ap£ 1 >Q*e

FS(Z) = Q*z
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 393

and |T's(¢)] = 7 = ¢*~! by (3) in Proposition [l Therefore,

5FS_H<1—m> X (1+75),

4

where

1 - _
e if p1 =1 mod 4,
P1 .
0 otherwise.

Example. Let G = {3,5,11,17,29,...} denote the set of (youngest) twin primes
which is well known to have density 0 and we will also assume to be infinite. Hence

I'g = (3,5%,116,17%4, 29120 ).
In the following table we compare:
e the values of grg m (15 row);
—AFG;(nl(OlsO)G’B) (224 row);
(3*4 row)

Arg,m(10°%,3)
#{p<10% p¢gG}

for m = 2,...,13. Note that the numbers are truncated (not approximated) to the

ninth decimal digit.

e the values of

e the values of

m

2

3

4

5

6

7

0.733383118
0.681724375
0.760844529

0.462912155
0.462725165
0.516428520

0.366691559
0.314364697
0.350849505

0.249679999
0.214757063
0.239681524

0.447527842
0.447743891
0.499708537

0.166665452
0.145086499
0.161925072

8

9

10

11

12

13

0.183345779
0.156959413
0.175175943

0.154304051
0.154564447
0.172503021

0.178962194
0.161800300
0.180578659

0.099999999
0.088397156
0.098656429

0.108035882
0.107302096
0.119755456

0.083333333
0.074052842
0.082647330

Finally, ér, = 0.47203266462865646291 - - -

and

[{p <10°: p¢G,ind,(I'g) = 1}| _ 33059

while

{p <10%: p&G,ind,(Ig) = 1}| _ 33059

7(106)

T 78498

{p <10%: p & G}

70335

5. THE DEGREE [Q((n, T'H9) - Q.

=0.4211444878 - - -

= 0.4700220374 - - - .

Let I' C Q* be a locally finite subgroup and let m and d be positive integers
with d | m. We denote by K, the m-th cyclotomic field. So K, = Q((,,), where
G = €2™/™ is the primitive m—th root of unity. Furthermore, we denote K, (I''/%)
the subfield of C generated over K,, by the d-th roots of all elements of I'. It is
well known that K, (I'"/?) is a finite Galois extension of @ and that there is an
isomorphism

(8) Gal(K,, (T /K, = D(KG) /(K7

Details on the theory of Kummer’s extensions can be found in Lang’s book [10]
Theorem 8.1]. The goal of this section is to prove the following:
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394 F. PAPPALARDI

Lemma 1. Let I' C Q* be a locally finite subgroup. Let m and d be positive
integers with d | m, set a = va(d) to be the 2—adic valuation and let k., 4(T") denote
the degree of the extension K,,(I''/%)/Q. Then the degree

p(m) x |L(d)|

km,d(r) = |H | 5

where

Hmo = (CNEK:2HQ* Q4.

It is clear that if d is odd, so that o = 0, then |H,, 0| = 1. In the following
statement we will describe explicitly H,, o in the case when I' contains only positive
numbers.

Corollary 1. Given the Hypothesis of Lemma [l also assume that I' C QT and
that d is even so that a > 0. Then

Hpno = {n€N: 7| ged(m,orm), 1°° - Q2 eT(2%), 6(n) | m}.

Proof of Corollary [Il First note that if ( € I, then ¢ € K;fa if and only if 2\/C €
K},. Since, for ¢ > 0, Q[ >\/(] is a Galois extension of Q only if its degree over Q is
less than or equal to 2, we deduce that ¢ Q*Qa = 772()‘71-(@*2& for a unique squarefree
n € N. Furthermore, Q(,/1) C Ky, if and only if d(n) | m (see, for example, Weiss
[19, page 264]). Finally, the conditions d(7) | m and n squarefree imply in particular
that n | Rad(m) and this completes the proof. O

Proof of Lemma [Il By the multiplicative property of the degree, we have that
(D) = (Ko (T%) 5 Q] = p(m) x | Gal (K (/) /)|

By ([®), since T'(K,)¢/(K},)¢ is an abelian torsion group with exponent dividing d,
we have that

Fma(D) = o(m) [] Kn(@Y): K] =om) T[] IPK;" /K"
¢ prime ¢ prime
|\d |\d
Now we apply the standard Isomorphism Theorems of finite groups and obtain
that:
r:" 1T rQ** /Q**

K" T Tnkp” T (OnkRT" /e
If ¢ is odd, then I' N K%, “=rn Q*Zu. Therefore,

p(m)
Fm,a(I') = x = o ——— <[],
|Hm 'uz(d)| Y, };[me ‘Hmﬂ)z (d) ‘
£ d
where H,,, o = (I'N K=2)Q**" /Q**" and this concludes the proof. O

6. CHEBOTAREV DENSITY THEOREM FOR Q((,,, T'1/9)

In this section we apply the celebrated Chebotarev Density Theorem to the fields
Q(¢m, TH4). We start by stating the result proven in [9] which, for simplicity, we
specialize to the case of extensions of Q and trivial conjugacy classes:
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 395

Lemma 2 (Effective, “unconditional” Chebotarev Density Theorem). Assume that
L/Q is a Galois extension and denote by ny, and dy, the degree and the discriminant
of L. Then there exist constants ¢; and co such that if

log z > 10ny, log? dy,
then

. . 50
#{p <z: ptdp,p split totally in L/Q} = li(z) + O(ll(w ) + as >

log =
nr nr SV L

and By > % satisfies
1 1

< 1-— 1-—
fo < max{ fogd, ' o/

).

In order to apply the above result, we need a sufficiently sharp estimate for
logdy,. An adequate one can be found in [I8].

Lemma 3. Assume that L/Q is a Galois extension and denote by ny, and dy, the
degree and the discriminant of L. Then

n?L log(Rad(dg)) <logdr < (nr — 1)log(Rad(dg)) + nr lognr.

Consider the Galois extension Q((,,I'Y/?), where d | m and where T' C Q* is a
locally finite subgroup. So, by Lemma [Tl
nQ(¢,,r1/dy = km.a(l') < m[T(d)].

Also note that the primes that ramify in such an extension are exactly those that ei-
ther divide m or those in Supp, I'. Therefore, Rad(dgc,, ri/4)) = lem(Rad(m), or,q)
and, by Lemma [3]

log(dQ(CWFl/d)) < 2m|I(d)|log(m|T(d)|or m)-
The conditions of uniformity of Lemma [2] are satisfied if
(mIT(d)])*log® (m[T(d)|or,m) < cloga

for some ¢ > 0. We set mp(z,n,d) to be the number of primes up to z that are
unramified and split completely in K, (I'*/4).

If we specialize the previous discussion to the case when I' is a finitely generated
group and we use the upper bound in (), we obtain:

Lemma 4. Assume that I' C Q* is a fized finitely generated subgroup of rank r.
Let m,d € N be integers such that d | m. Then there exists constants ¢1 and ca
depending only on I' such that, uniformly for

1og z 1/(3r+3)
e [ —28%
=1 (loglog z)? ’

1 . T
mr(xz,m,d) = (S| iy li(z) + Or <602 W-W) . O

If we specialize the previous discussion to the case when I' = I'g, where S is a
set of primes with zero density, we obtain:

as T — 00,
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396 F. PAPPALARDI

Lemma 5. Let S be a set of prime numbers with density zero. Let m,d € N be
integers such that d | m. Assume also that logor ,, < m™. Then, there exist
absolute positive constants c¢; and co < 1 such that for x — oo, uniformly for

m< e loglog x
- 1logloglogaz

we have

7rg(x,m,d) = li(z) + O(x exp(—(log z)?) . O

km,d(FS)
7. PrRooFs oF THEOREMS [I] AND

It is a criterion due to Dedekind that an odd prime p &€ Supp I splits totally in
K, (TY/4) if and only d divides the index ind,(T') and p = 1(mod n). Therefore,

(9) mr(z,n,d) = #{p < x: p ¢ SuppT’, p=1(modn), d|ind,(I')}.

The following combinatorial identity allows us to apply the Chebotarev Density
Theorem.

Lemma 6. Let m € Z and I' < Q*. We have the identity
Ar(z,m) = Y Y3 pld)u(f)me (@, nd,y(f,n/m)),
n€Sy din flm

where
Sm ={n € N: Rad(n) | m and m | n}

k) =[] e ™.

o

and

Note that with the notation above, v(f,n/m) | nd. In fact, for every ¢ | f,
ve(n) —ve(m) + 1 < vp(n) 4+ ve(d) since ve(m) > 1.

Proof. Let p be a prime such that p ¢ SuppI’ and m | ord,(I'). Then m | p—1
and there exists a unique n € S, such that p = 1 mod n and (%, m) =1 (indeed
n="Tlymn ¢ve(P=1)) Hence

ber Ar(x, m) Z Br(z,m)
nESm,

where Br(z,m) equals
-1
(10) # {p <a: p¢&Suppl', m|ord,(I"), p=1(modn), (pT,m) = 1} .

Now note that if p is a prime with p € SuppT’, p = 1(modn) and (pn;l,m) =1,
then

m|ordy(T) <= (ind,(I'),n) %

Indeed, from the hypothesis that n € S,,, and from
n=(p—1,n) = (ind,(T),n)(ord,(T),n)
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 397

we deduce that m | ord,(I') if and only if m | (ord,(I'),n) i.e., (indy(a),n) | 2=. So
we can rewrite Br(z,m) in ([I0) as

#{pgx: p & SuppT', (ind,(T),n) %, p = 1(mod n), (p%l,m) = 1}.

Next we apply the inclusion—exclusion formula to the conditions p = 1(mod n) and

(= L m) =1, so that Ap(x,m) equals
Z Zu(d)# {pgx: p & SuppT', (ind,( ’— modnd)}
neESmy dlm

Finally, observe that, if v(f,n/m) is the quantity defined in the statement of the
lemma, then

Y. = 11 (14 u(0)) = {1 if (indp.(I‘)7n)’%7

0 otherwise.
fln £n
v(f,5) lind, () ve(5) <ve(indp(T')))
So Ar(xz, m) equals
> Y uldu()#{p < @s p & SuppT, (f, ) |indy(T), p= 1(mod nd) }
nESm d|m

fn

Applying the definition in (@) and the fact that n and m have the same radical, we
deduce the claim. ]

Proof of Theorem [Il Let us start from the identity of Lemma [6l and rewrite it as:

> u@p(f)mr (a?,ndﬁ (f7 %))

NESm, d|m
nm<y fln

Ar(z,m)

+ O Z Zwr (m,nd,v(f, %))

NnESm, dlm
nm>y fln

= X1+ O(Eg)

Note that Lemma @ implies that if y = ¢; (log z/ log® log )Y/ (37+3) | then

5= Y Y ud e (wond,y (£.2))

nESm, dlm

nm<y fln
N Z Z p(d)u(f)li(x) + Or( T )
- 6/ 3/
"LES’VVLv d‘m kdn77(f7%)(]‘—‘) 662 IOgZL’- IOg Ing
nm<y fln

= 0'm ll(fb) + E($>y7m)7
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398 F. PAPPALARDI

where

Bym < Y —r by Ay

. Vlog s 3/7
nesy, €2 ViomeViosloss © S am Fanatrn/m (L)
nm<y nm>y fln
7(m) zylogy m x 1
< m ec2 Ylog z- Vlog log = (m) Z ’

p(m)logz £ p(n)

n>y/m

since Kdn ~(f,n/m) = de(n). The choice made for y implies that the first term is neg-
ligible. For the second term observe that the Rankin Method (see [16, Lemma 3.3])
implies that for any ¢ € (0, 1), uniformly in m,

(11) > % <o~

Tec
?’LGSWL
n>T

Hence

m T 1 m \? = 1
) e X i — 7 () w2 7
n>y/m n>y/m
2 c
< () ey

2c
cx(log 1 Fr43 12
< 7(m)mcz(loglog x)

(log 2) 55
Now let us deal with 5. We have that

> S (1.2)

nNESm, dlm
nm>y f|n

< 7(m) Z Z (z,nd, 1) ZZ#{k<x nd |k} |,

n€Sy, dlm nES,,“d\
y<nm<z nm>z

where z is a suitable parameter that will be determined momentarily. By the
Brun-Tichmarch Theorem and the trivial estimate, the above is

T(m)m 1 1 1
<o C | g X w2 w

nESm, nESm,
nm>y nm>z

Applying one more (1), we obtain the estimate

Sy < 7(m) (%m))z) m (W " %> '

Finally, setting z = log?"/¢z and ¢ = 1 — 1/loglog x we obtain the claim. O
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Proof of Theorem 2l We use the formulas for the degrees ky,q., (s, =) (I") of Lemmal[ll
and of Corollary [[] which in this case reads as:

de(n) !
Kndn (s, 2y (D) = o——="t T |D(eve/m+1y|
y(f7) ‘Hnd,vz(W(ﬁ%)ﬂ H

where Hyd.v, (v (7,2 ) is trivial if f is odd while if 2 | f, then va(v(f, 7v)) = va(55))+1
and

qu2(2) (E)+ n
Hnd,v2(ﬁ)+1 = {77 € N: 77|Rad(m)7 2 Q %292 11(2112(7,,)-"-1)7 (5("7)|7’Ld} )

Thus, if for brevity we write v = v3(7%), the sum defining gr ,,, in the statement of
Theorem [I equals

12 % s S S un T e[

nESm d|n fln L f
1 w(d) ve(n/m)+13|
D SR R R ) ) ([Tt
n|Rad(m) nESm d|n fln L f
n#l nQ'UQ*2’0+1 EF(21)+1) 8(n)|nd f even
= S1+ 5,

say. To compute S7, we use the identity

1 w(d) 1
—n)%Tﬁ'

So that
Si= Y lH(1—‘r(£vf<”/"‘>+1)\1)
nESy, n€|m
_ H Z w (1—‘F gj w(m)+1 ‘ 1)
Llm j>ve(m)
- _sz( A |7>
£lm j=>0
(13) = LH 1_(g_1)2¥
~ e i 2 TD)

We also deduce that for m odd,

‘-1
Orm = — H ZEJ |F EJ

w(m) tim

In order to compute S5, we need to use the following lemma:
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Lemma 7. With the notation above, let

1 1(d)
S=—— —
p(n dz,; d
3(n)|nd
Then
] L ifd(n) | n,
S = ﬂ7 where Tn,n - _1 Zf5(77) 'fn bUt 5(7’) | 2n’
0 if 6(n) 1 2n.

Proof of Lemma [l Set §(n) = 227 with x odd squarefree and 8 € {0,2,3}. Fur-
thermore, set n = n/2% with n’ odd.

The condition §(n) | n implies that §(n) | nd for all possible d and in such a case,
we have that S = 1 by the multiplicativity of the involved functions.

n

The condition 6(n)  n, 6(n) | 2n is equivalent to « | n’ and 8 = a + 1, which in

particular, implies that n is

even. Therefore, in this case, by multiplicativity,

1 1 (=1)7 1
S=0XmT X T
~v€{0,1},

BLat+y

Finally, if the condition 6(n) { 2n is satisfied, since x { n/, for all squarefree d | n,
we have that §(n) t nd so, in such a case, S = 0. So we can assume that z | n/,
B> a+1 and that 8 € {2,3}. It follows that

1
S=—x
n/

since the conditions on ~ in

1 (=1)7
> =0,
a v
©(2%) o, 2
at+l1<p<la+ty

the sum are never satisfied. This concludes the proof.
|

Next, note that Ss = 0 unless m is even. In the latter case we write

where, by Lemma [7]

S, = >

neESm

vo(n/m) _,ov2(F)+1
772 2 Q 2

So= > Sy

n|Rad(m)
n#1
7 ) ve(m/m -1
o S () T e
fln of
f even

€T (2v2(n/m)+1)
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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONALS 401

Next we use the fact that S, = 0 unless §(n) | 2n and this happens only if n | m.

Furthermore, S;, = 0 unless there exists ¢ > 0 such that thQ*ZHI € I(21F1). We
will set ¢, to be the least of such ¢ so that ¢, = oo if there is no ¢ with such a

property. Furthermore, if s > ¢,, then nQSQ*QSH e r(25th).
Hence, for m even, we can rewrite

So= > Sy

n|Rad(m),

n#1,
ty<oo

We deduce that if S, is one of the summands above, then it equals

T, o 1
Z }F 2”27(]ny;m)+1 | H (1 — ‘F (¢ e(n/ +1)’ )

neESm
'UQ(n/m)Ztn Z>2
_ Z €n(va(n H< ’ W(n/m)ﬂ)‘ 1)
nESm, |F 2U2 n/m Z|n
v2(8(n)) Sva2(n)+1 >2
va(n/m)=ty,

where €,(j) =1 if j =v2(d(n)/2) and €,(j) = —1if j > v2(6(n)/2). So S, equals

-1

- 1 € (J)
Sy x gu2lm)=1 [ —_ - 1
1 X ; 25 |1(29))| x Z 27 |1“(237v2(m)+1)|

Jj2ty+va(m)
() )
2

Jj>va(
—1

1 en(k + va(m/2))
_ g 1_ E A2 S S Ay
1 X > 27 |T(29)] % 2k (2%
i>1 k>max{t,+1,v2(5(n)/m)}

Hence,

{—1
orm = 4,0( )H Zw |F e] X VUl m;

where, if m is odd, vr,, =1 and, if m is even, vr ,, equals

1 eyl + v3(m/2)
T\ lewey) X 2 Cwmen

n|Rad(m)  k>t,+1
n#L  k>v2(8(n)/m)
n <00
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If we add to the last sum above the term 1 = 1 and we observe that

_ alktunm/2) ¢ 1
Z ok |F(2k)| ; 27 |1‘(2j)|

k>t1+1
k>v3(8(1)/m)

since t; = 0,6(1) = 1 and €;(k + v2(m/2)) = —1, we mildly simplify the formula
for vr ,,, when m is even, obtaining:

-1

1 en(k+v2(5))
R T N . 1 P02 5))
vr, > 27 |D(29)] + > > 2 [T (2%)]

j>1 n‘Rad(m) k>t +1
ty<oo k>s,,

-1
1
= 1-— —_ 1—
2 5 T@) 2, Un.
> n|Rad(m)
where s, = m(%) and
0 if ¢,, = oo,
1
Z W if Sn < t"7 < 00,
by = iy 2@
1
1 .
_m+kz m 1f8n>t77,
>sy
and this completes the proof. O

8. NUMERICAL DATA

In this section we compare numerical data. The density or ,, can be explicitly
computed once a set of generators of I' is given. In particular, the following Pari-GP
[21] code allows us to compute gy, ... p.),m =rho(m,p_1---p_r).

rtho(m,q)={local(a,A,b,B,1,r,rh);

r=omega(q) ;rh=gcd (2,m) /m;
B=divisors(m) ;b=matsize(B) [2];
for(k=1,b,1=B[k];

if (isprime(1)&(1>2),

rh=rh*(1"2%(1"r-1)/(1-1)/(Q1"(z+1)-1))));

A=divisors(gcd(m,q)) ;a=matsize(A) [2];
ul=0;u3=0;u2=0;
for(j=1,a,1=A[jl;

if (1%4==1,ul++) ;if (1%4==3,u3++) ;if (1%4==2,u2++));
psi=if (m}%2==1,0,

if (m%4==2,ul+(2" (-r)-1)*(u3+u2/2" (r+1)),

if (m%8==4,ul+u3+ (2" (-r)-1)*u2,ul+u3+u2)));
rh*(1-psi/ (2" (r+1)-1))}
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The first table compares the values of or, ,, as in Theorem [ (second row) and

9
Arﬁgg—sﬁm) (first row) with ', = (2,...,p,), 7 < 7 (p; is the i~th prime) and
m = 2,...,16. All values have been truncated to 7 decimal digits.
m\I'y 1 2 3 4 5 6 7

2 0.7083259 | 0.8705329 | 0.9369869 | 0.9686946 | 0.9843725 | 0.9921912 | 0.9960977
0.7083333 | 0.8705357 | 0.9369791 | 0.9686869 | 0.9843672 | 0.9921865 | 0.9960936
3 0.3750162 | 0.4615489 | 0.4874978 | 0.4958546 | 0.4986178 | 0.4995315 | 0.4998315
0.3750000 | 0.4615384 | 0.4875000 | 0.4958677 | 0.4986263 | 0.4995425 | 0.4998475
4 0.4166745 | 0.4821469 | 0.4958488 | 0.4989975 | 0.4997547 | 0.4999387 | 0.4999818
0.4166666 | 0.4821428 | 0.4958333 | 0.4989919 | 0.4997519 | 0.4999384 | 0.4999846
5 0.2083311 | 0.2419332 | 0.2483914 | 0.2496736 | 0.2499273 | 0.2499772 | 0.2499875
0.2083333 | 0.2419354 | 0.2483974 | 0.2496798 | 0.2499359 | 0.2499871 | 0.2499974
6 0.2656511 | 0.4574280 | 0.4869920 | 0.4957940 | 0.4986109 | 0.4995309 | 0.4998313
0.2656250 | 0.4574175 | 0.4869921 | 0.4958052 | 0.4986186 | 0.4995415 | 0.4998474
7 0.1458489 | 0.1637375 | 0.1662449 | 0.1665994 | 0.1666516 | 0.1666582 | 0.1666592
0.1458333 | 0.1637426 | 0.1662500 | 0.1666071 | 0.1666581 | 0.1666654 | 0.1666664
8 0.0833265 | 0.1785587 | 0.2166697 | 0.2338669 | 0.2420661 | 0.2460616 | 0.2480390
0.0833333 | 0.1785714 | 0.2166666 | 0.2338709 | 0.2420634 | 0.2460629 | 0.2480392
9 0.1249966 | 0.1538451 | 0.1625054 | 0.1652942 | 0.1662133 | 0.1665179 | 0.1666177
0.1250000 | 0.1538461 | 0.1625000 | 0.1652892 | 0.1662087 | 0.1665141 | 0.1666158
10 | 0.1475587 | 0.2106102 | 0.2170853 | 0.2340359 | 0.2421145 | 0.2460758 | 0.2480397
0.1475694 | 0.2106134 | 0.2170890 | 0.2340434 | 0.2421216 | 0.2460806 | 0.2480442
11 | 0.0916644 | 0.0992460 | 0.0999258 | 0.0999871 | 0.0999930 | 0.0999937 | 0.0999937
0.0916666 | 0.0992481 | 0.0999316 | 0.0999937 | 0.0999994 | 0.0999999 | 0.0999999
12 | 0.1562485 | 0.2142815 | 0.2396969 | 0.2469355 | 0.2490664 | 0.2497065 | 0.2498959
0.1562500 | 0.2142857 | 0.2396875 | 0.2469341 | 0.2490658 | 0.2497098 | 0.2499084
13 | 0.0773848 | 0.0828743 | 0.0832971 | 0.0833291 | 0.0833317 | 0.0833320 | 0.0833320
0.0773809 | 0.0828779 | 0.0832983 | 0.0833306 | 0.0833331 | 0.0833333 | 0.0833333
14 | 0.1033220 | 0.1425403 | 0.1557674 | 0.1665792 | 0.1666493 | 0.1666580 | 0.1666592
0.1032986 | 0.1425438 | 0.1557727 | 0.1665861 | 0.1666555 | 0.1666651 | 0.1666664
15 | 0.0781280 | 0.1116612 | 0.1210907 | 0.1238016 | 0.1246141 | 0.1248689 | 0.1249475
0.0781250 | 0.1116625 | 0.1210937 | 0.1238082 | 0.1246246 | 0.1248792 | 0.1249606
16 | 0.0416661 | 0.0892749 | 0.1083288 | 0.1169345 | 0.1210315 | 0.1230292 | 0.1240151
0.0416666 | 0.0892857 | 0.1083333 | 0.1169354 | 0.1210317 | 0.1230314 | 0.1240196
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The next table compares the values of or._,, as in Theorem [ (second row) and

C(10°.m .
%89;) (first row) with T, = (3,...,pry1), 7 < 7 and 2 < m < 16.
m\l 1 2 3 4 5 6 7

2 0.6666655 | 0.8571448 | 0.9333310 | 0.9677335 | 0.9841212 | 0.9921209 | 0.9960788
0.6666666 | 0.8571428 | 0.9333333 | 0.9677419 | 0.9841269 | 0.9921259 | 0.9960784
3 0.3749919 | 0.4615306 | 0.4874732 | 0.4958573 | 0.4986160 | 0.4995291 | 0.4998312
0.3750000 | 0.4615384 | 0.4875000 | 0.4958677 | 0.4986263 | 0.4995425 | 0.4998475
4 0.3333555 | 0.4285866 | 0.4666680 | 0.4838841 | 0.4920754 | 0.4960635 | 0.4980383
0.3333333 | 0.4285714 | 0.4666666 | 0.4838709 | 0.4920634 | 0.4960629 | 0.4980392
5 0.2083280 | 0.2419252 | 0.2484011 | 0.2496762 | 0.2499270 | 0.2499777 | 0.2499876
0.2083333 | 0.2419354 | 0.2483974 | 0.2496798 | 0.2499359 | 0.2499871 | 0.2499974
6 0.3124943 | 0.4450448 | 0.4834115 | 0.4948565 | 0.4983659 | 0.4994672 | 0.4998148
0.3125000 | 0.4450549 | 0.4834375 | 0.4948680 | 0.4983790 | 0.4994810 | 0.4998322
7 0.1458220 | 0.1637352 | 0.1662398 | 0.1666008 | 0.1666509 | 0.1666581 | 0.1666592
0.1458333 | 0.1637426 | 0.1662500 | 0.1666071 | 0.1666581 | 0.1666654 | 0.1666664
8 0.1666562 | 0.2142934 | 0.2333303 | 0.2419403 | 0.2460312 | 0.2480318 | 0.2490220
0.1666666 | 0.2142857 | 0.2333333 | 0.2419354 | 0.2460317 | 0.2480314 | 0.2490196
9 0.1250027 | 0.1538590 | 0.1625073 | 0.1652946 | 0.1662161 | 0.1665172 | 0.1666171
0.1250000 | 0.1538461 | 0.1625000 | 0.1652892 | 0.1662087 | 0.1665141 | 0.1666158
10 0.1388773 | 0.1728045 | 0.2152763 | 0.2335623 | 0.2419895 | 0.2460393 | 0.2480265
0.1388888 | 0.1728110 | 0.2152777 | 0.2335715 | 0.2420015 | 0.2460503 | 0.2480366
11 0.0916609 | 0.0992403 | 0.0999244 | 0.0999869 | 0.0999931 | 0.0999936 | 0.0999937
0.0916666 | 0.0992481 | 0.0999316 | 0.0999937 | 0.0999994 | 0.0999999 | 0.0999999
12 0.0624985 | 0.1648314 | 0.2112409 | 0.2319473 | 0.2414047 | 0.2458287 | 0.2479503
0.0625000 | 0.1648351 | 0.2112500 | 0.2319381 | 0.2413984 | 0.2458378 | 0.2479635
13 0.0773695 | 0.0828785 | 0.0832960 | 0.0833287 | 0.0833318 | 0.0833320 | 0.0833320
0.0773809 | 0.0828779 | 0.0832983 | 0.0833306 | 0.0833331 | 0.0833333 | 0.0833333
14 0.0972166 | 0.1403456 | 0.1648538 | 0.1662621 | 0.1665672 | 0.1666369 | 0.1666534
0.0972222 | 0.1403508 | 0.1648645 | 0.1662712 | 0.1665754 | 0.1666449 | 0.1666613
15 0.0781188 | 0.1116473 | 0.1210896 | 0.1238047 | 0.1246196 | 0.1248686 | 0.1249482
0.0781250 | 0.1116625 | 0.1210937 | 0.1238082 | 0.1246246 | 0.1248792 | 0.1249606
16 0.0833204 | 0.1071366 | 0.1166656 | 0.1209677 | 0.1230143 | 0.1240113 | 0.1245069
0.0833333 | 0.1071428 | 0.1166666 | 0.1209677 | 0.1230158 | 0.1240157 | 0.1245098
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The next table compares the values of fr, j (i.e., the density of primes p with

ord,(T,) kfree) (first row) and #2 <10%p qu‘f(fég’gdp(” is kfree} (second row) for
k=2,...,Tandr=1,...,7.

K\, 1 2 3 4 5 6 7

0.4643728 | 0.3916870 | 0.3783724 | 0.3751626 | 0.3743029 | 0.3740588 | 0.3739871
2 | 0.4643773 | 0.3916738 | 0.3783458 | 0.3751487 | 0.3742881 | 0.3740453 | 0.3739753
0.8669787 | 0.7640822 | 0.7275550 | 0.7117925 | 0.7044658 | 0.7009347 | 0.6992045
3 | 0.8669801 | 0.7640826 | 0.7275397 | 0.7117918 | 0.7044620 | 0.7009346 | 0.6992023
0.9429226 | 0.8922523 | 0.8729475 | 0.8644050 | 0.8603871 | 0.8584410 | 0.8574845
4 | 0.9429270 | 0.8922653 | 0.8729480 | 0.8644003 | 0.8603827 | 0.8584393 | 0.8574853
0.9742393 | 0.9493687 | 0.9396381 | 0.9352925 | 0.9332389 | 0.9322416 | 0.9317506
5 | 0.9742428 | 0.9493723 | 0.9396454 | 0.9352960 | 0.9332398 | 0.9322460 | 0.9317542
0.9879809 | 0.9757187 | 0.9708684 | 0.9686929 | 0.9676621 | 0.9671607 | 0.9669135
6 | 0.9879833 | 0.9757210 | 0.9708738 | 0.9687015 | 0.9676725 | 0.9671724 | 0.9669251
0.9942653 | 0.9881936 | 0.9857800 | 0.9846948 | 0.9841798 | 0.9839289 | 0.9838052
7 | 0.9942667 | 0.9881987 | 0.9857830 | 0.9846992 | 0.9841872 | 0.9839368 | 0.9838137
0.9972219 | 0.9942060 | 0.9930041 | 0.9924629 | 0.9922058 | 0.9920804 | 0.9920185
8 | 0.9972247 | 0.9942058 | 0.9930081 | 0.9924704 | 0.9922122 | 0.9920868 | 0.9920254

Example. Let I' = (3% - 111%,33. 113,37 . 137,22 . 52 . 11 - 13). Then Supp(T') =
(2,3,5,11,13) and the matrix associated to T is

0 00 2
3 370
M=|0 00 2],
15 3 0 1
0 0 7 1

so Ay([) =23-32.7,A3(') =23 and Az(T") = A1(T") = 1. Hence, if £ {42, then

(=1 Lt =1)
1-— - — =
Z G0~ -1
jz1

while

2 24 x 21 6 2 x 11 x 127
1- - — = d 1- - — = .
2 J0EY  3x12 2 7i|0(79))] 2301
j=1 Jj21
Furthermore, if 7 is squarefree and ¢, is finite (i.e., thQ*ZHI € I'(2'+1) for some
t > 0), then | 2 x 3 x5 x 11 x 13. More precisely, after some calculations, one
obtains that
0 ifne{1,33,39,143},
1 if 5 e {30,110,130,4290},
2 if e {3,11,10, 13,330,390, 1430},

oo otherwise.

ty, =

So by (B)
1 23?;331 if jo=1,
_ 1 . . _
2 ey~ e =2
J=Jjo PSR! if jo = 3.
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We conclude that

Uy

33
23 %31

22x31

27x31

T 23x31
__15
26 %31

F. PAPPALARDI

if n € {1,33} orif n € {39,143} and 4 | m,

if n € {30,110, 130,4290} and 4 | m,
if n € {3,11, 10, 13, 330, 390, 1430},

if n € {39,143} and 2||m,
if n € {30,110, 130,4290} and 2||m,
otherwise.

The following table compares the values of gr ,, as in Theorem [ (second row) and

Ar(10%,m)
w(109)

approximated) to the seventh decimal digit.

(first row) with ' and m = 2,...,25. The numbers are truncated (not

m 2 3 4 5 6 7 8
0.86691300 | 0.46280353 | 0.43348907 | 0.24967274 | 0.40110378 | 0.16624556 0.21673147
0.86693548 | 0.46280992 | 0.43346774 | 0.24967990 | 0.40110970 | 0.16625015 0.21673387

m 9 10 11 12 13 14 15
0.15427696 | 0.21638900 | 0.09998758 | 0.20057942 | 0.08332899 | 0.14412518 0.11554303
0.15426997 | 0.21639344 | 0.09999379 | 0.20055485 | 0.08333064 | 0.14412815 0.11555433

m 16 17 18 19 20 21 22
0.10836781 0.06248592 | 0.13371134 | 0.05554725 | 0.10819549 | 0.07695901 0.08666158
0.10836694 | 0.06249929 | 0.13374211 0.05555515 | 0.10822818 | 0.07694221 0.08666296

m 23 24 25 26 27 28 29
0.04544655 | 0.10028492 | 0.04993461 0.07222781 0.05141541 0.07206581 0.03571052
0.04545439 | 0.10027743 | 0.04993598 | 0.07222128 | 0.05142332 | 0.07206407 0.03571423

m 30 31 32 33 34 35 36
0.10098433 | 0.03332901 | 0.05418229 | 0.04627953 | 0.05417804 | 0.04149951 | 0.066869103
0.10099355 | 0.03333329 | 0.05418346 | 0.04627811 | 0.05418285 | 0.04150932 | 0.066871057

m 37 38 39 40 41 42 43
0.02777853 | 0.04815382 | 0.03856533 | 0.05408612 | 0.02500475 | 0.06670581 | 0.023815314
0.02777776 | 0.04816273 | 0.03856624 | 0.05409836 | 0.02499999 | 0.06668454 | 0.023809517

CONCLUSION

Average values of ord, (T') in the sense of Kurlberg and Pomerance [§] or weighted
sum of ind,(I") in the sense of [I4] can also be considered. For example, if m € N,
in [17] Susa and the author consider the problem of enumerating primes p such that

ind,(I') = m.
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