Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento
Mostrando entradas con la etiqueta computadoras. Mostrar todas las entradas
Mostrando entradas con la etiqueta computadoras. Mostrar todas las entradas

Antes del robot, el autómata

Anuncio de los autómatas o "sueños mecánicos"
de Vaucanson
(D.P. vía Wikimedia Commons)
El persistente sueño de crear seres que imiten la vida sin estar vivos.

Máquinas que pudieran ser esclavos o guerreros sin miedo, sirvientes o amigos, que cantaran previsiblemente en los árboles como las aves o que se desplazaran silenciosas y líquidas como felinos. Los autómatas han tenido mejor suerte en la ficción que en la realidad, desde Talos, el gigante de bronce forjado por Hefestos para proteger Creta (y vencido por Medea) hasta los robots de la literatura inventados por el checo Karel Capek y perfeccionados por Isaac Asimov o los del cine, como los memorables y aterradores robots de la serie “Terminator” o David, el entrañable niño de “Inteligencia Artificial”.

Los logros del mundo de los autómatas se ha visto amplificada con frecuencia por el mito, y por el entusiasmo de quienes querían ver más de lo que probablemente había en las exhibiciones del pasado. Así tenemos el legendario trono con animales mecánicos del rey Salomón en la tradición hebrea, mientra que entre los antiguos chinos, las crónicas hablan de orquestas mecánicas y animales asombrosos, incluso aves de madera capaces de volar desde el siglo III antes de la Era Común hasta el siglo VI d.E.C., cuando se publicó el “Libro de las excelencias hidráulicas”.

La historia constatable de los autómatas comienza con Arquitas de Tarento, filósofo griego del grupo de los pitagóricos, que en el año 400 a.N.E. construyó un ave de madera movida por vapor, mientras que Herón de Alejandría, creador del primer motor de vapor, la eolípila, describió otras aves autómatas 250 años después.

El vapor como fuente de energía para los autómatas cayó en el olvido hasta el siglo XVIII, de modo que los inventores tuvieron que accionar sus aparatos con la energía del viento o la hidráulica. Ésta última fue la fuente de energía, junto con el desarrollo de la leva y el árbol de levas, que utilizó Al-Jazarí para construir pavorreales que se movían y autómatas humanoides que servían bebidas o ayudaban a lavarse las manos. Su mayor logro fue una orquesta hidráulica de cuatro integrantes en una pequeña embarcación que amenizaban las fiestas desde el lago. Los logros mecánicos de Al-Jazarí, que iban mucho más allá de sus entretenidos autómatas, están descritos en el “Libro del conocimiento de dispositivos mecánicos ingeniosos” de 1206, que posiblemente fue una de las influencias sobre la visión mecánica de Leonardo Da Vinci.

En el siglo XV surgió en Europa el mecanismo de cuerda, un muelle espiral que almacena energía al apretarse con una perilla y que que después libera controladamente la energía. El sistema, creado primero para el diseño de cerrojos fue pronto utilizado en relojes y en autómatas. Fue el alemán Karel Grod el primer creador de autómatas de cuerda asombrosos en su momento que en el siglo XX eran simples juguetes relativamente baratos. Leonardo Da Vinci, en su menos conocida labor como escenógrafo y responsable de lo que hoy llamaríamos “efectos especiales” hizo en 1509 un león de cuerda para recibir a Luis XII en su visita a Italia.

Los autómatas de cuerda se volvieron parte esencial del entretenimiento de los poderosos y llegaron a un detalle exquisito utilizando únicamente engranes, levas y máquinas simples. Su época de oro fue sin duda el siglo XVIII.

Jacques de Vaucanson creó dos famosos autómatas: un flautista tamaño natural capaz de tocar doce canciones con flauta y tamboril que presentó en 1738 y, un año después, un pato capaz de digerir alimentos… al menos en apariencia. El pato mecánico parecía comer granos, digerirlos y después deshacerse de las heces por detrás. En realidad, el grano se almacenaba dentro del pato y los supuestos desechos prefabricados salían de otro depósito. Pero Vaucanson soñaba que algún día habría un autómata capaz de digerir. Uno de los más impresionados por el ave fue ni más ni menos que Voltaire.

Lo que sí hizo Vaucanson en sus últimos años como encargado de mejorar los procesos de la seda fue intentar automatizar los procesos de hilado y tejido, algo que conseguiría su continuador Joseph Marie Jacquard, creador del telar mecánico.

El ejemplo más acabado de autómatas de cuerda lo dieron Jean-Pierre Droz y su hijo Henri-Louis, que hacían autómatas para anunciar su “verdadera empresa” como relojeros a fines del siglo XVIII. Henri-Louis creó probablemente el más complejo, “El dibujante”, autómata capaz de dibujar retratos complejos y que aún puede verse en el “Museo de arte e historia” de Neuchatel, en Suiza, acompañado de “El escritor” creado por su padre y de “La organista” de Jean-Frédéric Leschot.

A fines del siglo XVIII fue famoso “El Turco”, un autómata jugador de ajedrez creado por Wolfgang Von Kempelen para impresionar a la emperatriz austríaca María Teresa. El autómata recorrió Europa y Estados Unidos jugando contra humanos y venciéndolos las más de las veces. Sin embargo, era un elaborado fraude, pues debajo de la mesa de ajedrez se acomodaba un jugador humano que movía la mano del autómata, como se demostró en varias ocasiones.

El primer verdadero autómata capaz de jugar al ajedrez fue “El ajedrecista”, creado por el prolífico y genial inventor cántabro Leonardo Torres y Quevedo, que presentó en París en 1914. Este artilugio es actualmente considerado el primer juego informatizado de la historia y el ancestro directo de Deep Blue, el ordenador que venció por primera vez a un campeón mundial humano, Garry Kasparov en 1997.

Aunque Deep Blue no era un autómata. A falta de miembros propios, usaba a seres humanos para hacer físicamente las jugadas en el tablero.

Para el siglo XIX, los autómatas habían pasado de maravillas del asombro a una industria que estaba a la mitad entre la juguetería y el lujo: cabezas parlantes, autómatas que fingían predecir el futuro y animales varios, muchos de los cuales aún podemos ver en lugares como el museo de art nouveau y art decó Casa Lis, en Salamanca o en “La casa de la magia”, del legendario mago Robert Houdin, en Blois, departamento de Loire, en Francia.

Y aunque en el siglo XX y XXI siguen haciéndose autómatas, la aparición de la electricidad abrió otro espacio amplísimo, el de los robots, que pese a sus limitaciones hacen que los autómatas del pasado parezcan tan torpes que podemos olvidar que fueron, cada uno en su momento, un avance asombroso.

Autómatas y prótesis

Muchos avances de la robótica no se expresan aún como lo prometían los dibujos animados y la ciencia ficción. Sin embargo, tienen cada vez más aplicaciones en la prostética, con miembros capaces de responder a los impulsos nerviosos de sus dueños. La mano robótica más avanzada a la fecha fue creada por el equipo Mercedes de Fórmula 1 y la empresa Touch Bionics para un joven aficionado a las carreras de 14 años y puede mover cada dedo independientemente.

Tim Berners-Lee, el señor WWW

Pocos hombres como el inventor de la World Wide Web han visto al mundo transformarse con el impulso de sus ideas.

Tim Berners-Lee en 2009.
(foto CC Silvio Tanaka, via
Wikimedia Commons)
Tim Berners-Lee cumplirá apenas 55 años en junio, pero su rostro es casi desconocido para la mayoría de las personas, y su nombre es apenas un poco más reconocible, aunque sin él no habría redes sociales ni páginas Web, ni buscadores, ni navegadores Web, ni desarrolladores para la Web, ni nuestra puerta a la información, la comunicación, el conocimiento y la diversión. Porque fue este personajequien creó lo que hoy conocemos como la World Wide Web.

Tim Berners-Lee nació en Londres el 8 de junio de 1955, hijo de dos informáticos de gran relevancia. Su padre, Conway Berners-Lee, es un matemático, ingeniero y científico informático que trabajó en la creación del Ferranti Mark 1, el primer ordenador elctrónico comercial con programas almacenados. En la fiesta de Navidad de Ferranti en 1952, Conway conoció a la madre de Tim, Mary Lee Woods, también matemática y una de las programadoras del Ferranti Mark 1.

Con esos antecedentes, no fue extraño que, después del bachillerato, el joven Tim pasara al afamado Queens College de Oxford, donde recibió un título de primera clase en física y se empezara a dedicar a la informática.

El hipertexto

En 1980, Berners-Lee fue contratado como proveedor para la Organización Europea para la Investigación Nuclear, CERN, donde propuso usar el hipertexto inventado por Ted Nelson (texto que incluye referencias o enlaces a otros documentos a los que el lector puede acceder), para que los científicos de CERN pudieran compartir datos. Para ello escribió el programa ENQUIRE, un software de hipertexto muy parecido a lo que hoy conocemos como “wiki”, cuyo ejemplo más conocido es la Wikipedia.

Después de trabajar algunos años en empresas privadas, Berners-Lee volvió a CERN como investigador del centro. CERN era, y sigue siendo ahora con el Gran Colisionador de Hadrones, el LHC, el mayor laboratorio de física de partículas del mundo. Ello implica que genera grandes cantidades de información que deben hacerse accesibles a los investigadores del centro y del mundo, y que tiene una gran relación con los centros de la física en todo el mundo, por lo que en 1989 CERN era el mayor nodo de Internet de toda Europa.

Pero era un Internet donde era difícil encontrar la información, con diversos protocolos o formas de comunicación, y que requería que sus usuarios conocieran lenguaje de programación para usar cosas como la transferencia de archivos por FTP, los grupos de noticias de Usenet e incluso el correo electrónico, todo lo cual ya existía.

Lo que no había era ordenadores comunes, programas comunes ni programas de presentación comunes para intercambiar información. Berners-Lee se planteó unir sus ideas sobre el hipertexto con Internet para enlazar la información y hacerla accesible. Su primera propuesta a CERN fue en marzo de 1989 y le siguió una versión refinada con ayuda de Robert Cailliau en 1990.

En 1990, Tim Berners-Lee creó los elementos esenciales de la red. El HTTP, o "Protocolo de Transferencia de HiperTexto”, las reglas según las cuales la forma se comunican y entienden las máquinas que solicitan algo mediante un enlace de hipertexto y las que lo sirven. El HTML, o “Lenguaje de Marcado de HiperTexto”, para incluir en el texto elementos de formato y enlaces a imágenes, gráficos y documentos que pueden estar en otras máquinas. Finalmente, el navegador interpreta el lenguaje HTML para presentarlo al lector, transmitir las solicitudes de los enlaces y recibir documentos e imágenes.

Había nacido la Web.

Una danza de millones y millones

El 6 de agosto de 1991, Berners-Lee escribió un resumen de su proyecto en el grupo de noticias alt.hypertext. Ese día, la World Wide Web se convirtió en un servicio público y, en el plazo de apenas cinco años, en una gran oportunidad de negocios donde han surgido fortunas fabulosas, como las de los creadores de ICQ, YouTube, FaceBook o Google.

Pero entre ellos no se cuenta Tim Berners-Lee.

En poco tiempo, se convirtió en preocupación principal del inventor que la Web se mantuviera libre, sin patentes ni regalías. Para ello, primero, Tim Berners-Lee regaló su invento al mundo, como lo hicieran en su momento Jonas Salk, creador de la vacuna contra la polio, y Alexander Fleming, descubridor de la penicilina. En segundo lugar, en 1994 fundó en el renombrado MIT (Instituto de Tecnología de Massachusets) el W3C o Consorcio de la World Wide Web, dedicado a crear estándares libres de regalías y recomendaciones para la red, que durante años ha dirigido desde una modesta oficina.

A los 54 años, el innovador británico ha reunido una impresionante cantidad de reconocimientos. En su país natal es Caballero del Reino, Orden del Mérito, miembro de la Royal Society y de varias sociedades más. La revista Time lo nombró entre las 100 personas más influyentes del siglo 20, ha obtenido reconocimientos en Finlandia, Estados Unidos, Holanda y España, donde la Universidad Poltécnica de Madrid lo nombró Doctor Honoris Causa en 2009.

Desde 2009 trabaja en el proyecto británico para hacer los datos de gobierno más accesibles y transparentes para el público en general, lo que se conoce como open government o gobierno abierto. Tal como quiere que sea la red, libre, sin censura, donde los proveedores ni controlen ni monitoricen la actividad de los internautas sin su permiso explícito.

Y, entretanto, se ocupa de lo que será la nueva era de la World Wide Web, según la concibe su creador: la Web Semántica, o Web 3.0, donde los datos no estarán controlados por las aplicaciones que están en red, sino que los propios datos estarán en red, para integrar, combinar y reutilizar los datos, una red de conceptos y no de programas.

Después de todo, Tim Berners-Lee tiene por delante muchos años para volver a sorprender al mundo y ponerlo de cabeza. Y siempre desde una modestia y falta de avaricia de la que tanto podrían aprender tantos.

Los nombres de la red

La World Wide Web (red a nivel mundial), pudo llamarse de muchas formas. Tim Berners-Lee quería destacar que era una forma descentralizada en la que cualquier cosa se podría enlazar a cualquier otra, y entre los nombres que desechó estuvo “Mine of information” (mina de información, cuyas siglas son MOI, "yo" en francés, que le pareció "un poco egoísta"), “The Information Mine” (la mina de información, que desechó porque sus siglas son, precisamente, su nombre, TIM) e “Information mesh” (malla de información, que le parecía que sonaba demasiado parecida a “mess”, confusión). Finalmente, el nombre se eligió porque la red es global, y porque matemáticamente es una red. Además, sentía Berners-Lee, una letra identificativa sería útil. Aunque sea difícil pronunciar WWW en casi todos los idiomas.

Babbage y sus máquinas matemáticas

El peculiar hombre que ideó el ordenador programable, y diseñó el primer ordenador mecánico, abuelo de los digitales de hoy en día.

En 1991 se presentó al público en Inglaterra un enorme dispositivo mecánico formado por más de 4000 piezas metálicas y un peso de tres toneladas métricas, cuya construcción había tomado más de dos años. Este aparato era, a todas luces, un anacronismo. Llamado “Segunda Máquina Diferencial” (o DE2 por su nombre en inglés), su objetivo era calcular una serie de valores numéricos polinomiales e imprimirlos automáticamente, algo que hacía veinte años podían hacer de modo rápido y sencillo las calculadora de mano electrónicas, compactas y de fácil fabricación.

De hecho, fue necesario esperar nueve años más para que los constructores produjeran el igualmente complejo y pesado mecanismo de impresión, la impresora mecánica que se concluyó en el año 2000, cuando ya existían muy eficientes y compactas impresoras electrónicas a color.

Sin embargo, la construcción de estos dos colosos mecánicos y la demostración de su funcionamiento, esfuerzos que estuvieron a cargo del Museo de Ciencia de Londres, sirvieron para subrayar el excepcional nivel de uno de los grandes matemáticos del siglo XIX y uno de los padres incuestionables de la informática y del concepto mismo de programas ejecutables: Charles Babbage, el genio que concibió la máquina diferencial y la tremendamente más compleja máquina analítica (que muchos sueñan hoy con construir) pero que nunca las pudo convertir en realidad tangible.

El matemático insatisfecho

Charles Babbage nació en Londres en 1791. Cualquier esperanza de que siguiera los pasos de su padre se disiparon en la temprana adolescencia de Babbage, cuando se hizo evidente no sólo su amor por las matemáticas, sino su innegable talento. Ese talento, sus estudios y sus lecturas y prácticas matemáticas autodidactas lo llevaron al renombrado Trinity College de Cambridge cuando apenas contaba con 19 años, donde pronto demostró que sus capacidades matemáticas estaban por delante de las de sus profesores.

Comenzó así una destacada carrera académica. Al graduarse, fue contratado por la Royal Institution para impartir la cátedra de cálculo y allí comenzó una serie de importantes logros, como su admisión en la Royal Society en 1816. Ocupó asimismo, de 1828 a 1839, la Cátedra Lucasiana de Matemáticas en Cambridge, probablemente el puesto académico más importante y conocido del mundo, que ha pertenecido a personalidades como el propio Isaac Newton, Paul Dirac y, desde 1980, por el profesor Stephen Hawking.

Sin embargo, la precisa mente matemática de Charles Babbage chocaba con un hecho impuesto por la realidad imperfecta: los cálculos manuales de las series de números que conformaban las tablas matemáticas tenían una gran cantidad de errores humanos. Evidentemente, estos errores no los cometerían las máquinas.

Máquinas como la construida por el alemán Wilhelm Schickard en 1623, la calculadora de Blas Pascal de 1645 y el aritmómetro de Gotfried Leibniz.

A partir de 1920 y hasta el final de su vida, Charles Babbage dedicó gran parte de su tiempo y su propia fortuna familiar a diseñar una máquina calculadora más perfecta. Diseñó y construyó una primera máquina diferencial en 1821, de la cual no queda nada. A continuación diseñó la segunda máquina diferencial, pero se enfrentó al hecho de que las capacidades tecnológicas de su época no permitían construir de acuerdo a las tolerancias exigidas por sus diseños, en los que grandes cantidades de engranajes inteactuaban, de modo que no pudo hacer un modelo funcional

Sin embargo, habiendo resuelto muchos problemas técnicos con sus diseños, cálculos y desarrollos, procedió a diseñar una tercera máquina, la “máquina analítica”.

Esta máquina analítica tendría un dispositivo de entrada (una serie de tarjetas perforadas que contendrían los datos y el programa), un espacio para almacenar una gran cantidad de números (1000 números de 50 cifras decimales cada uno), un procesador o calculador de números, una unidad de control para dirigir las tareas a realizarse y un dispositivo de salida para mostrar el resultado de la operación.

Estos cinco componentes son precisamente lo que definen a un ordenador: entrada, memoria, procesador, programa y salida. La máquina analítica era, sin más, un ordenador mecánico programable capaz, en teoría, de afrontar muy diversas tareas.

Después de haberla descrito por primera vez en 1837, Babbage continuó trabajando en su diseño y su concepto de la máquina analítica hasta su muerte en 1871.

Entre las pocas personas que entendían y apreciaban los esfuerzos de Babbage había una que resultaba especialmente improbable, Augusta Ada King, Condesa de Lovelace, la única hija legítima del poeta romántico y aventurero Lord Byron. Conocida como Ada Lovelace, brillante matemática de la época.

Ada Lovelace, a quien Babbage llamaba “La encantadora de los números”, llegó a conocer a fondo las ideas de Babbage, al grado que, al traducir la memoria que el matemático italiano Luigi Menabrea hizo sobre la máquina analítica, incluyó gran cantidad de notas propias, entre ellas un método detallado de calcular, en la máquina analítica una secuencia de los llamados números de Bernoulli.

Estudiado posteriormente con todo detalle, se ha podido determinar que el procedimiento de Ada Lovelace habría funcionado en la máquina de Babbage, por lo que numerosos estudiosos de la historia de la informática consideran que este método es el primer programa de ordenador jamás creado.

Ada murió a los 36 años en 1852, y Babbage hubo de continuar su trabajo, no sólo en la nunca finalizada máquina analítica, sino en gran cantidad de intereses: fue el creador del miriñaque o matavacas, el dispositivo colocado al frente de las locomotoras para apartar obstáculos, diseñó un oftalmoscopio y fue un destacado criptógrafo.

Pero nunca pudo, por problemas técnicos y de financiamiento, construir las máquinas que su genio concibió. De allí que la presentación de la segunda máquina diferencial funcional en 1991 resultara, así fuera tardíamente, el homenaje al hombre que soñó los ordenadores que hoy presiden, sin más, sobre la civilización del siglo XXI.

Homenajes

Charles Babbage ha sido homenajeado dando su nombre a un edificio de la Universidad de Plymouth, a un bloque en la escuela Monk’s Walk, a una locomotora de los ferrocarriles británicos y a un lenguaje de programación para microordenadores. El nombre de Ada Lovelace se ha dado a un lenguaje de programación y a una medalla que concede, desde 1998, la Sociedad Informática Británica.

Fundó la informática, ganó una guerra, murió perseguido

Los ordenadores que hoy son herramienta fundamental de la ciencia, la economía, el arte y la comunicación son, en gran medida, resultado del sueño de un matemático inglés poco conocido.

Estatua de Alan Turing en Bletchley Park.
(Foto Ian Petticrew [CC-BY-SA-2.0],
vía Wikimedia Commons)
Uno de los frentes secretos de la Segunda Guerra Mundial es Bletchley Park, que era un edificio militar (hoy museo) en Buckinghamshire, Inglaterra. Allí, un grupo de matemáticos, ajedrecistas, jugadores de bridge, aficionados a los crucigramas, criptógrafos y pioneros de la informática se ocuparon de derrotar al nazismo quebrando los códigos secretos con los que se cifraban las comunicaciones militares y políticas alemanas.

Desde 1919, los servicios secretos, criptógrafos y matemáticos habían estado trabajando sobre la máquina llamada “Enigma”, inventada originalmente por el holandés Alexander Koch y mejorada por técnicos alemanes para las comunicaciones comerciales, aunque pronto se volvió asunto de las fuerzas armadas alemanas. La máquina Enigma era esencialmente una máquina electromecánica que usaba una serie de interruptores eléctricos, un engranaje mecánico y una serie de rotores para codificar lo que se escribía en un teclado, y en una versión mejorada y ampliada se convirtió en la forma de codificar y decodificar mensajes militares alemanes de modo enormemente eficaz.

Al iniciarse la Segunda Guerra Mundial, aprovechando los esfuerzos criptográficos previos de quienes habían abordado los misterios de la máquina Enigma, el joven de 26 años Alan Mathison Turing desarrolló mejoras al sistema polaco anterior para romper el código Enigma y diseñó la llamada "bomba de Turing", una máquina que buscaba contradicciones en los mensajes para hacer deducciones lógicas que permitían descifrar los mensajes más rápida y eficazmente. Pero, por supuesto, ningún ejército depende de una sola arma, de una sola estrategia ni de un solo sistema de cifrado para sus mensajes secretos. Así, Turing después se vio implicado en el desciframiento del sistema indicador naval alemán, un desarrollo ampliado de Enigma. Más adelante, en 1942 fue parte del equipo encargado de romper el código FISH de la armada nazi y puso algunas de las bases del ordenador Colossus, desarrollado por otro departamento militar inglés durante la guerra.

El que sería, sin proponérselo, soldado clave, en la Batalla de Inglaterra en 1940 y en el triunfo aliado final de 1945 había nacido en 1912. Desde su niñez se habían hecho evidentes sus aptitudes para la ciencia y las matemáticas, lo que sin embargo no deslumbró a sus profesores, más interesados en el estudio de los clásicos. Turing, sin embargo, siguió estudiando y trabajando matemáticas por su cuenta y llegó a entender y desarrollar planteamientos de Einstein cuando sólo tenía 16 años, concluyendo, algo que Einstein aún no había declarado abiertamente, que su trabajo en la relatividad desafiaba la universalidad de las leyes de Newton. Más adelante, como estudiante en el King’s College de Cambridge (fue rechazado en el Trinity College por sus malas notas en humanidades), reformuló algunos planteamientos del matemático Kurt Gödel y en 1936 planteó una máquina hipotética (la “máquina de Turing”), un dispositivo manipulador de símbolos que, pese a su simplicidad, puede adaptarse para simular la lógica de cualquier ordenador o máquina de cómputo que pudiera construirse o imaginarse, de modo que podría resolver todos los problemas que se le plantearan. La máquina de Turing abre la posibilidad de crear máquinas capaces de realizar computaciones complejas, idea que desarrolló más ampliamente en Princeton. Esta máquina imaginaria permitió responder a algunos problemas matemáticos y lógicos de su tiempo, pero sigue siendo hoy en día uno de los elementos de estudio fundamentales de la teoría informática, pues mucha de la informática de hoy surge de la nueva forma de algoritmos (procedimientos matemáticos de solución de problemas) derivados de la máquina de Turing.

Turing trabajó en proyectos criptográficos del gobierno británico y fue llamado a Bletchley apenas Alemania invadió Polonia en 1938. Durante la guerra, además de su trabajo criptográfico, Turing se ocupó de aprender electrónica. Terminada la guerra, en 1946 en el Laboratorio Nacional de Física de Gran Bretaña, presentó el primer diseño completo de un ordenador con programas almacenados, algo trivial hoy en día. Después de años de construcción, retrasos y sinsabores, el ordenador ACE de Turing fue construido y ejecutó su primer programa el 10 de mayo de 1950. A partir de entonces, Turing se ocupó de la matemática en la biología, interesándose sobre todo por los patrones naturales (como la concha del nautilus o las semillas de un girasol) que siguen los números de Fibonacci.

El brillante matemático, sin embargo, era homosexual en una época en que no había ninguna tolerancia a su condición sexual y en un momento y un país donde los actos homosexuales se perseguían como delitos y como una enfermedad mental. Después de que su casa fue robada por uno de sus compañeros sexuales en 1952, Turing admitió públicamente su homosexualidad y fue declarado culpable. Se le dio la opción, tratándose de un personaje de cierta relevancia, de ir a la cárcel o de someterse a un tratamiento de estrógenos para disminuir sus impulsos sexuales, opción ésta que eligió el genio. Debido a su homosexualidad, que se consideraba un riesgo, perdió además sus autorizaciones de seguridad y se le impidió seguir trabajando en la criptografía al servicio de Su Majestad.

Turing apareció muerto el 8 de junio de 1954, según todos los indicios a causa de su propia mano, aunque quedan algunas dudas sobre la posibilidad de un accidente o un menos probable asesinato. Aunque había sido condecorado con la Orden el Imperio Británico por su trabajo en la guerra, éste permaneció en secreto hasta la década de 1970, cuando empezó la reivindicación de su nombre. En 2001, en el parque Sackville de Manchester, se develó la primera estatua conmemorativa que lo resume: "Padre de la ciencia informática, matemático, lógico, quebrador de códigos en tiempos de guerra, víctima del prejuicio”.

La prueba de Turing

Habiéndose ocupado desde 1941 de la posibilidad de la inteligencia de las máquinas, lo que en 1956 pasaría a llamarse "inteligencia artificial", Turing consideró que no había ninguna prueba objetiva para determinar la inteligencia de una máquina, y diseñó la llamada “Prueba de Turing”. En ella, un evaluador mantiene conversaciones simultáneas mediante una pantalla de ordenador con una persona y con una máquina, sin saber cuál es cuál. Tanto la persona como la máquina intentan parecer humanos. Si el evaluador no puede distinguir de modo fiable cuál es la persona y cuál la máquina, ésta habrá pasado la prueba y se debe considerar "inteligente".