
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Adaptive Techniques to find Optimal Planar Boxes

J. Barbay ∗ G. Navarro † P. Pérez-Lantero ‡

Abstract

Given a set P of n planar points, two axes and a real-
valued score function f() on subsets of P , the Optimal
Planar Box problem consists in finding a box (i.e. an
axis-aligned rectangle) H maximizing f(H ∩ P). We
consider the case where f() is monotone decomposable,
i.e. there exists a composition function g() monotone
in its two arguments such that f(A) = g(f(A1), f(A2))
for every subset A ⊆ P and every partition {A1, A2} of
A. In this context we propose a solution for the Opti-
mal Planar Box problem which performs in the worst
case O(n2 lg n) score compositions and coordinate com-
parisons, and much less on other classes of instances
defined by various measures of difficulty. A side result
of its own interest is a fully dynamic MCS Splay tree
data structure supporting insertions and deletions with
the dynamic finger property, improving upon previous
results [Cortés et al., J.Alg. 2009].

1 Introduction

Consider a set P of n planar points, and two axes
x and y forming a base of the plane, such that the
points are in general position (i.e. no pair of points
share the same x or y coordinate). We say that a
real-valued function f() on subsets of P is decompos-
able [2, 7] if there exists a composition function g() such
that f(A) = g(f(A1), f(A2)) for every subset A ⊆ P
and every partition {A1, A2} of A. Without loss of gen-
erality, we extend f() to P such that f(p) = f({p}). A
decomposable function is monotone if the corresponding
composition function g() is monotone in its two argu-
ments. A box is a rectangle aligned to the axes, and
given a monotone decomposable function f(), such a
box is f()-optimal if it optimizes f(H ∩ P). Without
loss of generality, we assume that we want to maximize
f() and that its composition function g() is monotone

∗Department of Computer Science, University of Chile,
Chile, jeremy.barbay@dcc.uchile.cl. Partially funded by grant
FONDECYT 1-120054, Chile.
†Department of Computer Science, University of Chile, Chile,

gnavarro@dcc.uchile.cl. Partially funded by Millennium Nu-
cleus Information and Coordination in Networks ICM/FIC P10-
024F, Mideplan, Chile.
‡Escuela de Ingenieŕıa Civil en Informática, Universidad

de Valparáıso, Chile, pablo.perez@uv.cl. Partially supported
by grant FONDECYT 11110069 (Chile) and project MEC
MTM2009-08652 (Spain).

increasing in its two arguments. Given a monotone de-
composable function f() well defined for the empty set
∅, a point p of P is positive if f(p) > f(∅). Otherwise,
this point p is negative. Observe that if p is positive then
f(A ∪ {p}) = g(f(A), f(p)) > g(f(A), f(∅)) = f(A) by
monotonicity of g(): hence a point p is positive if and
only if f(A ∪ {p}) > f(A) for every subset A ⊂ P not
containing p. A stripe is an area delimited by two lines
parallel to the same axis. A positive stripe (resp. neg-
ative stripe) is one which contains only positive (resp.
negative) points. A monochromatic stripe is a stripe in
which all points have the same sign.

Given a set of planar points, a simple example of such
monotone decomposable functions is counting the num-
ber of points the box contains. Other examples include
counting the number of blue points; returning the differ-
ence between the number of blue points and the number
of red points contained; returning the number of blue
points in the box or −∞ if it contains some red points;
summing the weights of the points contained; taking the
maximum of the weights of contained points; etc.

Given a set P of n planar points and a real-valued
function f() on subsets of P , the Optimal Planar
Box problem consists in finding an f()-optimal box.
Depending on f(), this problem has various practical
applications, from identifying rectangular areas of in-
terest in astronomical pictures to the design of optimal
rectangular forest cuts or the analysis of medical radio-
graphies. We present various adaptive techniques for
the Optimal Planar Box problem:

• In the worst case over instances composed of n
points, our algorithm properly generalizes Cortés et
al.’s solution [5] for the Maximum Weight Box
problem, within the same complexity of O(n2 lg n)
score compositions.

• For any δ ∈ [1..n] and n1, . . . , nδ ∈ [1..n] summing
to n, in the worst case over instances composed
of δ monochromatic stripes of alternating signs
when the points are sorted by their y-coordinates,
such that the i-th stripe contains ni points, our
algorithm executes O(δn(1 + H(n1, . . . , nδ))) ⊂
O(δn lg(δ + 1)) score compositions (Theorem 4),

where H(n1, . . . , nδ) =
∑δ
i=1(ni/n) lg(n/ni) is the

usual entropy function.

• Assuming the same y-coordinate order, for any
λ ∈ [0..n2], in the worst case over instances where

24th Canadian Conference on Computational Geometry, 2012

λ is the sum of the distances between the inser-
tion positions of the consecutive points according to
their x-coordinate, our algorithm makes O(n2(1 +
lg(1 + λ/n)) score compositions (Lemma 5). Mea-
sure λ relates to the local insertion sort complex-
ity [11] of the sequence of x-coordinates. It holds
λ ∈ O(n+ Inv), where Inv is the number of inver-
sions in the sequence. When the points are grouped
into δ monochromatic stripes, the complexity drops
to O(nδ(1 + lg(1 + Inv/n)) (Theorem 7).

• Assuming the same y-coordinate order, for a min-
imal cover of the same sequence of x-coordinates
into ρ ≤ n runs (i.e. contiguous increasing sub-
sequences) of lengths r1, . . . , rρ, our algorithm ex-
ecutes O(n2(1 + H(r1, . . . , rρ))) ⊂ O(n2 lg(ρ + 1))
score compositions (Lemma 6). When the points
can be grouped into δ monochromatic stripes, this
complexity decreases to O(nδ(1+H(r1, . . . , rρ))) ⊂
O(nδ lg(ρ+ 1)) (Theorem 7 again).

• Using an approach orthogonal to the one of Cortés
et al. [5], we partition (via a clever strategy consid-
ering axis-parallel lines) the point set P into sub-
sets called diagonal blocks, so that a new adap-
tive algorithm is obtained (Theorem 14). The algo-
rithm solves the Optimal Planar Box problem
in each block and combine the solutions. Extend-
ing this algorithm, we obtain another adaptive al-
gorithm running in O(n lg n+σn) comparisons and
O(σn lg n) score compositions, where σ ∈ [1..n] is a
measure of difficulty of the instance that depends
on the partition in diagonal blocks (Theorem 18).

Due to the lack of space, several proofs are omit-
ted. A longer version of this paper is available at
http://arxiv.org/abs/1204.2034.

2 Optimal Boxes and Related Problems

Given a set P of n weighted planar points, in which the
weight of a point can be either positive or negative, the
Maximum Weight Box problem [5] consists in finding
a box R maximizing the sum of the weights of the points
in R ∩ P . Cortés et al. [5] gave an algorithm solving
this problem in time O(n2 lg n) using O(n) space, based
on MCS trees, a data structure supporting in O(lg n)
time the dynamic computation of the Maximum-Sum
Consecutive Subsequence problem [3] (hence the
name “MCS”).

The Maximum Weight Box problem [5] and, by
successive reductions, the Maximum Subarray prob-
lem [14], the Maximum Box problem [5, 8, 10], and the
Maximum Discrepancy Box problem [5, 6] can all be
reduced to a finite number of instances of the Optimal
Planar Box problem by choosing adequate definitions
for the score functions f() to optimize.

Cortés et al.’s algorithm [5] first sorts the points by
their y-coordinate in O(n lg n) time and then traverses
the resulting sequence of points p1, p2, . . . pn as follows.
For each pi, it sets an MCS tree (described in more
details in Section 3) with points pi, . . . pn, where the key
is their x-coordinate xi, and all have value f(∅). It then
successively activates points pj for j ∈ [i..n], setting
its weight to value f(pj), updating in time O(lg n) the
MCS tree so that to compute the optimal box contained
between the y-coordinate of pi to that of pj . The whole
algorithm executes in time O(n2 lg n).

3 Fully Dynamic MCS Trees

The MCS tree [5] is an index for a fixed sequence S =
(xi)i∈[1..n] of n elements, where each element xk of S has
a weight w(xk) ∈ R, so that whenever a weight w(xk)
is updated, a consecutive subsequence (xi)i∈[l..r] of S
maximizing

∑
i∈[l..r] w(xi) is obtained (or recomputed)

in O(lg n) time. This behavior is dynamic in the sense
that it allows modification of element weights, yet it
is only partially dynamic in the sense that it admits
neither addition nor deletion of elements.

Existing dynamic data structures can be easily
adapted into a truly dynamic data structure with the
same functionalities as MCS trees. We start by gen-
eralizing MCS trees [5] from mere additive weights to
monotone decomposable score functions in Lemma 1.
We further generalize this solution to use an AVL tree [1]
in Lemma 2 and a Splay tree [13] in Lemma 3, whose
“finger search” property will play an essential role in
the results of Sections 4 and 5.

Lemma 1 Let S be a static sequence of n elements, and
f() be a monotone decomposable score function receiv-
ing as argument any subsequence of S, defined through
the activation and deactivation of each element of S.
There exists a semi-dynamic data structure for main-
taining S using linear space that supports the search for
an element in O(lg n) comparisons; the activation or de-
activation of an element in O(lg n) score compositions;
and f()-optimal sub range queries in O(lg n) compar-
isons and score compositions.

The MCS tree data structure can be converted into a
truly dynamic data structure supporting both insertions
and deletions of elements. This data structure can be
used to index a dynamic sequence S = (xi)i∈[1..n] of
n elements so that whenever an element is inserted or
removed, a consecutive subsequence S′ = (xi)i∈[l..r] of S
optimizing f(S′) can be (re)computed in O(lg n) score
compositions and comparisons. The following lemma
establishes the property of this data structure, which
we call MCS AVL tree.

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lemma 2 Let S be a dynamic sequence of n elements,
and f() be a monotone decomposable score function re-
ceiving as argument any consecutive subsequence of S.
There exists a fully dynamic data structure for main-
taining S using linear space that supports the search for
an element in O(lg n) comparisons; the update of the
score of an element in O(lg n) score compositions, the
insertion or deletion of an element in O(lg n) compar-
isons and score compositions; and f()-optimal subrange
queries in O(lg n) comparisons and score compositions.

The Splay tree is a self-adjusting binary search tree
created by Sleator and Tarjan [13]. It supports the basic
operations search, insert and delete, all of them called
accesses, inO(lg n) amortized time. For many sequences
of accesses, splay trees perform better than other search
trees, even when the specific pattern of the sequences are
unknown. Among other properties of Splay trees, we are
particularly interested in the Dynamic Finger Property,
conjectured by Sleator and Tarjan [13] and proved by
Cole et al. [4]: every sequence of m accesses on an arbi-
trary n-node Splay tree costs O(m+n+

∑m
j=1 lg(dj+1))

rotations where, for j = 1..m, the j-th and (j − 1)-th
accesses are performed on elements whose ranks among
the elements stored in the Splay tree differ by dj . For
j = 0, the j-th element is the element stored at the
root. It is easy to see that in the MCS AVL tree we can
replace the underlying AVL tree by a Splay tree, and
obtain then the next lemma, which describes the MCS
Splay tree data structure.

Lemma 3 Let S be a dynamic sequence of n elements
and f() be a monotone decomposable function receiving
as argument any consecutive subsequence of S. There
exists a data structure for maintaining S that uses lin-
ear space and supports the search in O(lg n) amortized
comparisons, the update of the score of an element in
O(lg n) amortized score compositions, and the inser-
tion and deletion of elements in O(lg n) amortized com-
parisons and score compositions. Joint with the inser-
tion or deletion of any element, the consecutive sub-
sequence S′ of S maximizing f(S′) is recomputed. The
Dynamic Finger Property is also satisfied for each oper-
ation (search, insertion and deletion), both for the num-
ber of comparisons and for the number of score compo-
sitions performed.

4 Taking Advantage of Monochromatic Stripes

Consider an instance where positive and negative points
can be clustered into δ positive and negative stripes
along one given axis, of cardinalities n1, . . . , nδ. Such
stripes can be easily identified in O(n lg n) comparisons
and O(n) score accesses. On such instances one does
not need to consider boxes whose borders are in the
middle of some stripes: all optimal boxes will start at

the edge of a stripe; specifically, the top (resp. bottom)
of an optimal box will align with a positive point at the
top (resp. bottom) of a positive stripe.

This very simple observation not only limits the num-
ber of boxes for which we need to compute a score,
but also it makes it easier to compute the score of
each box: adding the ni points of the i-th stripe in
increasing order of their coordinates in a MCS Splay
tree of final size n amortizes to O(n+

∑δ
i=1 ni lg(n/ni))

coordinate comparisons and score compositions. The
reason is that the ni distances dj + 1 of Lemma 3
telescope to at most n + ni within stripe i, and thus
by convexity the cost O(n +

∑n
j=1 lg(dj + 1)) is up-

per bounded by O(n +
∑δ
i=1 ni lg(1 + n/ni)) which is

O(n +
∑δ
i=1 ni lg(n/ni)) = O(n(1 + H(n1, . . . , nδ))) ⊂

O(n lg(δ + 1)). Combining this with the fact that the
top of an optimal box is aligned with a positive point at
the top of a positive stripe yields the following result.

Theorem 4 For any δ ∈ [1..n] and n1, . . . , nδ ∈ [1..n]
summing to n, in the worst case over instances com-
posed of δ stripes of alternating signs over an axis such
that the i-th stripe contains ni points, there exists an
algorithm that finds an f()-optimal box in O(δn(1 +
H(n1, . . . , nδ))) ⊂ O(δn lg(δ + 1)) score compositions
and O(δn(1 + H(n1, . . . , nδ)) + n lg n) ⊂ O(δn lg(δ +
1) + n lg n) coordinate comparisons.

5 Taking Advantage of Point Alignments

Running the algorithm outlined in the first paragraph
of Section 4 over the MCS Splay tree has further con-
sequences. In this section we show how it makes the
algorithm adaptive to local point alignments.

The cost of our algorithm using the MCS Splay tree
can be upper bounded as follows. Let λ denote the
sum of the distances between the insertion positions of
the consecutive points according to their x-coordinate.
When we insert the points in the MCS Splay tree start-
ing from p1, the total cost is O(n+

∑n
j=1 lg(dj + 1)) ⊂

O(n + n lg(1 + λ/n)) score compositions, by convexity
of the logarithm and because

∑n
j=1 dj + 1 ≤ λ + n. A

simple upper bound when considering all the n passes
of the algorithm can be obtained as follows.

Lemma 5 There exists an algorithm that finds an f()-
optimal box in O(n2(1+lg(1+λ/n))) score compositions
and O(n2(1 + lg(1 + λ/n)) + n lg n) coordinate compar-
isons, where λ ≤ n2 is the local insertion complexity
of the sequence of x-coordinates of the points sorted by
y-coordinates.

In the worst case this boils down to the O(n2 lg n)-
worst-case algorithm, whereas in the best case λ = 0
and the cost corresponds to O(n2) operations.

24th Canadian Conference on Computational Geometry, 2012

We can upper bound λ by using other two measures of
disorder in permutations. For example, let us consider
Inv, the number of inversions in the permutation π, or
said another way, the number of pairs out of order in the
sequence [12]. The measure Inv corresponds to a cost
where the “finger” is always at the end of the sequence.
This can be as small as (λ − n)/2, for example con-
sider the permutation π = (m,m− 1,m+ 1,m− 2,m+
2, . . . , 1, 2m−1) for m = (n+1)/2 and odd n. However,
Inv can be much larger than λ because it is not sym-
metric on decreasing sequences, for example when the
points are semi-aligned in a decreasing diagonal and the
permutation is π = (n, n−1, n−2, . . . , 1). Thus replac-
ing λ by Inv in Lemma 5 yields a valid upper bound in
terms of big-O complexity.

Another well-known measure of permutation com-
plexity is the number of increasing runs ρ, that is,
the minimum number of contiguous monotone increas-
ing subsequences that cover π [9]. Let r1, . . . , rρ be
the lengths of the runs, computed in O(n lg n) compar-
isons. Then the sum of the values |πj+1 − πj | within
the i-th run telescopes to at most n, and so does the
sum of the dj values. Therefore

∑n
j=1 lg(dj + 1) ≤∑ρ

i=1 ri lg(1+n/ri) ≤ n+
∑ρ
i=1 ri lg(n/ri) by convexity.

This leads to the following alternative upper bound.

Lemma 6 There exists an algorithm that finds an f()-
optimal box in O(n lg n) coordinate comparison and
O(n2(1+H(r1, . . . , rρ)) ⊂ O(n2 lg(ρ+1)) score composi-
tions, where r1, . . . , rρ are the lengths of ρ maximal con-
tiguous increasing subsequences that cover the sequence
of x-coordinates of the points sorted by y-coordinate.

6 Taking Advantage of both Stripes and Alignments

The combination of the techniques of Sections 4 and 5
can be elegantly analyzed. A simple result is that we
need to start only from δ different pi values, and there-
fore an upper bound to our complexity is O(nδ((1 +
lg(1 + λ/n))). We can indeed do slightly better by
sorting the points by increasing x-coordinates within
each monochromatic stripe. While the measure λ′ re-
sulting from this reordering may be larger than λ, the
upper bounds related to Inv and ρ, namely Inv′, ρ′,
and H(n′1, . . . , n

′
ρ′), do not increase. In particular it

is easy to see that the upper bound of Theorem 4
is dominated by the combination since ρ′ ≤ δ and
H(r′1, . . . , r

′
ρ′) ≤ H(n1, . . . , nδ) (because no run will cut

a monochromatic stripe once the latter is reordered).

Theorem 7 There exists an algorithm that finds an
f()-optimal box in O(n lg n) coordinate comparisons
and O(nδ(1 + min(lg(1 + Inv/n), H(r1, . . . , rρ)))) ⊂
O(nδ lg(ρ+ 1)) score compositions, where δ is the min-
imum number of monochromatic stripes in which the

points, sorted by increasing y-coordinate, can be parti-
tioned; X is the corresponding sequence of x-coordinates
once we (re-)sort by increasing x-coordinate the points
within each monochromatic stripe; Inv ≤ n2 is the num-
ber of out-of-order pairs in X; and r1, . . . , rρ are the
lengths of the minimum number ρ ≤ δ of contiguous in-
creasing runs that cover X. A similar result holds by
exchanging x and y axes.

Note that if these new measures are not particularly
favorable, the formula boils down to the O(nδ lg δ) time
complexity of Section 4.

7 Taking Advantage of Diagonals of Blocks

In this section we present an approach orthogonal to the
previous ones, which considers partitions of the point
set into subsets and yields to a new adaptive algorithm
which solves the Optimal Planar Box problem in
each of them and combine the solutions. Its difficulty
measure depends on such a partition.

For any subset A ⊆ P , a diagonalization of A is a
partition {A1, A2} of A induced by two lines `1 and
`2, respectively parallel to axes x and y, so that the
elements of A1 and the elements of A2 belong to oppo-
site quadrants with respect to the point `1 ∩ `2. Note
that if p1, p2, . . . , pm denote the elements of A sorted
by x-coordinate, then any diagonalization of A has
the form {{p1, . . . , pk}, {pk+1, . . . , pm}} for some index
k ∈ [1..m − 1]. Not all point sets admit a diagonaliza-
tion, the simplest case consists of four points placed at
the four corners of a square whose sides are slightly ro-
tated from the axes. We call such a point set a windmill,
due to the characteristic position of its points. Given
any bounded set S ⊂ R2, let Box(S) denote the smallest
box enclosing S and let the extreme points of any subset
A ⊆ P be those belonging to the boundary of Box(A).

Lemma 8 Let A be a point set that does not admit a di-
agonalization. Then A has exactly four extreme points.
Furthermore, A has a windmill which contains at least
one extreme point of A.

Definition 9 A diagonalization tree of P , D-tree, is a
binary tree such that: (i) each leaf u contains a sub-
set S(u) ⊆ P which does not admit a diagonalization,
(ii) set {S(u) | u is a leaf } is a partition of P , and
(iii) each internal node v has exactly two children v1
(the left one) and v2 (the right one) and satisfies that
{A(v1), A(v2)} is a diagonalization of A(v), where for
each node v A(v) denotes the union of the sets S(u) for
all leaves u descendant of v (See Figure 1).

Lemma 10 Let P be a set of n points in the plane.
Every D-tree of P has the same number of leaves. Fur-
thermore, the i-th leaves from left to right of any two
D-trees of P contain the same subset S(·) of P .

CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

p1

p2

p3

p4
p5

p6

p7

p8

p9

p10

p11

p12
p13

p3, . . . , p7

p1 p2 p8 p9

p10, . . . , p13

Figure 1: A D-tree of the point set {p1, . . . , p13}.

From Lemma 10 we can conclude that every D-tree
T of P induces the same partition {S(u1), . . . , S(uβ)}
of P , where u1, . . . , uβ are the leaf nodes of T.

Lemma 11 A D-tree of P requires O(n) space and can
be built in O(n lg n) comparisons.

Proof. (Sketch) Let p1, p2, . . . , pn be the elements of
P sorted by x-coordinate, and let pπ1

, pπ2
, . . . , pπn

be
the elements of P sorted by y-coordinate. Consider-
ing the computation of permutation π a preprocess-
ing, we can show that: If P admits a diagonaliza-
tion {{p1, . . . , pk}, {pk+1, . . . , pn}} then it can be de-
termined in O(min{k, n− k}) comparisons. Otherwise,
if P does not admit a diagonalization, then it can be
decided in O(n) comparisons. We can then build a D-
tree of P recursively as follows. If a diagonalization
{{p1, . . . , pk}, {pk+1, . . . , pn}} of P exists, which was de-
termined in O(t) comparisons where t = min{k, n− k},
then create a root node and set as left child a D-
tree of {p1, . . . , pk} and as right child a D-tree of
{pk+1, . . . , pn}. Otherwise, if P does not admit a di-
agonalization, which was decided in O(n) comparisons,
then create a leaf node whose set S(·) is equal to P .
This results in the next recurrence equation for the to-
tal number T (n) of comparisons, where 1 ≤ t ≤ bn/2c:

T (n) =

 O(t) + T (t) + T (n− t) n > 1, a diagonali-
zation exists.

O(n) otherwise.

By applying induction and using the binary entropy
function H(x) = x lg(1/x) + (1− x) lg(1/(1− x)), with
the fact x ≤ H(x) for x ≤ 1/2, it can be proved that
T (n) is O(n lg n). �

Definition 12 For any non-empty subset A ⊆ P the
set of ten f()-optimal boxes of A, denoted by Ten(A),
consists of the following f()-optimal boxes of A, all con-
tained in Box(A):
1. Box(A);
2. Bopt(A), without restriction;
3. B1(A), with the bottom-left vertex of Box(A);
4. B2(A), with the bottom-right vertex of Box(A);
5. B3(A), with the top-right vertex of Box(A);
6. B4(A), with the top-left vertex of Box(A);
7. B1,2(A), with the bottom vertices of Box(A);
8. B2,3(A), with the right vertices of Box(A);
9. B3,4(A), with the top vertices of Box(A);

10. B4,1(A), with the left vertices of Box(A).

Lemma 13 For any non-empty subset A ⊆ P and any
diagonalization {A1, A2} of A, Ten(A) can be computed
in O(1) score compositions from Ten(A1) and Ten(A2).

Theorem 14 There exists an algorithm that finds an
f()-optimal box of P in O(n lg n+

∑β
i=1 hc(ni)) compar-

isons (on coordinates and indices) and O(
∑β
i=1 hs(ni)+

β) score compositions, where {P1, . . . , Pβ} is the parti-
tion of P induced by any D-tree of P and β is the size of
this partition, ni is the cardinality of Pi, and hc(ni) and
hs(ni) are the numbers of coordinate comparisons and
score compositions used, respectively, to compute the ten
f()-optimal boxes of Pi.

Proof. Build a D-tree T of P in O(n lg n) comparisons
(Lemma 11). Let u1, . . . , uβ be the leaves of T which
satisfy S(ui) = Pi for all i ∈ [1..n]. Compute the set
Ten(S(ui)) = Ten(Pi) in hc(ni) coordinate comparisons
and hs(ni) score compositions. By using a post-order
traversal of T , for each internal node v of T compute
Ten(A(v)) from Ten(A(v1)) and Ten(A(v2)), where v1
and v2 are the children nodes of v, in O(1) score com-
positions (Lemma 13). The f()-optimal box of P is
the box Bopt(A(r)), where r is the root node of T and
satisfies A(r) = P . In total, this algorithm runs in

O(n lg n) +
∑β
i=1 hc(ni) = O(n lg n +

∑β
i=1 hc(ni)) co-

ordinate comparisons and
∑β
i=1 hs(ni) +

∑β−1
i=1 O(1) =

O(
∑β
i=1 hs(ni) + β) score compositions. �

Corollary 15 There exists an algorithm that finds an
f()-optimal box of P in O(n lg n +

∑β
i=1 ni lg ni) com-

parisons and O(
∑β
i=1 n

2
i lg ni + β) score compositions,

where β is the size of the partition {P1, . . . , Pβ} of P
induced by any D-tree of P , and ni = |Pi| for all i.

8 Dealing with Windmills

In this section we use Lemma 8 to obtain a variant of
the algorithm in Theorem 14. The set S(u) of every leaf
node u of any D-tree of P does not admit a diagonal-
ization and has a windmill containing an extreme point

24th Canadian Conference on Computational Geometry, 2012

of S(u). The idea is to remove the extreme points of
S(u) and then recursively build a D-tree of the remain-
ing points. This approach yields a diagonalization in
depth of the point set, potentially reducing the number
of score compositions.

Definition 16 An extended diagonalization tree of P ,
D∗-tree, is defined recursively as follows: Each leaf node
u of a D-tree of P satisfying |S(u)| > 1 is replaced by
a node u′ containing the set X(u) of the four extreme
points of S(u), and if the set S(u) \X(u) is not empty
then u′ has as its only one child a D∗-tree of S(u)\X(u).

Lemma 17 Every D∗-tree of P has the same number
σ of one-child nodes, contains n− 4σ leaves nodes, and
every leaf node u satisfies |S(u)| = 1 or |S(u)| = 4. A
D∗-tree of P requires O(n) space and can be built in
O(n lg n+ σn) comparisons.

Proof. The first part of the lemma can be seen from
Lemma 10 and Definition 16. A D∗-tree of P can be
built in O(n lg n + σn) comparisons by following the
same algorithm to build a D-tree of P until finding a
leaf node u such that S(u) does not admit a diagonal-
ization. At this point we pay O(n) comparisons in order
to continue the algorithm with the set S(u) \X(u) ac-
cording to Definition 16. Since this algorithm finds σ
nodes u, the total comparisons are O(n lg n+ σn). The
D∗-tree has n nodes of bounded degree and hence can
be encoded in linear space. �

Theorem 18 There exists an algorithm that finds an
f()-optimal box of P in O(n lg n+ σn) coordinate com-
parisons and O(σn lg n) score compositions, where σ is
the number of one-child nodes of every D∗-tree of P .

Proof. Build a D∗-tree T of P in O(n lg n+ σn) com-
parisons (Lemma 17). For each of the n − 4σ leaves
nodes u of T compute Ten(S(u)) in constant score com-
positions. Then, using a post-order traversal of T , com-
pute Ten(S(u)) for each internal node u as follows: If v
has two children v1 (the left one) and v2 (the right one),
then {A(v1), A(v2)} is a diagonalization of A(v) and
Ten(A(v)) can be computed in O(1) score compositions
from Ten(A(v1)) and Ten(A(v2)) (Lemma 13). Other-
wise, if v is one of the σ one-child nodes, then Ten(A(v))
can be computed in O(n lg n) worst-case comparisons
and score compositions. Namely, if a box of Ten(A(v))
contains a at least one point of X(u) in the boundary
then it can be found in O(n lg n) comparisons and score
compositions [5]. Otherwise, it is a box of Ten(A(v′)),
where v′ is the child of v. We pay O(1) score composi-
tions for each of the O(n) two-child nodes and O(n lg n)
score compositions for each of the σ one-child nodes.
Then the total score compositions is O(n+σn lg n). �

9 Future work

The definition of Ten(·) can be used for further re-
sults: Suppose the point set P can be partitioned
into subsets P1, P2, . . . , Pk so that bounding boxes
Box(P1), Box(P2), . . . , Box(Pk) are pairwise disjoint and
any axis-parallel line stabs at most one of them. Once
Ten(P1), Ten(P2), . . . , Ten(Pk) have been computed, an
optimal box of P can be found in O(k lg k) comparisons
and O(k2 lg k) score compositions. Finding an optimal
decomposition P1, P2, . . . , Pk is our main issue.

References

[1] G. Adelson-Velskii and E. M. Landis. An algorithm for
the organization of information. In Proc. of the USSR
Academy of Sciences, volume 146, pages 263–266, 1962.

[2] C. Bautista-Santiago, J. M. Dı́az-Báñez, D. Lara,
P. Pérez-Lantero, J. Urrutia, and I. Ventura. Comput-
ing optimal islands. Oper. Res. Lett., 39(4):246–251,
2011.

[3] J. Bentley. Programming pearls: algorithm design tech-
niques. Commun. ACM, 27(9):865–873, 1984.

[4] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the
dynamic finger conjecture for splay trees. Part I: Splay
sorting logn-block sequences. SIAM J. Comp., 30(1):1–
43, 2000.

[5] C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero,
C. Seara, J. Urrutia, and I. Ventura. Bichromatic sep-
arability with two boxes: A general approach. J. Algo-
rithms, 64(2-3):79–88, 2009.

[6] D. P. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy, with appli-
cations to computer graphics and machine learning. J.
Comput. Syst. Sci., 52(3):453–470, 1996.

[7] D. P. Dobkin and S. Suri. Dynamically computing the
maxima of decomposable functions, with applications.
In FOCS, pages 488–493, 1989.

[8] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its ap-
plication to data analysis. Comput. Optim. App.,
23(3):285–298, 2002.

[9] D. E. Knuth. The Art of Computer Programming, vol-
ume 3. Addison-Wesley, 1968.

[10] Y. Liu and M. Nediak. Planar case of the maximum box
and related problems. In CCCG, pages 14–18, 2003.

[11] H. Mannila. Measures of presortedness and optimal
sorting algorithms. In IEEE Trans. Comput., vol-
ume 34, pages 318–325, 1985.

[12] A. Moffat and O. Petersson. An overview of adaptive
sorting. Australian Comp. J., 24(2):70–77, 1992.

[13] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, 1985.

[14] T. Takaoka. Efficient algorithms for the maximum sub-
array problem by distance matrix multiplication. Elec-
tronic Notes in Theoretical Computer Science, 61:191–
200, 2002. CATS’02.

