Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We consider the ultrahigh-dimensional and error-prone data. Our goal aims to estimate the precision matrix and identify the graphical structure of the random variables with measurement error corrected. We further adopt the estimated precision matrix to the linear discriminant function to do classification for multi-label classes.
Simulate and analyze multistate models with general hazard functions. gems provides functionality for the preparation of hazard functions and parameters, simulation from a general multistate model and predicting future events. The multistate model is not required to be a Markov model and may take the history of previous events into account. In the basic version, it allows to simulate from transition-specific hazard function, whose parameters are multivariable normally distributed.
This package contains published data sets for global benthic d18O data for 0-5.3 Myr <doi:10.1029/2004PA001071> and global sea levels based on marine sediment core data for 0-800 ka <doi:10.5194/cp-12-1-2016>.
Retrieving regional plant checklists, species traits and distributions, and environmental data from the Global Inventory of Floras and Traits (GIFT). More information about the GIFT database can be found at <https://gift.uni-goettingen.de/about> and the map of available floras can be visualized at <https://gift.uni-goettingen.de/map>. The API and associated queries can be accessed according the following scheme: <https://gift.uni-goettingen.de/api/extended/index2.0.php?query=env_raster>.
This package provides tools for planning and simulating recurrent event trials with overdispersed count endpoints analyzed using negative binomial (or Poisson) rate models. Implements sample size and power calculations for fixed designs with variable accrual, dropout, maximum follow-up, and event gaps, including methods of Zhu and Lakkis (2014) <doi:10.1002/sim.5947> and Friede and Schmidli (2010) <doi:10.3414/ME09-02-0060>. Supports group sequential designs by adding calendar-time analysis schedules compatible with the gsDesign package and by estimating blinded information at interim looks. Includes simulation utilities for recurrent events (including seasonal rates), interim data truncation, and Wald-based inference for treatment rate ratios.
It provides an effective, efficient, and fast way to explore the Gene Ontology (GO). Given a set of genes, the package contains functions to assess the GO and obtain the terms associated with the genes and the levels of the GO terms. The package provides functions for the three different GO ontology. We discussed the methods explicitly in the following article <doi:10.1038/s41598-020-73326-3>.
Application of multi-site models for daily precipitation and temperature data. This package is designed for an application to 105 precipitation and 26 temperature gauges located in Switzerland. It applies fitting procedures and provides weather generators described in the following references: - Evin, G., A.-C. Favre, and B. Hingray. (2018) <doi:10.5194/hess-22-655-2018>. - Evin, G., A.-C. Favre, and B. Hingray. (2018) <doi:10.1007/s00704-018-2404-x>.
Computes marginal likelihood in Gaussian graphical models through a novel telescoping block decomposition of the precision matrix which allows estimation of model evidence. The top level function used to estimate marginal likelihood is called evidence(), which expects the prior name, data, and relevant prior specific parameters. This package also provides an MCMC prior sampler using the same underlying approach, implemented in prior_sampling(), which expects a prior name and prior specific parameters. Both functions also expect the number of burn-in iterations and the number of sampling iterations for the underlying MCMC sampler.
This package provides functions for the g-and-k and generalised g-and-h distributions.
Finds subsets of sets of genotypes with a high Heterozygosity, and Mean of Transformed Kinships (MTK), measures that can indicate a subset would be beneficial for rare-trait discovery and genome-wide association scanning, respectively.
Scrapes football match shots data from Understat <https://understat.com/> and visualizes it using interactive plots: - A detailed shot map displaying the location, type, and xG value of shots taken by both teams. - An xG timeline chart showing the cumulative xG for each team over time, annotated with the details of scored goals.
This package provides a collection of different indices and visualization techniques for evaluate the seed germination process in ecophysiological studies (Lozano-Isla et al. 2019) <doi:10.1111/1440-1703.1275>.
This package provides functions and methods for: splitting large raster objects into smaller chunks, transferring images from a binary format into raster layers, transferring raster layers into an RData file, calculating the maximum gap (amount of consecutive missing values) of a numeric vector, and fitting harmonic regression models to periodic time series. The homoscedastic harmonic regression model is based on G. Roerink, M. Menenti and W. Verhoef (2000) <doi:10.1080/014311600209814>.
Spline regression, generalized additive models and component-wise gradient boosting utilizing geometrically designed (GeD) splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of generalized (non-)linear models, offering a flexible approach to model complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).
Optimal design analysis algorithms for any study design that can be represented or modelled as a generalised linear mixed model including cluster randomised trials, cohort studies, spatial and temporal epidemiological studies, and split-plot designs. See <https://github.com/samuel-watson/glmmrBase/blob/master/README.md> for a detailed manual on model specification. A detailed discussion of the methods in this package can be found in Watson, Hemming, and Girling (2023) <doi:10.1177/09622802231202379>.
Create a grid-based graphviz using the following functions: 1 - Creating the data.frame where the nodes are; 2 - Adding and editing nodes; 3 - Plotting these nodes.
This package provides methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, gwid incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs).
Build display tables from tabular data with an easy-to-use set of functions. With its progressive approach, we can construct display tables with a cohesive set of table parts. Table values can be formatted using any of the included formatting functions. Footnotes and cell styles can be precisely added through a location targeting system. The way in which gt handles things for you means that you don't often have to worry about the fine details.
Generate commonly used plots in the field of design of experiments using ggplot2'. ggDoE currently supports the following plots: alias matrix, box cox transformation, boxplots, lambda plot, regression diagnostic plots, half normal plots, main and interaction effect plots for factorial designs, contour plots for response surface methodology, Pareto plot, and two dimensional projections of a latin hypercube design.
Builds a LASSO, Ridge, or Elastic Net model with glmnet or cv.glmnet with bootstrap inference statistics (SE, CI, and p-value) for selected coefficients with no shrinkage applied for them. Model performance can be evaluated on test data and an automated alpha selection is implemented for Elastic Net. Parallelized computation is used to speed up the process. The methods are described in Friedman et al. (2010) <doi:10.18637/jss.v033.i01> and Simon et al. (2011) <doi:10.18637/jss.v039.i05>.
Access and analyze multi-band greenspace seasonality data cubes (available for 1,028 major global cities), global Normalized Difference Vegetation Index / land cover data from the European Space Agency WorldCover 10m Dataset, and Sentinel-2-l2a images. Users can download data using bounding boxes, city names, and filter by year or seasonal time window. The package also supports calculating human exposure to greenspace using a population-weighted greenspace exposure model introduced by Chen et al. (2022) <doi:10.1038/s41467-022-32258-4> based on Global Human Settlement Layer population data, and calculating a set of greenspace morphology metrics at patch and landscape levels.
The standard linear regression theory whether frequentist or Bayesian is based on an assumed (revealed?) truth (John Tukey) attitude to models. This is reflected in the language of statistical inference which involves a concept of truth, for example confidence intervals, hypothesis testing and consistency. The motivation behind this package was to remove the word true from the theory and practice of linear regression and to replace it by approximation. The approximations considered are the least squares approximations. An approximation is called valid if it contains no irrelevant covariates. This is operationalized using the concept of a Gaussian P-value which is the probability that pure Gaussian noise is better in term of least squares than the covariate. The precise definition given in the paper "An Approximation Based Theory of Linear Regression". Only four simple equations are required. Moreover the Gaussian P-values can be simply derived from standard F P-values. Furthermore they are exact and valid whatever the data in contrast F P-values are only valid for specially designed simulations. A valid approximation is one where all the Gaussian P-values are less than a threshold p0 specified by the statistician, in this package with the default value 0.01. This approximations approach is not only much simpler it is overwhelmingly better than the standard model based approach. The will be demonstrated using high dimensional regression and vector autoregression real data sets. The goal is to find valid approximations. The search function is f1st which is a greedy forward selection procedure which results in either just one or no approximations which may however not be valid. If the size is less than than a threshold with default value 21 then an all subset procedure is called which returns the best valid subset. A good default start is f1st(y,x,kmn=15) The best function for returning multiple approximations is f3st which repeatedly calls f1st. For more information see the papers: L. Davies and L. Duembgen, "Covariate Selection Based on a Model-free Approach to Linear Regression with Exact Probabilities", <doi:10.48550/arXiv.2202.01553>, L. Davies, "An Approximation Based Theory of Linear Regression", 2024, <doi:10.48550/arXiv.2402.09858>.
Routines for fitting various joint (and univariate) regression models, with several types of covariate effects, in the presence of equations errors association.
This package provides a ggplot2 extension that supports arbitrary hand-crafted colourable & fillable shapes. New shapes may be feature requested via a Github issue.