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Kurzfassung

Die Sensorgruppensignalverarbeitung ist ein klassisches Feld der digitalen Signalverar-
beitung und bietet sowohl vielfältige Anwendungen in der Praxis, wie etwa die Rich-
tungsschätzung oder die Rekonstruktion überlagerter Signale, als auch umfangreiche
theoretische Grundlagen mit einer Vielzahl von Schätzverfahren und statistischen Gren-
zen der erreichbaren Schätzgüte. Ein vergleichsweise neues Feld der Signalverarbeitung
ist die Rekonstruktion dünnbesetzer Signale (RDS), welches sich seit einiger Zeit großer
Aufmerksamkeit in der Forschungsgemeinde erfreut und zahlreiche attraktive Anwen-
dungsfelder in der Signalverarbeitung bietet. In der vorliegenden Dissertation wird
die Anwendung der RDS in vollständig kalibrierten Sensorgruppen sowie in teilweise
kalibrierten Sensorgruppen untersucht. Die Hauptbeiträge dieser Arbeit bestehen in
einem neuen RDS-Verfahren für die Anwendung in teilweise kalibrierten Sensorgrup-
pen sowie in kompakten Formulierungen für das RDS-Problem, wobei spezielles Augen-
merk auf die Ausnutzung von spezifischer Struktur in den Signalen und Sensorgruppen
gelegt wird. Die Ausnutzung von Struktur wurde besonders im Rahmen des Projekts
“EXploiting structure in comPREssed Sensing using Side constraints” (EXPRESS)
untersucht, welches innerhalb des Schwerpunktprojekts “Compressed Sensing in Infor-
mation Processing” (SSP CoSIP) von der “Deutschen Forschungsgemeinschaft” (DFG)
gefördert wurde. Der Aspekt der kooperativen Signalverarbeitung in verteilten, teil-
weise kalibrierten Sensorgruppen wurde im Rahmen des Projekts “Cooperative Sensor
Communication” (Cocoon) erforscht, einem LOEWE-Forschungsschwerpunkt des Lan-
des Hessen.

Eine zentrale Gruppe von Verfahren der Sensorgruppensignalverarbeitung basiert auf
der Signalunterraumschätzung. Solche Verfahren erfordern vergleichsweise geringen
Rechenaufwand und erzielen eine optimale Schätzgüte bei einer hohen Anzahl an
zeitlichen Messungen oder hohem Signal-zu-Rausch-Verhältnis. Im Falle einer geringen
Anzahl zeitlicher Messungen oder bei hoher Korrelation der auf die Sensorgruppe einfal-
lenden Signale kann bei diesen Verfahren jedoch eine verminderte Schätzgüte auftreten.
RDS-Verfahren sind verhältnismäßig robust gegenüber solchen Einschränkungen, was
eine Anwendung in der Sensorgruppensignalverarbeitung motiviert.

Wie bereits erwähnt, ist die Richtungsschätzung eine klassische Anwendung in der
Sensorgruppensignalverarbeitung. Unter der Annahme statischer Einfallsrichtungen
zeigt sich dabei eine Gruppenstruktur in der zeitlichen und räumlichen Darstellung der
einfallenden Signale. Basierend auf dieser Gruppenstruktur wird in der vorliegenden
Arbeit eine kompakte Formulierung für die RDS in vollständig kalibrierten Sensorgrup-
pen hergeleitet, welche den Rechenaufwand gegenüber bestehenden Verfahren deutlich
verringert und gleichzeitig neue mathematische Beziehungen zwischen bestehenden Ver-
fahren aufzeigt. Wird weiterhin eine spezielle Struktur in der Sensorgruppe angenom-
men, wie etwa eine gleichförmige oder translationsinvariante Struktur, so bringt dies
weitere Vorteile für die effiziente Implementierung der RDS auf Basis der vorgestellten
kompakten Formulierung.
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Bei der Sensorgruppensignalverarbeitung ist es gemeinhin von großem Interesse eine
hohe Auflösung in der Richtungsschätzung zu erzielen sowie eine hohe Anzahl von
Signalen zu identifizieren. Solche Eigenschaften können durch Sensorgruppen mit
großer Apertur und einer hohen Anzahl an Sensoren erreicht werden. Diese Art von
Sensorgruppen benötigt jedoch eine aufwendige Kalibrierung, so dass in vergangenen
Jahren vermehrt die Anwendung von teilweise kalibrierten Sensorgruppen untersucht
wurde, bei welchen die gesamte Sensorgruppe in einzelne Untergruppen aufgeteilt wird.
Die Untergruppen erlauben dabei eine einfache Kalibrierung, während eine Kalib-
rierung der gesamten Sensorgruppe vermieden wird. In der vorliegenden Arbeit wird
ein neues Verfahren für RDS in dieser Art von teilweise kalibrierten Sensorgruppen
vorgestellt. Während aktuelle RDS-Verfahren für teilweise kalibrierte Sensorgruppen
auf inkohärenter Verarbeitung der Untergruppensignale basieren, beruht das in dieser
Dissertation vorgestellte RDS-Verfahren auf der kohärenten Verarbeitung der Unter-
gruppensignale. Im Vergleich zur inkohärenten Verarbeitung führt das vorgestellte
RDS-Verfahren zu einer deutlichen Verbesserung der Schätzgüte, wie anhand nu-
merischer Experimente demonstriert wird. Für die effiziente Implementierung des
neuen RDS-Verfahrens wird weiterhin eine kompakte Formulierung hergeleitet, welche
für teilweise kalibrierte Sensorgruppen von beliebiger Struktur anwendbar ist. Der
spezielle Fall von Sensorgruppen mit gleichförmigen oder translationsinvarianten Un-
tergruppen ermöglicht zudem eine Implementierung der kompakten Formulierung mit
zusätzlich verringertem Rechenaufwand.
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Abstract

Sensor array processing is a classical field of signal processing which offers various
applications in practice, such as direction of arrival estimation or signal reconstruction,
as well as a rich theory, including numerous estimation methods and statistical bounds
on the achievable estimation performance. A comparably new field in signal processing
is given by sparse signal reconstruction (SSR), which has attracted remarkable interest
in the research community during the last years and similarly offers plentiful fields
of application. This thesis considers the application of SSR in fully calibrated sensor
arrays as well as in partly calibrated sensor arrays. The main contributions are a novel
SSR method for application in partly calibrated arrays as well as compact formulations
for the SSR problem, where special emphasis is given on exploiting specific structure
in the signals as well as in the array topologies. The aspect of specific structure has
been investigated in the context of the project “EXploiting structure in comPREssed
Sensing using Side constraints” (EXPRESS), which was funded within the priority
program on “Compressed Sensing in Information Processing” (SSP CoSIP) by the
German Research Foundation (“Deutsche Forschungsgemeinschaft”, DFG). The part
of cooperative signal processing in partly calibrated sensor arrays has been investigated
in the project on “Cooperative Sensor Communication” (Cocoon), a LOEWE Research
Priority Program funded by the state of Hesse.

A central class of methods in sensor array processing is based on signal-subspace esti-
mation. Such subspace-based methods have comparably low computational cost and
have been shown to achieve optimal estimation performance for a large number of signal
snapshots or high signal-to-noise ratio. In the case of low number of signal snapshots
or in the case of correlated source signals, however, these methods might suffer from
degraded estimation performance. In contrast to that, SSR methods are known to be
robust to this kind of conditions, motivating the application in sensor array processing.

As mentioned above, direction of arrival estimation is a classical application in sensor
array processing. Assuming static source directions, the source signals impinging on a
sensor array admit a joint sparse representation in the spatio-temporal domain. In this
thesis, the joint sparse signal structure is exploited to derive a compact formulation
for joint sparse reconstruction from multiple signal snapshots in fully calibrated arrays.
In comparison with existing works, the compact formulation has significantly reduced
computational cost and reveals interesting links between different methods for SSR.
Besides the structure in the source signal representation, additional structure might be
contained in the array topology, such as a uniform linear or a shift-invariant structure,
which brings additional benefits in the efficient implementation of the proposed compact
formulation.

In sensor array processing it is commonly desired to achieve high angular resolution
and to identify a large number of signals. Such characteristics can be achieved by
sensor arrays with a large aperture and a large number of sensors. However, this type
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of sensor arrays requires complex calibration schemes for practical application, such
that partly calibrated arrays have been investigated as an alternative model in recent
years. In partly calibrated arrays, the overall array is partitioned into smaller subar-
rays, which are themselves easy to calibrate, while calibration of the entire array is
avoided. This thesis provides a novel approach for joint sparse reconstruction in partly
calibrated arrays. While existing methods for SSR in partly calibrated arrays rely on
incoherent processing of the subarray signals, the proposed method is based on coherent
processing of the subarray signals. As shown by numerical experiments, the proposed
method shows significant improvement in estimation performance as compared to state
of the art methods for SSR under incoherent processing. Similar to the results for
fully calibrated arrays, a compact formulation for the proposed SSR method in partly
calibrated arrays is derived. While the presented compact formulation is applicable
to partly calibrated arrays of arbitrary topologies and relies on spectrum search, the
case of subarrays with uniform linear or shift-invariant structure admits a search-free
implementation of the compact formulation, which admits additional reduction in com-
putational cost.
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Chapter 1

Introduction

Sensor array signal processing is a classical, yet active, field of signal processing with
a rich theory on estimation methods and estimation bounds, and various fields of
application, such as wireless communications, radar and astronomy, to name a few
[KV96,vT02,TF09]. Prominent applications in array processing include beamforming
and direction of arrival (DOA) estimation, where beamforming considers the problem
of signal reconstruction in the presence of noise and interference, while DOA estimation
falls within the more general concept of signal parameter estimation.

Compared to array processing, sparse signal reconstruction (SSR) constitutes a rela-
tively new field in signal processing, and is sometimes also referred to as sparse re-
covery, compressed sensing or compressive sensing. Since SSR provides many fields
of application, such as parameter estimation, spectral analysis, image processing,
or machine learning, it has obtained substantial research interest in recent years
[Tib96,CDS98,DE03,CT05,Don06,CRT06a,CRT06b,CR06]. The classical SSR prob-
lem considers the reconstruction of a high-dimensional sparse signal vector from a
low-dimensional measurement vector, which is characterized by an underdetermined
system of linear equations. It has been shown that exploiting prior knowledge on the
sparse structure of the signal admits a unique solution to the underdetermined sys-
tem [DE03, CT05, Don06, CRT06a, CRT06b, CR06]. In the signal processing context,
this implies that far fewer samples than postulated by the Shannon-Nyquist sampling
theorem for bandlimited signals are required for perfect signal reconstruction [TLD+10],
whereas, in the parameter estimation context, this indicates that SSR methods exhibit
the superresolution property [Don92].

Ideally, recovery of the sparsest signal vector would be performed by solving an `0

minimization problem, where the `0 quasi-norm of a vector is the number of its non-
zero elements. However, `0 minimization requires combinatorial search and becomes
intractable for large problem dimensions, such that a plethora of methods has been
proposed to approximately solve the SSR problem with reduced computational cost
[TW10, FR13]. Some of the most prominent of these methods are based on convex
relaxation in terms of `1 norm minimization [Tib96, CDS98], which makes the SSR
problem computationally tractable while providing good reconstruction performance,
or greedy methods [MZ93], which have low computational cost but provide reduced
reconstruction performance.

Regrading signal reconstruction and parameter estimation, the objectives of array pro-
cessing and SSR are quite similar. In fact, there are many links between the two fields
such that recent results in SSR have sparked new research in sensor array processing
and vice versa. As stated above, a standard problem in array processing is estimation
of the DOAs of multiple sources signals impinging on a sensor array. Some of the
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most prominent estimation methods for this application are based on subspace estima-
tion [GRP10], e.g., the MUSIC method [Bar83,Sch86] which has been shown to perform
asymptotically optimal and offers the super-resolution property at tractable computa-
tional cost [SA89]. However, these subspace-based methods often suffer from problems
in practical scenarios. First, correlated source signals, e.g., in multipath environments,
can significantly reduce the estimation performance. Second, subspace-based methods
yield poor performance in the case of a low number of signal snapshots, e.g., in fast
changing environments. SSR techniques provide an attractive alternative for these sce-
narios. From an SSR perspective, the DOA estimation problem can be modeled by
an overcomplete representation of the source signals in the DOA domain. Given mul-
tiple signal snapshots and static DOAs, such an overcomplete representation exhibits
a joint sparse structure of the source signals vectors. Approximate methods for the
joint sparse reconstruction from multiple signal snapshots include convex relaxation
by means of `2,1 mixed-norm minimization [MÇW05, YL06]. Generally, the compu-
tational cost of these methods grows with the number of snapshots and the required
DOA resolution, such that alternative low-complexity approaches are of great interest.
In Chapter 4 of this thesis, a novel compact formulation for joint sparse reconstruc-
tion from multiple signal snapshots is introduced, which is equivalent to the prominent
`2,1 mixed-norm minimization approach and referred to as SPARse ROW-norm recon-
struction (SPARROW). As compared to `2,1 mixed-norm minimization, the compact
SPARROW formulation has significantly reduced number of optimization parameters
and employs the sample covariance matrix, such that its computational cost is inde-
pendent of the number of signal snapshots. Besides the joint sparse structure in the
source signals, additional structure in the sensor array might be available [HPREK14].
As will be shown for the case of uniform linear arrays, this additional structure in the
array topology can be exploited for efficient implementation of the proposed compact
reformulation. The results in Chapter 4 are based on the following publications:

[1] C. Steffens, M. Pesavento, and M. E. Pfetsch, “A Compact Formulation for the `2,1

Mixed-Norm Minimization Problem,” IEEE Transactions on Signal Processing,
vol. 66, no. 6, pp. 1483-1497, Mar. 2018.

[2] W. Suleiman, C. Steffens, A. Sorg, and M. Pesavento, “Gridless Compressed
Sensing for Fully Augmentable Arrays,” in Proceedings of the European Signal
Processing Conference (EUSIPCO), pp. 1986-1990, Kos Island, Greece, Aug.
2017.

[3] C. Steffens, M. Pesavento, and M. E. Pfetsch, “A Compact Formulation for the
L21 Mixed-Norm Minimization Problem,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4730
- 4734, New Orleans, USA, Mar. 2017.

[4] A. Colonna Walewski, C. Steffens, and M. Pesavento, “Off-Grid Parameter Esti-
mation Based on Joint Sparse Regularization,” in Proceedings of the International
ITG Conference on Systems, Communications and Coding (SCC), pp. 1-6, Ham-
burg, Germany, Feb. 2017.
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In many applications in sensor array processing it is desired to resolve a large number
of source signals with a high angular resolution. These characteristics can be achieved
by sensor arrays with a large number of sensors and a large aperture [KV96, vT02].
However, larger aperture size makes it more difficult to maintain the array calibration.
Therefore, research on partly calibrated arrays (PCAs) has gained increasing interest
in recent years. In PCAs, the overall sensor array is partitioned into smaller subar-
rays which are assumed to be perfectly calibrated while the calibration among different
subarrays is not available. The measurements obtained at the different subarrays can
be processed either in a coherent or incoherent fashion, depending on the amount of
synchronization available in the PCA. In coherent processing, the measurements of
all the subarrays are jointly processed on a signal sample basis to obtain a global
estimate, which requires precise synchronization in time and frequency among the dif-
ferent subarrays [SORK92, SSJ01, PGW02, SG04, PP11, SPZ13, SPPZ14]. Contrary, in
incoherent processing, only the measurements within each subarray are coherently pro-
cessed while the measurements of different subarrays are processed in an incoherent
fashion, e.g., by first computing local estimates of the DOAs or the covariance ma-
trices which are further combined in the entire PCA to obtain an improved global
estimate [WK85, SNS95, SP14]. Hence, incoherent processing has significantly relaxed
requirements in synchronization among the different subarrays, while coherent process-
ing usually achieves better estimation performance since more information among the
different subarrays can be exploited.

The most prominent DOA estimation techniques for PCAs in the literature are based
on coherent processing and subspace separation. Similar to the case of a single, fully
calibrated array (FCA), as discussed above, subspace-based methods for PCAs are
shown to perform asymptotically optimal at low computational cost, but may suffer
from reduced estimation performance in the case of correlated signals or low number
of snapshots, such that SSR methods provide an attractive alternative in these difficult
scenarios. So far, state of the art techniques for SSR in PCAs have been considered only
under incoherent processing. In Chapter 5 of this thesis, a novel convex optimization
problem formulation for sparse reconstruction in PCAs with coherent processing is
devised. The proposed formulation is based on minimization of a mixed nuclear and `1

norm to fulfill a low-rank criterion, resulting from the specific structure of the subarray
signal model, and to impose block-sparsity on the signal matrix, respectively. Similar
to the case of `2,1 mixed-norm minimization for FCAs discussed in Chapter 4, the SSR
method presented in Chapter 5 is applicable to arbitrary PCA topologies and admits
a compact and equivalent reformulation, termed as COmpact Block- and RAnk-Sparse
reconstruction (COBRAS). Efficient gridless implementations based on the compact
COBRAS formulation are presented for the special case of PCAs composed of subarrays
with special structure, such as subarrays with a common baseline and subarrays with
shift-invariant topologies. The following papers have been published in this context:

[5] C. Steffens and M. Pesavento, “Block- and Rank-Sparse Recovery for Direction
Finding in Partly Calibrated Arrays,” IEEE Transactions on Signal Processing,
vol. 66, no. 2, pp. 384–399, Jan. 2018.
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[6] C. Steffens, W. Suleiman, A. Sorg, and M. Pesavento, “Gridless Compressed Sens-
ing Under Shift-Invariant Sampling,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4735 -
4739, New Orleans, USA, Mar. 2017.

[7] C. Steffens, P. Parvazi, and M. Pesavento, “Direction Finding and Array Calibra-
tion Based on Sparse Reconstruction in Partly Calibrated Arrays,” in Proceedings
of the IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM),
pp. 21-24, A Coruna, Spain, Jun. 2014.

The approach of mixed nuclear and `1 norm minimization exploits specific structure in
the PCA signal model, which might similarly be available in other applications besides
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Note that the compact formulation derived in Chapter 5 can as well be employed in
the applications given in publications [8]-[10], admitting gridless and computationally
efficient implementations of the corresponding SSR problems. For sake of brevity, these
applications will, however, not be further discussed in this thesis.

The organization of this thesis is as follows: Chapter 2 provides the signal model for
fully and partly calibrated arrays, including the characterization of specific array struc-
tures. A short review on subspace-based state of the art methods is provided in Chapter
3. Joint sparse reconstruction from multiple signal snapshots in fully calibrated sensor
arrays is presented in Chapter 4, where the novel compact SPARROW formulation is
presented in Section 4.3 as one of the major contributions of this thesis. The appli-
cation of SSR in partly calibrated arrays is investigated in Chapter 5 of this thesis.
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The major contributions of Chapter 5 are the mixed nuclear and `1 norm minimization
problem formulation for coherent SSR in PCAs, given in Section 5.2, and the equivalent
COBRAS formulation of the SSR problem, provided in Section 5.3. For efficient imple-
mentation of the presented SSR approaches, low-complexity algorithms are provided
in Chapter 6. The major contributions in Chapter 6 are a low-complexity implementa-
tion of the SPARROW method in Section 6.1.3, and novel algorithms for mixed nuclear
and `1 norm minimization as well as the COBRAS formulation in Sections 6.2.1-6.2.3.
Concluding remarks and an outlook on future work are provided in Chapter 7.
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Chapter 2

Signal Model

This chapter provides the general signal model for the direction of arrival (DOA) esti-
mation problem in fully calibrated arrays (FCAs) and partly calibrated arrays (PCAs).
The first part of this chapter considers the FCA case with two special topologies in
the form of uniform linear arrays and thinned linear arrays. The second part of this
chapter discusses PCAs, which can be employed with coherent and incoherent process-
ing. Although the focus of this thesis is on coherent processing in PCAs, the model for
incoherent processing is presented briefly to highlight the main differences between the
coherent and incoherent signal model and to put the results into the general context
of DOA estimation in PCAs. Furthermore, two special subarray topologies for PCAs
are introduced, namely PCAs composed of uniform linear subarrays with a common
baseline as well as thinned linear arrays with a common baseline. Another special PCA
topology is the class of shift-invariant arrays. It should be noted that shift-invariant
arrays can similarly be treated in the context of FCAs, e.g., a fully calibrated uniform
linear array also exhibits shift-invariances [ROSK88, RK89]. However, the benefits of
shift-invariant arrays become most apparent in the context of PCAs [SPZ16].

For ease of presentation this thesis only considers the case of linear array topologies.
Assuming that the sensors and signal sources are located in the same plane, the concepts
in this thesis can easily be extended to planar arrays, as discussed in [SPP14]. In the
case when sensors and sources are not located in a common plane, e.g., for some planar
or volume arrays, two-dimensional DOA estimation is required, i.e., estimation of the
azimuth and elevation angle of arrival. Although the methods discussed in this thesis
can be extended to two-dimensional estimation, analogous to [Pes05,SYP16], for sake
of clarity the discussion is limited to linear arrays which only require one-dimensional
estimation.

2.1 Fully Calibrated Arrays

Consider a set of L source signals impinging on a linear array of M omnidirectional
and identical sensors with positions r1, . . . , rM ∈ R, expressed in half signal wavelength
and relative to sensor 1, i.e., r1 = 0. The L sources are located in angular directions
θ1, . . . , θL, summarized as the vector θ = [θ1, . . . , θL]T, as depicted in Figure 2.1. Define
the spatial frequency µl corresponding to the angular direction θl as

µl = cos θl ∈ [−1, 1), (2.1)

for l = 1, . . . , L, comprising the vector µ = [µ1, . . . , µL]T. All sources are transmitting
electromagnetic signals in the same frequency band and the following assumptions are
expected to apply [KV96,vT02]:
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r1 r2 r3 r4 r5 r6

θ1

θ2θ3

Source 1Source 2Source 3

Figure 2.1: Sensor array of M = 6 sensors and L = 3 impinging source signals

A1) Farfield sources, i.e., the sources are located in the farfield region of the sensor
array such that the electromagnetic waves arriving at the array approximately
have a planar wavefront.

A2) Point sources assumption, i.e., the physical dimensions of the emitting sources
are negligibly small such that each source is associated with a distinct angular
direction.

A3) Narrowband signals, i.e., the radio frequency bandwidth of the source signals is
negligible, such that the signal wavefront does not decorrelate significantly while
traveling across the array aperture.

A4) The source signals have identical and known radio center frequency, such that
sensor measurements can be properly converted to the baseband.

A5) The source and sensor positions are stationary during the time of observation,
such that the DOAs remain constant.

Under assumptions A1-A5, the vector y(t) ∈ CM containing the sensor measurements
in the baseband at time instant t is modeled as

y(t) = A(µ)ψ(t) + n(t), (2.2)

with ψ(t) ∈ CL denoting the baseband source signal vector and n(t) ∈ CM represent-
ing additive circular and spatio-temporal white Gaussian sensor noise with covariance
matrix E{n(t)nH(t)} = σ2

NIM , where IM and σ2
N denote the M ×M identity matrix

and the noise power, respectively. For further considerations it is assumes that

A6) the source signals in ψ(t) and the sensor noise in n(t) are uncorrelated, i.e.,
E{ψ(t)nH(t)} = 0.

The array steering matrix A(µ) ∈ CM×L in (2.2) is given by

A(µ) = [a(µ1), . . . ,a(µL)], (2.3)
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where a(µl) denotes the perfectly known array steering vector for spatial frequency µl.
Under the given assumptions, the array response vector is modeled as

a(µ) = [1, e− jπµr2 , . . . , e− jπµrM ]T. (2.4)

Throughout this thesis it is assumed that L ≤M and that

A7) the steering matrix A(µ) ∈ CM×L has full column rank.

Neglecting the noise, i.e., n(t) = 0, Assumption A7 ensures that the signals ψ(t) in
the model (2.2) can be uniquely recovered from the measurements y(t).

Let Y = [y(t1), . . . ,y(tN)] ∈ CM×N denote the matrix containing N snapshots of the
sensor measurements in the baseband, where [Y ]m,n denotes the output at sensor m in
time instant tn, for m = 1, . . . ,M and n = 1, . . . , N . The multiple sensor measurement
vectors are modeled in compact notation as

Y = A(µ)Ψ +N , (2.5)

where Ψ = [ψ(t1), . . . ,ψ(tN)] ∈ CL×N is the baseband source signal matrix, with
[Ψ ]l,n denoting the signal transmitted by source l in time instant tn, and N =
[n(t1), . . . ,n(tN)] ∈ CM×N is the sensor noise matrix. Equation (2.5) is referred to
as the multi snapshot signal model [KV96, vT02]. Given full rank signal and noise
matrices Ψ and N , and under Assumptions A6 and A7, it can be concluded that the
sensor measurement matrix Y in (2.5) has full column rank with probability 1.

2.1.1 Uniform Linear Arrays

The case of uniform linear arrays (ULAs), as illustrated in Figure 2.2 a), is a special
type of fully calibrated arrays which exhibits attractive structure that can be exploited
in the DOA estimation process. In ULAs, the sensors are positioned equidistantly on
a line, according to rm = (m− 1) ∆ ∈ R, for m = 1, . . . ,M , with ∆ denoting the array
baseline. The array response vector for the ULA is expressed as

a(z) = [1, z, . . . , zM−1]T, (2.6)

where z = e− jπµ∆, such that the steering matrix A(z) = [a(z1), . . . ,a(zL)] has a
Vandermonde structure, where z = [z1, . . . , zL]T, with zl = e− jπµl∆ for l = 1, . . . , L.
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a)

r1 r2 r3 r4 r5 r6 r7

b)

r1 r2 r3 r4

Figure 2.2: a) Uniform linear array of M = 7 sensors and b) thinned linear array of
M = 4 sensors, obtained by removing sensors from a virtual uniform linear array of
M0 = 7 sensors

2.1.2 Thinned Linear Arrays

Large array apertures are attractive since these admit high resolution in the spatial
frequency. However, a straightforward realization of a large aperture by a uniform
linear array requires a large number of sensors, which results in high hardware costs.
Thinned linear arrays (TLAs) form a compromise between large array aperture and
the number of sensors and are derived from a virtual ULA by removing sensors, as
depicted in Figure 2.2 b). In this case the positions of the M sensors are given as
rm = (m̈m − 1) ∆, for {m̈1, . . . , m̈M} ⊆ {1, . . . ,M0}, where M0∆ represents the largest
sensor lag in the array. Let J̈ denote a selection matrix of size M0 ×M , selecting the
corresponding sensors from a virtual ULA, then the response vector of the TLA can be
described by the response vector of the corresponding virtual ULA according to

a(z) = [1, zm̈2 , . . . , zm̈M−1]T = J̈
T

[1, z, . . . , zM0−1]T. (2.7)

Well known TLA types with a large degree of freedom include, e.g., minimum redun-
dancy arrays [Mof68], nested arrays [PV10] and co-prime arrays [VP11].

2.2 Partly Calibrated Arrays

Consider a linear array of arbitrary topology, composed of M omnidirectional sensors
and partitioned into P subarrays with Mp sensors in subarray p, for p = 1, . . . , P , such
that M =

∑P
p=1 Mp, as depicted in Figure 2.3. The vector η = [η(2), . . . , η(P )]T contains

the P−1 inter-subarray displacements η(2), . . . , η(K), expressed in half signal wavelength
and relative to the first subarray, i.e., η(1) = 0. Furthermore, let ρ

(p)
m denote the intra-

subarray position of the mth sensor of subarray p, for m = 1, . . . ,Mp and p = 1, . . . , P ,
expressed in half signal wavelength and relative to the first sensor in the respective
subarray, hence ρ

(p)
1 = 0. Consequently, the position of sensor m in subarray p, relative

to the first sensor in the first subarray, can be expressed as [PGW02,SG04,Par12]

r(p)
m = ρ(p)

m + η(p), (2.8)

for m = 1, . . . ,Mp and p = 1, . . . , P . For ease of notation, the following ordering of
sensors is assumed throughout this thesis:
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A8) Let r
(p)
m denote the position of sensor m in subarray p, for m = 1, . . . ,Mp and

p = 1, . . . , P . Whenever special order of the sensors is required, i.e., for the sensor
measurements or the array response, the corresponding vector/matrix elements
are sorted in increasing order by subarray index p and sensor index m according
to

r
(1)
1 , r

(1)
2 , . . . , r

(1)
M1−1, r

(1)
M1
, r

(2)
1 , r

(2)
2 , . . . , r

(P )
MP−1, r

(P )
MP
. (2.9)

In the context of partly calibrated arrays it is commonly assumed that the intra-
subarray positions ρ

(p)
m , for m = 1, . . . ,Mp and p = 1, . . . , P , are perfectly known

while the inter-subarray displacements η(2), . . . , η(K) are unknown, hence only the sub-
array responses are available for the estimation process while the overall array response
is not.

η(2) η(3)

ρ
(1)
2 ρ

(2)
2 ρ

(2)
3 ρ

(2)
4 ρ

(3)
2 ρ

(3)
3

θ1

θ2θ3

Source 1Source 2Source 3

Figure 2.3: Partly calibrated array of M = 9 sensors partitioned in P = 3 subarrays,
and L = 3 impinging source signals

2.2.1 Coherent Processing

Assume that all the subarrays are synchronized in time and frequency and that a
total of N signal snapshots are obtained at the output of each subarray p, which are
collected in the subarray measurement matrix Y (p) = [y(p)(t1), . . . ,y(p)(tN)] ∈ CMp×N ,
for p = 1, . . . , P , where [Y (p)]m,n denotes the output of sensor m in subarray p and
time instant tn. The subarray measurement matrices are collected in the M ×N array
measurement matrix Y = [Y (1)T, . . . ,Y (P )T]T ∈ CM×N , which is modeled as

Y = A (µ,α,η)Ψ +N , (2.10)

where Ψ ∈ CL×N is the source signal matrix and N ∈ CM×N denotes the sensor noise
matrix, defined in correspondence with the sensor measurements in Y . The M × L
array steering matrix A (µ,α,η) in (2.10) is given by

A(µ,α,η) = [a (µ1,α,η) , . . . ,a (µL,α,η)] , (2.11)
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and represents the steering matrix of the entire array, where a(µ,α,η) denotes the array
response vector for unknown subarray perturbations α = [α(2), . . . , α(P )]T ∈ CP−1 and
subarray displacements η = [η(2), . . . , η(P )]T ∈ RP−1 relative to subarray 1, respectively,
i.e., α(1) = 1 and η(1) = 0. Based on the sensor position notation in (2.8), the array
response vector can be factorized according to

a(µ,α,η) = B(µ)ϕ(µ,α,η) (2.12)

where the M × P block-diagonal matrix

B(µ) = blkdiag
(
a(1)(µ), . . . ,a(P )(µ)

)
(2.13)

contains the perfectly known subarray response vectors

a(p) (µ) =
[
1, e− jπµ ρ

(p)
2 , . . . , e

− jπµ ρ
(p)
Mp
]T
, (2.14)

for p = 1, . . . , P , on its diagonal. The P element vector

ϕ(µ,α,η) = [1, α(2)e− jπµη(2) , . . . , α(P )e− jπµη(P )

]T (2.15)

takes account of the subarray displacement shifts e− jπµη(p) , for p = 2, . . . , P , depending
on the spatial frequencies in µ and the subarray displacements in η, and possibly
additional unknown shifts α, e.g., gain/phase or timing offsets among the subarrays
[PGW02,SG04,Par12]. In relation to (2.11), define the M×PL subarray steering block
matrix

B(µ) =
[
B(µ1), . . . ,B(µL)

]
(2.16)

containing all the subarray response block matrices for the spatial frequencies in µ,
and the PL× L block-diagonal matrix

Φ(µ,α,η) = blkdiag
(
ϕ(µ1,α,η), . . . , ϕ(µL,α,η)

)
, (2.17)

composed of the subarray shift vectors in (2.15). Using (2.16) and (2.17), the overall
array steering matrix (2.11) can be factorized as

A (µ,η) = B(µ) Φ(µ,α,η), (2.18)

such that the overall array measurement matrix in (2.10) is equivalently modeled as

Y = B(µ) Φ(µ,α,η) Ψ +N , (2.19)

providing an extended factorization of the coherent signal model for PCAs [SPP14],
which will be employed in Section 5.2.
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2.2.2 Incoherent Processing

Proper synchronization in time and frequency among the subarrays might be difficult to
achieve in practical applications, where different subarrays might sample the signals at
different time instants. Another effect that might occur in PCAs is that the increased
size of the array aperture might also lead to a violation of the narrowband assumption
A3, leading to decorrelated signals at the different subarrays.

For further discussion consider the case of imperfect timing synchronization and let
t
(p)
1 , . . . , t

(p)
N denote the N sampling instants of subarray p, for p = 1, . . . , P . The

measurement matrix Ỹ
(p)

= [y(p)(t
(p)
1 ), . . . ,y(p)(t

(p)
N )] ∈ CMp×N obtained at the output

of subarray p can be modeled as [WK85,DSB+05,LYJ+15]

Ỹ
(p)

= A(p)(µ) Ψ̃
(p)

+ Ñ
(p)
, (2.20)

where

Ψ̃
(p)

= α(p) diag
(

1, e− jπµ1η(p) , . . . , e− jπµLη
(P )
) [
ψ
(
t
(p)
1

)
, . . . , ψ

(
t
(p)
N

)]
(2.21)

denotes the source signals as observed by sensor 1 in subarray p, for p = 1, . . . , P .

The matrix Ñ
(p)

represents the sensor noise matrix under incoherent processing and is

defined in correspondence with the subarray measurements in Ỹ
(p)

. Furthermore,

A(p)(µ) =
[
a(p)(µ1), . . . ,a(p)(µL)

]
(2.22)

is the steering matrix of subarray p, composed of the subarray steering vectors
as defined in (2.14). The incoherently sampled subarray measurements and sensor

noise of the overall array are summarized as Ỹ = [Ỹ
(1)T

, . . . , Ỹ
(P )T

]T and Ñ =

[Ñ
(1)T

, . . . , Ñ
(P )T

]T, respectively. Furthermore, let the L × N source signal matrix

observed by subarray p be constructed as Ψ̃
(p)

= [ψ̃
(p)

1 , . . . , ψ̃
(p)

L ]T, for p = 1, . . . , P ,
and introduce the array source signal matrix under incoherent processing as

Ψ̃ = [ψ̃
(1)

1 , . . . , ψ̃
(P )

1 , ψ̃
(1)

2 , . . . , ψ̃
(P )

L ]T. (2.23)

With above definitions, the PCA signal model under incoherent processing can be
formulated as

Ỹ = B(µ)Ψ̃ + Ñ , (2.24)

where B(µ) denotes the subarray steering block matrix as defined in (2.16) and used
in the coherent signal model (2.19). The difference of the models in (2.19) and (2.24)
lies in the signal representation, given by the product Φ(µ,α,η)Ψ and the matrix
Ψ̃ , respectively. In contrast to the incoherent signal matrix Ψ̃ , the matrix product
Φ(µ,α,η)Ψ exhibits an attractive low-rank block structure that can be exploited for
signal reconstruction, as will be discussed in more detail in Section 5. The model in
(2.24) will be further considered for incoherent signal reconstruction in Section 5.1
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2.2.3 Identical Uniform Linear Subarrays

Similar to fully calibrated uniform linear arrays as introduced in Section 2.1.1, partly
calibrated arrays composed of identical uniform linear subarrays of M0 sensors per
subarray provide attractive structure that can be exploited for efficient signal recon-
struction. In this scenario, the M0 sensors within each subarray are located at integer
multiples of a baseline ∆, i.e., ρ

(p)
m = (m− 1)∆ with m = 1, . . . ,M0 and p = 1, . . . , P .

Upon defining z = e− jπµ∆, the subarray response block matrix in (2.13) takes the
block-Vandermonde form

B(z) = IP ⊗
[
1 z . . . zM0−1

]T
(2.25)

for a PCA of identical uniform linear subarrays.

2.2.4 Thinned Linear Subarrays

The concept of fully calibrated thinned linear arrays introduced in Section 2.1.2 can
similarly be transferred to PCAs. Consider a PCA of M =

∑P
p=1Mp sensors partitioned

into P subarrays of Mp sensors, for p = 1, . . . , P . It is assumed that the PCAs have
a thinned linear topology with a common baseline ∆, i.e., the intra-subarray sensor
positions are given by ρ

(p)
m = (m̈

(p)
m − 1)∆, for m = 1, . . . ,Mp and p = 1, . . . , P , and

with {m̈(p)
1 , . . . , m̈

(p)
Mp
} ⊆ {1, . . . ,M0}, where M0∆ represents the largest sensor lag in

all subarrays. From this definition, a PCA of thinned linear subarrays can similarly be
formed by removing sensors from a virtual PCA composed of P identical uniform linear
subarrays of M0 sensors, as illustrated in Figure 2.4. Thus, the subarray response block
matrix according to (2.14) can be derived from a block-Vandermonde matrix according
to

B(z) = J̈
T(
IP ⊗

[
1 z . . . zM0−1

]T )
, (2.26)

where J̈ is a proper selection matrix of size PM0 × M , selecting the corresponding
sensors from the underlying virtual PCA of identical uniform linear subarrays, and ⊗
denotes the Kronecker product.

ρ
(1)
2 ρ

(1)
2 ρ

(2)
2 ρ

(2)
3 ρ

(3)
2

Figure 2.4: PCA composed of thinned linear subarrays, obtained by removing sensors
from virtual PCA of P = 3 identical uniform linear subarrays of M0 = 5 sensors per
subarray
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2.2.5 Shift-Invariant Arrays

Consider a linear PCA of M = PM0 sensors partitioned into P identical subarrays of
M0 sensors and with arbitrary subarray topology, as displayed in Figure 2.5. The given
array topology exhibits a shift-invariance property, expressed as

r(p)
m = r(1)

m + η(p), p = 2, . . . , P, m = 1, . . . ,M0, (2.27a)

r(p)
m = r

(p)
1 + ρm, p = 1, . . . , P, m = 2, . . . ,M0, (2.27b)

where the shifts η(p), for p = 2, . . . , P , denote the unknown inter-subarray displacements
while the shifts ρm, for m = 2, . . . ,M0, denote the perfectly known relative sensor
positions within the subarrays, as introduced in (2.8).

r
(1)
1 r

(1)
2 r

(1)
3 r

(2)
1 r

(2)
2 r

(2)
3 r

(3)
1 r

(3)
2 r

(1)
3 r

(4)
1 r

(4)
2 r

(4)
3

η(2) η(3) η(4)

r
(1)
1 r

(1)
2 r

(1)
3 r

(2)
1 r

(2)
2 r

(2)
3 r

(3)
1 r

(3)
2 r

(3)
3 r

(4)
1 r

(4)
2 r

(4)
3

ρ2 ρ3

Figure 2.5: Illustration of multiple shift-invariances in array topology

In correspondence with (2.12), the array response vector is given by

a(µ) = B(µ)ϕ(µ,η). (2.28)

Similar to the case of identical uniform linear subarrays introduced in Section 2.2.3,
the subarray response block matrix introduced in (2.13) can be represented as

B(µ) = IP ⊗ a(0)(µ) (2.29)

with a(0)(µ) = [1, e− jπµρ2 , . . . , e− jπµρM0 ]T denoting the subarray response vector, which
is identical for all subarrays. Furthermore, consider the subarray displacement shift
vector

ϕ(µ,η) = [1, e− jπµη(2) , . . . , e− jπµη(P )

]T (2.30)

defined in correspondence to (2.15), where no additional subarray perturbations are
assumed in this scenario, i.e., α(p) = 1 for p = 2, . . . , P in (2.15). The information of
no additional perturbation can be exploited in the signal model, as discussed in the
following.
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Let J (p) denote the PM0 ×M0 matrix selecting the sensors in the pth subarray, for
p = 1, . . . , P , and Jm denote the PM0 × P matrix selecting the mth sensor in each
subarray, for m = 1, . . . ,M0, i.e.,

J (p) = eP,p ⊗ IM0 (2.31a)

Jm = IP ⊗ eM0,m, (2.31b)

where eP,p = [0, . . . , 0, 1, 0, . . . , 0]T denotes the P -dimensional basis vector with a single
1 in the pth element and zero entries elsewhere. By the shift-invariance property (2.27)
the steering vector in (2.28) fulfills the identities

J (p)T a(µ) = e− jπµ η(p) J (1)T a(µ) (2.32a)

JT
m a(µ) = e− jπµ ρm JT

1 a(µ) (2.32b)

and correspondingly the steering matrix fulfills

J (p)T A(µ) = J (1)TA(µ) Φ̄
η(p)

(µ) (2.33a)

JT
m A(µ) = JT

1 A(µ) Φ̄
ρm(µ), (2.33b)

for m = 1, . . . ,M0 and p = 1, . . . , P , where the L× L unitary diagonal matrix

Φ̄(µ) = diag(e− jπµ1 , . . . , e− jπµL) (2.34)

contains the complex phase shifts for the spatial frequencies in µ on its main diagonal.
The shift-invariances displayed in (2.33) represent constraints on the signal model which
can be exploited in the signal reconstruction process, as discussed in Sections 3.4 and
5.4.

Note that besides the shift-invariances illustrated in Figure 2.5, there exist other
forms of shift-invariances such as overlapping shift-invariant groups or centro-symmetric
groups, that can be exploited [ROSK88,SORK92]. The class of ULAs discussed in Sec-
tion 2.1 represents a special case of shift-invariant arrays. As illustrated in Figure 2.6
a), the ULA can similarly be described by two overlapping groups of sensors which are
invariant under linear translation.

Similarly, centro-symmetric arrays, as displayed in Figure 2.6 b), exhibit a structure
that can be exploited by an additional constraint. Let the reference point of the array
be given by the array center, e.g., r4 = 0 for the example in Figure 2.6 b). Due to the
centro-symmetry of the array, the steering matrix fulfills

A(µ) = J̄
T
A∗(µ), (2.35)

whereA∗(µ) denotes the complex conjugate of the steering matrixA(µ) and J̄ denotes
the permutation matrix with ones on the anti-diagonal and zeros elsewhere.
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Figure 2.6: a) Uniform linear array with two overlapping shift-invariant groups of
sensors and b) centro-symmetric group of sensors, i.e., the sensors are symmetrically
positioned around the array center

2.2.6 Thinned Shift-Invariant Arrays

The concept of thinned arrays, introduced in the context of fully calibrated uniform
linear arrays in Section 2.1.2 and partly calibrated arrays composed of uniform linear
subarrays in Section 2.2.4, can likewise be applied to shift-invariant arrays. Similar
to the discussion in Section 2.2.4, a thinned shift-invariant array of M sensors in P
subarrays is modeled by removing sensors from an underlying virtual shift-invariant
array of PM0 sensors in P identical subarrays, as illustrated in Figure 2.7. The resulting
subarray response block matrix is described by

B(µ) = J̈
T (
IP ⊗ a(0)(µ)

)
, (2.36)

where a(0)(µ) ∈ CM0 denotes the response vector of the identical virtual subarrays and
J̈ denotes an appropriate selection matrix of dimensions PM0 ×M .

Figure 2.7: Thinned shift-invariant array of M = 9, obtained by removing sensors
from the virtual shift-invariant array of P = 4 sensors withM0 = 3 sensors per subarray,
given in Figure 2.5
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Chapter 3

State of the Art

In the past decades, research on sensor array processing has provided a rich theory
on estimation methods and statistical bounds on the achievable performance [KV96,
vT02, TF09]. One of the objectives in array processing is reconstruction of impinging
signals in the presence of noise and interference, which is achieved, e.g., by beamforming
methods, also referred to as spatial filtering. Prominent beamforming methods are the
Bartlett beamformer [Bar48] or the Capon beamformer [Cap69]. Proper application of
beamforming methods usually requires knowledge of the directions of arrival (DOAs)
of the impinging signals, which can be obtained by appropriate parameter estimation
methods.

Given a proper model to describe the sensor measurements, maximum likelihood (ML)
estimation [Böh84,Wax85,Böh86,Wax91,OVSN93] provides several attractive features
for DOA estimation. On the one hand, ML estimation has been shown to be asymp-
totically efficient, i.e., for a large number of samples the estimator converges to the
Cramér-Rao lower bound [SLG01]. Moreover, ML estimation can be used both in
uncorrelated and coherent source scenarios, has excellent threshold and asymptotic
performances, and is unbiased and consistent. On the other hand, ML estimation in-
volves highly nonlinear and nonconvex multidimensional optimization and is sensitive
to model-errors. For this reason alternative methods with reduced computational cost
are desired.

This chapter provides a short review of subspace-based estimation methods [GRP10,
HPREK14], which have been shown to perform asymptotically optimal [SA89] while
having comparably low computational cost. The chapter starts with a brief intro-
duction of the concept of subspace separation, followed by the presentation of the
well-known MUltiple SIgnal Classification (MUSIC) method [Sch86] and its search-free
implementation, the root-MUSIC method [Bar83]. The MUSIC method and its vari-
ants are only applicable to fully-calibrated arrays, when the array response is known.
For application in partly-calibrated arrays (PCAs), alternative DOA estimation tech-
niques in form of the RAnk REduction (RARE) method [PGW02,SG04], the Estima-
tion of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [RK89] and
Multiple-Invariance (MI-) ESPRIT [SORK92] are considered.

3.1 Subspace Estimation

Subspace-based methods rely on estimating the signal and noise-subspace in the mea-
surements Y = [y(t1), . . . ,y(tN)] ∈ CM×N , obtained for the FCA (2.5) or PCA
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case (2.19). Under Assumption A6, the signal covariance matrix can be represented
as [KV96,vT02,TF09]

R = E{y(t)yH(t)}
= A(µ)E{ψ(t)ψH(t)}AH(µ) + E{n(t)nH(t)}
= A(µ)ΠAH(µ) + σ2

NIM ∈ CM×M (3.1)

with Π = E{ψ(t)ψH(t)} ∈ CL×L denoting the source covariance matrix and
E{n(t)nH(t)} = σ2

NIM ∈ CM×M representing the covariance matrix of the sensor noise,
where it is assumed that n(t) is spatially and temporarily white complex circular Gaus-
sian noise. In the case of uncorrelated source signals, the source covariance matrix Π
is a full-rank diagonal matrix of size L×L. Assuming further that the steering matrix
A(µ) ∈ CM×L has full column rank, according to Assumption A7, the matrix product
A(µ)ΠAH(µ) is of full-rank and the eigenvalues of the covariance matrix R in (3.1)
fulfill [KV96,vT02,TF09]

ξ1 ≥ . . . ≥ ξL > ξL+1 = . . . = ξM , (3.2)

where the M − L smallest eigenvalues ξL+1 = . . . = ξM = σ2
N correspond to the noise

power σ2
N. LetΞS = diag(ξ1, . . . , ξL) ∈ CL×L denote the diagonal matrix containing the

L signal eigenvalues and letUS ∈ CM×L denote the matrix containing the corresponding
eigenvectors, representing the signal subspace. Furthermore, let UN ∈ CM×M−L denote
the matrix containing the eigenvectors corresponding to the M − L noise eigenvalues,
representing the noise subspace, such that UH

NUS = 0. The eigendecomposition of the
signal covariance matrix can be expressed as

R = USΞSU
H
S +UNΞNU

H
N

= USΞSU
H
S + σ2

NUNU
H
N, (3.3)

whereΞN = σ2
NIM−L. Comparing (3.1) and (3.3) it becomes apparent that the steering

matrix A(µ) is orthogonal to the noise subspace spanned by UN [Bar83,Sch86], i.e.,

UH
NA(µ) = 0. (3.4)

Analogously, it can be observed that the signal subspace, represented by US, is spanned
by the steering vectors in A(µ), such that

A(µ)T = US, (3.5)

for some non-singular matrix T ∈ CL×L [ROSK88, RK89]. The properties (3.4) and
(3.5) of the noise and signal subspaces are exploited in subspace-based parameter
estimation methods such as MUSIC [Bar83, Sch86], RARE [PGW02, SG04] and ES-
PRIT [ROSK88,RK89], as discussed in the following sections.

In practice the signal covariance matrix R is not available and is approximated by the
sample covariance matrix [KV96,vT02,TF09]

R̂ = Y Y H/N. (3.6)
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Similar as in (3.3), the signal and noise subspaces are estimated from the eigendecom-
position of the sample covariance matrix according to

R̂ = ÛSΞ̂SÛ
H

S + ÛNΞ̂NÛ
H

N, (3.7)

where Ξ̂S is an L × L diagonal matrix containing the L largest eigenvalues ξ̂1, . . . , ξ̂L
of the sample covariance matrix R̂, and ÛS contains the L principal eigenvectors of
the sample covariance matrix, representing the estimated signal subspace. Correspond-
ingly, the (M −L)× (M −L) diagonal matrix Ξ̂N contains the estimated noise eigen-
values ξ̂L+1, . . . , ξ̂M , whereas ÛN contains the estimated noise eigenvectors, providing
an estimate of the noise subspace.

In the asymptotic case of large number of snapshots N → ∞, the sample covariance
matrix approaches the true covariance matrix R̂→ R. However, in the non-asymptotic
case this is not true and the quality of the signal and noise subspace estimates ÛS and
ÛN depends on the number of signal snapshots N . Note that for proper separation of
the L-dimensional signal subspace US and the (M−L)-dimensional noise subspace UN,
it is required to obtain N ≥ L linearly independent measurement vectors, such that
conditions (3.4) and (3.5) can be fulfilled for the signal and noise subspace estimates.
Another difficulty in the subspace separation occurs in the case of correlated or coherent
source signals, leading to a rank-deficient source covariance matrix Π . In this case the
matrix product A(µ)ΠAH(µ) is rank deficient and the subspace separation by means
of the eigenvalues, according to (3.2) and (3.3), can no longer be applied. In the
case of ULAs, special methods like forward-backward averaging and spatial smoothing
[SWK85, PK89, GE95] can be applied to circumvent the problem of a rank-deficient
source matrix Π . However, for arbitrary array topologies these techniques might not
be applicable, leading to a potential degradation in estimation performance.

3.2 MUSIC Algorithms

The MUltiple SIgnal Classification (MUSIC) method [Sch86] relies on the observation
in (3.4), that the noise subspace UN is orthogonal to the steering vectors, i.e.,

UH
Na(µl) = 0, (3.8)

for spatial frequency µl corresponding to source l, for l = 1, . . . , L, or equivalently

aH(µl)UNU
H
Na(µl) = 0. (3.9)

In the MUSIC method, the spatial frequency is sampled in K points ν1, . . . , νK and the
criterion (3.9) is evaluated for each of the sampled frequencies. In practice the noise
subspace estimate ÛN is used, for which the criterion in (3.9) is usually not fulfilled
with equality. Therefore, the function

fMUSIC(νk) = aH(νk)ÛNÛ
H

Na(νk) (3.10)
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Figure 3.1: Exemplary MUSIC spectrum a) in the complex z-plane (white marks
indicate root locations) and b) on the unit circle, for a ULA of M = 8 sensors and
L = 2 source signals with spatial frequencies µ = [−0.4,−0.5]T, N = 30 snapshots and
SNR = 0 dB

is evaluated instead, providing the null-spectrum for the MUSIC method. The L small-
est local minima of (3.10) w.r.t. νk provide estimates of the spatial frequencies corre-
sponding to the L source signals.

In the case of ULAs, special structure in the steering vectors can be exploited, leading to
the well-known root-MUSIC method [Bar83]. To see this, consider the array response
vector a(z) = [1, z, . . . , zM−1]T as defined in (2.6), with z = e− jπµ∆ mapping the
continuous spatial frequency µ ∈ [−1, 1) to the unit circle in the complex plane. On
the unit circle |z| = 1 the array steering vector a(z) fulfills the identity

aH(z) = aT(1/z). (3.11)

Using (3.11) in (3.9) results in the condition

aT(1/z)UNU
H
Na(z) = 0, (3.12)

where the left-hand side constitutes a polynomial of degree 2(M −1) in z, according to

froot−MUSIC(z) = aT(1/z)UNU
H
Na(z) =

M−1∑
m=−M+1

cmz
−m. (3.13)

The polynomial coefficients are given by

cm = Tr(ΘmUNU
H
N), (3.14)

for m = −M + 1, . . . ,M −1, where Θm is the M ×M elementary Toeplitz matrix with
ones on the mth diagonal and zeros elsewhere, e.g.,

Θ2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 and Θ−1 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , (3.15)
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for M = 4. Given the polynomial coefficients cm, the polynomial roots can be found by,
e.g., computing the eigenvalues of the corresponding companion matrix [HJ90]. The
2(M −1) complex roots ẑm, for m = 1, . . . , 2(M −1), of (3.13) occur in conjugate pairs
and the roots of interest lie on the unit circle, with the spatial frequencies corresponding
to the source signals determined by µ̂l = − 1

π∆
arg(ẑl). Similar to the spectral MUSIC

function in (3.10), in practice the noise subspace UN in (3.13) is replaced by its estimate
ÛN and the L roots of the polynomial

froot−MUSIC(z) = aT(1/z)ÛNÛ
H

Na(z) (3.16)

which are closest to the unit circle are selected for frequency reconstruction. In other
words, the root-MUSIC method computes the roots of (3.16) in the entire complex
plane, while the MUSIC method according to (3.10) limits the search to minima on the
unit circle, as illustrated in Figure 3.1. This difference in the two approaches results in
better resolution performance of the root-MUSIC method as compared to the MUSIC
method [RH89, PGH00], as demonstrated by numerical experiments in Section 4.4.2.
Another advantage of the root-MUSIC method is the reduction in computational cost,
since the roots for (3.16) can be computed efficiently instead of evaluating the MUSIC
criterion (3.10) for multiple frequencies ν1, . . . , νK . On the other hand, an advantage of
MUSIC over root-MUSIC is that the array response for different spatial frequencies can
be found by calibration, i.e., no analytical description of the array response is required,
making MUSIC applicable to arbitrary sensor systems [RK89].

In the case of a thinned linear array of M sensors with maximum lag ∆M0, the steering
vector can be expressed as a(z) = J̈Ta0(z), where a0(z) represents the steering vector
of a virtual ULA of M0 sensors, and J̈ denotes a proper selection matrix of size M0×M ,
as discussed in Section 2.1.2. In this case, the root-MUSIC polynomial is given as

froot−MUSIC(z) = aT(1/z)ÛNÛ
H

Na(z)

= aT
0 (1/z)J̈ÛNÛ

H

NJ̈
T
a0(z) (3.17)

and the 2M0 − 1 polynomial coefficients are computed as

cm = Tr(ΘmJ̈UNU
H
NJ̈

T
), (3.18)

in relation to (3.14). The approach of computing the polynomial coefficients as given
in (3.14) and (3.18) will similarly be considered in the context of sparse reconstruction
in Section (4.3.1).

3.3 RARE Algorithms

The MUSIC method discussed in the previous section is applicable to fully calibrated
arrays, when the array response a(µ) is perfectly known. In the case of partly
calibrated arrays the MUSIC approach has to be modified, leading to the RAnk
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REduction (RARE) method presented in [PGW02, SG04]. Using the factorization
a(µ,α,η) = B(µ)ϕ(µ,α,η) of the steering vector, as given in (2.12), the MUSIC
criterion in (3.9) can be rewritten as

aH(µl,α,η)UNU
H
Na(µl,α,η) = ϕH(µl,α,η)BH(µl)UNU

H
NB(µl)ϕ(µl,α,η)

= 0. (3.19)

For a displacement shift vector ϕ(µ,α,η) 6= 0, the criterion in (3.19) can only be
fulfilled if the matrix product BH(µl)UNU

H
NB(µl) is rank-deficient, or equivalently, if

det
(
BH(µl)UNU

H
NB(µl)

)
= 0. (3.20)

In contrast to the criterion in (3.19), the criterion in (3.20) does not require any knowl-
edge of the displacement shifts in ϕ(µ,α,η). Only knowledge of the known subarray
responses in B(µ) and of the noise subspace UN are required, where in practice the lat-
ter is approximated by its estimate ÛN. Similar as for the MUSIC method, the RARE
method relies on scanning the frequency space in K points ν1, . . . , νK and evaluating
the function

fRARE(νk) = det
(
BH(νk)ÛNÛ

H

NB(νk)
)
. (3.21)

The corresponding frequency estimates are obtained by finding the L smallest local
minima of the null-spectrum fRARE(νk).

Consider the special case of a PCA of M = PM0 sensors, composed of P identical
ULAs with baseline ∆ and M0 sensors per subarray, as introduced in Section 2.2.3.
Upon defining z = e− jπµ∆ and using the subarray response block matrix B(z) as given
in (2.25), it can be seen that the matrix product BH(z)UNU

H
NB(z) corresponds to a

matrix polynomial of degree 2(M0 − 1) according to

F root−RARE(z) = BH(z)UNU
H
NB(z) =

M0−1∑
m=−M0+1

Cm z
−m. (3.22)

The 2M0− 1 matrix coefficients Cm, with m = −M0 + 1, . . . ,M0− 1, can be computed
from the matrix product UNU

H
N by extending the concepts in Section 3.2, which will

similarly be applied for sparse reconstruction in Section 5.3.1. To this end, define the
M × P matrix

Ω(z) =
[
1 z z2 . . . zM0−1

]T ⊗ IP (3.23)

and introduce the M ×M permutation matrix J such that the subarray steering block
matrix can be expressed as

B(z) =IP ⊗
[
1 z z2 . . . zM0−1

]T
=JTΩ(z). (3.24)
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Inserting (3.24) in (3.22) yields

F root−RARE(z) = BH(z)UNU
H
NB(z)

= ΩH(z)JUNU
H
NJ

TΩ(z)

= ΩH(z)GΩ(z), (3.25)

where G = JUNU
H
NJ

T is of size M ×M and is composed of the P × P blocks Gi,j,
for i, j = 1, . . .M0, as

G =

 G1,1 · · · G1,M0

...
. . .

...
GM0,1 · · · GM0,M0

 . (3.26)

Equation (3.25) is also referred to as the Gram matrix representation of the matrix
polynomial F root−RARE(z), and G is referred to as the corresponding Gram matrix
[Dum07]. Define the block-trace operator for matrix G as

blkTr(P )(G) =

M0∑
m=1

Gm,m, (3.27)

i.e., the summation of the P × P submatrices Gm,m, for m = 1, . . . ,M0, on the main
diagonal of matrixG. By employing the block-trace operator (3.27) and the elementary
Toeplitz matrices Θm, as introduced in (3.14), the matrix coefficients Cm in (3.22) can
be computed from the Gram matrix G in (3.25) as

Cm = blkTr(P )
(
(Θm ⊗ IP )G

)
, (3.28)

i.e., the summation of the P × P submatrices on the mth block-diagonal of the Gram
matrix G. As discussed in [Pes05], the roots of the matrix polynomial F root−RARE(z),
as given in (3.22), are the points ẑl in the complex plane where the matrix becomes
rank-deficient, i.e., det(F root−RARE(ẑl)) = 0, and the roots corresponding to the spatial
frequencies of the source signals are located on the unit circle. Given the matrix
polynomial coefficients Cm, with m = −M0 + 1, . . . ,M0 − 1, the M − P roots of the
matrix polynomial F root−RARE(z) can be found, e.g., by the block companion matrix
approach discussed in [Pes05]. Similar as in other subspace based methods, in practice
the noise subspace UN in (3.22) is approximated by its estimate ÛN and the roots ẑl
corresponding to the spatial frequencies of interest do not exactly lie on the unit circle.
Instead, the roots closest to the unit circle are selected as the desired roots.

The case of PCAs composed of thinned linear subarrays introduced in Section 2.2.4
can be treated similar as for the root-MUSIC method for fully calibrated thinned linear
arrays in (3.17), discussed in the previous section, by defining a proper selection matrix
J̈ and computing the matrix coefficients in (3.22) according to

Cm = blkTr(P )
(
(Θm ⊗ IP ) J̈GJ̈

T)
. (3.29)
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The root-RARE algorithm has similar advantages over the RARE algorithm, as dis-
cussed in the previous section for the MUSIC methods: The root-RARE method pro-
vides better resolution capabilities since it searches the entire complex plane for roots,
instead of just searching the unit circle. At the same time, the root-RARE method has
reduced computational cost since the roots can be computed in a search-free manner.
On the other hand, root-RARE requires specific structure in the subarrays and an an-
alytical description of the subarray response is required. In this regard RARE is more
flexible since it can be applied to arbitrary array topologies.

3.4 ESPRIT Algorithms

Similar to the root-MUSIC and root-RARE methods, the Estimation of Signal Pa-
rameters via Rotational Invariance Techniques (ESPRIT) exploits special structure in
the array topology [RK89]. The ESPRIT approach is based on the observation that
subarrays which are identical under linear translation, exhibit signal subspaces which
are identical under rotation, as will be explained in more detail in this section.
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Figure 3.2: Sensor array with two overlapping shift-invariant groups

For better illustration of the ESPRIT approach, consider a partly calibrated array
composed of P = 2 identical subarrays with M0 = 6 sensors per subarray, as illustrated
in Figure 3.2. Two overlapping groups of M1 = 8 sensors, that are invariant under the
shift ρ2, can be formed for the given array topology, using the corresponding selection
matrices

J
(1)
1 = I4 ⊗

[
1 0 0
0 1 0

]T
and J

(2)
1 = I4 ⊗

[
0 1 0
0 0 1

]T
. (3.30)

Based on the signal model in (2.10), the sensor group measurements are formulated

as Y
(1)
1 = J

(1)T
1 Y and Y

(2)
1 = J

(2)T
1 Y and a compact notation to take account of the

shift-invariance is introduced as[
Y

(1)
1

Y
(2)
1

]
=

[
A1(µ)

A1(µ) Φ̄
ρ2(µ)

]
Ψ +

[
N

(1)
1

N
(2)
1

]
, (3.31)

where the additive noise in N
(1)
1 and N

(2)
1 is defined in correspondence to the sen-

sor group measurements Y
(1)
1 and Y

(2)
1 , the matrix A1(µ) = J

(1)T
1 A(µ) is the array

response for the first sensor group, and Φ̄(µ) = diag(e− jπµ1 , . . . , e− jπµL) is defined



3.4 ESPRIT Algorithms 27

similar as in (2.34). Let the M1 × L matrices U
(1)
S,1 = J

(1)T
1 US and U

(2)
S,1 = J

(2)T
1 US

be obtained from the signal subspace US of the sensor measurements Y , then, under
Assumption A7 that A1(µ) has full rank, there exists a non-singular matrix T ∈ CL×L

such that [
U

(1)
S,1

U
(2)
S,1

]
=

[
A1(µ)

A1(µ) Φ̄
ρ2(µ)

]
T , (3.32)

according to (3.5). Since T is non-singular, it can be found from (3.32) that A1(µ) =

U
(1)
S,1T

−1, which in turn yields

U
(2)
S,1 = A1(µ) Φ̄

ρ2(µ) T

= U
(1)
S,1 T

−1Φ̄
ρ2(µ) T

= U
(1)
S,1 T̄

ρ2 . (3.33)

Problem (3.33) constitutes a generalized eigenvalue problem and represents the ES-
PRIT criterion. The spatial frequencies µ can be computed from the matrix Φ̄(µ),
which is given in the eigenvalues of T̄ = T−1Φ̄(µ)T . From (3.33) it can be seen that
the ESPRIT method can resolve at most L ≤ M1 spatial frequencies. Otherwise the
linear system in (3.33) would be underdetermined, providing non-unique solutions T̄ .
Note that the ESPRIT formulation in (3.33) is closely related to the matrix pencil
method [HS90,HW91], which similarly solves a generalized eigenvalue problem.

In the practically relevant case of a limited number of snapshots and noise-corrupted
measurements, the signal subspace estimates Û

(1)
S,1 and Û

(2)
S,1 and the steering matrix

A1(µ) do not span exactly the same range space, such that condition (3.33) cannot be
fulfilled with equality for the subspace estimates. As discussed in [ROSK88,SORK92],
the problem of noise corrupted measurements can be treated by matching the signal
subspace estimates Û

(1)
S,1 ∈ CM1×L and Û

(2)
S,1 ∈ CM1×L to a common signal subspace

estimate ÛS,0 ∈ CM×L according to the least-squares minimization problem

min
US,0,T̄ 0

∥∥∥∥∥
[
Û

(1)

S,1 − J
(1)T
1 US,0

Û
(2)

S,1 − J
(2)T
1 US,0T̄

ρ2
0

]∥∥∥∥∥
2

F

, (3.34)

where the minimizer ÛS,0 ∈ CM×L models the common signal subspace estimate and
ˆ̄T 0 = T̂−1Φ̄(µ̂)T̂ ∈ CL×L represents the rotation matrix estimate similar as in (3.33).
The problem in (3.34) is also referred to as total least squares ESPRIT, since it takes

account of errors in both the signal subspace estimates Û
(1)
S,1 and Û

(2)
S,1, whereas a least

squares approach for (3.33) would only take account of the errors either in Û
(1)
S,1 or

Û
(2)
S,1 [OVK91].

Another advantage of the formulation in (3.34) is, that it can easily be extended to
exploit multiple shift-invariances. To illustrate this, assume that the array from Figure
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Figure 3.3: Sensor array form Figure 3.2 with alternative shift-invariant groups

3.2 exhibits an additional shift-invariance as displayed in Figure 3.3. The corresponding
sensor selection matrices and signal subspace estimates are given by

J
(1)
2 =

[
1 0 0 0
0 0 1 0

]T
⊗ I3 and J

(2)
2 =

[
0 1 0 0
0 0 0 1

]T
⊗ I3, (3.35)

and Û
(p)

S,2 = J
(p)T
2 ÛS, for p = 1, 2. Utilizing the additional shift-invariances in (3.34)

results in the multiple invariance (MI-) ESPRIT formulation [ROSK88]

min
US,0,T̄ 0

∥∥∥∥∥∥∥∥∥∥


Û

(1)

S,1 − J
(1)T
1 US,0

Û
(2)

S,1 − J
(2)T
1 US,0T̄

ρ2
0

Û
(1)

S,2 − J
(1)T
2 US,0

Û
(2)

S,2 − J
(2)T
2 US,0T̄

ρ4
0


∥∥∥∥∥∥∥∥∥∥

2

F

. (3.36)

Note that application of the MI-ESPRIT in (3.36) requires explicit knowledge of the
linear translations ρ2 and ρ4 of the shift-invariant groups, i.e., MI-ESPRIT cannot
directly exploit the shift-invariance of the two identical subarrays in the PCA in Figure
3.3, since it is assumed that the subarray shift η = r

(2)
1 − r

(1)
1 is unknown. Another

drawback of the MI-ESPRIT is that it requires nonlinear and nonconvex optimization.
Gradient descent or Newton’s method have been proposed to solve the MI-ESPRIT
minimization problem in (3.36), where proper convergence requires initialization in
a point sufficiently close to the global minimum, e.g., given by the single-invariance
ESPRIT in (3.33) [ROSK88, SORK92]. In contrast to the single-invariance ESPRIT
formulation discussed above, the maximum number Lmax of frequencies resolvable by
MI-ESPRIT is more difficult to derive. As discussed in [SORK92], for the special case
of a PCA of M sensors, composed of P uniform linear subarrays of M0 sensors per
subarray, the maximum number of resolvable frequencies can be bounded as

min{M0(P − 1),M − 1} ≤ Lmax ≤M − 1, (3.37)

where it is assumed that the signal covariance matrix has full rank.
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Chapter 4

Sparse Reconstruction for Fully Calibrated
Arrays

The following chapter considers the application of joint sparse signal reconstruction
(SSR) in fully calibrated arrays. The first section introduces the main concepts of
SSR for the classical application of sparse reconstruction from a single measurement
vector by means of `1 norm minimization. In the context of array processing it is
more common to consider multiple snapshots for signal reconstruction, and Section 4.2
discusses the concept of joint sparse reconstruction from multiple snapshots by means
of the well-known `2,1 mixed-norm minimization problem [MÇW05,YL06]. Compared
to more recently presented sparse methods such as SPICE [SBL11a, SBL11b, SZL14]
and atomic norm minimization [YX15b, LC16, YX16a], the classical `2,1 minimization
problem has the general shortcoming that the number of optimization parameters in
the jointly sparse signal representation grows with the number of snapshots as well as
with the resolution requirement. Approaches to deal with the aforementioned problems
have been presented, e.g., in [MÇW05].

The main contribution of this chapter is given in Section 4.3, by a novel reformula-
tion of the `2,1 minimization problem, which is based on a compact parameterization
in which the optimization parameters represent the row-norms of the signal repre-
sentation, rather than the signal matrix itself. The compact formulation is referred
to as SPARse ROW-norm reconstruction (SPARROW). Given the sparse signal row-
norms, the jointly sparse signal matrix is reconstructed from the measurement vectors
in closed-form. Moreover, the SPARROW formulation only relies on the sample covari-
ance matrix instead of the measurement vectors themselves. In this sense, a concen-
tration of the optimization variables as well as the measurements is achieved, leading
to a significantly reduced problem size in the case of a large number of snapshots.
The resulting optimization problem can be solved by means of semidefinite program-
ming or by a low-complexity coordinate descent implementation which is applicable to
large and irregular sampling scenarios, as presented in Section 6.1.3. Furthermore, a
gridless SPARROW formulation is derived for search-free parameter estimation in uni-
form linear arrays, which is proven to be equivalent to the atomic norm minimization
problem [YX15b, LC16, YX16a]. For off-grid estimation in arbitrary array topologies,
i.e., estimation of spatial frequencies which are not restricted to lie on a predefined
grid of candidate frequencies, an off-grid SPARROW formulation is derived which
uses linear interpolation to model the array response in between two frequency grid
points. To put the SPARROW framework in context with existing work, a compar-
ison to the recently proposed SParse Iterative Covariance-based Estimation (SPICE)
method [SBL11a, SBL11b, SZL14] is performed, which extends the existing links be-
tween SPICE and `2,1 mixed-norm minimization.
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The chapter is concluded by a numerical analysis of the parameter estimation per-
formance and the computational cost of the proposed SPARROW formulation. The
latter results demonstrate a significant reduction in the computation time of the pro-
posed reformulation as compared to both equivalent formulations, the classical `2,1

mixed-norm [MÇW05,YL06] and the atomic norm [YX15b,LC16,YX16a] problem for-
mulations.

4.1 Sparse Reconstruction from Single Snapshots

Consider an array of M sensors and assume L point sources in the farfield region of the
array, as discussed in Section 2.1 and illustrated in Figure 4.1. In relation to (2.2), a
single snapshot of the noise-free signal received by the fully calibrated array is modeled
as

y(t) = A(µ)ψ(t). (4.1)

The signal model in (4.1) can equivalently be described by a sparse representation
according to

y(t) = A(ν)x̌(t), (4.2)

with x̌(t) ∈ CK denoting the sparse signal vector, and A(ν) ∈ CM×K representing
the overcomplete sensing matrix defined in correspondence to (2.3), where the vector
ν = [ν1, . . . , νK ]T is obtained by sampling the spatial frequencies in K � L points
ν1, . . . , νK as illustrated in Figure 4.2. For ease of notation, the argument ν will be
dropped if the sparse reconstruction context is clear and the sensing matrix A(ν) will
be referred to asA in the remainder of this thesis. It is assumed that the frequency grid
is sufficiently fine, such that the true frequencies in µ are contained in the frequency
grid ν, i.e.,

{µl}Ll=1 ⊂ {νk}Kk=1. (4.3)

Since the true frequencies in µ are not known in advance and the grid-size is limited in
practice, the on-grid assumption (4.3) is usually not fulfilled, leading to spectral leakage
effects and basis mismatch [HS10,CSPC11] in the estimation process. Methods to deal
with theses effects are considered in Sections 4.3.1 and 4.3.2. For ease of presentation
the on-grid assumption (4.3) is assumed to hold true, elsewhere.

Under the on-grid assumption given in (4.3), the sparse signal vector x̌(t) =
[x̌1(t), . . . , x̌K(t)]T in (4.2) contains only L� K non-zero elements, according to

x̌k(t) =

{
ψl(t) if νk = µl

0 otherwise,
(4.4)

for k = 1, . . . , K and l = 1, . . . , L, as illustrated in Figure 4.2.
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θ1

θ2θ3

ψ3(t) ψ2(t) ψ1(t)

=

y(t) = A(µ) ψ(t)

Figure 4.1: Array signal model for M = 6 sensors and L = 3 source signals

x̌13(t) x̌8(t) x̌5(t)

=

y(t) = A(ν) x̌(t)

Figure 4.2: Sparse representation of the array signal model in Figure 4.1, with K = 15
grid points

The problem of recovering the signal vector x̌(t) from the measurement vector y(t)
according to (4.2) is also referred to as linear inverse problem and occurs in similar
form in various applications of signal processing, such as spectral analysis, direction of
arrival (DOA) estimation, image processing, geophysics, tomography and magnetic res-
onance imaging, and machine learning. Accordingly, the problem has received consider-
able research interest in the past decades [Tib96,CDS98,DE03,CT05,Don06,CRT06a,
CRT06b, CR06]. Clearly, the system in (4.2) is underdetermined and has infinitely
many solutions. However, if the a-priori knowledge of a sparse solution is exploited, it
was shown that this problem has a unique solution under certain conditions on the spar-
sity of x̌(t) and the sensing matrix A [DE03, CT05, Don06, CRT06a, CRT06b, CR06].
The problem of recovering the signal vector x̌(t) in (4.2) under sparsity constraints is
also referred to as sparse signal reconstruction, sparse recovery or compressed sensing.

Ideally, the sparse structure of the signal vector would be exploited by an optimization
problem of the form

min
x
‖x‖0 s.t. Ax = y(t), (4.5)

where the `0 quasi-norm of the vector x = [x1, . . . , xK ]T counts the number of its
non-zero elements according to

‖x‖0 =
∣∣{k |xk 6= 0}

∣∣. (4.6)

Reconstruction guarantees for the `0 minimization problem (4.5) have been considered,
e.g., in [DE03], based on the sparsity of x̌(t) and conditions on the sensing matrix A.
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In the case of noise-corrupted measurements, given by

y(t) = Ax̌(t) + n(t), (4.7)

the corresponding optimization problem can be formulated as

min
x
‖x‖0 s.t. ‖Ax− y(t)‖2

2 ≤ β, (4.8)

where β is some threshold selected in relation to the noise power E{‖n(t)‖2
2} = σ2

N.
Given a sparse minimizer x̂(t) = [x̂1(t), . . . , x̂K(t)]T for the `0 minimization problem,
the DOA estimation problem reduces to identifying the support set, i.e., the indices
of the non-zero elements, from which the set of estimated spatial frequencies can be
obtained as

{µ̂l}L̂l=1 = {νk | x̂k(t) 6= 0, k = 1, . . . , K } , (4.9)

where L̂ denotes the number of non-zero elements in x̂(t), i.e., the estimated model
order.

The `0 minimization problem is a combinatorial problem and becomes computation-
ally intractable for large problem dimensions, cf. [FR13], such that numerous meth-
ods to approximately solve the sparse reconstruction problem have been derived in
recent years. The most popular methods include greedy pursuit methods such as Or-
thogonal Matching Pursuit (OMP) [MZ93], threshold methods such as Iterative Hard
Thresholding (IHT) [BD08], convex relaxation by means of the `1 norm [Tib96,CDS98],
(re-)weighted `1 norm minimization [Zou06, CWB08], Approximate Message Passing
(AMP) [DMM09], sparse Bayesian learning [Tip01, WR04], non-convex optimization
and mixed-integer programming. The different methods vary in computational cost
and reconstruction performance. Excellent overviews are given in [TW10,FR13]. This
thesis focuses on convex relaxation approaches which show improved reconstruction
performance as compared to greedy pursuit methods, but have lower computational
cost than non-convex methods and mixed-integer programming.

4.1.1 `1 Norm Minimization

A popular strategy to approximately solve the `0 minimization problems (4.5) or (4.8) is
to replace the `0 quasi-norm by the `1 norm. The `1 norm of a vector x = [x1, . . . , xK ]T

is computed as the absolute sum of the vector elements according to

‖x‖1 =
∑
k

∣∣xk∣∣, (4.10)

and presents a tight convex approximation of the `0 quasi-norm. The convex approxi-
mation is considered in the sense that the `1 norm ball ‖x‖1 ≤ 1 forms the convex hull
of all vectors x with `∞ maximum norm and `0 quasi-norm bounded simultaneously as
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‖x‖∞ ≤ 1 and ‖x‖0 ≤ 1. In this regard, the convex relaxation of (4.5) in the noise-free
case is formulated as the `1 minimization problem

min
x
‖x‖1 s.t. Ax = y(t), (4.11)

which is commonly referred to as Basis Pursuit (BP) [CDS98]. Recovery guarantees
for the `1 minimization problem have been considered, e.g., in [DE03,CT05].

In the case of noise corrupted measurements, according to (4.7), the problem in (4.11)
is modified to admit an error in the reconstructed signal and the measurements, given
by

min
x
‖x‖1 s.t. ‖y(t)−Ax‖2

2 ≤ β, (4.12)

where the constant β ≥ 0 is selected according to the noise distribution, similar as
for (4.8). Bounds on the reconstruction error ‖x̌(t) − x̂(t)‖2

2, for a minimizer x̂(t)
of problem (4.12), have been considered, e.g., in [CRT06b]. Problem (4.12) is also
referred to as Basis Pursuit DeNoising (BPDN) [CDS98] in the literature. Note that in
contrast to the constrained `0 minimization problem in (4.8), `1 minimization according
to (4.12) induces an additional bias in the magnitudes of the elements of x, such that
the constraint ‖y(t)−Ax‖2

2 ≤ β needs to take account of noise and bias effects, making
selection of the threshold β more challenging. An alternative formulation of (4.12) is
given by

min
x

1

2
‖y(t)−Ax‖2

2 + λ‖x‖1, (4.13)

where λ > 0 is a regularization parameter determining the sparsity of the minimizer
x̂(t), i.e., larger values of λ will reduce the number of non-zero elements in x̂(t). Prob-
lem (4.13) is commonly referred to as Least Absolute Shrinkage and Selection Operator
(LASSO) [Tib96] in the literature. Note that (4.12) and (4.13) are equivalent for ap-
propriate choices of λ and β, and that both reduce to BP (4.11) in the noiseless case
by letting λ, β → 0. In [OPT00a] it was shown, that for

λ ≥ max
k

∣∣aH
ky(t)

∣∣, (4.14)

the LASSO (4.13) generates zeros solutions x̂(t) = 0. Furthermore, it was discussed
in [Don95,CDS98,BTR13], that for a regularization parameter selection according to

λ = σN

√
M logM (4.15)

the reconstruction error E{‖x̌(t) − x̂‖2
2} is bounded above, proportional to the noise

deviation σN. Another popular approach of regularization parameter selection is based
on computation of the solution path

x̂(λi) = arg min
x

1

2
‖y(t)−Ax‖2

2 + λi‖x‖1, (4.16)
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i.e., evaluation of the LASSO problem for multiple regularization parameters λ1, . . .,
λi, . . ., and selection of a solution x̂(λi) which fulfills some predefined criteria, e.g., by
cross-validation [Tib96]. Efficient computation of the solution path can be performed by
the coordinate descent method [FHHT07], or, in the case of real-valued systems, by the
`1 homotopy method [OPT00b] or by Least Angle Regression (LARS) [EHJT04]. The
`1 homotopy method exploits the property that the LASSO solution path is piecewise
linear in the case of real-valued systems, and computes the breakpoints of the LASSO
path in closed form. However, in the more general case of a complex-valued system,
the `1 homotopy method cannot be applied.

In [Tib96] it was discussed that the `1 penalty term ‖x‖1 in the LASSO function
can be interpreted as the negative log-likelihood joint density function of independent
Laplacian priors according to

π(xk) ∼ exp (−λ|xk|) , (4.17)

such that, in the case of additive Gaussian noise, the LASSO with data matching
function f(x) = 1

2
‖Ax − y(t)‖2

2 can similarly be interpreted as a Bayesian estimator
with Laplacian priors. However, other data matching functions have been investigated
in literature, two of which are the Square-Root LASSO (SR-LASSO) [BCW11]

min
x
‖Ax− y(t)‖2 + λSR‖x‖1 (4.18)

and the Least Absolute Deviation LASSO (LAD-LASSO) [WLJ07]

min
x
‖Ax− y(t)‖1 + λLAD‖x‖1. (4.19)

Among the above listed methods, the standard LASSO (4.13) is most prevalent in
literature. Compared to the standard LASSO, for which the noise is usually assumed
to be Gaussian and the regularization parameter is chosen proportional to the noise
deviation σN, e.g., according to (4.15), SR-LASSO (4.18) and LAD-LASSO (4.19) are
considered to make weaker assumptions on the noise distribution and the regularization
parameters can be chosen as constants that are independent of the noise level [WLJ07,
BCW11].

The `1 minimization problems, presented in this section, are convex and computation-
ally tractable. However, the `1 norm is a non-differentiable function which requires
special optimization methods [Roc70, Ber99], such that problems with large dimen-
sions might result in high computational cost. The case of large problem dimensions
occurs especially in the context of parameter estimation where a high resolution is
desired, resulting in sparse vectors x̌(t) with large dimensions K. Various methods
for efficiently solving the `1 problem have been presented in literature, including, e.g.,
the homotopy method [EHJT04], the coordinate descent method [Ber99, FHHT07],
the soft-thresholding and exact line search algorithm (STELA) [YP17], interior point
methods [KKB07], the proximal gradient descent method [CW05,PB+14] and the Al-
ternating Direction Method of Multipliers (ADMM) [BPC+11].
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4.1.2 Atomic Norm Minimization

As mentioned in the previous section, in the context of parameter estimation it is
desired to achieve a high parameter resolution, i.e., to consider a large number of
sampled frequencies K. Similarly, a large number of sampled frequencies is also desired
to decrease the effects of spectral leakage and basis mismatch [HS10, CSPC11] caused
by violating the on-grid assumption (4.3). On the other hand, the computational cost
grows with increasing number of sampled frequencies K. Additionally, the correlation
of the atoms in the sensing matrix increases with the number of frequency grid points,
making the optimization problem numerically instable. In this context it is highly
desired to obtain gridless reconstruction methods. Two such gridless approaches have
recently been presented by means of total variation norm minimization [CFG13,CFG14]
and atomic norm minimization [CRPW12,BTR13,TBSR13,TBR15], which have been
shown to be equivalent in [TBSR13].

The concept of Atomic Norm Minimization (ANM) was introduced in [CRPW12] as
a unifying framework for different types of sparse recovery methods, such as `1 norm
minimization for sparse vector reconstruction or nuclear norm minimization for low-
rank matrix completion [FHB01, RFP10]. In [BTR13, TBSR13, TBR15], ANM was
introduced for gridless line spectral estimation from single measurement vectors under
uniform sampling. For derivation of the ANM concept, consider L source signals with
spatial frequencies µ1, . . . , µL, impinging on a ULA with sensor positions rm = (m−1)∆,
for m = 1, . . . ,M . The noise-free measurement vector obtained at the array output is
modeled as y(t) =

∑L
l=1 a(µl)ψl(t), where ψl(t) denotes the signal sample transmitted

by source l in time instant t. In the ANM framework, the measurement vector y(t) is
considered as a convex combination of atoms a(ν)b, with b ∈ C, |b| = 1, representing
a complex phase shift and ν ∈ [−1, 1) representing a continuous frequency parameter.
The atomic norm of y(t) is defined as

‖y(t)‖A = inf
{sk,bk,νk}

{∑
k

sk : y(t) =
∑
k

skbka(νk), sk ∈ R+

}
. (4.20)

For the special case of ULAs, it was shown in [CRPW12,BTR13,TBSR13,TBR15] that
the atomic norm in (4.20) can equivalently be computed by the semidefinite program
(SDP)

‖y(t)‖A = inf
w,W

1

2
W +

1

2M
Tr
(
HToep(w)

)
(4.21a)

s.t.

[
W yH(t)
y(t) HToep(w)

]
� 0, (4.21b)

where W is an auxiliary variable resulting from a Schur complement argument
[VB96] and HToep(w) denotes a Hermitian Toeplitz matrix with the vector w =
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[w1, . . . , wM ]T ∈ CM as its first column, according to

HToep(w) =


w1 w∗2 w∗3 · · · w∗M
w2 w1 w∗2 · · · w∗M−1

w3 w2 w1 · · · w∗M−2
...

. . .
...

wM w1

 . (4.22)

Given a solution to problem (4.21), the reconstruction of the spatial frequencies νk
and magnitudes sk, for k = 1, . . . , K, is performed by means of the Vandermonde
decomposition as discussed in [TBSR13], and defined as follows:

Definition 4.1 (Vandermonde decomposition [TBSR13]). For a ULA of M sensors,
the M ×K sensing matrix A = [a(ν1), . . . ,a(νK)] has a Vandermonde structure, such
that the convex combinations of atoms a(νk)a

H(νk) forms a Hermitian Toeplitz matrix
according to

K∑
k=1

ska(νk)a
H(νk) = HToep(w), (4.23)

for nonnegative weights sk ≥ 0. By the Caratheodory theorem [Car11, CF11, Töp11],
the mapping in (4.23) is unique for any K ≤ M distinct frequencies ν1, . . . , νK and
corresponding magnitudes s1, . . . , sK > 0, such that rank(HToep(w)) = K ≤M .

In practice, the Vandermonde decomposition of a Hermitian Toeplitz matrix HToep(w)
according to (4.23) can be obtained by first recovering the frequencies νk, e.g., by
Prony’s method [dP95], the matrix pencil approach [HS90,HW91] or linear prediction
methods [KT82,TK82], where the frequency recovery is performed in a gridless fashion.
The corresponding signal magnitudes in s = [s1, . . . , sK ]T can be reconstructed by
solving the linear system

As = w, (4.24)

i.e., by exploiting that [a(ν)]1 = 1, for all ν ∈ [−1, 1), and considering the first column
in the representation (4.23).

Recovery conditions for problem (4.21) are given in [TBSR13], providing a lower bound
on the number of sensors M required to recover a superposition of L signals with a
minimum allowed frequency separation.

As proposed in [BTR13, TBR15], given a noise-corrupted measurement vector y(t) =
A(µ)ψ(t) + n(t) as defined in (2.2), gridless sparse recovery can be performed by
Atomic norm Soft Thresholding (AST), by using (4.20) in the form of

min
y0

1

2
‖y(t)− y0‖2

2 + λ‖y0‖A, (4.25)
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with the noise-free estimate of the measurements in y0. Problem (4.25) is equivalently
expressed by using the SDP formulation in (4.21) as

min
w,W,y0

1

2
‖y(t)− y0‖2

2 +
λ

2

(
W +

1

M
Tr
(
HToep(w)

))
(4.26a)

s.t.

[
W yH

0

y0 HToep(w)

]
� 0. (4.26b)

Bounds on the reconstruction error of the minimizer ŷ to problem (4.25) have been
considered in [BTR13,TBR15]. In the case of a thinned linear array of M sensors with
an associated virtual ULA of M0 sensors and selection matrix J̈ of dimensions M0×M ,
as discussed in Section 2.1.2, the ANM formulation can be rewritten as

min
y0

1

2
‖y(t)− J̈T

y0‖2
F + λ‖y0‖A, (4.27)

where y(t) is the M element vector containing the sensor measurements and y0 is the
M0 element vector modeling the measurements in the virtual ULA [TBSR13]. The
atomic norm framework has the advantage that it does not require discretization of
the frequency space, hence the computational cost is independent of the frequency
resolution, in contrast to `1 minimization where the computational cost and frequency
resolution depends on the number of sampled frequencies K. On the other hand, the
computational cost of the SDP formulations in (4.21) and (4.26) grows significantly
with the number of sensors M , which is reflected in the dimensions of the semidefinite
constraints (4.21b) and (4.26b). An efficient implementation of the SDP, based on the
alternating direction method of multipliers (ADMM), has been proposed in [BTR13].
However, for large problem sizes it was proposed in [TBR13] to rather use the grid-
based formulations, such as the `1 minimization problems (4.11) or (4.13) which can
be solved more efficiently, rather than the SDP formulations in (4.21) and (4.26).

4.2 Joint Sparse Reconstruction from Multiple

Snapshots

The sparse reconstruction approach discussed in Section 4.1 considers DOA estimation
from a single measurement vector y(t). In the case of multiple snapshots, as common
in array processing applications, the problem provides additional structure that can be
exploited in the sparse reconstruction approach.

Consider a noise-free realization of the multi snapshot model in (2.5) for an array of
M sensors and L sources with spatial frequencies µ1, . . . , µL, given as

Y = A(µ)Ψ , (4.28)

as discussed for (2.5), where it is assumed that the spatial frequencies µ of the source
signals remain constant during the time of observation. Similar to the single snapshot
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a) b)

= ×

Y =A(µ) Ψ

= ×

Y = A(ν) X̌

Figure 4.3: a) Signal model and b) sparse representation for M = 6 sensors, L = 3
source signals and K = 15 grid points

case discussed in Section 4.1, the multi snapshot model can be described by a sparse
representation according to

Y = A(ν)X̌, (4.29)

with X̌ ∈ CK×N denoting a row-sparse signal matrix, and the overcomplete sensing
matrix A(ν) ∈ CM×K , defined in relation to (4.2), which will be further referred to as
A for ease of notation. Similar as for the single snapshot case, the on-grid assumption
(4.3) is expected to hold true, for ease of presentation.

The K ×N sparse signal matrix X̌ in (4.29) contains the elements

[X̌]k,n =

{
[ψ(tn)]l if νk = µl

0 otherwise,
(4.30)

for k = 1, . . . , K, l = 1, . . . , L and n = 1, . . . , N , i.e., only L � K rows are non-zero.
Thus X̌ exhibits a row-sparse structure, i.e., the elements in a row of X̌ are either
jointly zero or primarily non-zero, as illustrated in Figure 4.3.

The joint sparse reconstruction problem can be formulated by the following minimiza-
tion problem

min
X
‖X‖q,0 s.t. Y = AX, (4.31)

where the `q,0 mixed-norm of a matrix X = [x1, . . . ,xK ]T is defined as the number of
its non-zero rows xk according to

‖X‖q,0 =
∣∣{k | ‖xk‖q 6= 0}

∣∣, (4.32)

for any `q vector norm. Minimization of the `q,0 mixed-norm promotes joint sparsity
in the rows of X, in the sense that rows are either jointly zero or primarily non-zero.
Reconstruction guarantees for the joint sparse recovery problem in (4.31) have been
derived, e.g., in [CH06].
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In the case of noise corrupted measurements, the minimization problem can be formu-
lated as

min
X
‖X‖q,0 s.t. ‖Y −AX‖2

F ≤ βN (4.33)

with the threshold β computed in relation to the noise power σ2
N. Note that for a

single measurement vector, the problems (4.31) and (4.33) reduce to the standard `0

minimization problems discussed in Section 4.1.

Given a row-sparse minimizer X̂ for problems (4.31) or (4.33), the DOA estimation
problem reduces to identifying the union support set, i.e., the indices of the non-zero
rows, from which the set of estimated spatial frequencies can be obtained as

{µ̂l}L̂l=1 = {νk | ‖x̂k‖q 6= 0, k = 1, . . . , K } , (4.34)

where x̂k corresponds to the kth row of the estimated signal matrix X̂ = [x̂1, . . . , x̂K ]T

and L̂ denotes the number of non-zero rows in X̂, i.e., the estimated model order.

Similar to the `0 norm minimization problem, the `q,0 mixed-norm minimization prob-
lem requires combinatorial optimization and becomes computationally intractable for
large problem dimensions, such that approximate methods have been proposed, in-
cluding greedy methods, such as Simultaneous Orthogonal Matching Pursuit (S-OMP)
[TGS06], and convex relaxation to `q,1 mixed-norm minimization [MÇW05, TVW05,
Tro06,YL06,Kow09], the latter of which will be discussed in the following.

4.2.1 `2,1 Mixed-Norm Minimization

The `q,1 mixed-norm is a classical approach [MÇW05, TVW05, YL06, Tro06, Kow09,
HM10] to approximate the `q,0 norm in the joint sparse reconstruction problem (4.31)
according to

min
X
‖X‖q,1 s.t. Y = AX, (4.35)

where the `q,1 mixed-norm is defined as

‖X‖q,1 =
K∑
k=1

‖xk‖q , (4.36)

applying an inner `q norm on the rows xk, for k = 1, . . . , K, in X = [x1, . . . ,xK ]T, and
an outer `1 norm on the `q row-norms. The inner `q norm provides a nonlinear coupling
among the elements in a row, which, in combination with the outer `1 norm, leads to
the desired row-sparse structure of the signal matrix X. In the case of noise-corrupted
measurements, the penalized form

min
X

1

2
‖AX − Y ‖2

F + λ
√
N‖X‖q,1, (4.37)
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can be applied. The regularization parameter λ ≥ 0 admits balancing the data fitting
fidelity versus the sparsity level in X, where the choice of a small λ in (4.37) tends to
result in a large number of non-zero rows, whereas a large value of λ tends to result in
a small number of non-zero rows. Common choices of mixed-norms are the `2,1 norm
[MÇW05,YL06] and the `∞,1 norm [TVW05,Tro06]. In the case of a single measurement
vector, the `q,1 mixed-norm problem (4.37) reduces to the standard LASSO (4.13)
discussed in Section 4.1. This thesis focuses on `2,1 minimization in the form of

min
X

1

2
‖AX − Y ‖2

F + λ
√
N‖X‖2,1. (4.38)

Following the ideas in [OPT00a], the smallest regularization λ providing a zero solution
for the problem in (4.38), is given by

λ = max
k
‖aH

kY ‖2/
√
N, (4.39)

as shown in Appendix A. A novel regularization parameter selection approach for large
number of sensors M and snapshots N , given as

λ = σN

√
M
(√

M/N + 1
)
, (4.40)

is derived in Appendix A as a contribution of this thesis. For the special case of a
single snapshot N = 1, however, the regularization parameter selected according to
(4.40) exceeds the parameter according to (4.15), given as

λ = σN

√
M
√

log(M), (4.41)

which is commonly applied for single snapshot scenarios scenarios. This matter will be
investigated in Section 4.4 by numerical experiments.

As discussed in [MÇW05], a major drawback of the mixed-norm minimization problem
in (4.38) lies in its computational cost, which is mainly determined by the size of
the K × N source signal matrix X. A large number of grid points K is desired to
achieve high frequency resolution, while a large number of snapshots N is desired
to provide good estimation performance. However, the choice of too large values K
and N makes the problem computationally intractable. To reduce the computational
cost of the problem (4.38) it was suggested in [MÇW05] to reduce the dimension of
the measurement matrix by matching only the signal subspace of Y , leading to the
prominent `1-SVD method. Let the singular value decomposition (SVD) of Y be given
as Y = UΣV H, and define the reduced M × r dimensional measurement matrix as

Y SV = UΣDr = Y V Dr (4.42)

that contains most of the signal power, where Dr = [Ir,0]T is of dimensions N × r

with r = min(L,N). Similarly, let X̌SV = X̌V Dr and NSV = NVDr. Using this
notation, the sparse representation of the signal model in (2.5) is replaced by

Y SV = AX̌SV +NSV. (4.43)
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Based on this reduced dimensionality model, the `1-SVD method was introduced as
the constrained minimization problem

min
XSV

‖XSV‖2,1 s.t. ‖AXSV − Y SV‖2
F ≤ β, (4.44)

leading to a reduction of the number of optimization parameters in the K × r matrix
XSV. A drawback of the `1-SVD approach is that a wrong estimate of the model order
L or the presence of correlated source signals might impair proper computation of the
signal subspace Y SV. Furthermore, the fact that NSV depends on the subspace V
makes the regularization parameter selection more difficult [MÇW05].

To deal with the above-mentioned problems of the `1-SVD approach, another dimen-
sionality reduction technique was proposed in [YLSX17], where the entire column space

Y RD = UΣDmin(M,N) = Y V Dmin(M,N), (4.45)

spanned by the measurements in Y is matched. It was shown in [YLSX17] that using
Y RD in the `2,1 minimization (4.38) provides an estimate X̂RD, that provides the same
power spectrum as the estimate X̂ obtained by matching the original measurements in
Y , which can be explained by the unitary invariance of the Frobenius and `2,1 mixed-
norm. In contrast to the `1-SVD approach, the computation of the column space Y RD

does not require knowledge of the estimated model order and is robust to correlation
in the source signals, however, at the expense of increased computational cost, due a
larger number of optimization parameters in the corresponding K×min(M,N) matrix
XRD.

The above dimensionality reduction techniques deal with reducing the number of
columns in the optimization variable X of the `2,1 minimization problem (4.38). To
achieve a high frequency resolution it is furthermore desired to have a large number of
sampled frequencies K, corresponding to the rows of X. To reduce the computational
cost associated with a large number of rows in X, a heuristic approach of adaptively re-
fining the frequency grid around estimated source locations was suggested in [MÇW05].
Another approach to achieve high frequency resolution is to apply the framework of
atomic norm minimization, introduced in Section 4.1.2, to joint sparse reconstruction,
as will be discussed in the following.

4.2.2 Atomic Norm Minimization

The extension of ANM to multiple measurement vectors was studied in [YX15b,LC16,
YX16a], which will be briefly considered in the following. Assume L source signals
with spatial frequencies µ1, . . . , µL, impinging on a ULA of M sensors and consider
the noise-free measurement matrix Y 0 =

∑L
l=1 a(µl)ψ

T
l obtained at the array output,

where the samples of the lth source signal are contained in the vector ψl ∈ CN , for
l = 1, . . . , L. In [YX15b, LC16, YX16a] it was proposed to model the measurement
matrix Y 0 as a convex combination of atoms a(ν)bH, with signal vector b ∈ CN ,
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‖b‖2 = 1, and continuous spatial frequencies ν ∈ [−1, 1). Hence, the atomic norm of
the measurement matrix Y 0 is defined as

‖Y 0‖A = inf
{sk,bk,νk}

{∑
k

sk : Y 0 =
∑
k

ska(νk)b
H
k , sk ∈ R+

}
. (4.46)

For the special case of ULAs, the atomic norm in (4.46) can equivalently be computed
by the SDP [YX15b,LC16,YX16a]

‖Y 0‖A = inf
w,WN

1

2
Tr
(
WN

)
+

1

2M
Tr
(
HToep(w)

)
(4.47a)

s.t.

[
WN Y H

0

Y 0 HToep(w)

]
� 0, (4.47b)

with the auxiliary variables w ∈ CM and WN ∈ CN×N . Given a minimizer ŵ to prob-
lem (4.47), the reconstruction of the spatial frequencies νk and corresponding magni-
tudes sk, for k = 1, . . . , K, is performed by means of the Vandermonde decomposition,
as given in Definition 4.1. Recovery guarantees for problem (4.47) are given in [YX16a].

In the case of noise-corrupted measurements Y , as defined in (2.5), gridless joint sparse
recovery from multiple snapshots can be performed by using (4.46) in the Atomic norm
Soft Thresholding (AST) problem

min
Y 0

1

2
‖Y − Y 0‖2

F + λ
√
N‖Y 0‖A, (4.48)

or, equivalently, by using the SDP formulation in (4.47), as

min
w,WN ,
Y 0

1

2
‖Y − Y 0‖2

F +
λ
√
N

2

(
Tr
(
WN

)
+

1

M
Tr
(
HToep(w)

))
(4.49a)

s.t.

[
WN Y H

0

Y 0 HToep(w)

]
� 0, (4.49b)

with auxiliary variable Y 0 ∈ CM×N , representing the noise-free measurement matrix
estimate. Bounds on the reconstruction error of the estimated noise-free measurement
matrix Ŷ 0 have been presented in [LC16]. The case of a thinned linear array of M
sensors, discussed in Section 2.1.2, is treated similar as for (4.27) by application of a
proper selection matrix J̈ in problem (4.48).

Similar as for the `2,1 mixed-norm minimization problem, in the case of a large num-
ber of snapshots N the ANM problem suffers from a large number of optimization
parameters in the matrix Y 0, such that dimensionality reduction techniques similar
to those discussed in Section 4.2.1 have been proposed to reduce the computational
cost [YX15a]. In extension to the single snapshot case discussed in Section 4.1.2, an
implementation based on ADMM has been proposed to deal with the computational
cost of (4.49) in the case of large number of sensors M .
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4.3 A Compact Formulation for `2,1 Minimization

As seen from the previous section, the `2,1 minimization problem for joint sparse recon-
struction from multiple snapshots has received significant attention in SSR research in
the past years. One of the main problems of the proposed approaches is the computa-
tional cost, especially in the case of a large number of snapshots, grid points or sensors.
In this context, one of the main contributions of this thesis is given by the following
theorem:

Theorem 4.2. The row-sparsity inducing `2,1 mixed-norm minimization problem

min
X

1

2
‖AX − Y ‖2

F + λ
√
N ‖X‖2,1 (4.50)

is equivalent to the convex problem

min
S∈DK

+

Tr
(
(ASAH + λIM)−1R̂

)
+ Tr(S), (4.51)

with R̂ = Y Y H/N denoting the sample covariance matrix and DK+ describing the set

of nonnegative K × K diagonal matrices, in the sense that minimizers X̂ and Ŝ for
problems (4.50) and (4.51), respectively, are related by

X̂ =ŜAH(AŜAH + λIM)−1Y . (4.52)

A proof of Theorem 4.2 is provided in Appendix B, while the convexity of (4.51) is
proven in Appendix C by showing positive semidefiniteness of the Hessian matrix of
the objective function in (4.51).

In addition to relation (4.52), it is shown in Appendix B that the matrix Ŝ =
diag(ŝ1, . . . , ŝK) contains the row-norms of the sparse signal matrix X̂ = [x̂1, . . . , x̂K ]T

on its diagonal according to

ŝk =
1√
N
‖x̂k‖2, (4.53)

for k = 1, . . . , K, such that the union support of X̂ is equivalently represented by
the support of the sparse vector of row-norms [ŝ1, . . . , ŝK ]. The formulation in (4.51)
is referred to as SPARse ROW-norm reconstruction (SPARROW). In this context, it
should be emphasized that Ŝ is not to be mistaken for a sparse representation of the
source covariance matrix, i.e., in general Ŝ 6= E{X̂X̂H}/N .

With regard to the problem dimension, the `2,1 minimization problem in (4.50) has
NK complex-valued variables in X, while the SPARROW problem in (4.51) provides
a reduction to only K real-valued, nonnegative variables in the diagonal matrix S.
Moreover, the SPARROW problem in (4.51) only depends on the sample covariance
matrix R̂ instead of the actual measurement vectors in Y themselves, leading to an
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additional reduction in problem size, especially in the case of large number of snapshots
N . Interestingly, this also indicates that the union support of the signal matrix X̂,
i.e., the set of non-zero rows, represented by the diagonal matrix Ŝ, is fully encoded
in the sample covariance R̂, rather than the instantaneous measurement vectors in Y ,
as may be concluded from the `2,1 formulation in (4.50). Similar observations were
made in [YLSX17] in the context of dimensionality reduction. As seen from (4.52), the
instantaneous measurement vectors in Y are only required for the reconstruction of the
signal matrix X̂, which, in the context of array signal processing, can be interpreted
as a form of beamforming [vT02], where the row-sparse structure in X̂ is induced by
premultiplication with the sparse diagonal matrix Ŝ.

The SPARROW formulation (4.51) can be implemented by tailored algorithms, such as
the coordinate descent method presented in Section 6.1.3. For implementation of (4.51)
by means of standard convex solvers, such as SeDuMi [Stu99] or MOSEK [MOS15],
consider the following corollaries on the reformulation of the matrix inverse expression
in (4.51) to a linear matrix inequality constraint, cf. [VB96, p.56]:

Corollary 4.3. The SPARROW problem in (4.51) is equivalent to the semidefinite
program

min
S,WN

1

N
Tr(WN) + Tr(S) (4.54a)

s.t.

[
WN Y H

Y ASAH + λIM

]
� 0 (4.54b)

S ∈ DK+ (4.54c)

where WN is a Hermitian matrix of size N ×N .

To see the equivalence of the two problems, note that in (4.54) ASAH + λIM � 0 is
positive definite, since S � 0 and λ > 0. Further consider the Schur complement [VB96]
of the constraint (4.54b),

WN � Y H(ASAH + λIM)−1Y , (4.55)

which implies

1

N
Tr(WN) ≥ 1

N
Tr
(
Y H(ASAH + λIM)−1Y

)
= Tr

(
(ASAH + λIM)−1R̂

)
. (4.56)

For any optimal point Ŝ of (4.51), a feasible point of (4.54) with the same objective
function value can be constructed by choosing WN = Y H(AŜAH + λIM)−1Y . Con-
versely, any optimal solution pair ŴN , Ŝ of (4.54) is also feasible for (4.51), which
completes the proof.
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Corollary 4.4. The SPARROW formulation in (4.51) is equivalent to the semidefinite
program

min
S,WM

Tr(WMR̂) + Tr(S) (4.57a)

s.t.

[
WM IM
IM ASAH + λIM

]
� 0 (4.57b)

S ∈ DK+ (4.57c)

where WM is a Hermitian matrix of size M ×M .

The proof of Corollary 4.4 follows the same line of arguments as in the proof of Corollary
4.3. In contrast to the constraint (4.54b), the dimension of the semidefinite constraint
(4.57b) is independent of the number of snapshots N . It follows that either problem
formulation (4.54) or (4.57) can be selected to solve the SPARROW problem in (4.51),
depending on the number of snapshotsN and the resulting dimension of the semidefinite
constraint, i.e., (4.54) is preferable for N ≤M and (4.57) is preferable otherwise. Note
that the SDP implementations in [YX15b] have been derived using similar steps, i.e.,
employing the Schur complement to obtain linear matrix inequality constraints.

4.3.1 Gridless SPARROW

The SPARROW formulation in (4.51) relies on grid-based frequency estimation. As
discussed for the on-grid assumption (4.3) and for atomic norm minimization in Section
4.1.2, grid-based frequency estimation requires a fine frequency grid to to reduce the
frequency estimation error, which, however, results in a high computational cost. The
atomic norm minimization problem presented in Section 4.2.2 provides an approach for
gridless frequency estimation in ULAs by means of the Vandermonde decomposition in
Definition 4.1. In a similar fashion, the Vandermonde decomposition can be employed
to derive a gridless version of the SPARROW formulation in (4.51).

Consider a ULA, where the sensing matrix A has a Vandermonde structure and the
matrix product ASAH = HToep(w) forms a Hermitian Toeplitz matrix, as discussed
in Section 4.1.2. Based on the uniqueness of the Vandermonde decomposition, problem
(4.51) can be rewritten as the GridLess (GL-) SPARROW formulation

min
w

Tr
(
(HToep(w) + λIM)−1R̂

)
+

1

M
Tr
(
HToep(w)

)
(4.58a)

s.t. HToep(w) � 0, (4.58b)

where the identity

Tr(S) =
1

M
Tr(AHAS) =

1

M
Tr(ASAH) =

1

M
Tr
(
HToep(w)

)
(4.59)
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was employed, with the factor 1/M resulting from ‖a(ν)‖2
2 = M , for all ν ∈ [−1, 1). Us-

ing the ideas of Corollaries 4.3 and 4.4, problem (4.58) is equivalent to the semidefinite
program

min
w,WN

1

N
Tr
(
WN

)
+

1

M
Tr
(
HToep(w)

)
(4.60a)

s.t.

[
WN Y H

Y HToep(w) + λIM

]
� 0 (4.60b)

HToep(w) � 0, (4.60c)

or, alternatively, to

min
w,WM

Tr
(
WMR̂

)
+

1

M
Tr
(
HToep(w)

)
(4.61a)

s.t.

[
WM IM
IM HToep(w) + λIM

]
� 0 (4.61b)

HToep(w) � 0. (4.61c)

Given a minimizer ŵ of problem (4.60) or (4.61), the number of sources, i.e., the model
order, can be estimated according to

L̂ = rank
(
HToep(ŵ)

)
, (4.62)

while the frequencies {µ̂l}L̂l=1 and corresponding magnitudes {ŝl}L̂l=1 can be estimated
by Vandermonde decomposition of the Hermitian Toeplitz matrix HToep(ŵ) according
to Definition 4.1. With the estimated frequencies in {µ̂l}L̂l=1 and signal magnitudes in

{ŝl}L̂l=1, the corresponding signal matrix estimate X̂ can be reconstructed by appli-
cation of (4.52). As discussed in the context of the Vandermonde decomposition in
Definition 4.1, different methods can be applied for frequency reconstruction from the
Hermitian Toeplitz matrix HToep(ŵ), such as root-MUSIC [Bar83], ESPRIT [RK89],
the matrix pencil method [HS90,HW91] and others, similar to the atomic norm mini-
mization problem in Section 4.1.2. The specific relation to the root-MUSIC estimator
will be investigated in more detail in the following section. In this context the gridless
SPARROW can also be considered as a signal subspace estimator, represented by the
Hermitian Toeplitz matrix HToep(w).

Unique Vandermonde decomposition requires that L̂ = rank
(
HToep(ŵ)

)
< M . The

rank L̂ can be interpreted as the counterpart of the number of non-zero elements in the
minimizer Ŝ in the grid-based SPARROW formulation (4.51). Analogous to the grid-
based SPARROW formulation (4.51), where the regularization parameter λ determines
the sparsity level of Ŝ, i.e., the number of its non-zero elements, there always exists a
value λ which yields a minimizer ŵ of the gridless formulations (4.60) and (4.61) which
fulfills L̂ = rank

(
HToep(ŵ)

)
< M , such that a unique Vandermonde decomposition

(4.59) is obtained. Appropriate regularization parameter selection schemes are given
by (4.40) and (4.41).

Comparing the GL-SPARROW formulation (4.60) and the ANM problem (4.49), a
similar structure in the objective functions and semidefinite constraints can be observed.
In fact, both problems are equivalent as given by the following theorem:



4.3 A Compact Formulation for `2,1 Minimization 47

Theorem 4.5. The atomic norm minimization problem (4.48) and the correspond-
ing SDP implementation (4.49), with minimizer ŵANM, are equivalent to the gridless
SPARROW formulation (4.60), with minimizer ŵSPARROW, in the sense that the min-
imizers are related by

ŵSPARROW = ŵANM/
√
N. (4.63)

A proof of Theorem 4.5 is provided in Appendix D. For both problem formulations,
GL-SPARROW (4.60) and ANM (4.49), the spatial frequencies ν are encoded in the
vectors ŵSPARROW and ŵANM, as found by Vandermonde decomposition (4.23), such
that both formulations provide the same frequency estimates.

However, from a computational viewpoint, in contrast to the GL-SPARROW problem
in (4.60), the ANM problem in (4.49) has additional MN complex-valued variables
in the matrix Y 0, which need to be matched to the multi snapshot matrix Y by
an additional quadratic term in the objective function. The dimensionality reduction
techniques for ANM, discussed in Section 4.2.2, can similarly be applied to SPARROW.
Due to the reduced number of variables, the GL-SPARROW formulations (4.60) and
(4.61) are less demanding in the number of computational operations and memory
requirements and thus admit significantly reduced computational cost as compared to
the ANM formulation (4.49).

The case of a thinned linear array of M sensors, discussed in Section 2.1.2, can be
treated in the GL-SPARROW formulation by application of a proper selection matrix
J̈ . To see this, let J̈ be the M0 ×M matrix selecting the sensors in the thinned linear
array from a virtual ULA of M0 sensors. Application in the GL-SPARROW formulation
(4.61) yields

min
w,WM

Tr
(
WMR̂

)
+

1

M0

Tr
(
HToep(w)

)
(4.64a)

s.t.

[
WM IM

IM J̈
T
HToep(w)J̈ + λIM

]
� 0 (4.64b)

HToep(w) � 0, (4.64c)

where w is an M0 element vector. A more detailed analysis of the gridless SPARROW
formulation for thinned linear arrays is provided in [SSSP17b].

Frequency Estimation from the Dual Problem

The gridless SPARROW formulation in (4.58) provides a simple approach of removing
the grid-based sensing matrix A from the optimization problem to obtain high res-
olution frequency estimates. To gain further insight to the estimation problem, this
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section considers an alternative approach of frequency estimation. To this end, consider
the Lagrange dual problem of the SPARROW formulation (4.57), which is given by

max
Υ 0,Υ 1

− 2 Re
{

Tr(Υ 1)
}
− λTr(Υ 0) (4.65a)

s.t.

[
R̂ Υ 1

Υ H
1 Υ 0

]
� 0 (4.65b)

1− aH
kΥ 0 ak ≥ 0 for k = 1, . . . , K, (4.65c)

where Υ 0 is an M ×M Hermitian, positive semidefinite matrix, while Υ 1 is an M ×M
complex-valued matrix without specific structure (see Appendix E for details). Note
that the primal problem in (4.57) as well as the dual problem in (4.65) are both strictly
feasible, such that strong duality applies [VB96]. The constraint (4.65c) forms the dual
to the nonnegativity constraint on the elements of S in the primal problem in (4.57),
such that by complementary slackness any dual optimal variable Υ̂ 0 must fulfill

1− aH
k Υ̂ 0 ak

{
= 0 if ŝk ≥ 0

≥ 0 if ŝk = 0,
(4.66)

for k = 1, . . . , K. Equation (4.66) indicates that the spatial frequency estimates {µ̂l}L̂l=1,
as defined in (4.34), can equivalently be identified by the elements νk satisfying 1 −
aH
kΥ 0ak = 0, i.e.,

{µ̂l}L̂l=1 = { νk | 1− aH
k Υ̂ 0 ak = 0, k = 1, . . . , K }. (4.67)

This leads to the conclusion that, instead of solving the primal problem (4.57) and
perform frequency estimation according to equation (4.34), the dual problem (4.65) can
be solved to obtain frequency estimates according (4.67). Note that similar observations
have been made in the context of minimization of the total variation norm for gridless
sparse recovery [CFG13,CFG14].

Consider the special case of a uniform linear array with sensor positions rm = (m−1) ∆,
for m = 1, . . . ,M , and move from a finite set of K steering vectors a(ν1), . . . ,a(νK) to
the array response vector

a(z) = [1, z, . . . , zM−1]T (4.68)

with z = e− jπµ∆, as discussed in Section 2.1.1. This transforms the finite set of
constraints (4.65c) into an infinite-dimensional constraint, given as

1− aH(z)Υ 0a(z) = 1−
M−1∑

m=−M+1

cmz
−m ≥ 0. (4.69)

Equation (4.69) constitutes a nonnegative trigonometric polynomial on the unit circle
|z| = 1 with coefficients

cm = Tr(ΘmΥ 0) (4.70)
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given as the sum of the main-diagonal and off-diagonal elements of Υ 0, with Θm being
the elementary Toeplitz matrix with ones on the mth diagonal and zeros elsewhere, as
introduced in Section 2.1.

Define a second polynomial equation

1 =
M−1∑

m=−M+1

dmz
−m = aH(z)Ha(z) (4.71)

for some Hermitian positive semidefinite matrix H � 0, with coefficients dm fulfilling

dm = Tr(ΘmH) =

{
1 if m = 0

0 otherwise,
(4.72)

i.e., the main-diagonal elements of H must sum to 1 while the elements on the off-
diagonals of H must sum to 0, such that (4.71) always holds true on the unit circle
|z| = 1. The polynomial in (4.71) is employed to provide an upper bound on the
polynomial in (4.69) as

1− aH(z)Υ 0 a(z) = aH(z)(H − Υ 0)a(z) ≥ 0, (4.73)

which holds true for H − Υ 0 � 0. Equation (4.73) forms the infinite-dimensional
analogue to the finite-dimensional constraint (4.65c). Using (4.73) and the conditions
on H in (4.72), the gridless version of the dual problem (4.65) can be formulated as

max
Υ 0,Υ 1,H

− 2 Re
{

Tr(Υ 1)
}
− λTr(Υ 0) (4.74a)

s.t.

[
R̂ Υ 1

Υ H
1 Υ 0

]
� 0 (4.74b)

H − Υ 0 � 0 (4.74c)

Tr(H) = 1, Tr(ΘmH) = 0 for m = 1, . . . ,M. (4.74d)

Given a minimizer Υ̂ 0 to the problem in (4.74), the spatial frequencies µ̂l can be
estimated from the L̂ roots {ẑl}L̂l=1 of the polynomial (4.69) on the unit circle, according
to (4.67).

Frequency estimation from the dual problem of the SPARROW formulation shows
strong links to the root-MUSIC approach discussed in Section 2.1. However, while
in root-MUSIC the L roots closest to the unit circle are selected, SPARROW only
considers the roots on the unit circle for frequency estimation. For a proper selection
of the regularization parameter λ, the existence of roots on the unit circle is ensured
by complementary slackness according to (4.66) and its continuous analogue in (4.69),
i.e., roots will be located on the unit circle in the grid-based case as well as in the
gridless case. This is a fundamental difference to the MUSIC approach, where no such
guarantee of roots on the unit circle exists, neither for the gridless root-MUSIC nor
for grid-based MUSIC method. Instead, the grid-based MUSIC approach searches the
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minima on the unit circle while root-MUSIC finds the roots in the entire complex plane,
as discussed in Section 3.2. This leads to a degradation in resolution performance of
MUSIC as compared to root-MUSIC. As will be shown by numerical experiments in
Section 4.4, no such degradation occurs for grid-based SPARROW, as compared to
GL-SPARROW.

4.3.2 Off-Grid SPARROW

The gridless SPARROW formulations are an attractive approach for parameter esti-
mation in uniform linear arrays. However, the gridless SPARROW formulation cannot
be directly applied for arbitrary array topologies, such that the grid-based SPARROW
formulation has to be used instead. In recent literature [HS10,ZLG11,TYN14,IRA+14],
it has been proposed to model the basis mismatch error, resulting from the finite grid,
by linear interpolation of the array response in the off-grid zones, which can similarly be
applied to the grid-based SPARROW formulation to formulate an off-grid method for
joint sparse recovery from multiple snapshots in arbitrary array topologies. To reach
this goal, a first-order Taylor expansion of the sensing matrix A, as used in the SPAR-
ROW formulation (4.51), is performed. The solution of the new SPARROW problem
provides the spatial frequencies on the grid and the corresponding off-grid error to
obtain continuous frequency estimates.

In this section, the on-grid assumption (4.3) is relaxed and it is assumed that

{µl}Ll=1 * {νk}Kk=1, (4.75)

such that the spatial frequency µl of source l admits an off-grid error ek from its closest
frequency grid point νk. The magnitude of the off-grid error ek is restricted to be less
than or equal to half of the grid spacing, given by δ/2, where a uniform frequency grid
is assumed, according to

νk = kδ for k = 1, . . . , K. (4.76)

Hence the spatial frequency µl of source l is given by

µl = νk + ek, (4.77)

where νk is the grid-frequency closest to µl. The off-grid errors ek, for k = 1, ..., K,
are assumed to be small such that the array response can be modeled by a first-order
Taylor series expansion of the array response vector according to

a(νk + ek) = a(νk) + ek
∂a(νk)

∂νk
+O(e2

k). (4.78)

In the SPARROW formulation (4.51), the array response vectors ak are reflected in
the matrix product

A(ν + e)SAH(ν + e) =
K∑
k=1

ska(νk + ek)a
H(νk + ek), (4.79)
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where e = [e1, . . . , eK ]T. Application of the first-order Taylor series expansion (4.78)
to the outer product of the response vectors in (4.79) yields

a(νk + ek)a
H(νk + ek) ≈a(νk)a

H(νk) + ek
∂

∂νk

(
a(νk)a

H(νk)
)

=a(νk)a
H(νk) + ek∆0 �

(
a(νk)a

H(νk)
)
, (4.80)

where � denotes the element-wise matrix multiplication. The M×M matrix ∆0 stems
from derivation of the product of array response vectors and contains the differences
of the sensor positions r1, . . . , rM as follows

∆0 = −jπ


0 r1 − r2 · · · r1 − rM

r2 − r1 0
...

. . .

rM − r1 0

 . (4.81)

Substituting (4.80) in (4.79) results in

A(ν + e)SAH(ν + e) ≈
K∑
k=1

sk

(
a(νk)a

H(νk) + ek∆0 �
(
a(νk)a

H(νk)
))

=
K∑
k=1

ska(νk)a
H(νk) + εk∆0 �

(
a(νk)a

H(νk)
)
, (4.82)

where the variable
εk = skek, (4.83)

for k = 1, . . . , K, is introduced with the constraint

|εk| ≤ skδ/2, (4.84)

where δ denotes the uniform grid spacing according to (4.76). As ek can be negative,
the variables εk, for k = 1, ..., K, can also take negative values. Define the K ×K real
diagonal matrix E = diag(ε1, . . . , εK) to rewrite (4.82) in compact notation as

A(ν + e)SAH(ν + e) ≈ ASAH +∆0 � (AEAH), (4.85)

with the dictionary matrix A = [a(ν1), . . . ,a(νK)] as defined below (4.2). Applying
the linear approximation (4.85) in the SPARROW formulation (4.51) results in the
off-grid SPARROW problem

min
S∈DK

+ ,E∈DK
Tr
(
(ASAH+∆0�(AEAH)+λIM)−1R̂

)
+Tr(S) (4.86a)

s.t. ASAH+∆0 � (AEA)H� 0 (4.86b)

|εk| ≤ skδ/2 for k = 1, . . . , K, (4.86c)

where DK denotes the set of the K ×K real-valued diagonal matrices. The additional
K × K real-valued diagonal matrix variable E = diag(ε1, ..., εK), with εk = skek,
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for k = 1, ..., K, as defined in (4.83), takes account of the off-grid parameter ek, for
k = 1, . . . , K, as introduced in (4.77), where the constraint (4.86c) follows from (4.84).
The additional constraint (4.86b) results from the observation that the matrix product
A(ν + e)SAH(ν + e) and its approximation in (4.85) need to be positive semidefinite.
Problem (4.86) will be referred to as OG1-SPARROW and can be implemented by
semidefinite programming, as discussed for Corollary 4.3.

The off-grid frequency estimates µ̂l, for l = 1, . . . , L̂, are computed from the minimizers
Ŝ = diag(ŝ1, . . . , ŝK) and Ê = diag(ε̂1, . . . , ε̂K) of (4.86), according to

{µ̂l}L̂l=1 =
{
νk + êk

∣∣ ŝk 6= 0, êk = ε̂k/ŝk, k = 1, . . . , K
}
, (4.87)

where in practice only the local maxima of the spectrum ŝ1, . . . , ŝK are selected as fre-
quencies of interest. As demonstrated by numerical experiments in Section 4.4.5, OG1-
SPARROW provides improved estimation performance as compared to the standard
grid-based SPARROW formulation (4.51). However, large errors εk, for k = 1, ..., K,
are not penalized as the parameters εk are not directly reflected in the objective func-
tion (4.86a). In the following, the OG1-SPARROW is modified by inserting a penalty
term on the errors εk, for k = 1, ..., K, in the objective function by means of the `2,1

mixed-norm. A similar approach based on joint sparsity has been proposed in the con-
text of covariance fitting [TYN14]. Following this approach to enforce joint sparsity in
S and E by means of an `2,1 mixed-norm, a new problem formulation is given as

min
S∈DK

+ ,E∈DK
Tr
(
(ASAH +∆0 � (AEAH) + λIM)−1R̂

)
+ ‖W SE‖2,1 (4.88a)

s.t. ASAH +∆0 � (AEAH) � 0 (4.88b)

W SE =
[
vecd(S), vecd(E)

]
(4.88c)

|εk| ≤ skδ/2 , for k = 1, ..., K, (4.88d)

where vecd(S) denotes the vector containing the diagonal elements of S, and the `2,1

mixed-norm of the matrix W SE ∈ RK×2 is computed as

‖W SE‖2,1 =
K∑
k=1

√
s2
k + ε2

k. (4.89)

Problem (4.88) is referred to as OG2-SPARROW, and can be implemented by semidef-
inite programming, as discussed for Corollary 4.3. As shown by simulations in Section
4.4, the introduction of the variables ε1, . . . , εK in the objective function (4.88) improves
the estimation of the off-grid error e as compared to the OG1-SPARROW approach in
(4.86).

4.3.3 Related Work: SPICE

Numerous methods for SSR have been proposed in recent years and links between
the various methods have been established to provide a better understanding of SSR.



4.3 A Compact Formulation for `2,1 Minimization 53

The SParse Iterative Covariance-based Estimation (SPICE) method [SBL11a,SBL11b,
SZL14] has been derived in the context of covariance matching and was shown to
have interesting links to `2,1 mixed-norm minimization. Based on the SPARROW
formulation (4.51), theses links can be further extended, as discussed in the following.

The SPICE method seeks to match the sample covariance matrix R̂ = Y Y H/N with a
sparse representation of the covariance matrix R0. To this end, consider the covariance
matrix

R = E{Y Y H}/N = A(µ)ΠAH(µ) + σ2IM , (4.90)

as given in (3.1). In contrast to the previous considerations on SSR in this chap-
ter, the authors in [SBL11a,SBL11b,SZL14] explicitly assume that the source signals,
represented in the matrix Ψ , are uncorrelated, such that the source covariance matrix

Π = E{ΨΨH}/N (4.91)

has a diagonal structure, i.e., Π = diag(π1, . . . , πL). The sparse representation R0 of
the covariance matrix in (4.90) is introduced as

R0 = AP̌AH + ςIM , (4.92)

where A denotes the M ×K sensing matrix computed for a fixed grid of frequencies
ν1, . . . , νK , as introduced in (4.2), ς = σ2 denotes the noise power. Under the on-
grid assumption (4.3), the elements of the sparse diagonal source covariance matrix
P̌ = diag(p̌1, . . . , p̌K) ∈ DK+ are given as

p̌k =

{
πl if νk = µl

0 otherwise,
(4.93)

for k = 1, . . . , K and l = 1, . . . , L, with πl denoting the diagonal elements of the source
covariance matrix as defined (4.91).

Two types of weighted covariance matching functions have been proposed in [SBL11a,
SBL11b, SZL14] for the SPICE method. The undersampled case, with N < M , is
treated by minimization of a weighted covariance matching function according to

min
P∈DK

+ ,ς≥0

{∥∥R−1/2
0 (R̂−R0)

∥∥2

F
s.t. R0 = APAH + ςIM

}
= min
P∈DK

+ ,ς≥0

{
Tr
(
R−1

0 R̂
2
)

+ Tr
(
R0

)
− 2Tr

(
R̂
)

s.t. R0 = APAH + ςIM

}
, (4.94)

where sparsity in P is induced in the objective of (4.94) in form of the trace penalty
term Tr

(
R0

)
, as can be observed from the identity

Tr
(
R0

)
= ςM +

K∑
k=1

‖ak‖2
2 · pk = M(ς +

K∑
k=1

pk). (4.95)
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The oversampled case, with N ≥ M , where the sample covariance matrix R̂ is non-
singular, is treated by the minimization of the weighted covariance matching function
according to

min
P∈DK

+ ,ς≥0

{∥∥R−1/2
0

(
R̂−R0

)
R̂
−1/2∥∥2

F
s.t. R0 = APAH + ςIM

}
= min
P∈DK

+ ,ς≥0

{
Tr
(
R−1

0 R̂
)

+ Tr
(
R0R̂

−1)
− 2M s.t. R0 = APAH + ςIM

}
, (4.96)

where sparsity in P is induced by summation of its diagonal elements with data de-
pendent, nonnegative weights according to

Tr
(
R0R̂

−1)
= ςTr

(
R̂
−1)

+
K∑
k=1

aH
k R̂

−1
ak · pk. (4.97)

Note that the SPARROW formulation in (4.51) exhibits similarities with both SPICE
formulations (4.94) and (4.96). While the SPARROW formulation shares the uniformly
weighted summation of its variables in Tr(S) with the SPICE formulation in (4.94),
it shares the structure of the data fitting function Tr

(
(ASAH + λIM)−1R̂

)
with the

SPICE formulation in (4.96). There is, however, a fundamental difference between the
SPARROW formulation and the SPICE formulations in the fact that the variables in
S correspond to the normalized row-norms of the signal matrix, i.e., ŝk = 1√

N
‖x̂k‖2,

for k = 1, . . . , K, as seen from (4.53), while the variables in P correspond to the signal
powers, i.e., p̂k = 1

N
E{‖x̂k‖2

2}, for k = 1, . . . , K, as seen from (4.91) and (4.93).

Moreover, the SPICE formulations make assumptions on the second-order signal statis-
tics in form of the covariance matrix in (4.92), namely, the sparse source covariance
matrix P is modeled as a diagonal matrix, which involves the assumption of uncorre-
lated source signals. In contrast to that, the SPARROW problem in (4.51) relies on a
deterministic signal model with stochastic noise and does not make any assumptions
on the statistics of the signals. Regardless of these model assumptions, the SPICE
method is known to show good estimation performance even in the case of correlated
source signals.

In [RKH13, BS14] it has been shown, that for the case of a single snapshot y(t),
the SPICE problem in (4.94) is equivalent to the Square-Root LASSO (SR-LASSO)
[BCW11]

min
x
‖Ax− y(t)‖2 + ‖x‖1, (4.98)

as briefly introduced in Section 4.1.1, where equivalence holds in the sense that the
corresponding minimizers are related by

x̂ = P̂AH(AP̂AH + ς̂IM)−1y(t) and p̂k =
|x̂k| ‖y(t)‖2√

M
. (4.99)
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Similarly, it was shown in [SBL11b] that the SPICE formulation in (4.96) is equivalent
to a weighted SR-LASSO formulation. Note that the line of arguments used in [SBL11b,
RKH13,BS14] to prove the above equivalence is rather different from those used in the
proof of Theorem 4.2. Furthermore, there are some significant differences between
the SR-LASSO formulation (4.98) and the standard mixed-norm formulation (4.50)
considered here. The latter reduces to the popular standard LASSO (4.13) in the
special case of a single measurement vector. As compared to the SR-LASSO (4.98),
the standard LASSO (4.13) has a squared data fitting term, such that the standard
LASSO admits an interpretation as a Bayesian estimator with Laplacian priors under
additive white Gaussian noise [Tib96], [PC08], as briefly discussed in Section 4.1.1.
Equivalence of the standard LASSO and the SR-LASSO only holds in the noise-free
case, such that in this case the SPICE formulation in (4.94) is equivalent to standard
`1 norm minimization. In contrast to that, the SPARROW formulation is equivalent to
the standard `2,1 minimization problem (4.50) in the general and practically relevant
case of noise-corrupted measurements.

Another major difference of the `2,1 minimization problem in (4.50) and the SR-LASSO
formulation in (4.98) lies in the absence of the regularization parameter λ in the latter
approach. The mixed-norm problem (4.50) admits to obtain a solution of any desired
sparsity level by tuning the regularization parameter λ, e.g., by exploiting a-priori
knowledge or by applying blind techniques such as the cross-validation approach of
[Tib96]. The SR-LASSO in (4.98) does not have such a regularization parameter and
thus provides less flexibility in the solution. On the other hand, since the selection of
the regularization parameter can be quite challenging in practice, this makes the SR-
LASSO, and correspondingly the SPICE method, easily applicable in practical scenarios
[SBL11a,SBL11b,SB12,SZL14].

A drawback of the SPICE method, which has not yet been reported in literature, is
that the parameterization R0 = APAH + ςIM might not be unique, i.e., depending on
the array topology and the frequency grid, as reflected in the sensing matrix A, there
might exist a matrix P̃ such that AP̃AH = IM and

R0 = APAH + ςIM = A(P + ςP̃ )AH. (4.100)

For example, given a ULA of M sensors, the identity matrix IM can be created by a
convex combination of M equispaced atoms a(νk)a

H(νk), with νk = 2(k − 1)/M − 1
for k = 1, . . . ,M , such that for P̃ = 1/MIM the identity AP̃AH = IM holds true.
Similarly, for a thinned array of M sensors with maximum lag ∆M0, the identity
matrix IM can be created by convex combination of M0 equispaced atoms a(νk)a

H(νk),
with νk = 2(k − 1)/M0 − 1 for k = 1, . . . ,M0, and P̃ = 1/M0IM [Fuc97]. Possible
realizations of P̃ and A(ν) are not limited to the above examples, but these simple
considerations reveal a general shortcoming of the SPICE method in that it cannot
necessarily guarantee a unique sparse solution, since there might exist a non-sparse
matrix P̃ to any sparse solution to fulfill (4.100). A simple approach to obtain a unique
solution to the SPICE method, which has not been published in previous literature, is
to solve the corresponding optimization problem twice. The first run serves to compute
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the estimate of the covariance matrix R0 and to find its smallest eigenvalue ς̃. In the
second run, the parameter ς is held constant in the SPICE optimization problem as
ς = ς̃, leading to a sparse estimate of the source covariance P . Indirectly, a similar
approach is performed in the context of the gridless SPICE method, where a different
parameterization of the sparse representation of the covariance matrix R0 is applied,
as discussed in the following section. Note that the uniqueness of the solution for `2,1

minimization (4.50) and SPARROW (4.51) depends on the choice of regularization
parameter λ. For too small values of the regularization parameter λ, the solution to
SPARROW might not be sparse and unique. However, such problems can be fixed by
increasing the value of the regularization parameter λ.

Gridless SPICE

A gridless extension of SPICE to the GridLess Spice (GLS) method for ULAs was
proposed in [YX15b], which relies on an SDP formulation of the SPICE problems (4.94)
and (4.96), and Vandermonde decomposition of Hermitian Toeplitz matrices as given
in Definition 4.1, similar to the gridless SPARROW and ANM problems discussed in
Sections 4.3.1 and 4.1.2. In the case of ULAs, the sparse representation of the covariance
matrix in (4.92) has a Hermitian Toeplitz structure R0 = HToep(w), such that the
undersampled SPICE problem (4.94) can be formulated as

min
w

{
Tr
(
R−1

0 R̂
2
)
− 2Tr

(
R̂
)

s.t. R0 = HToep(w) � 0
}

(4.101)

and, correspondingly, the oversampled SPICE problem (4.96) can be formulated as

min
w

{
Tr
(
R−1

0 R̂
)

+ Tr
(
R0R̂

−1
)

s.t. R0 = HToep(w) � 0
}
. (4.102)

Given a minimizer R̂0 to any of the two problems, the authors in [YX15b] suggest
to first compute the minimum eigenvalue ς̂ of R̂0 and then perform Vandermonde
decomposition of R̂0 − ς̂I to recover the frequency estimates {µ̂l}L̂l=1 and the corre-

sponding source covariances {p̂l}L̂l=1. In contrast to the grid-based SPICE method, the
approach in [YX15b] provides a unique parameterization of R̂0, since the Vandermonde
decomposition of the rank-deficient matrix R̂0 − ς̂I is unique. As shown by numerical
experiments in Section 4.4, this leads to different estimates of grid-based and gridless
SPICE.

In [YX16b] it has been shown that in the noise-free case, GLS can be interpreted as
special versions of the ANM problem (4.47). In contrast to the results in [YX15b,
YX16b], the results of equivalence between gridless SPARROW and ANM, in Section
4.3.1 of this thesis, hold in the more general case with an additional data matching
term in the ANM formulation to account for noise-corrupted measurements according
to (4.49).
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4.4 Numerical Experiments

The parameter estimation performance of `2,1 minimization, ANM and SPICE has been
numerically investigated in various publications, e.g., [MÇW05,HM10,SBL11a,SBL11b,
SZL14,YX15b,LC16,YX16a]. This section extends the existing simulation results by a
numerical analysis of some less investigated aspects, e.g., the estimation bias, standard
deviation and root-mean-square error. The experiments compare grid-based SPAR-
ROW (4.54),(4.57), gridless SPARROW (4.60),(4.61) (referred to as GL-SPARROW),
the off-grid SPARROW formulations (4.86) and (4.88), under- and oversampled SPICE,
i.e., (4.94) and (4.96), (referred to as SPICE-US and SPICE-OS, respectively), under-
and oversampled GridLess Spice (4.101),(4.102) (referred to as GLS-US and GLS-OS,
respectively), spectral MUSIC [Sch86], root-MUSIC [KV96, vT02], and the stochastic
Cramér-Rao Bound (CRB) [SLG01]. Since the SPARROW formulation is equivalent
to `2,1 minimization and ANM, as discussed in Section 4.3, the latter two methods are
not included in the performance analysis. Instead, a comparison of computation time
for the equivalent approaches is provided.

The SPARROW, SPICE and MUSIC methods all make different assumptions on the
availability of a-priori knowledge. While SPICE does not require any a-priori knowl-
edge, perfect knowledge of the noise power σ2

N is assumed for the regularization pa-
rameter selection of SPARROW as discussed in Section 4.2.1, and perfect knowledge
of the number of source signals L is assumed for the MUSIC method. Since estimation
of these parameters itself might affect the estimation performance of the MUSIC and
SPARROW methods, the standard assumption of perfectly known number of source
signals and noise power is applied and the achievable performance under these idealized
assumptions is investigated.

4.4.1 Regularization Parameter Selection

Before turning to the frequency estimation performance, this section performs a brief
investigation of the regularization parameter selection. To this end the two selection
approaches (4.40) and (4.41) are compared, as briefly discussed in Section 4.2.1. The
experimental setup assumes two equal power source signals with source covariance
matrix E{ψ(t)ψH(t)} = I and spatial frequencies µ1 = 0.5 and µ1 = 0.4, a signal-to-
noise ratio (SNR), defined as SNR = 1/σ2, of 0 dB, and considers varying number of
snapshots and sensors in the receiving ULA. Figure 4.4 shows the average number of
estimated source signals L̂ over 100 iterations per scenario.

As seen from Figure 4.4, in the gross of the investigated scenarios both approaches
correctly estimate the number of source signals. In Figure 4.4 a) it is observed that
approach (4.41) tends to overestimate the number of estimated signals L̂ for low number
of snapshots N , indicating that the regularization parameter is selected too low. For low
number of sensors the two closely spaced signals can not always be resolved, leading
to underestimation of the number of source signals. From Figure 4.4 b) it can be



58 Chapter 4: Sparse Reconstruction for Fully Calibrated Arrays

5 10 15 20

1
2
4
7

10
12
14
17
20
30
50
70

100

Sensors M

S
n

ap
sh

ot
s
N

a) λ = σN
√
M logM

0

1

2

3

4

E
{L̂
}

5 10 15 20

1
2
4
7

10
12
14
17
20
30
50
70

100

Sensors M

S
n

ap
sh

ot
s
N

b) λ = σN
√
M(
√
M/N + 1)

0

1

2

3

4

E
{L̂
}

Figure 4.4: Average number L̂ of estimated source signals for regularization parameter
selection approaches a) (4.41) and b) (4.40), over varying number of snapshots N and
sensors M

noticed that approach (4.40) underestimates the number of sources for low number of
snapshots, indicating that the regularization parameter is too large. In the case of a
single snapshot, this regularization parameter selection approach actually estimates no
signal at all. For low number of sensors, the two closely spaced sources again cannot be
resolved. Since the following numerical experiments will focus on difficult scenarios with
low number of sensors and snapshots, approach (4.41) will be used for the numerical
simulations.

4.4.2 Resolution Performance and Estimation Bias

The setup of the following experiment consists of a uniform linear array of M = 6
sensors with half signal wavelength spacing, an SNR of 3 dB and a number of N =
20 snapshots. A number of T = 1000 Monte Carlo trials are performed. For each
trial L = 2 independent complex Gaussian sources with static spatial frequencies are
considered, where the first source signal has a spatial frequency of µ1 = 0.5, while
the spatial frequency of the second source is varied according to µ2 = µ1 − ∆µ, with
0.01 ≤ ∆µ ≤ 1. All grid-based estimation methods use a uniform grid of K = 1000
points, i.e., ν = [−1,−0.998,−0.996, . . . , 0.998]T.

Figure 4.5 shows the root-mean-square error (RMSE) of the schemes under investiga-
tion, which is computed according to

RMSE(µ̂) =

√√√√ 1

LT

T∑
t=1

L∑
l=1

∣∣µl − µ̂l(t)∣∣2wa
, (4.103)

with µ̂l(t) denoting the estimate of the lth frequency µl in Monte Carlo trial t and
|µ̂1 − µ̂2|wa = mini∈Z |µ̂1 − µ̂2 + 2i| denoting the wrap-around distance for frequencies
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Figure 4.5: Frequency estimation performance for L = 2 source signals, N = 20
snapshots and SNR = 3 dB.
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Figure 4.6: Frequency estimation performance for L = 2 source signals, N = 50
snapshots and SNR = 10 dB.

10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

Frequency separation ∆µ

B
ia

s(
µ̂

)

SPARROW
GL-SPARROW
SPICE-OS
SPICE-US

Figure 4.7: Bias of estimated frequencies for L = 2 source signals, N = 50 snapshots
and SNR = 10 dB.



60 Chapter 4: Sparse Reconstruction for Fully Calibrated Arrays

10−2 10−1 100
10−3

10−2

10−1

100

Frequency separation ∆µ

S
td

(µ̂
)

SPARROW
GL-SPARROW
SPICE-OS
SPICE-US
GLS-OS
GLS-US
MUSIC
root-MUSIC
CRB

Figure 4.8: Standard deviation of estimated frequencies for L = 2 source signals,
N = 50 snapshots and SNR = 10 dB.

µ̂1, µ̂2 ∈ [−1, 1). Since the RMSE computation (4.103) requires the number of estimated
source signals L̂ to be equal to the true number of source signals L, two special cases
have to be considered: In the case of overestimation of the model order, L̂ > L, the L
frequency estimates with the largest corresponding magnitudes are selected, whereas
L− L̂ additional random spatial frequencies are selected in the case of underestimation
L̂ < L.

From Figure 4.5 it can be observed that the grid-based and gridless SPARROW ver-
sions show the same estimation performance. While both methods reach the CRB for
high frequency separation, they also achieve a good threshold performance1, close to
that of the GLS methods and slightly better than the performance of root-MUSIC. The
GLS methods show the best threshold performance but do not reach the CRB for high
frequency separation. In contrast to the GLS, the grid-based SPICE methods show
rather poor threshold performance, similar to that of grid-based MUSIC, and reach
the CRB for high frequency separation. This difference in estimation performance of
the grid-based and gridless SPICE methods can be explained by the different param-
eterization of R0 as discussed in Section 4.3.3. Similar differences in the estimation
performance can be observed for the grid-based and gridless MUSIC methods, where
the difference mainly lies in the threshold performance, with root-MUSIC showing an
improved performance.

Figure 4.6 shows the RMSE performance for a less challenging scenario with SNR =
10 dB and N = 50 snapshots. As can be seen in the figure, the SPARROW methods
again show good threshold performance, similar to root-MUSIC, but do not reach
the CRB for frequency separations 0.05 ≤ ∆µ ≤ 0.3. The RMSE performance of the

1In the context of RMSE performance the threshold refers to the point where the RMSE curve
deviates from the CRB, e.g., because two closely spaced sources cannot be resolved for low SNR or
low number of snapshots. This region is also referred to as the non-informative region of the RMSE
plot.
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remaining schemes is comparable to the performance in the first scenario. The behavior
of the SPARROW methods can be explained by considering the estimation bias, which
is computed as

Bias(µ̂) =

√√√√ 1

L

L∑
l=1

(µl −Mean(µ̂l))
2, (4.104)

where the mean estimate for frequency µl is computed as

Mean(µ̂l) =
1

T

T∑
t=1

µ̂l(t). (4.105)

Furthermore, the standard deviation is computed as

Std(µ̂) =

√√√√ 1

TL

L∑
l=1

T∑
t=1

∣∣Mean(µ̂`)− µ̂`(t)
∣∣2
wa
. (4.106)

Figures 4.7 and 4.8 show the resulting estimation bias and standard deviation versus
the frequency separation ∆µ = |µ2 − µ1|wa. As can be observed from the figures, the
proposed SPARROW method provides a relatively large bias in the case of closely
spaced frequencies, with ∆µ ≤ 0.33, but provides source resolution performance, i.e.,
threshold performance, slightly superior to that of root-MUSIC, with successful source
resolution for ∆µ ≥ 0.05. For frequency separation ∆µ ≥ 0.33 the estimation bias
reduces significantly and becomes negligible with respect to the standard deviation.

Similar to GL-SPARROW, the grid-based SPICE methods exhibit an estimation bias
for closely spaced source signals with ∆µ < 0.44, however, provide a degraded source
resolution performance for ∆ < 0.14, similar to spectral MUSIC. In contrast to that, the
two GLS versions display negligible estimation bias (not shown here), while achieving
a reduced estimation performance in terms of standard deviation.

Note that in the gridless SPARROW implementation for the case of ULAs, the estima-
tion bias is inherent in the estimation method and independent of grid effects, and can
be countered by bias mitigation techniques [NBA13] or by a subsequent maximum like-
lihood (ML) estimation step [KV96,vT02]. For instance, a combination of the SPICE
and ML estimation has been proposed in [SB12] in form of the so-called LIKES method.

4.4.3 Varying Number of Snapshots

The following experiment investigates the estimation performance of the various meth-
ods for a varying number of snapshots. Consider two independent complex Gaussian
sources with static spatial frequencies µ1 = 0.35 and µ2 = 0.5 and a ULA with M = 6
sensors. The SNR is fixed at 3 dB. Figure 4.9 shows the RMSE of the schemes under
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Figure 4.9: Frequency estimation performance for L = 2 source signals with frequency
separation ∆µ = 0.15 and SNR = 3 dB
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Figure 4.10: Resolution percentage for L = 2 source signals with frequency separation
∆µ = 0.15 and SNR = 3 dB
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investigation from which it can be observed that SPARROW outperforms all other
methods in terms of threshold performance. However, for larger number of snapshots,
the RMSE of SPARROW saturates due to the estimation bias as discussed in Section
4.4.2. GLS shows slightly worse RMSE performance compared to SPARROW for a low
number of snapshots N and also does not reach the CRB for a large number of snap-
shots. In contrast to that, root-MUSIC shows slightly degraded threshold performance
but asymptotically reaches the CRB. The grid-based techniques MUSIC and SPICE
all show poor threshold performance. While MUSIC asymptotically reaches the CRB,
the SPICE techniques reach saturation, i.e. the RMSE reaches a lower bound.

To provide further insight to the resolution performance, the corresponding resolution
probability is plotted in Figure 4.10, where two source signals with true frequencies µ1,
µ2 and estimated frequencies µ̂1, µ̂2 are considered to be resolved if

2∑
l=1

|µl − µ̂l| ≤ |µ1 − µ2|. (4.107)

Similar as for the RMSE threshold performance, it can be observed from Figure 4.10
that GL-SPARROW outperforms the other investigated methods, providing 100% res-
olution percentage for N ≥ 30 snapshots, slightly better than root-MUSIC. The GLS
methods require N ≥ 100 snapshots to provide resolution guarantee. Again, the grid-
based schemes MUSIC and SPICE show significantly lower resolution performance.

4.4.4 Correlated Signals

For illustration of the estimation performance of SPARROW in the case of coherent
source signals, consider a ULA with M = 6 sensors and L = 2 impinging source signals
with spatial frequencies µ = [0.0, 0.5]T, SNR = 0 dB and varying number of snapshots
N . Figure 4.11 displays the RMSE for uncorrelated source signals while Figure 4.12
shows the RMSE for coherent source signals under the same setup. As can be seen from
the two figures, in the uncorrelated case all methods show similar frequency estimation
performance. The MUSIC methods reach the CRB for large number of snapshots,
and also SPARROW reaches the CRB since it is not affected by an estimation due to
sufficient spacing between the spatial frequencies. The SPICE methods, on the other
hand, do not reach the CRB for large number of snapshots. For coherent signals it can
be observed that the MUSIC methods fail to resolve the two coherent source signals, as
discussed in Section 3.2. The other methods, i.e., SPARROW and the SPICE methods
show performance similar to the uncorrelated case, with SPARROW outperforming the
SPICE methods.

4.4.5 Off-Grid SPARROW

For evaluation of the off-grid SPARROW formulations presented in Section 4.3.2, the
first experiment considers a ULA of M = 8 sensors, with N = 30 snapshots and
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Figure 4.11: Frequency estimation performance for L = 2 uncorrelated source signals
with frequency separation ∆µ = 0.5 and SNR = 0 dB
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Figure 4.12: Frequency estimation performance for L = 2 coherent source signals
with frequency separation ∆µ = 0.5 and SNR = 0 dB

SNR = 20 dB, and investigates the off-grid error estimation performance of the two
formulations OG1-SPARROW in (4.86) and OG2-SPARROW in (4.88). Figure 4.13
displays the average value of the off-grid error êl estimated by the two off-grid schemes,
for a single source with spatial frequency according to µ = e, i.e., the spatial frequency
is varied in the off-grid grid region around the frequency 0. An equidistant grid of
K = 200 points is employed, corresponding to a grid spacing of δ = 0.01. As can be
observed from Figure 4.13, the off-grid error ê estimated by OG2-SPARROW is closer
to the true off-grid error e than the estimates provided by OG1-SPARROW. Both
off-grid formulations admit the additional estimation the off-grid parameter such that
better DOA estimation can be obtained as compared to the grid-based SPARROW
formulation (4.51).

Figure 4.14 shows the frequency estimation performance for a ULA of M = 8 sensors,
L = 2 sources with spatial frequencies µ1 = 0.103 and µ2 = 0.502, N = 20 snapshots
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Figure 4.13: Mean of estimated off-grid error
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Figure 4.14: Frequency estimation performance for ULA of M = 8 sensors, with
L = 2 source signals and N = 20 snapshots
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Figure 4.15: Frequency estimation performance for nonuniform linear array of M = 8
sensors, with L = 2 source signals and N = 5 snapshots
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and varying SNR. As before, an equidistant grid of K = 200 points is used, correspond-
ing to a grid spacing of δ = 0.01. As seen from Figure 4.14, for high SNR the grid-based
SPARROW and MUSIC methods result in a residual error caused by the finite grid.
In contrast to that, GL-SPARROW achieves the CRB for high SNR and OG1- and
OG2-SPARROW show a reduced error as compared to the grid-based schemes, with
OG2- outperforming OG1-SPARROW.

The frequency estimation performance for a nonuniform linear array of M = 8 sen-
sors with sensor positions r = [0.00, 0.57, 1.85, 3.12, 3.98, 5.84, 7.22, 8.00]T, and L = 2
source signals with spatial frequencies µ1 = 0.0045 and µ2 = 0.2005, is illustrated
in Figure 4.15. The number of snapshots is fixed as N = 5 and the SNR is varied,
while the frequency grid is selected similar to the previous setups. Figure 4.15 clearly
demonstrates that OG2-SPARROW outperforms OG1-SPARROW and the grid-based
schemes MUSIC and SPARROW for high SNR.

4.4.6 Computation Time of SDP Formulations

The experiments concerning the computation time of `2,1 minimization, SPARROW
and ANM are performed in MATLAB on a computer with an Intel Core i7-4770 CPU
@ 3.40 GHz × 8 and 16 GByte RAM. The optimization problems for the equivalent
estimation problems are solved using the MOSEK framework [MOS15] with the CVX
MATLAB interface [GB08,GB14].

Consider a scenario with L = 3 independent complex Gaussian sources with static
spatial frequencies µ1 = −0.1, µ2 = 0.35 and µ3 = 0.5, and a ULA of M = 10 sensors.
The SNR is fixed at 10 dB while the number of snapshots N is varied. Figure 4.16
shows the average CPU time of `2,1 minimization (4.50), the grid-based SPARROW
formulations (4.54) and (4.57), Atomic Norm Minimization (ANM) (4.49) and GL-
SPARROW (4.60) and (4.61). A number of K = 1000 candidate frequencies is used
for the grid-based methods.

Regarding the CPU time for the grid-based methods, it can be noted that the SPAR-
ROW formulation (4.54) outperforms the `2,1 mixed-norm minimization (4.50) for
N < 30 snapshots. For a larger number of snapshots the dimensions of the semidefi-
nite constraint (4.54b) become too large, such that the computational cost is increased
as compared to `2,1 minimization (4.50). The SPARROW formulation (4.57) is based
on the sample covariance matrix, thus, the computational cost is independent of the
number of snapshots. For the gridless methods, Figure 4.16 clearly displays that the
CPU time of the GL-SPARROW (4.60) formulation is significantly reduced as com-
pared to the ANM formulation (4.47). Similar to the grid-based case, the CPU time
of the covariance-based GL-SPARROW formulation (4.61) is relatively independent
of the number of snapshots N and outperforms the other methods for large number
of snapshots N . Independent of the number of snapshots, the gridless SPARROW
formulations (4.60) and (4.61) clearly outperform their grid-based counterparts (4.54)
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Figure 4.16: Average computation time of different SDP implementations for ULA
of M = 10 sensors and varying number of snapshots N
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and (4.57). The experiment also demonstrates that all the methods employing the raw
measurements in Y , i.e., `2,1 minimization (4.50), the SPARROW formulation (4.54),
the ANM formulation (4.47) and the GL-SPARROW formulation (4.60), suffer from
increased computation time in the case of large number of snapshots N , demonstrat-
ing the necessity of dimensionality reduction techniques, as will be investigated in the
following experiment.

For the experiment, the source signal parameters from the previous experiment are
maintained and the number of snapshots is fixed as N = 50, while the number of
sensors M in the ULA is varied. To reduce the computational burden in the methods
based on the M ×N raw measurement matrix Y , dimensionality reduction according
to [YX15a] is performed to match a matrix Y RD of dimensions M × M instead, as
discussed in Section 4.2. Figure 4.17 displays the average CPU time for the various
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equivalent methods under investigation.

Using the dimensionality reduction technique, it can be seen that both grid-based
SPARROW formulations (4.54) and (4.57) require the same computational time, since
the dimensions of the semidefinite constraints are identical. For M ≤ 18 sensors
the grid-based SPARROW formulations outperform the `2,1 mixed-norm minimiza-
tion (4.50). However, for M > 18 the dimensions of the semidefinite constraints in the
SPARROW formulations become too large, such that the computational cost exceeds
that of `2,1 minimization (4.50).

Similar as for the grid-based SPARROW, the gridless SPARROW formulations (4.60)
and (4.61) show identical computation time, due to the identical size of the semidefi-
nite constraints. Both gridless SPARROW formulations clearly outperform the ANM
approach (4.47), especially for large number of sensors M . This can be explained by
the additional M2 complex-valued variables in the matrix Y 0 of the ANM formulation
(4.47).

The experiment demonstrates that the computational cost of the grid-based SPAR-
ROW formulations exceeds that of `2,1 mixed-norm minimization for large number of
sensors, when the SDP formulations are used with the MOSEK solver. To deal with
this problem, a low-complexity coordinate descent (CD) implementation is devised in
Section 6.1.3, which exploits the special structure of the proposed SPARROW formu-
lation. Experimental results on convergence rate of the CD implementation in Section
6.3.1 demonstrate that the SPARROW formulation also admits reduced computation
time for large number of sensors.

4.5 Chapter Summary

The chapter has started with a short review of state of the art methods in terms of
`1 norm and atomic norm minimization for sparse reconstruction from single snap-
shots, as well as `2,1 mixed-norm and atomic norm minimization for joint sparse re-
construction from multiple snapshots. A major contribution of the chapter is given
by a compact reformulation of the `2,1 minimization problem, which is referred to as
SPARROW (SPARse ROW-norm reconstruction) and has significantly reduced num-
ber of optimization parameters as compared to the original `2,1 minimization problem.
Furthermore, a gridless implementation of the SPARROW formulation was derived,
for application in uniform and thinned linear arrays. The gridless implementation re-
lies on Vandermonde decomposition and was shown to be equivalent to atomic norm
minimization for joint sparse reconstruction, while having significantly reduced number
of optimization parameters. To similarly admit off-grid estimation in arbitrary array
topologies, an extension of the SPARROW formulation based on linear interpolation of
the array response in the off-grid zones was presented. In context with other existing
work, a detailed comparison of the SPARROW formulation and the SPICE method
has been provided.
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The numerical experiments in this chapter have demonstrated that sparse reconstruc-
tion by means of convex relaxation provides a viable supplement to classical subspace-
based methods, such as MUSIC, especially for correlated signals and in the non-
asymptotic regime of low signal-to-noise ratio and low number of snapshots. The ex-
periments on resolution performance have demonstrated that especially the grid-based
SPARROW formulation outperforms the spectral MUSIC method, indicating supe-
rior threshold performance of the SPARROW method for nonuniform array topologies,
where the powerful root-MUSIC method cannot be applied. Regarding computation
time, it was shown that the SPARROW formulation clearly outperforms atomic norm
minimization for any size of sensor arrays. In comparison with `2,1 minimization, a
reduction in computation time for the SDP-based SPARROW implementations was
found mainly for medium-sized sensor arrays. However, as will be shown in Section
6.1.3, improved computation time for large sensor arrays can be obtained by a tai-
lored implementation of the SPARROW formulation in form of the coordinate descent
method.
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Chapter 5

Sparse Reconstruction for Partly
Calibrated Arrays

In direction finding applications based on array signal processing it is desired to achieve
a high angular resolution and to identify a large number of sources. This can be
achieved by sensor arrays with a large aperture and a large number of sensors [KV96].
However, a large aperture size makes it difficult to achieve and maintain precise array
calibration. Possible reasons for imperfect calibration are inaccuracies in the sensor po-
sitions, timing synchronization errors, or other unknown gain and phase offsets among
sensors [PF97, RS87, WF91, VS94, NS96, FB01, SG04]. Standard approaches to this
problem usually rely on either offline or online calibration. Offline calibration of the
overall array is performed using reference sources at known positions and can easily
become a challenging and time consuming task [PF97]. Alternatively, several online
calibration techniques have been proposed which use calibration sources at unknown
positions [RS87, WF91, VS94, NS96, FB01], but the computational cost of these tech-
niques is often prohibitively high, and performance can be severely limited in the case
of large sensor position errors [FB01]. Moreover, these techniques cannot be employed
in scenarios with imperfect time synchronization of sensors or other unknown sensor
gain and phase offsets.

One way to overcome the calibration problem is to partition the overall array into
smaller subarrays, which are themselves comparably easy to calibrate. This type of
array is referred to as partly calibrated array (PCA). Generally, direction finding ap-
proaches for this type of arrays can be classified into incoherent and coherent methods.
In the incoherent case, the subarrays independently perform estimation of the direc-
tions of arrival (DOAs) or the signal covariance matrix to communicate these estimates
to a central processor, where further processing is performed to achieve an improved
joint estimate [WK85,SNS95,SP14]. In the coherent approach, parameter estimation is
performed based on joint coherent processing of all available sensor measurements, e.g.,
by computing a global sample covariance matrix, and imperfect calibration among the
different subarrays is taken account of in the estimation process. Coherent processing
generally achieves better estimation performance, but has more stringent requirements
with regard to synchronization of the subarrays in time and frequency, as compared to
incoherent processing. Prominent methods for coherent processing are based on sub-
space separation such as the RARE method [PGW02, SG04] or ESPRIT-type meth-
ods [SORK92,SSJ01,PP11,SPZ13,SPPZ14], as discussed in Chapter 3. Similar to the
case of fully calibrated arrays discussed in Chapter 4, subspace-based methods for PCAs
are asymptotically optimal at tractable computational cost, but may suffer from perfor-
mance degradation in the case of low number of snapshots or correlated source signals,
such that SSR methods provide an attractive alternative in these difficult scenarios.
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This chapter considers SSR for coherent processing in PCAs. To put the results in
context with existing SSR methods for PCAs, the chapter starts with a brief review of
state of the art methods for incoherent SSR in PCAs, where a block-sparse structure
in the subarray signal representations is exploited [DSB+05, LYJ+15]. In the follow-
ing, a new approach for coherent SSR in PCAs is derived, based on minimization of a
mixed nuclear and `1 mixed-norm formulation, as presented in [SPP14], which exploits
two types of sparse structures in the PCA signal model: While `1 minimization pro-
vides a block-sparse signal structure, nuclear norm minimization leads to low-rank solu-
tions [FHB01,RFP10,CCS10,CR12]. Moreover, an equivalent compact reformulation of
the `∗,1 mixed-norm minimization problem is derived, termed as COmpact Block- and
RAnk-Sparse recovery (COBRAS) [SP18], which has a reduced number of optimiza-
tion parameters as compared to the original `∗,1 mixed-norm minimization problem.
While the original COBRAS formulation relies on grid-based implementation and is
applicable to arbitrary array topologies, the special case of PCAs composed of uniform
or thinned linear subarrays admits a gridless implementation of the COBRAS formula-
tion. To put the results in context with previous work it is shown in this chapter how
the gridless COBRAS formulation can equivalently be derived from the SPARROW
formulation discussed in Section 4.3. Furthermore, a gridless implementation of the
SPARROW formulation is derived for shift-invariant array topologies [SSSP17a]. Ex-
tensive numerical experiments demonstrate that the COBRAS approach outperforms
the state of the art methods in difficult scenarios.

5.1 Incoherent Sparse Reconstruction

Sparse reconstruction for PCAs with incoherent processing has been well investigated
in the literature [DSB+05, LYJ+15] and has low requirements for practical implemen-
tation in terms of subarray synchronization, as discussed in Section 2.2. Consider a
linear PCA of M =

∑
pMp sensors, partitioned into P linear subarrays of M1, . . . ,MP

sensors, and with arbitrary subarray topologies, as discussed in Section 2.2. Let

Ỹ
(p)

= [y(p)(t
(p)
1 ), . . . ,y(p)(t

(p)
N )] ∈ CMp×N denote the measurement matrix obtained

by subarray p in sampling times t
(p)
1 , . . . , t

(p)
N , which might vary for different subarrays

p = 1, . . . , P . According to (2.20), the subarray measurements are modeled as

Ỹ
(p)

= A(p)(µ) Ψ̃
(p)

+ Ñ
(p)
, (5.1)

where Ψ̃
(p)

= [ψ̃
(p)

(t
(p)
1 ), . . . , ψ̃

(p)
(t

(p)
N )] ∈ CL×N represents the source signals as ob-

served by sensor 1 in subarray p as defined in (2.21), Ñ
(p) ∈ CMp×N represents the

senor noise observed by subarray p, and A(p)(µ) ∈ CMp×L denotes the steering ma-
trix of subarray p as given in (2.22), for p = 1, . . . , P . A sparse representation of the
subarray signal model in (5.1) is given as

Ỹ
(p)

= A(p)(ν) ˇ̃X(p) + Ñ
(p)
, (5.2)
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where A(p)(ν) denotes the Mp × K overcomplete subarray sensing matrix, for p =
1, . . . , P , which is obtained for a grid of K � L sampled frequencies ν = [ν1, . . . , νK ]T,
and will be referred to as A(p) in the following. The K × N row-sparse source signal

matrix ˇ̃X(p) is defined similar to the FCA case in (4.30), according to

[ ˇ̃X(p)]k,n =

{
[ψ̃

(p)
(t

(p)
n )]l if νk = µl

0 otherwise.
(5.3)

From (5.3) it can be seen that the sparse source signal representations ˇ̃X(p) for subarrays
p = 1, . . . , P and snapshots n = 1, . . . , N have the same signal support, such that the
joint sparse structure can be exploited for the sparse reconstruction.

Consider the case of identical subarrays, such that A(0) , A(1) = A(2) = . . . = A(P ) ∈
CM0×K , with M0 sensors per subarray, and define the M0 × PN data matrix Ȳ =

[Ỹ (1), . . . , Ỹ (P )] and the K × PN signal matrix ˇ̄X = [ ˇ̃X(1), . . . , ˇ̃X(P )]. The signal
matrix ˇ̄X has a joint sparse structure, similar to the multi snapshot case for FCAs
discussed in Section (4.2), which can be exploited by the sparse optimization problem
[DSB+05,LYJ+15]

min
X̄
‖X̄‖q,0 s.t. ‖A(0)X̄ − Ȳ ‖2

F ≤ β, (5.4)

for some threshold parameter β, where in the noise-free case the constraint is replaced
by A(0)X̄ = Ȳ .

For the general case of arbitrary subarrays, the subarray measurements are stacked

according to Ỹ = [Ỹ
(1)T

, . . . , Ỹ
(P )T

]T ∈ CM×N and a sparse signal representation
according to the model in (2.24) is employed, i.e.,

Ỹ = B(ν) ˇ̃Z + Ñ , (5.5)

where the overcomplete subarray sensing block matrix B(ν) =
[
B(ν1), . . . ,B(νK)

]
∈

CM×PK is defined in correspondence with (2.16), where ν = [ν1, . . . , νK ]T denotes the
grid of sampled spatial frequencies, with K � L. For ease of presentation the subarray
sensing block matrix B(ν) will be referred to as B =

[
B1, . . . ,BK

]
in the following.

The KP ×N source signal matrix ˇ̃Z in (5.5) has a block structure

ˇ̃Z = [ ˇ̃ZT
1 , . . . ,

ˇ̃ZT
k ]T, (5.6)

where each block ˇ̃Zk = [ˇ̃x
(1)
k , . . . , ˇ̃x

(P )
k ]T ∈ CP×N contains the source signals ˇ̃X(p) =

[ˇ̃x
(p)
1 , . . . , ˇ̃x

(p)
K ]T observed by the different subarrays p = 1, . . . , P , for sampled frequency

νk, according to

[ ˇ̃Zk]p,n =

{
[ψ̃

(p)
(t

(p)
n )]l for νk = µl

0 otherwise .
(5.7)
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The matrix ˇ̃Z exhibits a block-sparse structure, i.e., the elements in the P ×N subma-

trices ˇ̃Zk, for k = 1, . . . , K, are either jointly zero or primarily non-zero. This structure
can be taken account of in the sparse reconstruction by the `

(P×N)
q,0 mixed-norm accord-

ing to

‖Z̃‖(P×N)
q,0 =

∣∣{k | ‖Z̃k‖q 6= 0}
∣∣, (5.8)

where ‖Z̃k‖q denotes an appropriate matrix norm applied to the P × N submatrix

Z̃k, e.g., the Frobenius norm or the spectral norm, such that the `
(P×N)
q,0 mixed-norm

‖Z̃‖(P×N)
q,0 counts the number of non-zero submatrices Z̃1, . . . , Z̃K , in the matrix Z̃.

Note that in the case of a single subarray P = 1 the block-wise mixed-norm (5.8)
reduces to the row-wise mixed-norm (4.32) applied for joint sparse reconstruction in

FCAs, i.e., ‖Z̃‖(1×N)
q,0 = ‖Z̃‖q,0 as defined in (4.32).

Using the mixed-norm formulation (5.8), a sparse recovery approach for incoherent
processing in PCAs can be formulated by the problem

min
Z̃
‖Z̃‖(P×N)

p,0 s.t. ‖BZ̃ − Ỹ ‖2
F ≤ β, (5.9)

for some proper threshold β, where in the noise-free case the constraint in (5.9) is
replaced by BZ̃ = Ỹ . Given a minimizer ˆ̃Z the spatial frequencies can be identified
from the block support according to

{µ̂l}L̂l=1 = {νk | ‖ ˆ̃Zk‖q 6= 0}. (5.10)

Similar as for the sparse reconstruction problems based on `0 minimization in Section
4, the problem in (5.9) becomes intractable for large problem dimensions, such that
approximate methods have to be devised.

5.1.1 `F,1 Mixed-Norm Minimization

As discussed in the previous section, SSR for incoherent processing with identical PCAs
can be formulated by the joint sparse reconstruction problem in (5.4), which has a
structure similar to that of joint sparse reconstruction for the multi snapshot model in
FCAs discussed in Section 4.2. Correspondingly, the `q,0 mixed-norm in (5.4) can be
approximated by an `q,1 mixed-norm. More specifically, consider the `2,1 mixed-norm,
such that the convex relaxation of the SSR problem (5.4) is formulated in the penalized
form as

min
X̄

1

2
‖A(0)X̄ − Ȳ ‖2

F + λ
√
PN‖X̄‖2,1, (5.11)

which can be solved, e.g., by means of the SPARROW formulation discussed in Section
4.3. It follows that in the case of identical uniform linear subarrays of M0 sensors per
subarray, no more than L < M0 signals can be recovered under incoherent processing,
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due to the characteristics of the Vandermonde decomposition given in Definition 4.1.
The regularization parameter λ can be selected according to the approaches (4.40) or
(4.41) presented in Section 4.2.

In the case of arbitrary subarrays, the `
(P×N)
q,0 mixed-norm can similarly be approxi-

mated by an `
(P×N)
q,1 mixed-norm, defined as

‖Z̃‖(P×N)
q,1 =

K∑
k=1

‖Z̃k‖q. (5.12)

Consider in the following the application of the Frobenius norm on the submatrices
Z̃k, for k = 1, . . . , K, such that the `

(P×N)
F,1 mixed-norm is given as

‖Z̃‖(P×N)
F,1 =

K∑
k=1

‖Z̃k‖F =
K∑
k=1

‖vec(Z̃k)‖2. (5.13)

From (5.13) it can be seen that the `
(P×N)
F,1 mixed-norm can equivalently be interpreted

as an `2,1 mixed-norm on the vectorized submatrices Z̃k. Using the `
(P×N)
F,1 mixed norm,

the convex approximation of problem (5.9) yields

min
Z̃

1

2
‖BZ̃ − Ỹ ‖2

F + λ
√
N‖Z̃‖(P×N)

F,1 . (5.14)

In the case of identical subarrays, as discussed above, the `
(P×N)
F,1 minimization problem

in (5.14) is equivalent to `2,1 minimization problem in (5.11), as seen from the definition
of the matrix blocks Z̃k in (5.6) and below, and the interpretation of the `

(P×N)
F,1 mixed-

norm as an `2,1 mixed-norm as discussed for (5.13). Hence, application of the `
(P×N)
F,1

mixed-norm is a reasonable choice for incoherent processing in PCAs. Note that in
the case of a single subarray P = 1, the SSR formulations (5.4) and (5.9) as well as
the convex relaxations in (5.11) and (5.14) reduce to the formulations for joint sparse
recovery in FCAs given in (4.33) and (4.37).

From above considerations it can be deduced that the gain of incoherent processing in
PCAs of identical subarrays, as discussed for problem (5.11), lies in additional snapshots
which can be used for estimation. However, the large array aperture and the increased
number of sensors are not fully exploited. From subspace-based methods such as RARE
and ESPRIT it is known that these benefits can be retained by coherent processing,
which will be further investigated in the context of SSR in the following section.

5.2 Coherent Sparse Reconstruction

While incoherent processing admits simple implementation in practice, it has drawbacks
in exploiting the additional structure in the PCA topology. This section considers the
application of coherent processing in PCAs, i.e., synchronous sampling of the signals
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received by the subarrays. To this end the signal model in (2.19) is applied, which is
given as

Y = B(µ) Φ(µ,α,η) Ψ +N , (5.15)

where Y ,N ∈ CM×N represent the synchronously sampled measurements and the
sensor noise of the entire sensor array, respectively, B(µ) ∈ CM×PL contains the sub-
array responses, Φ(µ,α,η) ∈ CLP×L accounts for the subarray shifts and Ψ ∈ CL×N

represents the source signals, as observed by sensor 1 in subarray 1.

A sparse representation of the signal model in (5.15) for the PCA case is given as

Y = B(ν) Φ(ν,α,η) X̌ +N , (5.16)

where the row-sparse signal matrix X̌ is defined similar to the FCA case in (4.30).
Furthermore, the M × PK overcomplete subarray sensing block matrix B(ν) and the
PK ×K overcomplete subarray shift matrix Φ(ν,α,η) are defined in correspondence
to (2.16) and (2.17), respectively, for a grid of K � L sampled spatial frequencies
ν = [ν1, . . . , νK ]T.

In the PCA case, the inter-subarray displacements in η and the subarray perturbations
in α are unknown and represent additional estimation variables. Hence the subarray
shifts in Φ(ν,α,η), which depend on the spatial frequencies in ν, the subarray dis-
placements η and the subarray perturbations α, have to be appropriately included in
the sparse reconstruction problem. To this end, a model is introduced that couples
among the variables x̌k in the rows of X̌ = [x̌1, . . . , x̌K ]T and the subarray shifts in
ϕ(νk,α,η), for k = 1, . . . , K. Define the KP ×N extended signal matrix Z as

Ž = Φ(ν,α,η) X̌, (5.17)

containing the products of the subarray shifts and the signal waveforms. As compared
to the total K(N + P − 1) complex-valued unknowns in both the signal matrix X̌
and the block-diagonal subarray shift matrix Φ(ν,α,η) in model (5.16), the number of
unknown complex-valued signal elements in the matrix Ž, defined in (5.17), is increased
to KPN . Note that the incoherent signal matrix ˇ̃Z in (5.5) has the same number
of elements as the coherent signal matrix Ž in (5.17). However, in contrast to the
incoherent signal matrix ˇ̃Z in (5.5), the coherent signal matrix Ž = [ŽT

1 , . . . , Ž
T
K ]T in

(5.17) enjoys a beneficial structure as it is composed of K stacked rank-one matrices

Žk = ϕ(νk,α,η) x̌T
k , (5.18)

of dimensions P × N , for k = 1, . . . , K, which follows from the block structure of
the subarray shift matrix Φ(ν,α,η) = blkdiag(ϕ(ν1,α,η), . . . , ϕ(νK ,α,η)), defined
in correspondence to (2.17). Using the coherent signal matrix in (5.17), the sparse
representation for the PCA case in (5.16) is equivalently described by

Y = B(ν)Ž +N , (5.19)
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where, for ease of notation, the subarray sensing block matrix B(ν) in (5.19) will be
referred to as B = [B1, . . . ,BK ] in the following. An SSR approach to take account
of the special structure of the coherent signal matrix Ž in (5.17) can be formulated as

min
Z

K∑
k=1

rank(Zk) s.t. ‖BZ − Y ‖2
F ≤ β. (5.20)

The formulation in (5.20) takes twofold advantage of the sparsity assumption. First,
minimization of the rank-terms encourages low-rank blocks Ẑ1, . . . , ẐK in the mini-
mizer Ẑ. Second, minimizing the sum of ranks provides a block-sparse structure of
Ẑ = [ẐT

1 , . . . , Ẑ
T
K ]T, i.e., the elements in each block Ẑk, for k = 1, . . . , K, are either

jointly zero or primarily non-zero. However, the minimization problem in (5.20) is
generally hard to solve, since it requires minimization of the rank of a matrix [VB96],
such that a convex relaxation approach will be considered in the following section.

5.2.1 `∗,1 Mixed-Norm Minimization

A convex approximation of the rank function is given by the nuclear norm which has
been successfully applied in a variety of rank minimization problems [FHB01, CCS10,
RFP10,CR12]. The definition of the nuclear norm is given as

‖Zk‖∗ = Tr
(
(ZH

kZk)
1/2
)

=
r∑
i=1

σk,i, (5.21)

where r = min(P,N) and σk,i is the ith largest singular value of Zk ∈ CP×N . To
understand the rank minimization characteristic of the nuclear norm, observe from
(5.21) that it can similarly be interpreted as an `1 norm on the singular values of
Zk. Thus, minimization of the nuclear norm leads to sparsity in the singular values,
corresponding to a low matrix rank. In contrast, the Frobenius norm, as applied for
incoherent processing in Section 5.1.1, corresponds to the `2 norm of the singular vectors
according to

‖Zk‖F =
√

Tr
(
ZH
kZk

)
=

√√√√ r∑
i=1

σ2
k,i, (5.22)

such that minimization of the Frobenius norm does not lead to a low-rank matrix
estimate.

Regarding the rank minimization character of the nuclear norm, as a major contribution
of this thesis it was proposed in [SPP14], to approximate the sparse reconstruction
problem (5.20) by the following convex minimization problem in the regularized form

min
Z

1

2
‖BZ − Y ‖2

F + λ
√
N ‖Z‖(P×N)

∗,1 , (5.23)
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where ‖Z‖∗,1 denotes the `
(P×N)
∗,1 mixed-norm, computed as

‖Z‖(P×N)
∗,1 =

K∑
k=1

‖Zk‖∗ . (5.24)

Similar to (5.20), the problem in (5.23) motivates low-rank blocks Ẑ1, . . . , ẐK and a

block-sparse structure in the minimizer Ẑ = [Ẑ
T

1 , . . . , Ẑ
T

K ]T. Note that the PCA for-
mulations for coherent processing in (5.20) and (5.23) reduce to the FCA formulations
in (4.33) and (4.38), respectively, in the case of a single subarray, i.e., P = 1. Similarly,
in the case of a single snapshot, i.e., N = 1, the formulations (5.20) and (5.23) reduce
to the PCA formulation for incoherent processing in (5.9) and (5.14).

Performing singular value decomposition on the matrix blocks in Ẑ, i.e.,

Ẑk = Û kΣ̂kV̂
H

k , for k = 1, . . . , K, (5.25)

the signal waveform in x̂k and subarray shifts in ϕ̂(νk,α,η) corresponding to the spatial
frequency νk can be recovered according to

x̂k = σ̂k,1 [ûk,1]1 v̂k,1 and ϕ̂(νk,α,η) =
ûk,1

[ûk,1]1
. (5.26)

The left and right singular vectors ûk,1 and v̂k,1 in (5.26) correspond to the largest
singular value σ̂k,1 of Ẑk. Normalization to the first element [ûk,1]1 of ûk,1 in (5.26) is
performed to describe the subarray shifts in vectors ϕ̂(νk,α,η) in reference to the first
subarray, according to (2.15).

As derived in Appendix F, a novel choice of regularization parameter for the `
(P×N)
∗,1

mixed-norm minimization problem in (5.23) is given by

λ = σN

(√
M/N + 1

)
max
p

√
Mp, (5.27)

forming another contribution of this thesis. The regularization parameter in (5.27) has
been derived under similar assumptions as the regularization parameter in (4.40) for
application with `2,1 minimization in FCAs discussed in Section 4.2.1, i.e., for large
number of sensors M and snapshots N . Ideally, in the case of a single subarray P = 1
and a single snapshot N = 1 the regularization parameter would reduce to the standard
approach for `1 minimization, given in (4.15), which is clearly not the case for the
approach in (5.27). To this end a heuristic approach of selecting the regularization
parameter as

λ = σN

√
log(M) max

p

√
Mp, (5.28)

will be considered for application with low snapshot number N , and the estimation
performance will be further investigated by numerical experiments in Section 5.5.1.
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For simple implementation of the SSR problem in (5.23) by standard convex solvers,
such as SeDuMi [Stu99] or MOSEK [MOS15], consider the following semidefinite char-
acterization of the nuclear norm. As discussed in [FHB01], minimization of the nuclear
norm

min
Zk∈C

‖Zk‖∗ , (5.29)

for Zk ∈ CP×N and some convex set C, can be expressed as the SDP

min
Zk∈C,

W k,1,W k,2

1

2

(
Tr(W k,1) + Tr(W k,2)

)
(5.30a)

s.t.

[
W k,1 Zk

ZH
k W k,2

]
� 0, (5.30b)

where W k,1 = W H
k,1 and W k,2 = W H

k,2 are auxiliary variables of size P ×P and N×N ,

respectively. Based on the equivalence of (5.29) and (5.30), the `
(P×N)
∗,1 mixed-norm

minimization problem (5.23) can equivalently be formulated as

min
{Zk,W k,1,
W k,2}

‖BZ − Y ‖2
F + λ

√
N

K∑
k=1

Tr(W k,1) + Tr(W k,2) (5.31a)

s.t.

[
W k,1 Zk

ZH
k W k,2

]
� 0, for k = 1, . . . , K. (5.31b)

Note that with the auxiliary variables in the Hermitian matrices W k,1 and W k,2, for
k = 1, . . . , K, the problem (5.31) has K(P + N)2 real-valued optimization variables
as opposed to the problem formulation in (5.23) which has 2KPN real-valued opti-
mization variables. For a large number of grid points K or snapshots N the SDP for-
mulation (5.31) becomes computationally intractable and alternative implementations
are required. Similar to the case of fully calibrated arrays discussed in Section 4.2.1,
dimensionality reduction techniques can be applied to reduce the dimensions of the
measurement matrix Y , as suggested in [SSPH16], however, at the expense of poten-
tial performance degradation, e.g., in the case of correlated source signals. To overcome
this difficulty, the following section provides a compact reformulation of problem (5.23).

5.3 A Compact Formulation for `∗,1 Minimization

Another major contribution of this thesis is formulated in the following theorem:

Theorem 5.1. The rank- and block-sparsity inducing `
(P×N)
∗,1 mixed-norm minimization

problem

min
Z

1

2
‖BZ − Y ‖2

F + λ
√
N ‖Z‖(P×N)

∗,1 (5.32)



80 Chapter 5: Sparse Reconstruction for Partly Calibrated Arrays

is equivalent to the convex problem

min
S∈BKP+

Tr
(
(BSBH + λI)−1R̂

)
+ Tr(S), (5.33)

with R̂ = Y Y H/N denoting the sample covariance matrix and BKP+ representing the set
of positive semidefinite block-diagonal matrices composed of K blocks of size P×P . The
equivalence holds in the sense that a minimizer Ẑ for problem (5.32) can be factorized
as

Ẑ = ŜBH(BŜBH + λI)−1Y , (5.34)

where Ŝ is a minimizer for problem (5.33).

A proof of Theorem 5.1 is provided in Appendix G, while a proof of the convexity of
(5.33) is provided below in Corollaries 5.2 and 5.3, by establishing equivalence to a
semidefinite program.

In addition to relation (5.34), it can be shown (see Appendix G) that a minimizer Ŝ =
blkdiag(Ŝ1, . . . , ŜK) of (5.33) relates to the coherent signal matrix Ẑ = [ẐT

1 , . . . , Ẑ
T
K ]T

according to

Ŝk =
1√
N

(ẐkẐ
H

k )1/2, (5.35)

for k = 1, . . . , K, such that the block support {k | Ẑk 6= 0, k = 1, . . . , K} of Ẑ is
equivalently represented by the block support of the matrix [ŜT

1 , . . . , Ŝ
T
K ]T. Similarly,

the rank of the matrix blocks Ẑk is equivalently represented by the matrix blocks Ŝk,
i.e., rank(Ẑk) = rank(Ŝk), for k = 1, . . . , K.

The problem in (5.33) only relies on the measurement matrix Y through the sam-
ple covariance matrix R̂, leading to a significantly reduced problem size, especially
in the case of large number of snapshots N . The formulation (5.33) contains KP 2

real-valued optimization parameters in the positive semidefinite matrix S, as opposed
to the 2KPN real-valued optimization parameters in the coherent signal matrix Z in
problem (5.32). Consequently, in the case of a large number of snapshots N > P/2, the
reformulation (5.33) has reduced number of variables as compared to (5.32). In this
context the formulation in (5.33) is termed as COmpact Block- and RAnk-Sparse re-
covery (COBRAS). Just like the `∗,1 minimization problem reduces to `2,1 minimization
in the case of a single subarray, as discussed in Section 5.2.1, the COBRAS formulation
(5.33) reduces to the SPARROW formulation (4.51) in the case of a single subarray.
Conversely, the COBRAS formulation can similarly be derived from the SPARROW
formulation, as will be discussed in Section 5.3.1.

In order to solve the COBRAS formulation in (5.33) by means of a tractable SDP, which
can be treated by standard convex solvers, consider the following corollaries on the
reformulation of the matrix inverse expressions in (5.33) to linear matrix inequalities,
cf. [VB96, p.56]:
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Corollary 5.2. The COBRAS formulation in (5.33) is equivalent to the convex
semidefinite program

min
S,WN

1

N
Tr(WN) + Tr(S) (5.36a)

s.t.

[
WN Y H

Y BSBH + λI

]
� 0 (5.36b)

S ∈ BKP+, (5.36c)

where WN is a Hermitian matrix of size N ×N .

Corollary 5.3. The COBRAS formulation in (5.33) admits the equivalent problem
formulation

min
S,WM

Tr(WMR̂) + Tr(S) (5.37a)

s.t.

[
WM IM
IM BSBH + λIM

]
� 0 (5.37b)

S ∈ BKP+ (5.37c)

where WM is a Hermitian matrix of size M ×M .

The proofs to Corollaries 5.2 and 5.3 follow similar arguments as in the proof of Corol-
lary 4.3 and are therefore omitted here. In contrast to (5.36), the size of the semidefinite
constraint in (5.37) is independent of the number of snapshots N . It follows that ei-
ther problem formulation (5.36) or (5.37) can be selected to solve (5.33), depending
on the number of snapshots N and the resulting size of the semidefinite constraint.
The problems (5.36) and (5.37) have KP 2 real-valued optimization variables in S and
additional N2 or M2 real-valued parameters in WN and WM , respectively. Thus, in
the undersampled case N < M it is preferable to use the SDP formulation in (5.36),
while in the oversampled case N ≥M it is preferable to apply the SDP formulation in
(5.37). Note that the dimensionality reduction techniques discussed in Section 4.2.1 can
be applied to formulation (5.36), leading to a reduction in the number of optimization
parameters.

5.3.1 Gridless COBRAS

While the SDP formulations in Section 5.3 are applicable to arbitrary array topologies
and rely on grid-based SSR, consider in the following the special case of identical
uniform linear subarrays, introduced in Section 2.2.3. As seen for the RARE and
ESPRIT methods discussed in Sections 3.3 and 3.4, this type of array admits the
application of gridless frequency estimation methods, and similar gridless estimation
can be obtained for the COBRAS formulation as discussed in the following.

Assume a PCA composed of P identical uniform linear subarrays with M0 sensors
per subarray, and consider the matrix Q̌ = BŠBH =

∑K
k=1BkŠkB

H
k , as used in the
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COBRAS formulation (5.33), where Bk denotes the subarray response block matrix
B(νk) for sampled frequency νk. The matrix Q̌ can be partitioned into P 2 submatrices
Q̌p,q of size M0 ×M0 according to

Q̌ =


Q̌1,1 Q̌

H

2,1 · · · Q̌
H

P,1

Q̌2,1 Q̌2,2

...
...

. . .

Q̌P,1 · · · Q̌P,P

 . (5.38)

Recall that the subarray response block matrices Bk, for k = 1, . . . , K, have a block-
diagonal structure according to Bk = IP ⊗a(0)

k , as defined in (2.13), where a
(0)
k denotes

the subarray response a(0)(νk) for sampled spatial frequency νk. According to (5.35)
and (5.18), the blocks Šk on the diagonal of Š can be decomposed as

Šk =
1√
N

(ŽkŽ
H

k )1/2 =
‖x̌k‖2√
N‖ϕk‖2

ϕkϕ
H
k

=σ̌kϕkϕ
H
k , (5.39)

where ϕk = [ϕk,1, . . . , ϕk,P ]T represents the subarray shift vectors ϕ(νk,α,η), and
σ̌k = ‖x̌k‖2/

√
N/‖ϕk‖2 denotes the scaled signal magnitudes, for sampled frequency

νk, respectively, where k = 1, . . . , K. With above notation, rewrite matrix Q̌ as

Q̌ =
K∑
k=1

BkŠkB
H
k =

K∑
k=1

σ̌kBkϕkϕ
H
kB

H
k

=
K∑
k=1

σ̌k


|ϕk,1|2a(0)

k a
(0)H
k ϕk,,1 ϕ

∗
k,,2 a

(0)
k a

(0)H
k · · · ϕk,1 ϕ

∗
k,P a

(0)
k a

(0)H
k

ϕk,2 ϕ
∗
k,1 a

(0)
k a

(0)H
k |ϕk,2|2a(0)

k a
(0)H
k

...
...

. . .

ϕk,P ϕ
∗
k,1 a

(0)
k a

(0)H
k · · · |ϕk,P |2a(0)

k a
(0)H
k

 . (5.40)

From (5.40) it can be seen that the main block-diagonal of Q̌ contains a convex com-
bination of Hermitian Toeplitz matrices of the form

Q̌p,p = HToep(w(p)) =
K∑
k=1

σ̌k|ϕk,p|2a(0)
k a

(0)H
k , (5.41)

resulting in Hermitian Toeplitz submatrices Q̌p,p, for p = 1, . . . , P , where HToep(w(p))
is defined in (4.22). Note that the elements of vector ϕk can have different magnitude,
i.e., |ϕk,p| = |α(p)| can be different from |ϕk,q| = |α(q)| for p 6= q, corresponding to
perturbations among the different subarrays. In consequence, two submatrices Q̌p,p =
HToep(w(p)) and Q̌q,q = HToep(w(q)) on the main block-diagonal, for p 6= q, must not
be identical. The off-diagonal blocks off Q̌ contain a linear combination of Hermitian
Toeplitz matrices of the form

Q̌p,q = Toep(w(p,q)) =
K∑
k=1

σ̌kϕk,pϕ
∗
k,qa

(0)
k a

(0)H
k , (5.42)
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resulting in Toeplitz submatrices Q̌p,q, for p, q = 1, . . . , P with p 6= q, defined as

Toep(w) =


w0 w1 w2 · · · wM0−1

w−1 w0 w1 · · · wM0−2

w−2 w−1 w0 · · · wM0−3
...

. . .
...

w−M0+1 w0

 , (5.43)

for a 2M0 − 1 element vector w = [w−M0+1, w−M0+2, . . . , wM0−2, wM0−1]T.

The Toeplitz-block structure of matrix Q̌ can be exploited in a gridless implementation
of the COBRAS formulation (5.33) according to

min
{w(p),w(p,q)}

Tr((Q+ λIM)−1R̂) +
1

M0

Tr(Q) (5.44a)

s.t. Qp,p = HToep(w(p)) � 0, for p = 1, . . . , P (5.44b)

Qp,q = Toep(w(p,q)), for p, q = 1, . . . , P, p 6= q (5.44c)

Q � 0, (5.44d)

where additionally the identity Tr(S) = 1/M0 Tr(BSBH) = 1/M0 Tr(Q) is used. Care-
ful observation shows that the matrixQ is described by P (2M−P ) real-valued parame-
ters, i.e., the variables describing the distinct Toeplitz submatrices. For implementation
with standard convex solvers, the problem in (5.44) can be reformulated as an SDP, as
discussed for Corollaries 5.2 and 5.3.

The case of a PCA of M sensors composed of P thinned linear subarrays can be
addressed by application of a proper selection matrix J̈ of size PM0×M , selecting the
active sensors from a virtual PCA of P identical subarrays of M0 sensors, as discussed
in Section 2.2.4. To this end the problem in (5.44) is modified according to

min
{w(p),w(p,q)}

Tr((J̈
T
QJ̈ + λIM)−1R̂) +

1

M0

Tr(Q) (5.45a)

s.t. Qp,p = HToep(w(p)) � 0, for p = 1, . . . , P (5.45b)

Qp,q = Toep(w(p,q)), for p, q = 1, . . . , P, p 6= q (5.45c)

Q � 0, (5.45d)

where Q is the PM0 × PM0 Toeplitz-block matrix corresponding to the virtual PCA
of uniform linear subarrays.

Given a minimizer Q̂ to the gridless COBRAS formulation (5.44), the estimated number
of signals is given by

L̂ = rank(Q̂), (5.46)

and depends on the choice of the regularization parameter λ. The L̂ spatial fre-
quencies {µl}L̂l=1 can be recovered from the minimizer Q̂, e.g., by the matrix pencil
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method [HS90, HW91] or the subspace-based methods root-RARE [PGW02] and ES-
PRIT [RK89]. It should be noted that a frequency estimate µ̂l can have multiplicity
greater than one, e.g., if a generalized eigenvalue obtained in the matrix pencil ap-
proach has multiplicity greater than one. For M sensors partitioned into P identical
subarrays, the matrix pencil [HS90,HW91], root-RARE [PGW02] and ESPRIT [RK89]
methods can identify at most

L ≤M − P (5.47)

spatial frequencies, as discussed in Sections 3.3 and 3.4.

For estimation of the displacement shifts in ϕ(νk,α,η) from the matrix Q̂, consider
the parameterization in (5.39) to formulate

Q̂ =
L̂∑
l=1

σ̂lB(µ̂l)ϕ̂lϕ̂
H
l B

H(µ̂l), (5.48)

and assume without loss of generality that [ϕ̂l]1 = 1 and [BH(µ̂l)]1,1 = 1, i.e., the first
sensor of the first array is the overall phase reference. Under these assumptions, the
first column q̂1 of Q̂ = [q̂1, . . . , q̂M ] is modeled as

q̂1 =
L̂∑
l=1

σ̂lB(µ̂l)ϕ̂l (5.49)

= B(µ̂)ϕ̃, (5.50)

where B(µ̂) = [B(µ̂1), . . . ,B(µ̂L̂)]T is of dimensions M × L̂P and the L̂P × 1 vector
ϕ̃ = [σ̂1ϕ̂

T
1 , . . . , σ̂L̂ϕ̂

T
L̂
]T contains the signal magnitudes σ̂l and displacement shifts ϕ̂l

of interest, for l = 1, . . . , L̂. Given the frequency estimates µ̂1, . . . , µ̂L̂, the signal
magnitudes σ̂l and the displacement shifts ϕ̂l, the signal matrix Ẑ can be reconstructed
according to (5.34).

Frequency Estimation from the Dual Problem

Similar to the gridless SPARROW formulation in Section 4.3.1, the gridless COBRAS
can be implemented by its dual problem, which provides a new perspective on the
COBRAS problem. The Lagrange dual problem of the COBRAS formulation (5.37) is
given as

max
Υ 1,Υ 0

− 2 Re
{

Tr(Υ 1)
}
− λTr(Υ 0) (5.51a)

s.t.

[
R̂ Υ 1

Υ H
1 Υ 0

]
� 0 (5.51b)

IP −BH(νk)Υ 0B(νk) � 0, k = 1, . . . , K, (5.51c)
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where Υ 0 is an M × M positive semidefinite matrix and Υ 1 is of size M × M and
does not exhibit specific structure (see Appendix I for more details). Note that the
primal problem in (5.37) as well as the dual problem in (5.51) are both strictly feasible,
such that Slater’s condition holds and strong duality applies [VB96]. Complementary
slackness requires that

Tr
(
Sk(IP −BH(νk)Υ 0B(νk))

)
= 0, (5.52)

for k = 1, . . . , K, i.e., if Sk 6= 0 then IP −BH(νk)Υ 0B(νk) must be singular, such that

det
(
IP −BH(νk)Υ 0B(νk)

){= 0 if Sk 6= 0

≥ 0 if Sk = 0.
(5.53)

Condition (5.53) indicates that instead of solving the primal problem (5.33) and iden-
tifying the block support from S, the dual problem (5.51) can be solved equivalently
to identify the block support from the roots of (5.53).

Consider the limiting case of an infinitesimal spacing in the grid of spatial frequencies,
i.e., νk − νk−1 = 2/K → 0 for k = 2, . . . , K, such that the frequency becomes a
continuous parameter ν. Further consider the case of identical uniform linear subarrays,
as discussed in the previous section and in Section 2.2.3, such that the subarray steering
block matrix B(z) is given by (2.25) according to

B(z) = IP ⊗
[
1 z . . . zM0−1

]T
, (5.54)

where z = e− jπν∆. Based on the definition in (5.54) it can be concluded that the
matrix product BH(z)Υ 0B(z) in constraint (5.51c) constitutes a trigonometric matrix
polynomial of degree 2(M0 − 1), according to

F COBRAS(z) = BH(z)Υ 0B(z) =

M0∑
m=−M0

Cm z
−m, (5.55)

with matrix coefficients Cm of size P × P [Dum07]. For continuous frequency estima-
tion, the K constraints (5.51c) are replaced by the continuous constraint

Iq −BH(z)Υ 0B(z) � 0, (5.56)

which provides an upper bound on the matrix polynomial (5.55) and can be imple-
mented by semidefinite programming, e.g., by the problem formulation (H.10) derived
in Appendix H [Dum07]. Once the continuous implementation of problem (5.51) is
solved, the spatial frequencies can be recovered by finding the roots for which the left-
hand side of (5.56) becomes singular, e.g., by rooting the continuous counterpart of
(5.53) using the techniques discussed in [Pes05], e.g., by the block companion matrix
approach.
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Relation to SPARROW

The dual problem formulation (5.51) can equivalently be derived by means of the
SPARROW formulation presented in Section 4.3. To do so, formulate the SPARROW
problem in (4.51) by means of the PCA sensing matrix A = A(ν,α,η), defined in
correspondence with (2.11), as

min
S∈DK

+

Tr
(
(A(ν,α,η)SAH(ν,α,η) + λ̃I)−1R̂

)
+ Tr(S), (5.57)

where λ̃ > 0 is a regularization parameter and S = diag(s1, . . . , sK) � 0 is of size
K×K. As shown by Corollary 4.4, problem (5.57) can be formulated as the semidefinite
program

min
S,WM

Tr(WMR̂) + Tr(S) (5.58a)

s.t.

[
WM I

I A(ν,α,η)SAH(ν,α,η) + λ̃I

]
� 0 (5.58b)

S ∈ DK+ .

with the corresponding Lagrange dual problem given as

max
Υ̃ 1,Υ̃ 0

− 2 Re{Tr(Υ̃ 1)} − λ̃Tr(Υ̃ 0) (5.59a)

s.t.

[
R̂ Υ̃ 1

Υ̃
H

1 Υ̃ 0

]
� 0 (5.59b)

aH(νk,α,η)Υ̃ 0 a(νk,α,η) ≤ 1, k = 1, . . . , K. (5.59c)

Note that the primal problem (5.58) and the dual problem (5.59) are strictly feasible,
such that Slater’s condition is fulfilled and strong duality applies. As discussed in
Section 4.3.1, complementary slackness requires that

1− aH(νk,α,η)Υ̃ 0 a(νk,α,η)

{
= 0 if sk ≥ 0

≥ 0 if sk = 0,
(5.60)

such that the support of the vector s = [s1, . . . , sK ]T, representing the spatial frequency
estimates, can equivalently be identified by rooting the function in (5.60).

Making use of the parameterization a(νk,α,η) = B(νk)ϕ(νk,α,η), as introduced in
(2.12), condition (5.60) can be rewritten as

1− aH(νk,α,η) Υ̃ 0 a(νk,α,η) = 1−ϕH(νk,α,η)BH(νk) Υ̃ 0B(νk)ϕ(νk,α,η)

= 1− ϕ̃H(νk,α,η)BH(νk)Υ 0B(νk) ϕ̃(νk,α,η)

= ϕ̃H(νk,α,η)
(
Ip −BH(νk)Υ 0B(νk)

)
ϕ̃(νk,α,η)

≥ 0, (5.61)
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where

ϕ̃(νk,α,η) = ϕ(νk,α,η)/‖ϕ(νk,α,η)‖2 (5.62)

Υ 0 = ‖ϕ(νk,η)‖2
2 Υ̃ 0. (5.63)

Condition (5.61) is fulfilled if

Iq −BH(νk)Υ 0B(νk) � 0, (5.64)

which is identical to the constraint (5.51c) in problem (5.51). Replacing the constraint
(5.59c) in problem (5.59) by the condition (5.64), and further using (5.63) and the
substitutions λ = λ̃/‖ϕ(νk,α,η)‖2

2 and Υ 1 = Υ̃ 1, shows that for the PCA case the
dual problem of the SPARROW formulation in (5.59) can be reformulated as the dual
problem of the COBRAS formulation in (5.51). As demonstrated in the previous section
on frequency estimation from the dual COBRAS problem, condition (5.64) can be
extended to an infinitesimal grid spacing, resulting in a matrix polynomial constraint,
such that the resulting gridless estimation problem can be implemented by semidefinite
programming (see Appendix H).

5.4 Coherent Sparse Reconstruction for

Shift-Invariant Arrays

The considerations in Section 5.3.1 have shown that PCAs composed of identical uni-
form linear subarrays exhibit structure that can be exploited in the sparse recon-
struction process. The case of PCAs composed of identical uniform linear subar-
rays falls into the more general class of shift-invariant arrays, introduced in Section
2.2.5. It is well known that PCAs composed of identical and identically oriented sub-
arrays exhibit multiple shift-invariances that can be exploited for parameter estima-
tion [RK89, SORK92, PPG11, PP11, PPG12, SPZ13, SPZ16]. This section investigates
how the shift-invariant structure can be exploited in sparse reconstruction.

For ease of presentation, consider the example from Section 2.2.5, as displayed in Figure
5.1, consisting of a linear array of M = PM0 sensors partitioned into P identical
subarrays of M0 sensors. Note that the subarrays must not be uniform linear, but can
have arbitrary topology, as long as any two subarrays have identical structure. Let the
sensor positions r

(p)
m fulfill the shift-invariance property in (2.27), where the relative

sensor positions ρm within each subarray are perfectly known while the displacements
η(p) between the different subarrays are assumed to be unknown, for m = 1, . . . ,M0

and p = 1, . . . , P .

The measurements obtained at the array output are modeled by

Y = A(µ,α,η)Ψ +N , (5.65)
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Figure 5.1: Illustration of multiple shift-invariances in array topology

as described for (2.10), where Ψ ∈ CL×N denotes the source signal matrix, N ∈ CM×N

represents additive sensor noise and the M × L array steering matrix A(µ,α,η) is
defined according to (2.11). As stated by Theorem 4.2, sparse reconstruction for the
model in (5.65) can be performed by application of the SPARROW problem

min
S∈DK

+

Tr
((
A(ν,α,η)SAH(ν,α,η) + λIM

)−1
R̂
)

+ Tr
(
S
)
, (5.66)

for some frequency grid ν = [ν1, . . . , νK ]T. In this section no additional subarray
perturbations are assumed, i.e., α = 1, such that the array response vectors defined in
(2.12) have constant norm ‖a(νk,α,η)‖2 = M , for k = 1, . . . , K, and it holds that

Tr(S) =
1

M
Tr
(
A(ν,α,η)SAH(ν,α,η)

)
. (5.67)

Using (5.67), the SPARROW problem (5.66) can be further rewritten as

min
S∈DK

+

Tr
(
(Q+ λIM)−1R̂

)
+

1

M
Tr(Q) (5.68a)

s.t. Q = A(ν,α,η)SAH(ν,α,η). (5.68b)

In formulation (5.68) the objective function (5.68a) only depends on the matrix variable
Q, reflecting the specific structure of the sensing matrix A(ν,α,η) in the constraint
(5.68b). An additional low-rank structure in the minimizer Q̂ is encouraged by the
trace-term Tr(Q) in (5.68a), since for Q � 0 it is equivalent to the nuclear norm of
Q [RFP10], i.e., Tr(Q) = ‖Q‖∗.

For further investigation consider the constraint (5.68b) in the context of the shift-
invariance property of the array sensing matrix A(ν,α,η), as discussed in Section
2.2.5. Let J (p) denote the PM0×M0 matrix selecting all the sensors in the pth subarray,
for p = 1, . . . , P , and Jm denote the PM0×P matrix selecting the mth sensor in each
subarray, for m = 1, . . . ,M0, as defined in (2.31). By the shift-invariance of the sensor
positions (2.27), the sensing matrix fulfills

J (p)T A(ν,α,η) = J (1)TA(ν,α,η) Φ̄
η(p)

(ν) (5.69a)

JT
m A(ν,α,η) = JT

1 A(ν,α,η) Φ̄
ρm(ν), (5.69b)
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as derived in (2.33), where the L× L unitary diagonal matrix

Φ̄(ν) = diag(e− jπν1 , . . . , e− jπνK ) (5.70)

contains the phase shifts for the spatial frequencies in ν on its main diagonal, in cor-
respondence with (2.34).

Based on the conditions in (5.69a), the matrix product in (5.68b) fulfills the identity

J (p)TQJ (p) = J (p)TA(ν,α,η)SAH(ν,α,η)J (p)

= J (1)TA(ν,α,η) Φ̄
η(p)

(ν)S Φ̄
η(p)H

(ν)AH(ν,α,η)J (1)

= J (1)TA(ν)SAH(ν)J (1)

= J (1)TQJ (1), (5.71)

for p = 2, . . . , P , where it holds that Φη(p)H(ν)SΦη(p)(ν) = S, due to the assumption
of unit subarray perturbation α = 1. From (5.71) it can be observed that for any
two shift-invariant sensor groups the corresponding submatrices in Q are identical.
The same observation holds true for the other groups of shift-invariances expressed in
(5.69b), i.e.,

JT
mQJm = JT

1QJ1, (5.72)

for m = 2, . . . ,M0. As mentioned in Section 2.2.5, other types of structure, such as
overlapping shift-invariant groups or centro-symmetry, may be available in the array
topology, which yield similar equality constraints on Q as given in (5.71) and (5.72).

Returning to the SPARROW formulation (5.68) and replacing the grid-based constraint
Q = A(ν,α,η)SAH(ν,α,η) in (5.68b) by the structural constraints in (5.71) and
(5.72), the gridless SPARROW problem can be formulated as

min
Q�0

Tr
(
(Q+ λIM)−1R̂

)
+

1

M
Tr(Q) (5.73a)

s.t. J (1)TQJ (1) = J (p)TQJ (p), p = 2, . . . , P (5.73b)

JT
1QJ1 = JT

mQJm, m = 2, . . . ,M0. (5.73c)

The program in (5.73) does not require knowledge of the overall array response in form
of the sensing matrix A(ν,α,η). In fact it does not even require knowledge of any
shifts η(p), for p = 2, . . . , P , and ρm, for m = 2, . . . ,M0. The only information which
is exploited is the composition of the shift-invariant sensor groups. The approach in
(5.73) was presented in [SSSP17a] and is referred to as Shift-Invariant (SI-) SPARROW.
Note that the SI-SPARROW is applicable to PCAs composed of linear subarrays with
arbitrary topology, such that it generalizes the GL-COBRAS approach in (5.44), which
is applicable to PCAs composed of identical uniform linear subarrays. More precisely,
the SI-SPARROW exploits additional structure in the assumption of unit subarray
perturbations α = 1. However, in the case of arbitrary subarray perturbations in α,
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the SI-SPARROW (5.73) can still be applied by removing constraint (5.73b) from the
program.

Similar to the GL-COBRAS problem (5.44), the SI-SPARROW problem in (5.73) can
be solved by special convex solvers by reformulating it as an SDP, as discussed for
Corollaries 5.2 and 5.3. The case of thinned shift-invariant arrays can be treated by
application of a proper selection matrix J̈ , similar to (5.45).

Given a minimizer Q̂ to problem (5.73) the underlying spatial frequencies can be re-
covered using different approaches, depending on the amount of shift-invariances and
the exact knowledge that is available on the shifts η(p) and ρm, for m = 2, . . . ,M0

and p = 2, . . . , P . Assuming only a single shift structure, e.g. ρ2 in the case of a
PCA composed of 2-element subarrays, the ESPRIT method [RK89] or the matrix
pencil method [HS90, HW91] can be applied to the matrix Q̂ to estimate the spatial
frequencies µ̂ in a search-free fashion. If knowledge of multiple shifts η(p) and ρm, for
m = 2, . . . ,M0 and p = 2, . . . , P , are available, more sophisticated methods such as
MI-ESPRIT [SORK92] can be applied to Q̂ to obtain improved frequency estimates µ̂.

As discussed above, for a PCA of M = PM0 sensors partitioned into P identical
uniform linear subarrays of M0 sensors with unknown subarray perturbation α the
SI-SPARROW coincides with the GL-COBRAS approach discussed in Section 5.3.1.
Consequently, at most L ≤ M − P frequencies can be uniquely recovered from the
estimated matrix Q̂. If multiple shift-invariances are available, as discussed for Figure
3.3, there are additional constraints for the SI-SPARROW formulation (5.73), resulting
in less degrees of freedom in the optimization problem. As discussed in Section 3.4, the
number of identifiable frequencies Lmax in the multiple-invariance case is much more
difficult to obtain than in the case of a single shift-invariance.

5.5 Numerical Results

For experimental evaluation of the proposed COBRAS and SI-SPARROW methods,
the estimation performance is compared to the state of the art methods for SSR under
incoherent processing discussed in Section 5.1, as well as to the state of the art methods
for coherent processing discussed in Section 3.3, namely spectral RARE [SG04] and
root-RARE [PGW02].

All simulations consider circular complex Gaussian source signals ψ(t) with covari-
ance matrix E{ψ(t)ψH(t)} = I, if not specified otherwise. Furthermore, spatio-
temporal white circular complex Gaussian sensor noise n(t) with covariance matrix
E(n(t)nH(t)) = σ2

NI is assumed and the signal-to-noise ratio (SNR) is defined as

SNR = 1/σ2
N. The vector r(p) = [r

(p)
1 , . . . , r

(p)
Mp

]T is defined to contain the global

sensor positions r
(p)
m of subarray p, for m = 1, . . . ,Mp, p = 1, . . . , P , expressed in half-

wavelength, as defined in (2.8). If not stated otherwise, T = 1000 Monte Carlo trials
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Figure 5.2: Average number of estimated source signals L̂ with GL-COBRAS for
regularization parameter selection approaches a) (5.28) and b) (5.27), over varying
number of snapshots N and subarrays P

are performed for each experimental setup to approximately compute the statistical
error.

Note that the RARE and COBRAS/SI-SPARROW methods make different assump-
tions on the availability of a-priori knowledge. While the RARE method requires
knowledge of the number of source signals, the regularization parameter selection for
the COBRAS method according to (5.27) and (5.28) requires knowledge of the noise
power. However, since estimation of these parameters itself might affect the frequency
estimation performance of the RARE and COBRAS / SI-SPARROW methods, the
standard assumption of perfectly known number of source signals and noise power is
applied and the achievable performance under these idealized assumptions is investi-
gated.

5.5.1 Regularization Parameter Selection

Similar to Section 4.4, the experiments start with a short investigation of the regulariza-
tion parameter selection to evaluate the reconstruction performance for regularization
parameter selection approaches (5.27) and (5.28), as discussed in Section 5.2.1. As
before, two equal power source signals are assumed, with source covariance matrix
E{ψ(t)ψH(t)} = I and spatial frequencies µ1 = 0.5 and µ2 = 0.4, and the signal-to
noise ratio is fixed as SNR = 0 dB. In the experimental setup the number of snapshots
N and number of subarrays P are varied, where it is assumed that each subarray con-
sists of M0 = 3 sensors and that the overall array has a uniform linear structure. Figure
5.2 shows the average number of estimated source signals L̂ over 100 realizations per
scenario, where in each realization the source signals and additive noise are generated
from a circularly symmetric complex Gaussian random process.
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Figure 5.2 illustrates that in the majority of cases, for sufficiently large number of snap-
shots N and subarrays P , both approaches correctly estimate the number of source
signals. As seen from Figure 5.2 a), approach (5.28) tends to overestimate the number
of estimated signals L̂ for low number of snapshots N and large number of subarrays
P , indicating that the regularization parameter λ is selected too low. For a low number
of sensors the two closely spaced signals can not always be resolved, leading to under-
estimation of the number of source signals. As observed from Figure 5.2 b), approach
(5.27) tends to underestimate the number of sources for low number of snapshots N ,
indicating that the regularization parameter λ is selected too large. In the case of a sin-
gle snapshot, this regularization parameter selection approach estimates a zero signal,
i.e., no source signal at all. Similar to the other selection approach, for low number of
sensors, the two closely spaced sources cannot be resolved. Since the following numer-
ical experiments focus on difficult scenarios of low number of sensors and snapshots,
approach (5.28) will be used for the following simulations.

5.5.2 Resolution Performance and Estimation Bias

For comparison of the resolution performance of the various methods, consider a uni-
form linear array of M = 9 sensors, partitioned into P = 3 identical, uniform linear sub-
arrays of M0 = 3 sensors each, without additional gain/phase offsets, i.e., α = [1, 1, 1]T

in (2.10). For the experiment, L = 2 uncorrelated signals are considered where the
spatial frequency of the first signal is fixed as µ1 = 0.505 while the spatial frequency
of the second signal is varied according to µ2 = µ1 − ∆µ with 10−2 ≤ ∆µ ≤ 1. For
all grid-based estimation methods a uniform grid of K = 200 points according to
ν = [−1,−0.99,−0.98, . . . , 0.99]T is applied. The SNR and number of snapshots are
fixed as SNR = 0 dB and N = 20.

Figure 5.3 shows the RMSE of the frequency estimates as computed according to
(4.103). The class of incoherent estimation methods is represented by the root-MUSIC
(MUSIC SA1) and GL-SPARROW (GL-SPARROW SA1) methods applied on the mea-
surements of subarray 1, as well as root-MUSIC (MUSIC IP) and GL-SPARROW
(GL-SPARROW IP) methods applied on the incoherent processing problem in (5.11).
First, it can be observed from Figure 5.3 that the incoherent methods clearly show
the worst resolution performance, where the incoherent processing of the entire array
measurements (IP) still shows a small improvement over the separate processing of
the measurements of subarray 1 only (SA1). Only for large frequency separation of
∆µ ≥ 0.6, incoherent processing approximately achieves the performance of coherent
processing. Regarding the coherent methods, it can be observed that spectral RARE
performs significantly worse than root-RARE in terms of thresholding performance,
i.e., spectral RARE cannot always resolve the two signals for a frequency separation
of ∆µ / 0.4, while the root-RARE method can resolve the signals for ∆µ ' 0.12.
The reason for this difference in resolution performance is that the root-RARE method
searches the roots of the corresponding matrix polynomial in the entire complex plane,
while spectral RARE only searches minima on the unit circle, as discussed in Section
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Figure 5.3: Frequency estimation performance for uniform linear PCA of M = 9
sensors in P = 3 linear subarrays, for N = 20 snapshots and SNR = 0 dB
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Figure 5.5: Frequency estimation bias for uniform linear PCA of M = 9 sensors in
P = 3 linear subarrays, for N = 50 snapshots and SNR = 20 dB

3.3 (see also [Bar83, PGH00]). In contrast to that, the grid-based and the gridless
COBRAS methods (5.33) and (5.44) both show rather similar estimation performance,
comparable to that of the root-RARE method, and reach the CRB for sufficiently large
frequency separation. This observation can be explained by the fact that both dual
COBRAS optimization problems provide matrix polynomials with the roots of interest
constrained on the unit circle, as discussed in Section 5.3.1. This explains the similar
performance results of the grid-based and gridless COBRAS methods. The only differ-
ence between the grid-based and gridless COBRAS methods is, that in the first case,
the roots are generated on a grid of candidate frequencies on the unit circle, while in
the latter case the roots are continuously located on the unit circle. The SI-SPARROW
method (5.73) shows estimation performance similar to that of the COBRAS methods,
i.e., the additional information of unit subarray perturbations α = 1, exploited by
SI-SPARROW, does not provide improved estimation performance for the problem at
hand.

In a slightly modified experiment the SNR and the number of snapshots are fixed
to SNR = 20 dB and N = 50, respectively. As seen from Figure 5.4 the incoherent
methods again show worst estimation performance. While the root-MUSIC methods
for incoherent processing (IP) and for subarray 1 (SA1) achieve the corresponding CRB,
the GL-SPARROW methods deviate from the CRB for 0.05 ≤ ∆µ ≤ 0.6, which can
be explained by the estimation bias as investigated for FCAs in Section 4.4.2. Only for
a frequency separation of ∆µ ≥ 0.6 do the incoherent methods obtain the estimation
performance of the coherent methods. In the class of coherent methods it can be seen
that the root-RARE method performs close to the CRB for the region of interest,
while spectral RARE cannot always resolve the signals for ∆µ / 0.06 and reaches
an estimation bias for large source separation, which is caused by the finite frequency
grid. Furthermore, it can be observed that the estimation performance of the COBRAS
methods deviates from that of the root-RARE method. For large frequency separation
∆µ ' 0.2 the grid-based COBRAS method reaches the grid bias, similar to spectral



5.5 Numerical Results 95

RARE. However, also for low frequency separation ∆µ / 0.2 both methods do not
reach the CRB. Similar to the GL-SPARROW method under incoherent processing, this
behavior can be explained by an inherent frequency estimation bias for SSR methods.

For further investigation of this characteristic, the spatial frequency estimation bias
is computed according to (4.104) and the results are displayed in Figure 5.5. Clearly,
the incoherent processing methods GL-SPARROW SA1 and GL-SPARROW IP have
the largest estimation bias, which can be explained by the small effective aperture of
the utilized array. Both COBRAS methods show a relatively large estimation bias of
Bias(µ̂) ≈ 0.01 in the case of low frequency separation ∆µ / 0.2. For larger frequency
separation ∆µ ' 0.2, the bias of the grid-based COBRAS method is mainly determined
by the finite grid, while the bias of the gridless COBRAS method shows to be periodic
in ∆µ. The estimation bias of SI-SPARROW is approximately similar to that of GL-
COBRAS. In difficult scenarios, with low SNR and low number of snapshots as in the
previous setup, the estimation bias is below the CRB, such that it is negligible in the
RMSE performance. The frequency estimation bias is a well known phenomenon in
SSR research [MÇW05, SPP18] and bias mitigation techniques have been discussed,
e.g., in [NBA13].

5.5.3 Arbitrary Array Topologies and Grid-Based Estimation

Consider a PCA with a large aperture, composed of M = 11 sensors which are
partitioned in P = 4 linear subarrays with 3,2,3, and 3 sensors, respectively. The
sensor positions for each subarray are r(1) = [0.0, 0.6, 2.3]T, r(2) = [12.2, 13.0]T,
r(3) = [21.5, 22.8, 23.6]T, and r(4) = [37.6, 38.5, 41.1]T, in half signal wavelength, and
assume no additional gain/phase offsets among the subarrays, i.e., α = [1, 1, 1, 1]T in
(2.10). Furthermore, consider L = 3 uncorrelated Gaussian source signals with spatial
frequencies µ = [0.5011, 0.4672,−0.2007]T.

The array topology does not admit a direct implementation of the gridless COBRAS
and the root-RARE methods, such that the experiments in this subsection are lim-
ited to the investigation of the grid-based COBRAS method and the spectral RARE
method. For both grid-based methods a gird of K = 400 grid points according to
ν = [−1.000,−0.995,−0.990, . . . , 0.995]T is used.

In the first experiment the signal-to-noise ratio is fixed as SNR = 6 dB, while the
number of snapshots N is varied. Figure 5.6 clearly demonstrates that the proposed
grid-based COBRAS technique outperforms spectral RARE for low number of signal
snapshots N . While the spectral RARE method is not able to always resolve the two
closely spaced signals with spatial frequencies µ1 = 0.5011 and µ2 = 0.4672 for N ≤ 500
signal snapshots, the proposed COBRAS method resolves the signals for any N ≥ 30
snapshots.
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Figure 5.6: Frequency estimation performance for a PCA of M = 11 sensors in P = 4
subarrays, with SNR = 6 dB and varying number of snapshots N
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Figure 5.7: Frequency estimation performance for a PCA of M = 11 sensors in P = 4
subarrays, with N = 20 snapshots and varying SNR
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In a second experiment the number of snapshots is fixed as N = 20 and the SNR is
varied. As can be observed from Figure 5.7 the grid-based COBRAS method shows su-
perior thresholding performance as compared to spectral RARE. While spectral RARE
can reliably resolve the two closely spaced sources only for SNR ≥ 22 dB, the proposed
COBRAS can do so for SNR ≥ 8 dB with an RMSE of less than 10−2. For high SNR,
spectral RARE reaches a bias in the RMSE which is caused mainly by the finite grid. A
similar bias effect can be observed for the grid-based COBRAS method. However, for
the grid-based COBRAS method the bias is larger than for the spectral RARE method
and it is not only caused by the finite grid, as investigated in the previous section.

5.5.4 Correlated Signals

As discussed in the Section 5.5.2, gridless COBRAS and root-RARE show approxi-
mately equal resolution performance in difficult scenarios with low SNR, low number
of snapshots and uncorrelated signals. This situation changes in the case of correlated
signals, where preprocessing in form of subspace separation, as required for the RARE
method, becomes difficult. For further investigation of this aspect, consider a PCA of
M = 9 sensors partitioned into P = 3 subarrays of 3,4 and 2 sensors with positions
r(1) = [0, 1, 3]T, r(2) = [17.4, 18.4, 19.4, 21.4]T and r(3) = [24.8, 25.8]T, in half signal
wavelength. Furthermore, consider gain/phase offsets among the subarrays according
to α = [1, 0.7 · e j 2

3
π, 1.2 · e j 1

4
π]T in (2.10). The SNR and number of snapshots are

selected as SNR = 0 dB and N = 30. A number of L = 2 source signals with spatial
frequencies µ = [0.505, 0.105]T is assumed with a source covariance matrix given as

E{ψ(t)ψH(t)} =

[
1 ρ
ρ∗ 1

]
, (5.74)

where the correlation coefficient ρ is assumed to be real-valued and varied in the ex-
periment. A grid of K = 200 candidate frequencies is employed for the grid-based
estimation methods, defined as in the previous subsection. As seen from Figure 5.8,
the spectral and root-RARE methods fail to properly estimate the spatial frequencies
for high correlation (ρ > 0.6) while the grid-based and gridless COBRAS methods still
show estimation performance close to the CRB, since these methods do not require
subspace separation.

5.5.5 Array Calibration Performance

Besides estimation of the spatial frequencies, the COBRAS method also admits esti-
mation of the subarray shifts in ϕ as defined in (2.15). Since the RARE methods do
not provide direct estimation of the subarray shifts, the method presented in equation
(11) of [PPG11]1 is employed on the basis of the spatial frequency estimates obtained
by the RARE methods.

1Without the restriction that the complex phase terms must be of unit magnitude.
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Figure 5.9: Frequency estimation performance for PCA of M = 10 sensors in P = 4
subarrays, for N = 20 snapshots and L = 2 uncorrelated source signals
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Figure 5.10: Array calibration performance for PCA of M = 10 sensors in P = 4
subarrays, for N = 20 snapshots and L = 2 uncorrelated source signals

The setup under investigation consists of a PCA of M = 10 sensors partitioned into
P = 4 subarrays of 3,2,3 and 2 sensors at positions r(1) = [0, 2, 3]T, r(2) = [10.1, 11.1]T,
r(3) = [27.4, 28.4, 30.4]T and r(4) = [54.8, 56.8]T, in half signal wavelength. The
subarray gain/phase offsets are set as α = [1, 1.3 · e j 2

3
π, 0.7 · e− j 1

4
π, 0.9 · e− j 3

5
π]T in

(2.10). Furthermore, consider L = 3 uncorrelated source signals with spatial frequencies
µ = [0.605, 0.255, −0.305]T and set the number of snapshots to N = 20.

Figure 5.9 displays the frequency estimation error of the different methods for varying
SNR, where both COBRAS methods show the best thresholding performance but reach
an estimation bias for SNR ≥ 15 dB. Similarly, the spectral RARE method reaches
an estimation bias which is caused by the finite grid. On the other hand, root-RARE
performs asymptotically optimal and reaches the CRB for high SNR. The corresponding
subarray shift estimation performance is displayed in Figure 5.10, where the root-mean-
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square error is computed according to

RMSE(ϕ̂) =

√√√√ 1

LT (P − 1)

T∑
t=1

L∑
l=1

∥∥ϕl − ϕ̂l(t)∥∥2

2
, (5.75)

with ϕ̂l(t) being the displacement phase vector estimate for signal l in Monte Carlo
trial t. As can be observed from Figure 5.10, the subarray shift estimation method
in [PP11], based on the frequency estimates obtained from the RARE methods, achieves
a relatively large estimation bias for high SNR. In contrast to that, the grid-based
and gridless COBRAS methods show a significantly reduced estimation error, which
demonstrates the advantage of joint frequency and displacement phase estimation.

5.5.6 Computation Time of SDP Formulations

To investigate the computation time of the COBRAS formulation, simulations are
preformed in MATLAB using the SeDuMi solver [Stu99] with the CVX interface [GB08,
GB14] on a machine with an Intel Core i5-760 CPU @ 2.80 GHz×4 and 8 GByte RAM.
The scenario consists of two independent complex Gaussian sources with static spatial
frequencies µ1 = 0.505 and µ2 = −0.205 and a uniform linear PCA of M = 9 sensors
partitioned into P = 3 identical and uniform linear subarrays of 3 sensors. Additional
subarray gain/phase offsets are neglected, i.e., α = [1, 1, 1]T in (2.10).

For the first experiment the SNR is fixed at 0 dB while the number of snapshots N is
varied. Figure 5.11 shows the average computation time for T = 100 Monte Carlo runs
of the SDP implementation of the `∗,1 mixed-norm minimization (5.31) and the grid-
based COBRAS formulations (5.36) and (5.37) with a grid size of K = 100, as well as
the gridless (GL-) COBRAS formulation in (5.44). The computation time is measured
only for solving the corresponding optimization problem in CVX. Pre-processing steps,
such as computation of the sample covariance matrix, or post-processing steps, such as
peak-search or polynomial rooting, are not included into this consideration. As can be
observed from Figure 5.11, for a number of N < 5 snapshots all grid-based methods
exhibit approximately equal computation time. For 5 ≤ N < 40 the `∗,1 mixed-norm
minimization problem has largest computation time while the COBRAS formulation
(5.36) requires longest computation time for N > 40, due to the large dimension of
the semidefinite constraint (5.36b). Regarding the computation time of the grid-based
COBRAS formulation using the sample covariance matrix (5.37) it can be observed
that it is relatively constant for any number of snapshots N and lower than for the
other implementations especially for large number of snapshots N > 10. The lowest
computation time is required for solving the GL-COBRAS implementation (5.44).

Figure 5.12 shows the average computation time for T = 100 Monte Carlo runs for a
varying number of grid points K and a fixed number of N = 9 signal snapshots, corre-
sponding to the case where the dimensionality reduction techniques are applied (com-
pare [MÇW05, SSPH16]). For all grid-based methods the number of SDP constraints
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Figure 5.11: Average computation time of different SDP implementations for uniform
linear PCA of M = 9 sensors in P = 3 subarrays, with K = 100 grid points and varying
number of snapshots N
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Figure 5.12: Average computation time of different SDP implementations for uniform
linear PCA of M = 9 sensors in P = 3 subarrays, with N = 9 signal snapshots and
varying grid size K

grows nearly linear with the number of grid points K. Clearly, the `∗,1 mixed-norm
minimization approach has the largest computation time for any investigated number
of grid points K. The grid-based COBRAS formulations (5.36) and (5.37) show ap-
proximately equal computation time, as both formulations have SDP constraints of
identical dimensions. Since the GL-COBRAS formulation is independent of the grid
size K, it is constant for all grid size numbers K in Figure 5.12 and provides the fastest
computation of all methods under investigation.
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5.6 Chapter Summary

The chapter has discussed sparse reconstruction for partly calibrated arrays with in-
coherent and coherent processing. A major contribution of this chapter is given by a
novel method for sparse reconstruction in partly calibrated arrays with coherent pro-
cessing. The proposed method relies on convex minimization of a mixed nuclear and
`1 norm, termed as `∗,1 mixed-norm minimization. Another major contribution con-
cerns a compact, equivalent formulation of the `∗,1 mixed-norm minimization problem,
referred to as COmpact Block- and RAnk-Sparse recovery (COBRAS). The COBRAS
formulation is computationally attractive, especially in the case of a large number of
signal snapshots. For the special case of identical uniform linear subarrays or thinned
linear subarrays, an extension to gridless estimation, referred to as gridless COBRAS
(GL-COBRAS), was derived. The GL-COBRAS approach was further generalized for
gridless estimation with identical subarrays of arbitrary topology, by means of the
shift-invariant (SI-) SPARROW formulation.

As shown by numerical results, the proposed coherent sparse reconstruction approach
clearly outperforms the existing incoherent methods. Regarding the comparison of
sparse reconstruction and subspace-based methods, the grid-based COBRAS method
significantly outperforms the spectral RARE method in terms of thresholding perfor-
mance for closely spaced source signals. Furthermore, the COBRAS method outper-
forms the root-RARE method in the case of strongly correlated source signals and in
the array calibration (subarray shift estimation) performance. A drawback of the `∗,1
mixed-norm minimization approach and the COBRAS formulation is given by an inher-
ent estimation bias, which becomes significant in the asymptotic case of large number
of snapshots or high signal-to-noise ratio. However, if higher estimation accuracy is
required, the COBRAS estimates can be used to provide initial estimates, e.g., for a
subsequent maximum likelihood estimator.
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Chapter 6

Low-Complexity Algorithms for Sparse
Reconstruction

The semidefinite programming (SDP) formulations for `∗,1 minimization in Section
5.2.1 and the SPARROW and COBRAS formulations in Sections 4.3 and 5.3, admit
simple implementation by means of standard conic solvers such as SeDuMi [Stu99] and
MOSEK [MOS15]. These solvers usually employ interior point methods for solving the
corresponding SDPs, which converge to high precision in few iterations, but might suffer
from high computational cost and memory requirements in the case of large dimensions
of the SDP constraints [NN94, Ber99, Wri97, BTN01, BV04]. To better deal with the
high computational demand required for solving SDPs of large dimensions, it was sug-
gested in [BTR13] to apply the alternating direction method of multipliers (ADMM)
for solving the SDP formulation of atomic norm minimization, which reduces memory
requirements but suffers from poor convergence speed and requires eigendecomposition
of matrices of possibly large dimensions in each iteration.

This chapter provides low-complexity algorithms for the sparse recovery formulations
discussed in Sections 4 and 5, where the considerations are restricted to the grid-based
methods. The chapter starts with a short review of the well known block coordinate
descent (BCD) method for `2,1 minimization [QSG13, Wri15]. The BCD relies on se-
quential optimization and has low computational cost and memory requirements, but
might suffer from poor convergence speed, due to a possibly large number of iterations
that cannot be easily parallelized. The recently proposed Soft Thresholding with Exact
Line search Algorithm (STELA) [YP17] is an approach for parallel computation of `1

minimization problem, and is a first-order method similar to BCD. An extension of
the STELA method for application with `2,1 minimization is derived in this chapter.
With regard to the SPARROW formulation, a novel implementation by means of the
sequential coordinate descent (CD) method is presented, which shows superior conver-
gence characteristics as compared to the BCD method for the original `2,1 minimization
problem [SPP18]. A parallel implementation for SPARROW is left for future research.

As discussed in Chapter 5, the `∗,1 minimization problem shares many characteristics
with the `2,1 minimization problem, such that many of the concepts of `2,1 minimization
can be transferred to `∗,1 minimization. In this context, the sequential BCD method and
the parallel STELA method for `2,1 minimization, are extended for application with `∗,1
minimization, which admit simple implementation and have low memory requirements.
Similarly, a novel CD implementation for the COBRAS formulation is presented, which
obtains improved convergence rate as compared to the BCD implementation for `∗,1
minimization, but has slightly higher computational cost. A reduction of the compu-
tational cost for the CD implementation and a parallel implementation for COBRAS
are left for future research.
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The chapter concludes with a short numerical analysis of the convergence speed of
the different proposed methods, highlighting benefits and drawbacks of the specific
algorithms.

6.1 Algorithms for Sparse Reconstruction in FCAs

6.1.1 Coordinate Descent Method for `2,1 Minimization

A prominent approach in sparse reconstruction is based on the coordinate descent (CD)
method [Ber99,FHHT07], which, for application in joint sparse reconstruction, has been
modified to the so-called block coordinate descent (BCD) method [QSG13,Wri15]. In
the BCD method, coordinate-wise unconstrained minimization according to

x
(τ)
k =arg min

xk∈CN
f
(
x

(τ)
1 , . . . ,x

(τ)
k−1,xk,x

(τ−1)
k+1 , . . . ,x

(τ−1)
K

)
(6.1)

is performed in an iterative manner, where k and τ determine the coordinate and
iteration index, respectively. The BCD method is particularly suitable in the case that
the subproblems have analytic solutions and the desired minimizer is sparse, since zero-
valued coordinates can be excluded from the iterative computation [FHHT07]. As will
be discussed later, both these properties are fulfilled for `2,1 minimization.

For ease of presentation, in this chapter it is assumed, without loss of generality, that
the columns ak in the sensing matrix A = [a1, . . . ,aK ] ∈ CM×K are normalized, i.e.,
‖ak‖2 = 1, for k = 1, . . . , K.

Let the approximate solution of the signal matrix in iteration τ and coordinate k be
given as

X
(τ)
k = [x

(τ)
1 , . . . ,x

(τ)
k−1,x

(τ)
k ,x

(τ−1)
k+1 , . . . ,x

(τ−1)
K ]T ∈ CK×N . (6.2)

Using (6.2), the `2,1 minimization problem given in (4.38) is reformulated, in terms of
minimization with respect to the kth row xk, as

x
(τ)
k = arg min

xk

1

2
‖Y −AX(τ)

k ‖
2
F + λ

√
N‖X(τ)

k ‖2,1 (6.3)

= arg min
xk

1

2
‖Y (τ)

−k − akx
T
k ‖2

F + λ
√
N‖xk‖2, (6.4)

where the residual measurement matrix Y
(τ)
−k ∈ CM×N for coordinate k in iteration τ

is given as

Y
(τ)
−k = Y −A−kX(τ)

−k, (6.5)

with

A−k = [a1, . . . ,ak−1,ak+1, . . . ,aK ] ∈ CM×K−1 (6.6)
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denoting the reduced sensing matrix with column ak excluded from the representation,
and

X
(τ)
−k = [x

(τ)
1 , . . . ,x

(τ)
k−1,x

(τ−1)
k+1 , . . . ,x

(τ−1)
K ]T ∈ CK−1×N (6.7)

denoting the approximate solution of the signal matrix in iteration τ , with coordinate
xk excluded from the representation. Note that Y

(τ)
−k in (6.5) can also be computed

iteratively according to

Y
(τ)
−k = Y

(τ)
−(k−1) − ak−1x

(τ)T
k−1 + akx

(τ−1)T
k , (6.8)

which reduces the computational overhead.

Consider the subdifferential [Ber99] of the objective function in (6.4) with respect to
xk, given as

∂xk

(
1

2

∥∥Y (τ)
−k − akx

T
k

∥∥2

F
+ λ
√
N
∥∥xk∥∥2

)
= −aH

k

(
Y

(τ)
−k − akx

T
k

)
+ λ
√
NhT

k . (6.9)

In (6.9), hk is a subgradient of the penalty term ‖xk‖2. As discussed in [Ber99], a
subgradient hk is an element of the subdifferential of the `2-norm, defined as

hk ∈ ∂ ‖xk‖2 =

{
xk/ ‖xk‖2 if xk 6= 0

{h̃k
∣∣‖h̃k‖2 ≤ 1} if xk = 0.

(6.10)

For optimality, the subdifferential in (6.9) must contain the 0 vector. Consequently,
assuming a non-zero minimizer xk 6= 0, application of (6.10) in (6.9) results in the
optimality condition (

1 + λ
√
N/‖xk‖2

)
xT
k = aH

kY
(τ)
−k. (6.11)

Computing the `2 norm of (6.11) and solving for ‖xk‖2 yields

‖xk‖2 =
∥∥aH

kY
(τ)
−k
∥∥

2
− λ
√
N, (6.12)

which is feasible for ‖aH
kY

(τ)
−k‖2 ≥ λ

√
N and provides an optimality condition on the `2

norm of xk. From (6.11) it can further be concluded that for xk 6= 0, the direction of

xk only depends on the direction of aH
kY

(τ)
−k. Define the soft-thresholding operator as

Sε(w) = max
(
‖w‖2 − ε, 0

)
· sign(w), (6.13)

where

sign(w) =

{
w/‖w‖2 for w 6= 0

0 for w = 0.
(6.14)

Using (6.13) and based on above considerations on the optimal `2 norm and direction
of xk, the minimizer for (6.4) is computed as

x
(τ)
k = Sλ√N

(
aH
kY

(τ)
−k

)
. (6.15)
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Algorithm 1 `2,1-CD

1: Initialize approximate solution X
(1)
1 ← 0

2: Initialize residual matrix Y
(1)
−1 ← Y

3: Initialize iteration index τ ← 1
4: repeat
5: for k ← 1, . . . , K do
6: Compute residual matrix Y

(τ)
−k by Eq. (6.8)

7: Update approximate solution x
(τ)
k by Eq. (6.15)

8: end for
9: Update iteration index τ ← τ + 1

10: until convergence

Note that the minimizer in (6.15) is unique, since the objective function in (6.4) is
strictly convex in xk, for k = 1, . . . , K. The expression in (6.15) is computed sequen-
tially over the coordinates k = 1, . . . , K and iteration index τ = 1, . . . , τmax, until some
convergence criterion is fulfilled. Each coordinate update of the BCD method requires
2MN complex-valued additions and multiplications for updating the residual matrix
in (6.8) and (M + 2)N complex-valued additions and multiplications for computing
the soft-thresholding operator in (6.15), resulting in a total of (3M + 2)N complex-
valued additions and multiplications per coordinate. For sake of numerical stability,
i.e., to prevent error propagation, it is advisable to fully compute the residual matrix
according to (6.5) after a fixed number of iterations, instead of only performing the
low-complexity updates according to (6.8), slightly increasing the required number of

operations. The computation time can further be reduced if zero coordinates x
(τ)
k = 0

are excluded from future updates. The BCD method is summarized in Algorithm 1,
and is contained in the class of non-differentiable minimization with certain separa-
bility and regulatory constraints, for which convergence of the BCD iterates has been
established in [Tse01].

6.1.2 STELA Method for `2,1 Minimization

The Soft-Thresholding with Exact Line search Algorithm (STELA) is a special re-
alization of the iterative convex approximation framework proposed in [YP17]. The
framework considers optimization problems of the form

min
X

f(X) + g(X) s.t. X ∈ C, (6.16)

where C is a closed convex set and f(X) : CK×N → R is a proper and differentiable
function with a continuous gradient. The function g(X) is assumed to be convex
and may be nondifferentiable. Let f̃(X;X(τ)) be an approximate function of f(X)
around the point X(τ) in iteration τ of the iterative method. The approximate function
f̃(X;X(τ)) is assumed to be
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• pseudo-convex in X for any X(τ) ∈ C,

• continuously differentiable in X for any given X(τ) ∈ C, and

• the gradient of f̃(X;X(τ)) and the gradient of f(X) are identical at X = X(τ)

for any X(τ) ∈ C,

as discussed in [YP17]. The approximate problem of the original problem in (6.16) is
formulated as

min
X

f̃(X;X(τ)) + g(X) s.t. X ∈ C (6.17)

and its optimal point is denoted as the best response matrix BX(τ) ∈ CK×N , computed
as

BX(τ) ∈ arg min
X∈C

f̃(X;X(τ)) + g(X). (6.18)

If X(τ) is not an optimal point, the update X(τ+1) in iteration τ + 1 is defined as

X(τ+1) = X(τ) + γ(τ)(BX(τ) −X(τ)), (6.19)

where BX(τ) − X(τ) denotes a descent direction and γ(τ) ∈ [0, 1] is an appropriate
stepsize that can be determined by either exact line search or successive line search. If
the problem admits exact line search, the optimal stepsize is computed according to

γ(τ) = arg min
0≤γ≤1

f
(
X(τ) + γ(τ)(BX(τ) −X(τ))

)
+ γ
(
g(BX(τ))− g(X(τ))

)
. (6.20)

In the case of `2,1 minimization according to (4.37), the functions f(·) and g(·) in (6.16)
are given as

f(X) ,
1

2
‖AX − Y ‖2

F and g(X) , λ
√
N‖X‖2,1, (6.21)

with optimization variable X = [x1, . . . ,xK ]T. The problem is convex in X, but its
objective function is non-differentiable and does not have a closed-form solution. Let
X(τ) denote the approximate solution in iteration τ . An approximate function for
f(X), fulfilling the technical conditions given in [YP17], is given by

f̃(X;X(τ)) =
K∑
k=1

f̄(xk,X
(τ)
−k)

=
K∑
k=1

1

2
‖Y (τ)

−k − akx
T
k ‖2

F, (6.22)

where f̄(xk,X
(τ)
−k) = 1

2
‖Y (τ)

−k − akxT
k ‖2

F and Y
(τ)
−k = Y − A−kX(τ)

−k, with A−k defined

in (6.6) and X
(τ)
−k = [x

(τ)
1 , . . . ,x

(τ)
k−1,x

(τ)
k+1, . . . ,x

(τ)
K ]T. Using (6.22) and (6.21) in (6.18),

the best response is computed as

BX(τ) = arg min
X

K∑
k=1

1

2
‖Y (τ)

−k − akx
T
k ‖2

F + λ
√
N‖X‖2,1. (6.23)
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Algorithm 2 `2,1-STELA

1: Initialize approximate solution X(1) ← 0,
2: Initialize iteration index τ ← 1
3: repeat
4: Compute the best response vectors BkX(τ) in (6.24), for k = 1, . . . , K
5: Compute the update stepsize γ(τ) in (6.25)
6: Compute the variable update X(τ+1) in (6.26)
7: Update iteration index τ ← τ + 1
8: until convergence

Note that the minimizer BX(τ) (6.23) is unique, since the approximate function in
(6.23) is strictly convex. Similar to the approximate function f̃(X;X(τ)), the function
g(X) = λ

√
N‖X‖2,1 = λ

√
N
∑K

k=1 ‖xk‖2 can be decomposed among the rows xk, such
that the matrix problem in (6.23) reduces to K independent subproblems

BkX(τ) = arg min
xk

f̄(xk,X
(τ)
−k) + g(xk)

= arg min
xk

1

2
‖Y (τ)

−k − akx
T
k ‖2

F + λ
√
N‖xk‖2

= Sλ√N
(
aH
kY

(τ)
−k

)
, (6.24)

where Sλ√N(·) denotes the soft-thresholding operator defined in (6.13). Note that in
contrast to first or second order approximations of the objective function in (4.37), the
approximation in (6.24) relies on the concept of best-response, i.e., optimization for
one row vector xk while fixing the others. Based on (6.24) the best response is given
as BX(τ) = [BT

1X
(τ), . . . ,BT

KX
(τ)]T. The optimal step size according to (6.20) can be

computed in closed form as

γ(τ) = arg min
0≤γ≤1

1

2
‖A
(
X(τ)+ γ(BX(τ)−X(τ))

)
−Y ‖2

F + γλ
√
N
(
‖BX(τ)‖2,1 − ‖X(τ)‖2,1

)
=

[
−

Re
{

Tr
(
(AX(τ)− Y )HA(BX(τ)−X(τ))

)}
+λ
√
N
(
‖BX(τ)‖2,1− ‖X(τ)‖2,1

)
‖A(BX(τ)−X(τ))‖2

F

]1

0

.

(6.25)

Given the best response BX(τ) and update stepsize γ(τ), the variable update is per-
formed as

X(τ+1) = X(τ) + γ(τ)(BX(τ) −X(τ)), (6.26)

in correspondence with (6.19).

The proposed update has several desirable features that make it appealing in practice.
Firstly, in each iteration, all elements BkX(τ) of the best response BX(τ) can be updated
in parallel, based on the independent subproblems in (6.24). Secondly, the proposed
exact line search (6.25) not only yields notable progress in each iteration, but also enjoys
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an easy implementation given the closed-form expression. In fact, the main advantage of
STELA over other descent direction methods is the update in the form of (6.26), which
admits closed-form solutions, in contrast to other methods where successive line search
has to be applied. The implementation of the STELA method for `2,1 minimization is
summarized in Algorithm 2. Convergence of the STELA iterates to a stationary point
is guaranteed by Theorem 2 in [YP17].

6.1.3 Coordinate Descent Method for SPARROW

The computational cost of the BCD method for the conventional `2,1 minimization
problem discussed in Section 6.1.1 increases with the number of snapshots N . In
contrast, neglecting the comparably small overhead required for computing the sample
covariance matrix R̂, the computational cost of the SPARROW formulation in (4.51)
is independent of the number of snapshots N and, as will be shown in this section, a
simple CD implementation also exists for the SPARROW formulation which does not
involve an explicit matrix inversion per CD iteration, as proposed in [SPP18].

Consider a function f(S) which is jointly convex in the variables s1, . . . , sK . To be
consistent with previous notation, the variables are summarized in the diagonal matrix
S = diag(s1, . . . , sK). Furthermore, consider uncoupled constraints of the form sk ≥ 0,
for k = 1, . . . , K. As discussed in Section 6.1.1, the CD method provides sequential
and iterative coordinate updates, where in contrast to the definition (6.1) for the BCD

method, in this section it is assumed that coordinate s
(τ)
k in iteration τ is updated with

an optimal stepsize d̂
(τ)
k , computed as

d̂
(τ)
k = arg min

d
f(S

(τ)
k + dEk) (6.27a)

s.t. s
(τ)
k + d ≥ 0. (6.27b)

In (6.27), the diagonal matrix

S
(τ)
k = diag

(
s

(τ+1)
1 , . . . , s

(τ+1)
k−1 , s

(τ)
k , . . . , s

(τ)
K

)
(6.28)

denotes the approximate solution for the minimizer of f(S) in iteration τ , before up-
dating coordinate k, and matrix Ek with elements

[Ek]m,n =

{
1 if m = n = k

0 otherwise
(6.29)

denotes a selection matrix. Given the update stepsize d̂
(τ)
k , the coordinate update is

performed according to

S
(τ+1)
k = S

(τ)
k + d̂

(τ)
k Ek. (6.30)



110 Chapter 6: Low-Complexity Algorithms for Sparse Reconstruction

Regarding the SPARROW problem in (4.51), the objective function of the subproblem
in (6.27) is given as

f(S
(τ)
k + dEk) =Tr

(
(Qk,τ+ daka

H
k )−1R̂

)
+ Tr

(
S

(τ)
k

)
+ d, (6.31)

with Qk,τ = AS
(τ)
k A

H + λIM ∈ CM×M . Upon application of the matrix inversion
lemma [Hag89]

(Qk,τ+ daka
H
k )−1 = Q−1

k,τ −
dQ−1

k,τaka
H
kQ
−1
k,τ

1 + daH
kQ
−1
k,τak

(6.32)

and by exploiting the cyclic property of the trace operator, Equation (6.31) is rewritten
as

f(S
(τ)
k + dEk) = Tr

(
Q−1
k,τR̂

)
−
daH

kQ
−1
k,τR̂Q

−1
k,τak

1 + daH
kQ
−1
k,τak

+ Tr
(
S

(τ)
k

)
+ d. (6.33)

The function f(S
(τ)
k + dEk) in (6.33) behaves asymptotically linear in d and has sta-

tionary points in

d̃1,2 =
±
√
aH
kQ
−1
k,τR̂Q

−1
k,τak − 1

aH
kQ
−1
k,τak

, (6.34)

symmetrically located around the simple pole in

d̃0 = − 1

aH
kQ
−1
k,τak

= −
1 + s

(τ)
k aH

kQ
−1
−k,τak

aH
kQ
−1
−k,τak

, (6.35)

where the last identity in (6.35) follows from the matrix inversion lemma [Hag89] ap-
plied to Q−1

k,τ = (Q−k,τ + s
(τ)
k aka

H
k )−1, with Q−k,τ = A−kS

(τ)
−kA

H
−k + λIM , where

S
(τ)
−k = diag(s

(τ+1)
1 , . . . , s

(τ+1)
k−1 , s

(τ)
k+1, . . . , s

(τ)
K ) (6.36)

and A−k defined in (6.6). By taking account of the constraint s
(τ)
k + d ≥ 0 in (6.27b),

it can easily be verified that the optimal stepsize must fulfill d̂
(τ)
k ≥ −s

(τ)
k > d̃0, i.e., it

must be located on the right hand side of the pole d̃0, such that the optimal stepsize
according to (6.27) is computed as

d̂
(τ)
k = max


√
aH
kQ
−1
k,τR̂Q

−1
k,τak − 1

aH
kQ
−1
k,τak

,−s(τ)
k

 . (6.37)

Given the stepsize d̂
(τ)
k , the variable update is performed according to (6.30). The ma-

trix inverse Q−1
k+1,τ , including the updated coordinate s

(τ+1)
k = s

(τ)
k + d̂

(τ)
k as required

for updating the next coordinate s
(τ)
k+1, can be computed iteratively by the matrix in-

version lemma as shown in (6.32), such that computationally expensive explicit matrix
inversion can be avoided. To reduce the effect of numerical error propagation, it is ad-
visable to explicitly compute the matrix inverse Q−1

k,τ = (AS
(τ)
k A

H + λIM)−1 instead
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Algorithm 3 SPARROW-CD

1: Initialize approximate solution S1,1 ← 0,
2: Initialize matrix inverse Q−1

1,1 ← 1
λ
I

3: Initialize iteration index τ ← 1
4: repeat
5: for k ← 1, . . . , K do
6: Compute stepsize d̂

(τ+1)
k by Eq. (6.37)

7: Update approximate solution S
(τ+1)
k by Eq. (6.30)

8: Update matrix inverse Q−1
k+1,τ by Eq. (6.32)

9: end for
10: Update matrix inverse Q−1

1,τ+1 ← Q−1
K+1,τ

11: Update iteration index τ ← τ + 1
12: until convergence

of using the rank-one updates, after a number of iterations, depending on the variable
precision and desired accuracy of the solution. From experiments in MATLAB with
double precision floating-point numbers it was found that a closed form computation
after every 100 CD iterations achieves good reconstruction performance. The overall
procedures of the proposed CD method are summarized in Algorithm 3. Note that in
a practical implementation only the M ×M Hermitian matrix Q−1

k+1,τ as well as the
diagonal elements in S

(τ)
k need to be stored and updated over coordinates k and itera-

tions τ , and that the computation time of the CD method can be drastically reduced
if the sparsity in S

(τ)
k is exploited, by excluding zero elements in S

(τ)
k from the com-

putation in future iterations. The proposed CD implementation of SPARROW can be
implemented with about (3M + 2)M complex-valued multiplications and additions per
coordinate and iteration, which is in the same order as for the BCD method discussed
in Section 6.1.1. In the undersampled case, with N < M , the number of operations
can be further reduced by replacing√

aH
kQ
−1
k,τR̂Q

−1
k,τak = ‖aH

kQ
−1
k,τY ‖2/

√
N (6.38)

in the update stepsize computation (6.37). As shown by numerical experiments in
Section 4.4, the CD implementation of the SPARROW formulation provides superior
convergence rate over the BCD method for `2,1 minimization.

Regarding the convergence of the SPARROW-CD method, it is shown in Appendix C
that the objective function in the SPARROW formulation is continuously differentiable
and strictly convex in its single components s1, . . . , sK , such that Proposition 2.7.1
in [Ber99] applies and convergence of the SPARROW-CD method to a stationary point
is guaranteed.
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6.2 Algorithms for Sparse Reconstruction in PCAs

6.2.1 Coordinate Descent Method for `∗,1 Minimization

For application of the BCD method to the `∗,1 minimization problem given in (5.23),
define

Z̄
(τ)
k =

[
Z

(τ)
1 , . . . ,Z

(τ)
k−1,Z

(τ)
k ,Z

(τ−1)
k+1 , . . . ,Z

(τ−1)
K

]T
(6.39)

as the approximate solution of the signal matrix for coordinate k in iteration τ , and
assume, without loss of generality, that the blocks Bk of the subarray sensing block
matrix B = [B1, . . . ,BK ] are normalized according to BH

kBk = IP , for k = 1, . . . , K.
For coordinatewise optimization, the problem in (5.23) can be rewritten as

Z
(τ)
k = arg min

Zk

1

2

∥∥Y −BZ̄(τ)
k

∥∥2

F
+ λ
√
N
∥∥Z̄(τ)

k

∥∥
∗,1 (6.40)

= arg min
Zk

1

2

∥∥Y (τ)
−k −BkZk

∥∥2

F
+ λ
√
N
∥∥Zk

∥∥
∗, (6.41)

where the M ×N residual matrix for coordinate k in iteration τ is given by

Y
(τ)
−k = Y −B−kZ(τ)

−k ∈ CM×N , (6.42)

with

B−k = [B1, . . . ,Bk−1,Bk+1, . . .,BK ] ∈ CM×P (K−1) (6.43)

denoting the subarray sensing block matrix and

Z
(τ)
−k = [Z

(t)T
1 , . . . ,Z

(τ)T
k−1 ,Z

(τ−1)T
k+1 , . . .,Z

(τ−1)T
K ]T ∈ CP (K−1)×N (6.44)

denoting an approximation of the signal representation in iteration τ , with the kth
submatrix removed, respectively. Similar as in (6.8), the residual matrix Y

(τ)
−k can also

be computed iteratively according to

Y
(τ)
−k = Y

(τ)
−(k−1) −Bk−1Z

(τ)
k−1 +BkZ

(τ−1)
k , (6.45)

which reduces the computational overhead. Under the assumption of normalized subar-
ray sensing block matricesBk, it can easily be verified that problem (6.41) is equivalent
to

Z
(τ)
k = arg min

Zk

1

2

∥∥Z̃(τ)

k −Zk

∥∥2

F
+ λ
√
N ‖Zk‖∗ , (6.46)

where

Z̃
(τ)

k =BH
kY

(τ)
−k ∈ CP×N (6.47)

denotes the least-squares estimate of Z
(τ)
k . Note that the minimizer Z

(τ)
k in (6.46) is

unique, since the objective function is strictly convex in Zk. It has been shown that
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Algorithm 4 `∗,1-CD

1: Initialize approximate solution Z
(1)
1 ← 0

2: Initialize residual matrix Y
(1)
−1 ← Y

3: Initialize iteration index τ ← 1
4: repeat
5: for k ← 1, . . . , K do
6: Compute residual matrix Y

(τ)
−k by Eq. (6.45)

7: Update approximate solution Z
(τ)
k by SVT in Eq. (6.48)

8: end for
9: Update iteration index τ ← τ + 1

10: until convergence

the problem in (6.46) can be solved in closed form by the singular value thresholding
(SVT) method [CCS10], which is performed according to

Z
(τ)
k = U

(τ)
k

(
Σ̃

(τ)

k − λ
√
NIr

)
+
V

(τ)H
k (6.48)

where [(W )+]ij = max([W ]ij , 0), and the r × r matrix Σ̃
(τ)

k , the K × r matrix U
(τ)
k ,

and the N × r matrix V
(τ)
k , for r = min(P,N), are obtained from compact singular

value decomposition (SVD) of the least-squares estimate Z̃
(τ)

k in (6.47), i.e.,

Z̃
(τ)

k = U
(τ)
k Σ̃

(τ)

k V
(τ)H
k . (6.49)

The steps of the BCD method for `∗,1 minimization are given in Algorithm 4, where the
BCD iterations are performed until some convergence criterion is met [QSG13,Wri15].
The major computational cost for the proposed BCD method is given by the SVT step
in (6.48), which requires SVD of the P ×N least-squares estimate Z̃

(τ)
k with O(PN2)

operations, for P ≤ N [TBI97]. The BCD method in Algorithm 4 falls within the class
of non-differentiable minimization with certain separability and regulatory constraints,
for which convergence has been established in [Tse01].

6.2.2 STELA Method for `∗,1 Minimization

Similar to the discussion in Section 6.1.2, the key idea for application of STELA for
`∗,1 minimization is to solve a sequence of approximate problems instead of the original
minimization problem given in (5.23). Analogous to (6.23), in iteration τ of the STELA
method the problem in (5.23) is approximated by K independent subproblems of the
form

BkZ(τ) = arg min
Zk

1

2

∥∥Y −B−kZ(τ)
−k −BkZk

∥∥2

F
+ λ
√
N(
∥∥Z(t)
−k
∥∥
∗,1 +

∥∥Zk

∥∥
∗)

= arg min
Zk

1

2

∥∥Y (τ)
−k −BkZk

∥∥2

F
+ λ
√
N
∥∥Zk

∥∥
∗, (6.50)
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for k = 1, . . . , K, with the residual matrix

Y
(τ)
−k = Y −B−kZ(τ)

−k, (6.51)

where B−k ∈ CM×P (K−1), as defined in (6.43), and

Z
(τ)
−k = [Z

(t)T
1 , . . . ,Z

(τ)T
k−1 ,Z

(τ)T
k+1 , . . .,Z

(τ)T
K ]T ∈ CP (K−1)×N (6.52)

denote the subarray sensing block matrix and an approximation of the signal repre-
sentation in iteration τ , with the kth submatrix removed, respectively. The matrix
BkZ(τ) in (6.50) denotes the kth submatrix of the best response matrix BZ(τ) =
[B1Z

(τ)T, . . .,BKZ(τ)T]T in iteration τ and is the unique minimizer since (6.50) is
strictly convex in Zk. As discussed for (6.46), in the case of unitary submatrices
with BH

kBk = IP as assumed here, the problem (6.50) can be solved in closed form by
singular value thresholding [CCS10] according to

BkZ(τ) = U
(τ)
k

(
Σ̃

(τ)

k − λ
√
NIr

)
+
V

(τ)H
k , (6.53)

based on the singular value decomposition Z̃
(τ)

n = U
(τ)
k Σ̃

(τ)

k V
(τ)H
k of the least-squares

estimate Z̃
(τ)

k = BH
kY

(τ)
−k, as given in (6.49) and (6.47).

As discussed for (6.19) the matrix BZ(τ) −Z(τ) is a descent direction of the objective
function in (5.23). Therefore a variable update is performed according to

Z(τ+1) = Z(τ) + γ(τ)(BZ(τ) −Z(τ)), (6.54)

with stepsize γ(τ). Convergence of the sequence {Z(τ)}∞τ=1 to a stationary point strongly
depends on proper selection of the stepsize parameter γ(τ), e.g., by successive or exact
line search methods. Following the ideas in [YP17], exact line search is performed
according to

γ(τ) = arg min
0≤γ≤1

1

2

∥∥Y −B(Z(τ)+γ(BZ(τ) −Z(τ)))
∥∥2

F
+ γλ

√
N(‖BZ(τ)‖∗,1 − ‖Z(τ)‖∗,1)

=

[
−

Re
{

Tr
(
(BZ(τ)− Y )HB(BZ(τ)−Z(τ))

)}
+ λ
√
N(‖BZ(τ)‖∗,1 − ‖Z(τ)‖∗,1)∥∥B(BZ(τ) −Z(τ))

∥∥2

F

]1

0

.

(6.55)

In contrast to standard exact line search approaches, which generally have to be evalu-
ated numerically, for problem (5.23) the stepsize parameter proposed in (6.55) can be
computed in closed-form which significantly reduces the computational cost. Similarly,
as seen from (6.53), all submatrices BkZ(τ), for k = 1, . . . , K, admit closed form expres-
sions and can be computed independently and, thus, in parallel. It can be verified that
the problem in (5.23) and the approximate subproblems in (6.50) fulfill all assumptions
specified by Theorem 2 in [YP17], such that the sequence {Z(τ)}∞t=1 converges to the
global optimum Ẑ of problem (5.23). Furthermore, due to the exact line search, paral-
lel updates and closed form expressions, the convergence speed of STELA is generally
much faster than that of block coordinate descent methods or gradient-based methods,
as will be shown in the numerical results later in this chapter. The corresponding steps
of the STELA implementation are summarized in Algorithm 5.
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Algorithm 5 `∗,1-STELA

1: Initialize approximate solution Z(1) ← 0
2: Initialize iteration index τ ← 1
3: repeat
4: Compute the best response submatrices BkZ(τ) in (6.53), for k = 1, . . . , K
5: Compute the update stepsize γ(τ) in (6.55)
6: Compute the variable update Z(τ+1) in (6.54)
7: Update iteration index τ ← τ + 1
8: until convergence

6.2.3 Coordinate Descent Method for COBRAS

As indicated in Section 6.1.3, the CD implementation of SPARROW offers superior
convergence as compared to the BCD implementation for `2,1 minimization. Inspired
by these improvements, a CD implementation for the COBRAS formulation is derived
in this section.

Define the block-diagonal matrix

S̄
(τ)
k = blkdiag(S

(τ)
1 , . . . ,S

(τ)
k−1,Sk,S

(τ−1)
k+1 , . . . ,S

(τ−1)
K ) (6.56)

as the approximate solution of the COBRAS-CD method in iteration τ and coordinate
k, and consider the coordinate-wise optimization of the COBRAS problem in (5.33) as

S
(τ)
k = arg min

Sk�0
Tr
(
(BS̄

(τ)
k B

H)−1R̂
)

+ Tr
(
S̄

(τ)
k

)
(6.57)

= arg min
Sk�0

Tr
(
(Qτ,−k +BkSkB

H
k )−1R̂

)
+ Tr

(
Sk
)
, (6.58)

where Qτ,−k = B−kS̄
(τ)
−kB−k + λIM ∈ CM×M is computed from the approximate solu-

tion with the kth block removed, according to

S̄
(τ)
−k = blkdiag(S

(τ)
1 , . . . ,S

(τ)
k−1,S

(τ−1)
k+1 , . . . ,S

(τ−1)
K ), (6.59)

and B−k is defined in (6.43). Neglecting the constraint Sk � 0, the unconstrained
version of problem (6.58) is given by

S̃
(τ)

k = arg min
S̃k

Tr
(
(Qτ,−k +BkS̃kB

H
k )−1R̂

)
+ Tr

(
S̃k
)
. (6.60)

Optimality of (6.60) requires that

∂

∂S̃k
Tr
(
(Q−k,τ +BkS̃kB

H
k )−1R̂

)
+ Tr

(
S̃k
)

=IP −BH
k (Q−k,τ +BkS̃kB

H
k )−1R̂(Q−k,τ +BkS̃kB

H
k )−1Bk = 0. (6.61)
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Algorithm 6 COBRAS-CD

1: Initialize eigenvalues and -vectors in Σ
(1)
k ← 0 and U

(1)
k ← I, for k = 1, . . . , K

2: Initialize matrix inverse Q−1
1,1 ← 1

λ
I

3: Initialize iteration index τ ← 1
4: repeat
5: for k ← 1, . . . , K do
6: Successively compute matrix inverse Q−1

−k,τ from Q−1
k,τ by Eq. (6.65)

7: Update eigenvalues and -vectors in Σ
(τ)
k and U

(τ)
k by Eqs. (6.63) and (6.64)

8: Successively compute matrix inverse Q−1
k+1,τ from Q−1

−k,τ by Eq. (6.66)
9: end for

10: Update matrix inverse Q−1
1,τ+1 ← Q−1

K+1,τ

11: Update iteration index τ ← τ + 1
12: until convergence

Performing basic transformations of (6.61), including application of matrix inverse
identities, yields(

(BH
kQ
−1
−k,τBk)

−1 + S̃k
)2

= (BH
kQ
−1
−k,τBk)

−1BH
kQ
−1
−k,τR̂Q

−1
−k,τBk(B

H
kQ
−1
−k,τBk)

−1.

(6.62)

By taking the positive-semidefinite matrix square-root and solving for S̃k, the minimizer
of the unconstrained problem (6.60) results to

S̃
(τ)

k =
(
(BH

kQ
−1
−k,τBk)

−1(BH
kQ
−1
−k,τR̂Q

−1
−k,τBk)(B

H
kQ
−1
−k,τBk)

−1
)1/2 − (BH

kQ
−1
−k,τBk)

−1.

(6.63)

Let the eigendecomposition of S̃
(τ)

k be given as S̃
(τ)

k = U
(τ)
k Σ̃

(τ)

k U
(τ)H
k . A minimizer for

(6.58), fulfilling S
(τ)
k � 0, is computed from S̃

(τ)

k in (6.63) by projection to the set of
positive semidefinite matrices, according to

S
(τ)
k = U

(τ)
k (Σ̃

(τ)

k )+U
(τ)H
k , (6.64)

where [(W )+]i,j = max([W ]i,j, 0). Note that the computation of S
(τ)
k has comparably

high computational cost, since it involves computation of the matrix inverse and the
matrix square-root of P × P matrices in (6.63), as well as the eigendecomposition of
a P × P matrix in (6.64). It is left for future research to find a computationally more
efficient implementation of (6.63).

To reduce the computational burden, the inverse of the M × M matrix Q−k,τ =

B−kS̄
(τ)
−kB−k + λIM , in (6.63), can be computed efficiently from the matrix Q−1

k,τ =

(BS̄
(τ)
k B + λIM)−1. To see this, observe that the submatrix S

(τ−1)
k , obtained in the

previous iteration, has a low-rank structure, as its rank is minimized in the COBRAS
optimization. Hence, by performing successive rank-one updates of

Q−1
−k,τ =

(
Qk,τ −U

(τ−1)
k Σ

(τ−1)
k U

(τ−1)H
k

)−1
, (6.65)
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based on the low-rank eigendecomposition of S
(τ−1)
k = U

(τ−1)
k Σ

(τ−1)
k U

(τ−1)H
k , direct

matrix inversion of Q−1
−k,τ can be avoided, similar to the SPARROW-CD method dis-

cussed in Section 6.1.3. After updating S
(τ)
k and the corresponding eigenvectors and

eigenvalues in U
(τ)
k and Σ

(τ)
k , by computing (6.63) and (6.64), the matrix inverse

Q−1
k+1,τ =

(
Q−k,τ +U

(τ)
k Σ

(τ)
k U

(τ)H
k

)−1
, (6.66)

for computation of the next coordinate k + 1 can be computed by successive rank-one
updates of Q−1

−k,τ . Hence, it suffices to track the eigenvectors and eigenvalues in U
(τ)
k

and Σ
(τ)
k as well as the matrix inverse Q−1

k,τ for cyclic computation of (6.63). The
proposed COBRAS-CD approach is summarized in Algorithm 6.

6.3 Numerical Experiments

For evaluation of the CD and STELA implementations discussed in the previous sec-
tions, basic MATLAB implementations are performed on a computer with an Intel
Core i7-4770 CPU @ 3.40 GHz × 8 and 16 GByte RAM. Numerical experiments show
that the computation times of the CD and STELA methods not only depend on the
number of measurements and variables, represented by the number of sensors M , the
number of snapshots N and the number of grid points K. Furthermore, the computa-
tion time also depends on signal characteristics, such as the number of source signals
L, the frequency spacing and the SNR, where, e.g., a larger number of source signals
L and a higher SNR can result in higher computation time. For sake of brevity the ex-
periments in this section will be limited to one scenario for the FCA and the PCA case,
respectively, which demonstrates the main features of the different CD and STELA
implementations.

6.3.1 Sparse Reconstruction in FCAs

For investigation of the computational cost of the `2,1-CD implementation in Algorithm
1, the `2,1-STELA implementation in Algorithm 2 and the SPARROW-CD implementa-
tion in Algorithm 3, consider a fully calibrated uniform linear array of M = 100 sensors.
Furthermore, assume L = 9 equal power complex Gaussian source signals with spatial
frequencies µ = [−0.50,−0.48,−0.30,−0.28,−0.10,−0.08, 0.22, 0.24, 0.27]T and con-
sider N = 100 snapshots with an SNR of 0 dB. A grid of K = 1000 points is used for
all CD and STELA implementations, resulting in a number ofKN = 200000 real-valued
parameters for the `2,1 minimization problem and K = 1000 nonnegative optimization
variables for the SPARROW problem.

To illustrate the convergence speed, Figures 6.1-6.3 consider the distance to optimality
‖ S(τ)

k − Ŝ ‖F, which is given as the distance of the optimal solution Ŝ to the

approximate solution S
(τ)
k in iteration τ for coordinate k.
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The first Figure 6.1 displays the distance to optimality over the iteration index τ ,
where one iteration corresponds to one sweep over all coordinates. Clearly, in this rep-
resentation the SPARROW-CD method provides the best convergence characteristics,
obtaining a distance to optimality of 10−5 after roughly τ = 130 iterations. In compar-
ison, the `2,1-CD method and the `2,1-STELA method require about τ = 720 iterations
and τ = 1500, respectively, to obtain the same distance to optimality. However, in
terms of computation time the representation over the number of iterations τ is not
fair since the CD methods suffer from the fact that the coordinate updates can only
be performed in a sequential manner, while for the STELA methods all the coordinate
updates for one iteration can be computed in parallel.

To provide better comparison of the CD and STELA methods, Figures 6.2-6.3 display
the distance to optimality over the number of computation time slots, where one com-
putation time slot for the CD methods corresponds to one sequential coordinate update
while one computation time slot for STELA corresponds to the parallel update of all
coordinates. In a naive implementation of the CD methods, the coordinate updates
would be performed in a cyclic fashion over all available coordinates. The resulting
computation time is displayed in Figure 6.2, showing that the STELA method clearly
outperforms the two CD implementations.

A simple way to exploit sparsity in the CD implementations is based on the observation
that coordinates with zero entries will usually not change in future iterations, and thus
can be skipped in future iterations, as discussed in [FHHT07]. This simple approach
reduces the number of sequential computations and, consequently, the computation
time. However, it cannot be guaranteed that a coordinate entry will remain a zero
value in future iterations. Hence, it is advisable to recompute all coordinates after a
fixed number of iterations ∆τ . For the experiments it was found that a computation of
all coordinates after every 10 iterations provides a good compromise of speed and accu-
racy. Figure 6.3 displays the resulting computation time for the sparsity exploiting CD
implementations. Although the CD implementations cannot reach the convergence rate
of the STELA method, they show drastically improved convergence rate as compared to
the naive implementations in Figure 6.2. The re-computation of all coordinates in the
CD implementations becomes visible from the step-like character of the corresponding
error functions in Figure 6.3.

The MATLAB implementations resulted in a computation time of 15 seconds for the
`2,1-CD implementation, 12 seconds for the `2,1-STELA implementation and 4 seconds
for the SPARROW-CD implementation. This reduction in CPU time as compared to
the experimental results for the SDP implementations with MOSEK in Section 4.4.6 can
be explained by the low-complexity coordinate updates. Still, it should be noted that
these computation times were achieved for very basic MATLAB implementations and
might possibly be improved for more sophisticated implementations, e.g., in C/C++.
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Figure 6.1: Convergence rate of FCA algorithms: Distance to optimality over iteration
index
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Figure 6.2: Convergence rate of FCA algorithms: Distance to optimality over com-
putation time slots with naive CD implementations
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Figure 6.3: Convergence rate of FCA algorithms: Distance to optimality over com-
putation time slots with sparse CD implementations
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Figure 6.4: Convergence rate of PCA algorithms: Distance to optimality over itera-
tion index
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Figure 6.5: Convergence rate of PCA algorithms: Distance to optimality over com-
putation time slots with naive CD implementations
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Figure 6.6: Convergence rate of PCA algorithms: Distance to optimality over com-
putation time slots with sparse CD implementations
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6.3.2 Sparse Reconstruction in PCAs

For further evaluation of the `∗,1-CD method in Algorithm 4, the `∗,1-STELA method
in Algorithm 5 and the COBRAS-CD method in Algorithm 6, in this experiment a
uniform linear array of M = 100 sensors is considered, partitioned in P = 10 identical
uniform linear subarrays of M0 = 10 sensors. A total of N = 100 snapshots is observed
from L = 8 equal power, complex Gaussian sources signals with spatial frequencies µ =
[−0.50,−0.46,−0.3,−0.25,−0.08, 0.22, 0.27, 0.33]T and an SNR of 10 dB. A frequency
grid of K = 200 points is employed, resulting in a total of KPN = 400000 real-
valued parameters for the `∗,1 minimization problem and KP 2 = 20000 real-valued
optimization parameters for the COBRAS formulation.

Figures 6.4-6.6 display the distance to optimality ‖S(τ)
k − Ŝ‖F, as introduced in the

previous section. In Figure 6.4 the distance to optimality over the iteration index τ
is displayed, i.e., one iteration corresponds to one sweep over all coordinates. Clearly,
the COBRAS-CD method provides the best convergence characteristics, obtaining a
distance to optimality of 10−5 after roughly τ = 360 iterations. In contrast, the `∗,1-CD
and STELA methods require about τ = 5000 and τ = 15000 iterations to obtain the
same distance to optimality.

For a fair comparison in terms of convergence over computation time slots, Figures
6.5-6.6 compare the STELA implementation with naive and sparsity exploiting CD
implementations, similar to the discussion in the previous section. From Figure 6.5 it
can be observed that the `∗,1-STELA implementation clearly outperforms the naive CD
implementations. However, if sparsity is exploited in the CD implementations, as dis-
cussed in the previous section, the convergence rate of the CD implementations clearly
improves, as displayed in Figure 6.6. In fact, in this representation the COBRAS-CD
method even outperforms the STELA method with parallel implementation.

The computation time of the MATLAB implementations was measured as 10 min-
utes and 12 seconds for the `∗,1-STELA method, where parallelization has not been
exploited, 2 minutes and 26 seconds for the `∗,1-CD method and 14 seconds for the
COBRAS-CD method. Again, it should be emphasized that the computation time
strongly depends on the implementation and the characteristics of the source signals
and might change for other setups.

6.4 Chapter Summary

The chapter has considered a number of low-complexity methods for joint sparse signal
reconstruction by means of convex relaxation. A short introductory review of the state
of the art approach in terms of the block coordinate descent method in Section 6.1.1
was followed by a basic extension of the STELA method [YP17] for `2,1 minimization
in Section 6.1.2. The considerations on `2,1 minimization were concluded by a novel
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coordinate descent method for the equivalent SPARROW formulation in Section 6.1.3,
which forms one of the major contributions of this chapter.

As another major contribution of this chapter, the methods presented for `2,1 mini-
mization and the SPARROW formulation were modified for application with `∗,1 min-
imization and the COBRAS formulation. In Sections 6.2.1 and 6.2.2 two novel low-
complexity methods for `∗,1 mixed-norm minimization were proposed, that are based
on the coordinate descent and the STELA method. A novel coordinate descent imple-
mentation of the COBRAS problem was presented in Section 6.2.3.

Numerical experiments for scenarios with large sensor arrays and large number of snap-
shots have demonstrated the benefits of the different proposed methods.
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Chapter 7

Conclusion and Outlook

This thesis has studied the application of joint sparse signal reconstruction methods
in fully and partly calibrated sensor arrays. A novel method for coherent sparse re-
construction in partly calibrated arrays and compact formulations for convex sparse
reconstruction have been derived, that admit efficient implementation and provide new
perspectives on sparse signal reconstruction by means of convex relaxation.

After introducing the signal model and giving a short overview of the state of the art
in Chapters 2 and 3, joint sparse signal reconstruction in fully calibrated arrays has
been considered in Chapter 4. The major contribution of Chapter 4 is given by a
compact formulation, termed as SPARROW (SPARse-ROW norm reconstruction), for
joint sparse signal reconstruction in fully calibrated arrays. In context with existing
methods, it was shown that the SPARROW formulation is equivalent to the classical
`2,1 mixed-norm minimization problem and the atomic norm minimization problem for
joint sparse signal reconstruction from multiple measurement vectors. At the same
time, the SPARROW formulation provides a significant reduction in optimization pa-
rameters, as compared to `2,1 and atomic norm minimization, and only relies on the
sample covariance matrix instead of the instantaneous measurement vectors, leading
to a reduction in computational cost and memory requirements. While the original
SPARROW formulation considers grid-based signal reconstruction in arbitrary array
topologies, a gridless as well as an off-grid version of the SPARROW formulation for ap-
plication in uniform linear and arbitrary array topologies have been derived in Sections
4.3.1 and 4.3.2, respectively.

Chapter 5 has considered the application of joint sparse signal reconstruction in partly
calibrated arrays. One of the major contributions of this chapter is given in Section
5.2, by a novel method for joint sparse signal reconstruction in partly calibrated arrays
with coherent processing. The novel method is based on minimization of a mixed nu-
clear and `1 norm and is referred to as `∗,1 mixed-norm minimization. While, existing
methods for sparse reconstruction in partly calibrated arrays under incoherent process-
ing exploit a block-sparse structure in the incoherent signal model, the proposed `∗,1
minimization exploits an additional low-rank structure in the coherent signal model,
leading to improved estimation performance.

Another major contribution of Chapter 5 is given in Section 5.3, by a compact, equiva-
lent formulation of the `∗,1 mixed-norm minimization problem, referred to as COmpact
Block- and RAnk-Sparse recovery (COBRAS). The COBRAS formulation is attractive
especially in the case of a large number of signal snapshots. For the special case of
identical uniform linear subarrays, a gridless version of the COBRAS method (GL-
COBRAS) has been presented in Section 5.3.1. A generalization of the GL-COBRAS
method was proposed in Section 5.4. The corresponding method is applicable in
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PCAs composed of identical subarrays with arbitrary topology and termed as Shift-
Invariant (SI-) SPARROW. Although being introduced for application in PCAs, the
SI-SPARROW method can similarly be applied to any type of arrays exhibiting shift-
invariances, including, e.g., centro-symmetric arrays considered in Section 2.2.5.

As discussed in Sections 5.1 and 5.2, the sparse reconstruction problems for fully cal-
ibrated arrays and partly calibrated arrays with incoherent and coherent processing
are strongly related, and coincide in the special cases of a single subarray or a single
snapshot. Similarly, the SPARROW and COBRAS formulations have strong links and
one can be derived from the other, as shown in Section 5.3.1.

The numerical experiments for partly calibrated arrays in Section 5.5.2 have clearly
demonstrated that the coherent processing methods outperform their incoherent coun-
terparts. Regarding the comparison with state of the art subspace-based methods, the
numerical experiments for fully and partly calibrated arrays in Sections 4.4 and 5.5 have
illustrated that sparse reconstruction methods by means of convex relaxation provide
a viable supplement to classical subspace-based methods, such as MUSIC, RARE and
ESPRIT. Gains in estimation performance can be obtained especially for correlated
signals as well as in the non-asymptotic regime of low signal-to-noise ratio and low
number of snapshots. In these scenarios, especially the grid-based sparse reconstruc-
tion methods show significantly improved resolution performance over the grid-based
versions of the subspace-based methods. Theses benefits of sparse reconstruction in
estimation performance are slightly diminished by an inherent parameter estimation
bias, which can however be compensated by appropriate post-processing methods, as
discussed in Section 4.4.2.

For efficient implementation of the sparse reconstruction methods discussed in this
thesis, Chapter 6 has presented various novel low-complexity methods based on the
coordinate descent and the STELA method [YP17], which admit sequential and parallel
computation, respectively. As demonstrated by numerical experiments, the coordinate
descent implementations for SPARROW and COBRAS significantly outperform their
counterparts for `2,1 and `∗,1 minimization. It is left for future research to transfer
this reduction in computation time to parallel implementations based on the STELA
framework.

While reconstruction guarantees for joint sparse signal reconstruction for fully cal-
ibrated arrays are available, e.g., in [CH06], the derivation of such guarantees for
sparse reconstruction in partly calibrated arrays is still an open problem. In this
regard, the original problems for block- and rank-sparse reconstruction in (5.20)
and for block-sparse reconstruction in (5.9) can serve as a starting point to de-
rive such reconstruction guarantees. Related results for further research are given
in [EM09, EKB10, WWX13, APJ16]. Another point of interest in this context is, un-
der what conditions the convex relaxations in (5.23) and (5.14) can solve the original
block- and rank-sparse reconstruction problem (5.20) and the block-sparse reconstruc-
tion problem (5.9). In this context, the nullspace property for nuclear norm minimiza-
tion [DF10] might be of interest for further research.
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A promising extension of the sparse reconstruction methods proposed in this thesis
is given by reweighted minimization, to enhance sparsity and parameter estimation
performance. Reweighted minimization was originally proposed for `1 minimization
[CWB08] and has similarly been applied for nuclear norm minimization [FHB03,MF10]
and atomic norm minimization [YX15a], where it was found to provide improved signal
reconstruction performance.

Considering the strong links between the COBRAS, SPARROW and SPICE methods,
as discussed in Sections 5.3 and 4.3.3, the structural constraints of GL-COBRAS (5.44)
and SI-SPARROW (5.73) could likewise be implemented in the gridless SPICE methods
(4.101) and (4.102). This approach would make the SPICE methods applicable for
PCAs, admitting hyperparameter-free estimation.

Regarding related applications, it was shown in [SYP16] that the `∗,1 minimization
approach can similarly be applied to multidimensional parameter estimation. In this
context it would be of interest to further investigate the estimation performance of
the COBRAS and SI-SPARROW formulations for multidimensional estimation, and
to put the results in relation with more recent publications on sparse recovery for
multidimensional estimation [YXS16,TZW17].
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Appendix

A Regularization Parameter for `2,1 Minimization

Based on the ideas in [OPT00a] for `1 minimization, consider the subdifferential of the
`2,1 minimization problem in (4.50), given as

∂X

(
1

2
‖Y −AX‖2

F + λ
√
N ‖X‖2,1

)
= −AH (Y −AX) + λ

√
NH , (A.1)

where H =
[
h1, . . . ,hK

]T
is a subgradient of the penalty term ‖X‖2,1 =

∑K
k=1 ‖xk‖2,

with rows hk ∈ ∂ ‖xk‖2 being elements of the subdifferentials of the `2 row-norms ‖xk‖2

of the matrix X = [x1, . . . ,xK ]T. The subdifferential [Roc70,Ber99] of the `2 norm is
defined as

∂ ‖xk‖2 =
{
hk
∣∣‖x̃k‖2 ≥ ‖xk‖2 + Re

{
(x̃k − xk)Hhk

}}
=

{
xk/‖xk‖2 for xk 6= 0{
hk
∣∣ ‖hk‖2 ≤ 1

}
for xk = 0

with hk, x̃k ∈ CN , for k = 1, . . . , K. From this it can be concluded that

‖hk‖2

{
= 1 for xk 6= 0

≤ 1 for xk = 0.
(A.2)

Hence, the row support of X can similarly be identified from a subgradient H by
identifying the rows hk with `2 norm equal to 1.

Optimality conditions require that the subdifferential (A.1) contains the 0 matrix, i.e.,
there must exist matrices X̂ and Ĥ that fulfill

−AH
(
Y −AX̂

)
+ λ
√
NĤ = 0, (A.3)

and equivalently the row-vectors must obey

λĥk = aH
k

(
Y −AX̂

)
/
√
N. (A.4)

Since ‖ĥk‖2 ≤ 1, it follows from (A.4) that

λ ≥ ‖aH
k (Y −AX̂)‖2/

√
N, (A.5)

which shows that for a regularization parameter selection according to

λ ≥ ‖aH
kY ‖2/

√
N (A.6)

a zero solution X̂ = 0 is obtained for the `2,1 minimization problem (4.50), independent
of the underlying sparse signal X̌ in (4.29). Under the assumption that there are no
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source signals present in the measurements, i.e. X̌ = 0 such that Y = N , condition
(A.6) reduces to

λ ≥ ‖aH
kN‖2/

√
N. (A.7)

Thus, to obtain a proper zero estimate X̂ = 0 for the `2,1 minimization problem
(4.50) with Y = N , the regularization parameter λ must fulfill condition (A.7), for
k = 1, . . . , K. In terms of statistical expectation, an upper bound on the right hand
side in (A.7) is given as

E
{

max
k
‖aH

kN‖2/
√
N
}
≤ E

{
max
k
‖ak‖2 ‖N‖2/

√
N
}

= max
k
‖ak‖2 E

{
‖N‖2

}
/
√
N

≤ max
k

σN ‖ak‖2

(√
M +

√
N
)
/
√
N

= σN

√
M
(√

M/N + 1
)
, (A.8)

where ‖ak‖2 =
√
M , for k = 1, . . . , K, and the expectation of the spectral norm of an

M × N complex Gaussian matrix, with entries according to [N ]m,n ∼ NC(0, σ2
N), is

bounded as [RV10,T+15,PE10]

E{‖N‖2} ≤ σ(
√
M +

√
N). (A.9)

From (A.8) it can be concluded that a regularization parameter according to

λ = σN

√
M
(√

M/N + 1
)

(A.10)

fulfills condition (A.7) and will suppress the noise in the signal estimate, retaining only
signal components in the sparse estimate X̂. Note that the bound on the spectral
norm in (A.9) is tight for large values of sensors M and snapshots N . In the non-
asymptotic case of small values for M or N , the bound in (A.9) might be loose and the
regularization parameter might be too large, leading to suppression not only of noise,
but also of signal components in the estimate X̂.

B Equivalence of SPARROW and `2,1 Minimization

Proof of Theorem 4.2. A key component in establishing the equivalence in Equations
(4.50) and (4.51) is the observation that the `2 norm of a vector xk ∈ CN can be
rewritten as

‖xk‖2 = min
γk,hk

1

2
(|γk|2 + ‖hk‖2

2) (B.1a)

s.t. γkhk = xk, (B.1b)

where γk is a complex-valued scalar and hk is a complex-valued vector of N elements.
For the optimal solution of (B.1), it holds that

‖xk‖2 = |γk|2 = ‖hk‖2
2. (B.2)
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To see this, consider that any feasible solution must fulfill

‖xk‖2 =
√
|γk|2‖hk‖2

2 ≤
1

2
(|γk|2 + ‖hk‖2

2), (B.3)

based on the inequality of arithmetic and geometric means, with equality holding if
and only if |γk| = ‖hk‖2.

The idea in (B.1) can be extended to the `2,1 mixed-norm of the source signal matrix
X = [x1, . . . ,xK ]T according to

‖X‖2,1 =
K∑
k=1

‖xk‖2 = min
Γ∈DK ,H∈CK×N

1

2
(‖Γ ‖2

F + ‖H‖2
F) (B.4a)

s.t. X = ΓH , (B.4b)

where Γ = diag(γ1, . . . , γK) is taken from the set DK of K×K complex-valued diagonal
matrices and H = [h1, . . . ,hK ]T is a K ×N complex-valued matrix with rows hk, for
k = 1, . . . , K. Upon substitution of (B.4) into the `2,1 minimization problem in (4.50),
the following minimization problem can be formulated

min
Γ∈DK ,H∈CK×N

1

2
‖AΓH − Y ‖2

F +
λ
√
N

2
(‖Γ ‖2

F + ‖H‖2
F). (B.5)

For a fixed matrix Γ , the minimizer Ĥ of problem (B.5) admits the closed form ex-
pression

Ĥ =
(
Γ HAHAΓ + λ

√
NIK

)−1
Γ HAHY

= Γ HAH
(
AΓΓ HAH + λ

√
NIM

)−1
Y , (B.6)

where the last identity is derived from the matrix inversion lemma [Hag89]. Reinserting
the optimal matrix Ĥ into Equation (B.5) and performing basic reformulations of the
objective function results in the compact minimization problem

min
Γ∈DK

λ
√
N

2

(
Tr
(
(AΓΓ HAH+λ

√
NIM)−1Y Y H

)
+Tr

(
ΓΓ H

))
. (B.7)

Upon substituting Y Y H = NR̂ and defining the nonnegative diagonal matrix

S = ΓΓ H/
√
N ∈ DK+ , (B.8)

the problem in (B.7) can be rewritten as

min
S∈DK

+

λN

2

(
Tr
(
(ASAH + λIM)−1R̂

)
+ Tr

(
S
))
. (B.9)

Ignoring the factor λN/2 in (B.9), results in formulation (4.51). From Equation (B.2)
and the definition of S = diag(s1, . . . , sK) in (B.8) it can furthermore be concluded
that

sk =
1√
N
‖xk‖2, (B.10)
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for k = 1, . . . , K, as given by (4.53). Making further use of the factorization in (B.4b)
yields

X̂ =Γ̂ Ĥ

=Γ̂ Γ̂
H
AH(AΓ̂ Γ̂

H
AH + λ

√
NIM)−1Y

=ŜAH(AŜAH + λIM)−1Y (B.11)

which is (4.52).

C Convexity of the SPARROW Problem

One approach of proving convexity of a function is by showing positive semidefiniteness
of its Hessian matrix. To this end, consider the objective function of the SPARROW
formulation in (4.50)

f(s) = Tr(Q−1R̂) + 1Ts, (C.1)

where Q = A diag(s)AH + λI, the vector s = [s1, . . . , sK ]T contains the nonnegative
elements s1, . . . , sK ≥ 0 and 1 is a vector of ones. Using the elementwise derivatives

∂Q

∂sk
=

∂

∂sk

K∑
k=1

skaka
H
k + λI = aka

H
k (C.2)

∂Q−1

∂sk
=−Q−1∂Q

∂sk
Q−1 = −Q−1aka

H
kQ
−1 (C.3)

the gradient of (C.1) is given as

∂f(s)

∂s
= 1− vecd

(
AHQ−1R̂Q−1A

)
(C.4)

where vecd(X) denotes the vector containing the elements on the main diagonal of
matrix X. The Hessian matrix of (C.1) is computed as

∂2f(s)

∂s ∂sT
= 2 Re

{
(AHQ−1A)T � (AHQ−1R̂Q−1A)

}
, (C.5)

with � denoting the Hadamard product, i.e., elementwise multiplication. From the
Schur product theorem [HJ90] it can be concluded that the Hessian matrix in (C.5) is
positive semidefinite, since for s1, . . . , sK ≥ 0 it holds that Q � 0. In other words, the
SPARROW formulation in (C.1) is convex for nonnegative s1, . . . , sK ≥ 0. Note also
that the SPARROW function is strictly convex in its single components, since

∂2f(s)

∂s2
k

= 2 Re
{

(aH
kQ
−1ak) · (aH

kQ
−1R̂Q−1ak)

}
> 0. (C.6)
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D Equivalence of SPARROW and AST

Proof of Theorem 4.5. Consider the GL-SPARROW formulation

min
u,U

λ

2
Tr
(
U
)

+
λN

2M
Tr
(
HToep(u)

)
(D.1a)

s.t.

[
U/
√
N Y H

Y
√
NHToep(u) + λ

√
NIM

]
� 0 (D.1b)

HToep(u) � 0, (D.1c)

where the objective function is scaled by the factor λN/2 as compared to (4.60) and
the Schur complement of constraint (D.1b) is identical to that of (4.60b). Furthermore,
consider the ANM formulation (4.49)

min
v,V ,
Y 0

1

2
‖Y − Y 0‖2

F +
λ
√
N

2

(
Tr
(
V
)

+
1

M
Tr
(
HToep(v)

))
(D.2a)

s.t.

[
V Y H

0

Y 0 HToep(v)

]
� 0. (D.2b)

Both problems are equivalent in the sense that the corresponding minimizers are related
by

v̂ =
√
N û (D.3)

Ŷ 0 = HToep(û)
(
HToep(û) + λIM

)−1
Y (D.4)

Û =
√
N V̂ +

1

λ
(Y − Ŷ 0)H(Y − Ŷ 0). (D.5)

Inserting (D.3) and (D.5) into the objective functions (D.1a) and (D.2a), it can easily
be verified that both problems achieve the same minimum value. It remains to show
that the optimal point (Û , û) of the GL-SPARROW formulation (D.1) is feasible for
the ANM formulation (D.2), and, conversely, that the optimal point (V̂ , v̂, Ŷ 0) of the
ANM formulation (D.2) is feasible for the GL-SPARROW formulation (D.1).

First it will be shown that the optimal point (V̂ , v̂, Ŷ 0) of the ANM formulation (D.2)
is feasible for the GL-SPARROW formulation (D.1). Defining W = Y − Ŷ 0 and
inserting (D.3) and (D.5) into the GL-SPARROW constraint (D.1b) results in[

Û/
√
N Y H

Y
√
NHToep(û) + λ

√
NIM

]
=

[
V̂ + 1

λ
√
N
W HW Y H

Y HToep(v̂) + λ
√
NIM

]

=

[
V̂ Y H

0

Y 0 HToep(v̂)

]
+

[
1

λ
√
N
W HW W H

W λ
√
NIM

]
� 0. (D.6)
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From (D.6) it can be seen that any minimizers (V̂ , v̂, Ŷ 0) of the ANM problem (D.2),
fulfilling constraint (D.2b), are feasible for the GL-SPARROW problem (D.1), since[

1
λ
√
N
W HW W H

W λ
√
NIM

]
= λ
√
N

[
1

λ
√
N
W H

IM

][
1

λ
√
N
W H

IM

]H
� 0. (D.7)

In the second step it is proven that an optimal point (û, Û) of (D.1) is feasible for the
ANM problem (D.2). According to Corollary 4.3 it can be assumed w.l.o.g. that

Û = Y H
(
HToep(û) + λIM

)−1
Y (D.8)

is optimal for (D.1). Using (D.4) and (D.8) in (D.5) and solving for V̂ results in

V̂ =
1√
N
Y H
(
HToep(û) + λIM

)−1
HToep(û)

(
HToep(û) + λIM

)−1
Y . (D.9)

Considering constraint (D.2b) of the ANM problem and inserting (D.4) and (D.9) it
can be seen that[

V Y H
0

Y 0 HToep(v)

]

=
1√
N

[
Y H
(
HToep(û) + λIM

)−1

√
NI

]
HToep(û)

[
Y H
(
HToep(û) + λIM

)−1

√
NI

]H
� 0, (D.10)

i.e., a feasible and optimal point (V̂ , v̂, Ŷ 0) for the ANM formulation can be constructed
from the minimizers (û, Û ) of the GL-SPARROW problem, which concludes the proof.

E Dual Problem of the SPARROW Formulation

Consider the SDP form (4.57) of the SPARROW formulation, given as

min
S,WM

Tr(WMR̂) + Tr(S) (E.1a)

s.t.

[
WM IM
IM ASAH + λI

]
� 0 (E.1b)

S ∈ DK+ ,WM � 0, (E.1c)

where S = diag(s1, . . . , sK). Upon introducing the matrix

W̃ =

[
W̃ 11 W̃ 12

W̃ 21 W̃ 22

]
(E.2)
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and summarizing s = [s1, . . . , sK ]T, the SDP in (E.1) can be rewritten as

min
s,W̃

Tr(W̃ 11R̂) +
K∑
k=1

sk (E.3a)

s.t. sk ≥ 0, for k = 1, . . . , K (E.3b)

W̃ � 0 (E.3c)

W̃ 12 = I, W̃ 21 = I (E.3d)

W̃ 22 =
K∑
k=1

skaka
H
k + λI. (E.3e)

The Lagrangian function [VB96] for the problem in (E.3) is given by

L(s, W̃ ,ω,Γ ,Υ ) =Tr(W̃ 11R̂) +
K∑
k=1

sk

−
K∑
k=1

ωksk − Re
{

Tr(ΓW̃ )
}

+ Re
{

Tr
(
Υ 21(W̃ 12 − I)

)}
+ Re

{
Tr
(
Υ 12(W̃ 21 − I)

)}
+ Re

{
Tr
(
Υ 22(W̃ 22 −

∑K
k=1 skaka

H
k − λI)

)}
, (E.4)

with ω1, . . . , ωK ≥ 0, summarized in ω = [ω1, . . . , ωK ]T, being the Lagrangian multi-
pliers accounting for the nonnegative constraint on s1, . . . , sK in (E.3b), and Γ � 0
being the Lagrangian multipliers accounting for the positive semidefinite constraint
with regard to W̃ in (E.3c). Furthermore, the matrices Υ 12,Υ 21,Υ 22, summarized in

Υ =

[
Υ 11 Υ 12

Υ 21 Υ 22

]
, (E.5)

are the Lagrangian multipliers accounting for the equality constraints on submatrices
W̃ 12, W̃ 21, W̃ 22 in (E.3d) and (E.3e). In a more compact notation, the Lagrangian
function (E.4) can be written as

L(s, W̃ ,ω,Γ ,Υ ) =Re

{
Tr

(([
R̂ Υ 12

Υ 21 Υ 22

]
− Γ

)[
W̃ 11 W̃ 12

W̃ 21 W̃ 22

])}
+

K∑
k=1

sk
(
(1− ωk)− aH

kΥ 22 ak
)

− Re
{

Tr(Υ 12 + Υ 21 + λΥ 22)
}
. (E.6)
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Minimization of (E.6) with respect to s and W̃ yields

min
s,W̃
L(s, W̃ ,ω,Γ ,Υ )

=


−Re Tr(Υ 12 + Υ 21 + λΥ 22) if

[
R̂ Υ 12

Υ 21 Υ 22

]
− Γ = 0,

(1− ωk)− aH
kΥ 22 ak = 0, for k = 1, . . . , K

−∞ otherwise.

(E.7)

Since Γ � 0, the first constraint in (E.7) can be relaxed to[
R̂ Υ 12

Υ 21 Υ 22

]
� 0. (E.8)

Moreover, with ωk ≥ 0, the second constraint can be relaxed to

1− aH
kΥ 22 ak ≥ 0 for k = 1, . . . , K, (E.9)

such that the dual problem of (E.3) can be formulated as

max
Υ
− Re

{
Tr(Υ 12 + Υ 21 + λΥ 22)

}
(E.10a)

s.t.

[
R̂ Υ 12

Υ 21 Υ 22

]
� 0 (E.10b)

1− aH
kΥ 22 ak ≥ 0, for k = 1, . . . , K, (E.10c)

as given in (4.65).

F Regularization Parameter for `∗,1 Minimization

Similar to the considerations in [OPT00a] and Appendix A of this thesis, consider the
subdifferential of the `∗,1 minimization problem in (5.32), given as

∂Z

(
1

2
‖Y −BZ‖2

F + λ
√
N ‖Z‖(P×N)

∗,1

)
= −BH (Y −BZ) + λ

√
NH . (F.1)

In (F.1), H =
[
HT

1 , . . . ,H
T
K

]T
is a subgradient of the penalty term ‖Z‖(P×N)

∗,1 =∑K
k=1 ‖Zk‖∗, where the blocks Hk ∈ ∂ ‖Zk‖∗ are elements of the subdifferential of the

nuclear norm ‖Zk‖∗ of the submatrices of Z = [ZT
1 , . . . ,Z

T
K ]T. Taking the definition

from [Wat92], the subdifferential of the nuclear norm is defined as

∂‖Zk‖∗ =
{
Hk

∣∣ ‖Z̃k‖∗ ≥ ‖Zk‖∗ + Re
{

Tr
(
(Z̃k −Zk)

HHk

)}}
, (F.2)
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for Hk, Z̃k ∈ CP×N . Assuming r non-zero singular values in the singular value decom-
position of Zk = U kΣkV

H
k , and partitioning

U k = [U k,1,U k,0] and V k = [V k,1,V k,0] , (F.3)

where U k,1 ∈ CP×r and V k,1 ∈ CN×r contain the left and right singular vectors corre-
sponding to the non-zero singular values, the subdifferential is given by

∂‖Zk‖∗ =
{
U k,1V

H
k,1 + Z̃k

∣∣ Z̃k ∈ CP×N ,UH
k,1Z̃k = 0, Z̃kV k,1 = 0, ‖Z̃k‖2 ≤ 1

}
,

(F.4)

where ‖Z̃k‖2 denotes the spectral norm, i.e., the maximum singular value of Z̃k. From
(F.4) it can be concluded that

‖Hk‖2

{
= 1 for Zk 6= 0

≤ 1 for Zk = 0.
(F.5)

Hence, the block support of Z can similarly be identified from a subgradient H by
identifying the submatrices Hk with spectral norm 1.

Under optimality, the subdifferential in (F.1) must contain the matrix of zeros 0, such
that there must exist matrices Ẑ and Ĥ fulfilling

−BH
(
Y −BẐ

)
+ λ
√
NĤ = 0. (F.6)

From (F.6) it can be concluded that the submatrices Ĥk of a subgradient Ĥ =

[Ĥ
T

1 , . . . , Ĥ
T

K ]T fulfill

λĤk = BH
k

(
Y −BẐ

)
/
√
N, (F.7)

and based on (F.5) it can be observed that for a regularization parameter selection
according to

λ ≥ ‖BH
kY ‖2/

√
N (F.8)

the `∗,1 minimization problem in (5.32) provides a zero solution Ẑ = 0. Assume the
sensor measurements only contain noise according to Y = N , i.e., Ž = 0 in the sparse
representation (5.19), such that condition (F.8) reduces to

λ ≥ ‖BH
kN‖2/

√
N. (F.9)

Ideally, in this case the `∗,1 minimization problem (5.32) should provide a zero signal
matrix Ẑ = 0. Thus, by finding an upper bound on the spectral norm of the matrix
products BH

kN/
√
N , for k = 1, . . . , K, a regularization parameter λ can be found such
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that Ẑ = 0. In terms of statistical expectation, an upper bound on the right hand side
in (F.9) is given as

E
{

max
k
‖BH

kN‖2/
√
N
}
≤ E

{
max
k
‖Bk‖2 ‖N‖2/

√
N
}

= max
k
‖Bk‖2 E

{
‖N‖2

}
/
√
N

≤ max
k

σN ‖Bk‖2

(√
M +

√
N
)
/
√
N

= max
k

σN ‖Bk‖2

(√
M/N + 1

)
, (F.10)

where the expectation of the spectral norm of an M×N complex Gaussian matrix, with
entries according to [N ]m,n ∼ NC(0, σ2

N), is bounded as E{‖N‖2} ≤ σ(
√
M +

√
N)

[RV10,T+15,PE10], as discussed for (A.8).

In the case of partly calibrated arrays, the sensing submatrices are defined as

Bk = blkdiag
(
b(1)(µk), . . . , b

(P )(µk)
)

(F.11)

and the spectral norm can be computed from the square-root of the eigenvalues of the
matrix products

BH
kBk = diag

(
‖b(1)(µk)‖2

2, . . . , ‖b(P )(µk)‖2
2

)
= diag

(
M1, . . . ,MP

)
, (F.12)

which is determined by the largest element of the resulting diagonal matrix such that

‖Bk‖2 = max
p

√
Mp. (F.13)

Using (F.13), the bound in (F.10) can further be rewritten as

E
{

max
k
‖BH

kN‖2/
√
N
}
≤ max

k
σN ‖Bk‖2

(√
M/N + 1

)
= max

p
σN

√
Mp

(√
M/N + 1

)
. (F.14)

From (F.9) and (F.14), it can be concluded that a regularization parameter selection
according to

λ = max
p

σN

√
Mp

(√
M/N + 1

)
(F.15)

fulfills condition (F.9) and will suppress the noise in the signal estimate, retaining only
signal components in the sparse estimate Ẑ. Similar to the discussion in Appendix A,
the upper bound on the spectral norm used in (F.10) is tight for large values of sensors
M and snapshots N . In the non-asymptotic case of small values for M or N , the bound
used in (F.10) might be loose and the regularization parameter in (F.15) might be too
large, leading to suppression not only of noise, but also of signal components in the
estimate Ẑ.
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G Equivalence of COBRAS and `∗,1 Minimization

The proof of Theorem 5.1 relies on the following lemma, see [SS05,RFP10]:

Lemma G.1. The nuclear norm of the P ×N matrix Zk is equivalently computed by
the minimization problem

‖Zk‖∗ = min
Γ k,Hk

{1

2

(
‖Γk‖2

F + ‖Hk‖2
F

)
: ΓkHk = Zk

}
, (G.1)

where Γ k and Hk are complex matrices of dimensions P × r and r ×N , respectively,
with r = min(N,P ).

Proof of Lemma G.1. Define the compact singular value decomposition of matrix Zk

as

Zk = U kΣkV
H
k , (G.2)

such that the factorization terms of Zk = Γ kHk can be expressed as

Γ k = U kΣ̃k,1W
H
k and Hk = W kΣ̃k,2V

H
k , (G.3)

for Σk = Σ̃k,1Σ̃k,2 of size r × r, and some r × r arbitrary unitary matrix W k, i.e.,
W H

kW k = Ir. Based on (G.3) it holds that

‖Zk‖∗ = ‖Σk‖∗ = ‖Σ̃k,1Σ̃k,2‖∗
≤ ‖Σ̃k,1‖F‖Σ̃k,2‖F
= ‖Γ k‖F‖Hk,2‖F, (G.4)

where the inequality stems from the Cauchy-Schwartz inequality and is fulfilled with
equality if and only if Σ̃k,1 = Σ̃k,2 = Σ

1/2
k . In this case, the matrix factors in (G.3)

are given as

Γ k = U kΣ
1
2
kW

H
k and Hk = W kΣ

1
2
kV

H
k . (G.5)

Furthermore, by the arithmetic-geometric-mean inequality it follows that

‖Γ k‖F‖Hk,2‖F ≤
1

2

(
‖Γ k‖2

F + ‖Hk‖2
F

)
, (G.6)

where equality holds if ‖Γ k‖F = ‖Hk‖F, such that the minimum of (G.1) is given by
‖Zk‖∗ = 1

2

(
‖Γk‖2

F + ‖Hk‖2
F

)
, with Γk and Hk given in (G.5).

Proof of Theorem 5.1. Based on Lemma G.1, the `∗,1 mixed-norm of the source signal
matrix Z = [ZT

1 , . . . ,Z
T
K ]T, as defined in (5.24), is equivalently computed by
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‖Z‖(P×N)
∗,1 =

K∑
k=1

‖Zk‖∗

= min
{Γ k∈CP×r,Hk∈Cr×N}

{1

2

K∑
k=1

(
‖Γ k‖2

F + ‖Hk‖2
F

)
: ΓkHk = Zk

}
= min
Γ∈BKP×r,H∈CKr×N

{1

2
(‖Γ ‖2

F + ‖H‖2
F) : Z = ΓH

}
, (G.7)

where r = min(N,P ), Γ = blkdiag(Γ1, . . . ,ΓK) is taken from the set BKP×r of block-
diagonal matrices composed of K blocks of size P × r on the main diagonal, and H =
[HT

1 , . . . ,H
T
K ]T is a Kr×N complex matrix composed of blocks Hk, for k = 1, . . . , K.

Inserting Equation (G.7) into the `∗,1 minimization problem in (5.32), the following
minimization problem can be formulated

min
Γ∈BKP×r,H∈C

Kr×N

1

2
‖BΓH − Y ‖2

F +
λ
√
N

2
(‖Γ ‖2

F + ‖H‖2
F). (G.8)

For a fixed matrix Γ , the minimizer Ĥ of problem (G.7) has the closed form expression

Ĥ = (Γ HBHBΓ + λ
√
NI)−1Γ HBHY

= Γ HBH(BΓΓ HBH + λ
√
NI)−1Y , (G.9)

where the last equation is derived from the Woodbury matrix identity [Sea82, p.151].
Reinserting the optimal matrix Ĥ into Equation (G.8) and performing basic reformu-
lations of the objective function results in the concentrated minimization problem

min
Γ∈BKP×r

λ
√
N

2

(
Tr
(
(BΓΓ HBH+λ

√
NI)−1Y Y H

)
+Tr

(
ΓΓ H

))
. (G.10)

Upon summarizing Y Y H/N = R̂ and defining the positive semidefinite block-diagonal
matrix

S = ΓΓ H/
√
N ∈ BKP+, (G.11)

problem (G.10) can be rewritten as

min
S∈BKP+

λN

2

(
Tr
(
(BSBH + λI)−1R̂

)
+ Tr

(
S
))
. (G.12)

Neglecting the factor λN/2 in (G.12), results in formulation (5.33). Using Equations
(G.2), (G.5) and the definition of Ŝ = blkdiag(Ŝ1, . . . , ŜK) in (G.11) it can be con-
cluded that

Ŝk =
1√
N
Γ̂ kΓ̂

H

k =
1√
N

(ẐkẐ
H

k )1/2, (G.13)

as given in (5.35). Making further use of (G.9) and the factorization in (G.7) yields

Ẑ =Γ̂ Ĥ

=Γ̂ Γ̂
H
BH(BΓ̂ Γ̂

H
BH + λ

√
NI)−1Y

=ŜBH(BŜBH + λI)−1Y , (G.14)

which corresponds to relation (5.34).
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H SDP Form of the Matrix Polynomial Constraint

As discussed in Section 5.3.1 for Equation (5.55), the matrix F COBRAS(z) represents a
matrix polynomial of degree 2(M0 − 1) in the variable z [Dum07]. To see the relation
between matrix Υ 0 and the matrix coefficients Cm, consider the M × P matrix

Ω(z) =
[
IP zIP z2IP . . . zDIP

]T
, (H.1)

as defined in (3.23), and introduce the M ×M permutation matrix J such that the
subarray steering block matrix can be expressed as

B(z) = JΩ(z), (H.2)

as discussed for (3.24). Similar to (3.25), inserting (H.2) in (5.55) yields

F COBRAS(z) = BH(z)Υ 0B(z)

= ΩH(z)JHΥ 0JΩ(z)

= ΩH(z)GΩ(z), (H.3)

where G = JHΥ 0J is of size M ×M and is composed of the P × P blocks Gi,j, for
i, j = 1, . . .M0, as

G =

 G1,1 · · · G1,M0

...
. . .

...
GM0,1 · · · GM0,M0

 . (H.4)

Equation (H.3) is also referred to as the Gram matrix representation of the polynomial
F COBRAS(z), and G is referred to as the corresponding Gram matrix [Dum07].

Using the block trace operator defined in (3.27) and the elementary Toeplitz matrices
Θm introduced in (3.28), the matrix coefficients Cm in (5.55) can be computed from
the Gram matrix G in (H.3) as

Cm = blkTr(P )
(
(Θm ⊗ IP )G

)
, (H.5)

i.e., the summation of the P × P submatrices on the mth block-diagonal of the Gram
matrix G.

Define a second matrix polynomial with constant value IP as

ΩH(z)HΩ(z) = IP (H.6)

such that the corresponding Gram matrix H of size M ×M fulfills

blkTr(P )(H) = IP , (H.7a)

blkTr(P )
(
(Θm ⊗ IP )H

)
= 0 for m 6= 0. (H.7b)
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By using (H.3), (H.6) and (H.7), the matrix polynomial constraint (5.56) can be ex-
pressed as

IP −B(z)H Υ 0B(z) = ΩH(H − JHΥ 0 J)Ω � 0, (H.8)

which is fulfilled for

H − JHΥ 0 J � 0. (H.9)

Applying (H.7) and (H.9) in problem (5.51), the gridless frequency estimation problem

max
Υ 1,Υ 0,H

− 2 Re Tr(Υ 1)− λTr(Υ 0) (H.10a)

s.t.

[
R̂ Υ 1

Υ H
1 Υ 0

]
� 0 (H.10b)

H − JHΥ 0 J � 0 (H.10c)

blkTr(P )(H) = IP (H.10d)

blkTr(P )
(
(Θm ⊗ IP )H

)
= 0 for m 6= 0 (H.10e)

can be defined. Given a minimizer Υ̂ 0 to problem (H.10), the frequency estimation
problem reduces to finding roots for which the constraint (5.56) becomes singular, as
discussed in Section 5.3.1.

I Dual Problem of the COBRAS Formulation

Consider the SDP formulation (5.37) of the COBRAS problem, given as

min
S,WM

Tr(WMR̂) + Tr(S) (I.1a)

s.t.

[
WM IM
IM BSBH + λI

]
� 0 (I.1b)

S ∈ BKP+,WM � 0, (I.1c)

where S = blkdiag(S1, . . . ,SK). Upon introducing the matrix

W̃ =

[
W̃ 11 W̃ 12

W̃ 21 W̃ 22

]
(I.2)

the SDP in (I.1) can be reformulated as

min
S,W̃

Tr(W̃ 11R̂) +
K∑
k=1

Tr(Sk) (I.3a)

s.t. Sk � 0, for k = 1, . . . , K (I.3b)

W̃ � 0 (I.3c)

W̃ 12 = I, W̃ 21 = I (I.3d)

W̃ 22 =
K∑
k=1

BkSkB
H
k + λI. (I.3e)
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The Lagrangian function of (I.3) is given by

L(S, W̃ ,Ω,Γ ,Υ ) =Tr(W̃ 11R̂) +
K∑
k=1

Tr(Sk)

−
K∑
k=1

Tr(ΩkSk)− Tr(ΓW̃ )

+ Re
{

Tr
(
Υ 21(W̃ 12 − I)

)}
+ Re

{
Tr
(
Υ 12(W̃ 21 − I)

)}
+ Re

{
Tr
(
Υ 22(W̃ 22 −

K∑
k=1

BkSkB
H
k − λI)

)}
, (I.4)

withΩ1, . . . ,ΩK � 0, summarized inΩ = blkdiag(Ω1, . . . ,ΩK), being the Lagrangian
multipliers accounting for the positive semidefinite constraints on S1, . . . ,SK in (I.3b),
and Γ � 0 being the Lagrangian multipliers accounting for the positive semidefinite
constraint with regard to W̃ in (I.3c). The matrices Υ 12,Υ 21,Υ 22, summarized in

Υ =

[
Υ 11 Υ 12

Υ 21 Υ 22

]
, (I.5)

represent the Lagrangian multipliers accounting for the equality constraints on subma-
trices W̃ 12, W̃ 21, W̃ 22 in (I.3d) and (I.3e). In a more compact notation, the Lagrangian
function (I.4) can be written as

L(S, W̃ ,Ω,Γ ,Υ ) =Tr

(([
R̂ Υ 12

Υ 21 Υ 22

]
− Γ

)[
W̃ 11 W̃ 12

W̃ 21 W̃ 22

])
+

K∑
k=1

Tr
(
Sk(I −Ωk)− SkBH

kΥ 22Bk

)
− Re

{
Tr(Υ 12 + Υ 21 + λΥ 22)

}
. (I.6)

Minimization of (I.6) with respect to S and W̃ yields

min
S,W̃
L(S, W̃ ,Ω,Γ ,Υ )

=


−Tr(Υ 12 + Υ 21 + λΥ 22) if

[
R̂ Υ 12

Υ 21 Υ 22

]
− Γ = 0,

I −Ωk −BH
kΥ 22Bk = 0, for k = 1, . . . , K

−∞ otherwise.

(I.7)

Since Γ � 0, the first constraint in (I.7) can be relaxed to[
R̂ Υ 12

Υ 21 Υ 22

]
� 0. (I.8)

Moreover, with Ωk � 0, the second constraint can be relaxed to

I −BH
kΥ 22Bk � 0 for k = 1, . . . , K, (I.9)
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such that the dual problem of (I.3) can be formulated as

max
Υ
− Re

{
Tr(Υ 12 + Υ 21 + λΥ 22)

}
(I.10a)

s.t.

[
R̂ Υ 12

Υ 21 Υ 22

]
� 0 (I.10b)

I −BH
kΥ 22Bk � 0, for k = 1, . . . , K, (I.10c)

as given in (5.51).
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List of Acronyms

ADMM Alternating direction method of multipliers

AMP Approximate message passing

ANM Atomic norm minimization

BCD Block coordinate descent

BP Basis pursuit

BPDN Basis pursuit denoising

CD Coordinate descent

COBRAS Compact block- and rank-sparse reconstruction

DOA Direction of arrival

ESPRIT Estimation of signal parameters via rotational invariance
techniques

FCA Fully calibrated array

GLS Gridless SPICE

GL-COBRAS Gridless COBRAS

GL-SPARROW Gridless SPARROW

IHT Iterative hard thresholding

LAD-LASSO Least absolute deviation LASSO

LASSO Least absolute shrinkage and selection operator

LARS Least angle regression

MI-ESPRIT Multiple-invariance ESPRIT

ML Maximum likelihood

MUSIC Multiple signal classification

OMP Orthogonal matching pursuit

PCA Partly calibrated array

RDS Rekonstruktion dünnbesetzter Signale

RMSE Root-mean-square error
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SDP Semidefinite program

SNR Signal-to-noise ratio

SPARROW Sparse row-norm reconstruction

SPICE Sparse iterative covariance-based estimation

SR-LASSO Square-root LASSO

SSR Sparse signal reconstruction

STELA Soft-thresholding and exact line search algorithm

SVD Singular value decomposition

SVT Singular value thresholding

TLA Thinned linear array

ULA Uniform linear array
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List of Symbols

Constants and Sets

j Imaginary unit
√
−1

0 Matrix of zeros of conformable dimensions

1 Matrix of ones of conformable dimensions

IM Identity matrix of dimensions M ×M
J Selection and permutation matrix

Θm Elementary Toeplitz matrix with ones on mth diagonal and
zeros elsewhere

R Real numbers

RM Real M × 1 vectors

RM×N Real M ×N matrices

C Complex numbers

CM Complex M × 1 vectors

CM×N Complex M ×N matrices

DK K ×K diagonal matrices

DK+ Nonnegative K ×K diagonal matrices

BKP×r Block-diagonal matrices composed of K blocks of size P×r
on the main diagonal

BKP+ Positive semidefinite block-diagonal matrices composed of
K blocks of size P × P on the main diagonal

Operations and Characterizations

x∗ Complex conjugation of x

Re{x} Real part of x

E{x} Statistical expectation of a random variable x

XT Transpose of matrix X

XH Hermitian, i.e., conjugate transpose, of matrix X

X � 0 Hermitian, positive semidefinite matrix

X � 0 Hermitian, positive definite matrix

⊗ Kronecker product

� Hadamard product, i.e., element-wise matrix multiplica-
tion



146 List of Symbols

diag(x1, . . . , xK) Diagonal matrix containing the elements x1, . . . , xK on its
main diagonal

blkdiag(X1, . . . ,XK) Block-diagonal matrix containing the submatrices X1, . . .,
XK on its main diagonal

vec(X) Vectorization of the matrix X

vecd(X) Vectorization of the diagonal elements of square matrix X

Tr(X) Trace of square matrix X

blkTr(P )(X) Block-trace of X, i.e., sum of P × P submatrices on main
diagonal of matrix X

rank(X) Rank of X

Toep(x) Toeplitz matrix with elements of x in its first row and
column

HToep(x) Hermitian Toeplitz matrix with elements of x in its first
column

|x| absolute value of x

‖x‖0 `0 quasi-norm of vector x

‖x‖1 `1 norm of vector x

‖x‖2 `2 norm of vector x

‖x‖∞ `∞ norm of vector x, i.e., largest absolute element of vec-
tor x

‖X‖2,1 `2,1 mixed-norm of matrix X

‖X‖2 Spectral norm, i.e., largest singular value, of matrix X

‖X‖∗ Nuclear norm, i.e., sum of singular values, of matrix X

‖X‖F Frobenius norm of matrix X

‖X‖(P×N)
∗,1 Mixed nuclear and `1 norm on P ×N submatrices of X

‖X‖(P×N)
F,1 Mixed Frobenius and `1 norm on P ×N submatrices of X

Variables

α(p) Perturbation coefficient for subarray p

β Threshold parameter for sparse signal reconstruction

δ Uniform frequency grid spacing

∆ Common sensor array baseline

η(p) Position of subarray p relative to subarray 1

θl Angular direction of source signal l

λ Regularization parameter for sparse signal reconstruction

µl Spatial frequency corresponding to source direction θl

νk Sampled spatial frequency with index k
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ξm mth eigenvalue of the signal covariance matrix R

Ξ Diagonal matrix containing the eigenvalues of the signal
covariance matrix R

Π Source covariance matrix

ρ
(p)
m Position of sensor m in subarray p relative to sensor 1 in

subarray p

σ2
N Noise variance

τ Iteration index for iterative optimization methods

φ(µ,α,η) Subarray displacement shift vector

Φ(µ,α,η) Block-diagonal matrix containing the subarray displace-
ment shifts

Φ̄(µ) Diagonal matrix containing direction dependent complex
phase shifts

ψ(t) Source signal vector in time instant t

Ψ Source signal matrix under coherent processing

Ψ̃
(p)

Source signal matrix observed by subarray p under inco-
herent processing

Ψ̃ Source signal matrix observed by all subarrays under inco-
herent processing

a(µ) Array response vector of entire array

a(p)(µ) Array response vector of subarray p

B(µ) Subarray response block matrix p

L Number of source signals

L̂ Estimated number of source signal

K Number of sampled frequencies

M Number of sensors in entire array

Mp Number of sensors in subarray p

N Number of signal snapshots

n(t) Sensor noise vector in entire array in time instant t

n(p)(t) Sensor noise vector in subarray p and time instant t

N Sensor noise matrix in entire array

N (p) Sensor noise matrix in subarray p

Ñ
(p)

Sensor noise matrix in subarray p under incoherent pro-
cessing

P Number of subarrays

rm Position of sensor m in FCA

r
(p)
m Position of sensor m in subarray p in PCA



148 List of Symbols

R Signal covariance matrix

R0 Sparse representation of signal covariance matrix

R̂ Sample covariance matrix

Ŝ Estimated (block-) diagonal signal magnitude matrix

tn Time at sample index n

t
(p)
n Time at sample index n in subarray p

US Signal subspace

UN Noise subspace

T Subspace / steering matrix rotation operator

x̌(t) True sparse representation of signal vector ψ(t)

x̂(t) Estimated sparse representation of signal vector ψ(t)

X̌ True row-sparse representation of signal matrix Ψ

X̂ Estimated row-sparse representation of signal matrix Ψ

y(t) Sensor measurement vector in time instant t

y(p)(t) Sensor measurement vector in subarray p and time instant t

Y Sensor measurement matrix

Y (p) Sensor measurement matrix in subarray p

Ỹ
(p)

Sensor measurement matrix in subarray p under incoherent
processing

Ỹ Sensor measurement matrix under incoherent processing

Ž True block- and rank-sparse extended signal matrix for co-
herent processing in PCA

Ẑ Estimated block- and rank-sparse extended signal matrix
for coherent processing in PCA

ˇ̃Z True block-sparse extended signal matrix for incoherent
processing in PCA

ˆ̃Z Estimated block-sparse extended signal matrix for incoher-
ent processing in PCA
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von harmonischen Funktionen mit ihren Koeffizienten und über den
Picard-Landauschen Satz,” Rendiconti del Circolo Matematico di Palermo
(1884-1940), vol. 32, no. 1, pp. 218—-239, 1911.

[CFG13] E. J. Candès and C. Fernandez-Granda, “Super-resolution from noisy
data,” Journal of Fourier Analysis and Applications, vol. 19, no. 6, pp.
1229–1254, 2013.

[CFG14] ——, “Towards a mathematical theory of super-resolution,” Communi-
cations on Pure and Applied Mathematics, vol. 67, no. 6, pp. 906–956,
2014.

[CH06] J. Chen and X. Huo, “Theoretical results on sparse representations of
multiple-measurement vectors,” IEEE Transactions on Signal Processing,
vol. 54, no. 12, pp. 4634–4643, Dec. 2006.

[CR06] E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles
and optimally sparse decompositions,” vol. 6, no. 2, pp. 227–254, 2006.

[CR12] E. Candès and B. Recht, “Exact matrix completion via convex optimiza-
tion,” Communications of the ACM, vol. 55, no. 6, pp. 111–119, 2012.

[CRPW12] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The con-
vex geometry of linear inverse problems,” Foundations of Computational
Mathematics, vol. 12, no. 6, pp. 805–849, 2012.

[CRT06a] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[CRT06b] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on pure and
applied mathematics, vol. 59, no. 8, pp. 1207–1223, Aug. 2006.



Bibliography 151

[CSPC11] Y. Chi, L. Scharf, A. Pezeshki, and A. Calderbank, “Sensitivity to basis
mismatch in compressed sensing,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 5, pp. 2182–2195, May 2011.

[CT05] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans-
actions on Information Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[CW05] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4, pp.
1168–1200, 2005.

[CWB08] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted `1 minimization,” Journal of Fourier analysis and applications,
vol. 14, no. 5, pp. 877–905, 2008.

[DE03] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,” in Proceedings of the
National Academy of Sciences, vol. 100, no. 5, 2003, pp. 2197–2202.

[DF10] K. Dvijotham and M. Fazel, “A nullspace analysis of the nuclear norm
heuristic for rank minimization,” in Proceedings of the IEEE International
Conference on Acoustics Speech and Signal Processing (ICASSP), 2010,
pp. 3586–3589.

[DMM09] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms
for compressed sensing,” Proceedings of the National Academy of Sciences,
vol. 106, no. 45, pp. 18 914–18 919, 2009.

[Don92] D. L. Donoho, “Superresolution via sparsity constraints,” SIAM Journal
on Mathematical Analysis, vol. 23, no. 5, pp. 1309–1331, 1992.

[Don95] ——, “De-noising by soft-thresholding,” IEEE Transactions on Informa-
tion Theory, vol. 41, no. 3, pp. 613–627, May 1995.

[Don06] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[dP95] G. de Prony, “Essai expérimental et analytique: sur les lois de la dilata-
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[Fuc97] J.-J. Fuchs, “Extension of the Pisarenko method to sparse linear arrays,”
IEEE Transactions on Signal Processing, vol. 45, no. 10, pp. 2413–2421,
1997.

[GB08] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, V. Blondel, S. Boyd, and
H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110.

[GB14] ——, “CVX: MATLAB software for disciplined convex programming, ver-
sion 2.1,” http://cvxr.com/cvx, Mar. 2014.

[GE95] A. B. Gershman and V. T. Ermolaev, “Optimal subarray size for spatial
smoothing,” IEEE Signal Processing Letters, vol. 2, no. 2, pp. 28–30, Feb.
1995.
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[Töp11] O. Töplitz, “Zur Theorie der quadratischen und bilinearen Formen von
unendlich vielen Veränderlichen,” Mathematische Annalen, vol. 70, no. 3,
pp. 351–376, 1911.

[Tro06] J. A. Tropp, “Algorithms for simultaneous sparse approximation. Part II:
Convex relaxation,” Signal Processing, vol. 86, no. 3, pp. 589–602, 2006.

[Tse01] P. Tseng, “Convergence of a block coordinate descent method for non-
differentiable minimization,” Journal of optimization theory and applica-
tions, vol. 109, no. 3, pp. 475–494, 2001.

[TVW05] B. A. Turlach, W. N. Venables, and S. J. Wright, “Simultaneous variable
selection,” Technometrics, vol. 47, no. 3, pp. 349–363, 2005.

[TW10] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution
of linear inverse problems,” Proceedings of the IEEE, vol. 98, no. 6, pp.
948–958, 2010.

[TYN14] Z. Tan, P. Yang, and A. Nehorai, “Joint sparse recovery method for com-
pressed sensing with structured dictionary mismatches,” IEEE Transac-
tions on Signal Processing, vol. 62, no. 19, pp. 4997–5008, 2014.

[TZW17] Z. Tian, Z. Zhang, and Y. Wang, “Low-complexity optimization for two-
dimensional direction-of-arrival estimation via decoupled atomic norm
minimization,” in Proceedings of the IEEE International Conference on



160 Bibliography

Acoustics, Speech and Signal Processing (ICASSP), Mar. 2017, pp. 3071–
3075.

[VB96] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review,
vol. 38, no. 1, pp. 49–95, 1996.

[VP11] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers
and arrays,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp.
573–586, 2011.

[VS94] M. Viberg and A. Swindlehurst, “A Bayesian approach to auto-calibration
for parametric array signal processing,” IEEE Transactions on Signal Pro-
cessing, vol. 42, no. 12, pp. 3495–3507, Dec. 1994.

[vT02] H. L. van Trees, Optimum Array Processing: Part IV of Detection, Esti-
mation, and Modulation Theory. New York: John Wiley & Sons, Inc.,
2002.

[Wat92] G. A. Watson, “Characterization of the subdifferential of some matrix
norms,” Linear algebra and its applications, vol. 170, pp. 33–45, 1992.

[Wax85] M. Wax, “Detection and estimation of superimposed signals,” Ph.D. dis-
sertation, Stanford University, 1985.

[Wax91] ——, “Detection and localization of multiple sources via the stochastic
signals model,” IEEE Transactions on Signal Processing, vol. 39, no. 11,
pp. 2450–2456, Nov. 1991.

[WF91] A. J. Weiss and B. Friedlander, “Self-calibration in high-resolution array
processing,” in Advances in Spectrum Estimation and Array Processing,
S. Haykin, Ed. Prentice-Hall, 1991, vol. II.

[WK85] M. Wax and T. Kailath, “Decentralized processing in sensor arrays,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 5,
pp. 1123–1129, 1985.

[WLJ07] H. Wang, G. Li, and G. Jiang, “Robust regression shrinkage and consis-
tent variable selection through the LAD-LASSO,” Journal of Business &
Economic Statistics, vol. 25, no. 3, pp. 347–355, 2007.

[WR04] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Transactions on Signal processing, vol. 52, no. 8, pp. 2153–2164,
2004.

[Wri97] S. J. Wright, Primal-dual interior-point methods. Philadelphia: Society
for Industrial and Applied Mathematics, 1997.

[Wri15] ——, “Coordinate descent algorithms,” Mathematical Programming, vol.
151, no. 1, pp. 3–34, 2015.

[WWX13] Y. Wang, J. Wang, and Z. Xu, “On recovery of block-sparse signals via
mixed `2/`q (0 < q ≤ 1) norm minimization,” EURASIP Journal on
Advances in Signal Processing, vol. 2013, no. 1, pp. 1–17, 2013.



Bibliography 161

[YL06] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society. Series B (Sta-
tistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.

[YLSX17] Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for direction-
of-arrival estimation,” in Academic Press Library in Signal Processing -
Array, Radar and Communications Engineering, 1st ed., S. Theodoridis
and R. Chellappa, Eds. Academic Press, Oct. 2017, vol. 7, ch. 11.

[YP17] Y. Yang and M. Pesavento, “A unified successive pseudoconvex approx-
imation framework,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3313–3328, Jul. 2017.

[YX15a] Z. Yang and L. Xie, “Enhancing sparsity and resolution via reweighted
atomic norm minimization,” IEEE Transactions on Signal Processing,
vol. 64, no. 4, pp. 995–1006, Feb. 2015.

[YX15b] ——, “On gridless sparse methods for line spectral estimation from com-
plete and incomplete data,” IEEE Transactions on Signal Processing,
vol. 63, no. 12, pp. 3139–3153, 2015.

[YX16a] ——, “Exact joint sparse frequency recovery via optimization methods,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5145–5157,
Oct. 2016.

[YX16b] ——, “On gridless sparse methods for multi-snapshot DOA estimation,”
in Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Mar. 2016, pp. 3236–3240.

[YXS16] Z. Yang, L. Xie, and P. Stoica, “Vandermonde decomposition of multilevel
Toeplitz matrices with application to multidimensional super-resolution,”
IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3685–3701,
Jun. 2016.

[ZLG11] H. Zhu, G. Leus, and G. Giannakis, “Sparsity-cognizant total least-squares
for perturbed compressive sampling,” IEEE Transactions on Signal Pro-
cessing, vol. 59, no. 5, pp. 2002–2016, May 2011.

[Zou06] H. Zou, “The adaptive LASSO and its oracle properties,” Journal of the
American statistical association, vol. 101, no. 476, pp. 1418–1429, 2006.





163

Lebenslauf

Name: Christian Steffens

Geburtsdatum: 24.05.1981

Geburtsort: Norden, Deutschland

Studium

10/2002 - 06/2010 Diplom in Elektro- und Informationstechnik,
Universität Bremen

Schulausbildung

06/1994 - 06/2000 Allgemeine Hochschulreife,
Gymnasium Ulricianum, Aurich

Berufstätigkeit

seit 06/2017 Senior Systems Engineer bei Telespazio VEGA Deutsch-
land, Darmstadt

11/2010 - 10/2016 Wissenschaftlicher Mitarbeiter am Fachgebiet Nachrich-
tentechnische Systeme, Technische Universität Darm-
stadt

08/2008 - 10/2008 Fachpraktikum bei der MIMOon GmbH, Duisburg

04/2007 - 04/2008 Studentische Hilfskraft am Arbeitsbereich Nachrichten-
technik, Universität Bremen

Wettbewerbe und Auszeichnungen

06/2014 “Student best paper award” (dritter Preis) für den
Beitrag “Direction Finding and Array Calibration Based
on Sparse Reconstruction in Partly Calibrated Arrays”,
bei dem IEEE Sensor Array and Multichannel Signal
Processing Workshop (SAM) 2014, A Coruna, Spanien
(Koautoren Pouyan Parvazi und Marius Pesavento)

06/2009 Teilnahme an der Finalrunde des Rohde & Schwarz Fall-
studienwettbewerbs ”Ready for take off - die Zukunft
der Flugsicherung liegt in Ihrer Hand!”, München


	Introduction
	Signal Model
	Fully Calibrated Arrays
	Uniform Linear Arrays
	Thinned Linear Arrays

	Partly Calibrated Arrays
	Coherent Processing
	Incoherent Processing
	Identical Uniform Linear Subarrays
	Thinned Linear Subarrays
	Shift-Invariant Arrays
	Thinned Shift-Invariant Arrays


	State of the Art
	Subspace Estimation
	MUSIC Algorithms
	RARE Algorithms
	ESPRIT Algorithms

	Sparse Reconstruction for Fully Calibrated Arrays
	Sparse Reconstruction from Single Snapshots
	l1 Norm Minimization
	Atomic Norm Minimization

	Joint Sparse Reconstruction from Multiple Snapshots
	l21 Mixed-Norm Minimization
	Atomic Norm Minimization

	A Compact Formulation for l21 Minimization
	Gridless SPARROW
	Off-Grid SPARROW
	Related Work: SPICE

	Numerical Experiments
	Regularization Parameter Selection
	Resolution Performance and Estimation Bias
	Varying Number of Snapshots
	Correlated Signals
	Off-Grid SPARROW
	Computation Time of SDP Formulations

	Chapter Summary

	Sparse Reconstruction for Partly Calibrated Arrays
	Incoherent Sparse Reconstruction
	lF1 Mixed-Norm Minimization

	Coherent Sparse Reconstruction
	l*1 Mixed-Norm Minimization

	A Compact Formulation for l*1 Minimization
	Gridless COBRAS

	Coherent Sparse Reconstruction for Shift-Invariant Arrays
	Numerical Results
	Regularization Parameter Selection
	Resolution Performance and Estimation Bias
	Arbitrary Array Topologies and Grid-Based Estimation
	Correlated Signals
	Array Calibration Performance
	Computation Time of SDP Formulations

	Chapter Summary

	Low-Complexity Algorithms for Sparse Reconstruction
	Algorithms for Sparse Reconstruction in FCAs
	Coordinate Descent Method for l21 Minimization
	STELA Method for l21 Minimization
	Coordinate Descent Method for SPARROW

	Algorithms for Sparse Reconstruction in PCAs
	Coordinate Descent Method for l*1 Minimization
	STELA Method for l*1 Minimization
	Coordinate Descent Method for COBRAS

	Numerical Experiments
	Sparse Reconstruction in FCAs
	Sparse Reconstruction in PCAs

	Chapter Summary

	Conclusion and Outlook
	Appendix
	Regularization Parameter for l21 Minimization
	Equivalence of SPARROW and l21 Minimization
	Convexity of the SPARROW Problem
	Equivalence of SPARROW and AST
	Dual Problem of the SPARROW Formulation
	Regularization Parameter for l*1 Minimization
	Equivalence of COBRAS and l*1 Minimization
	SDP Form of the Matrix Polynomial Constraint
	Dual Problem of the COBRAS Formulation

	List of Acronyms
	List of Symbols
	Bibliography
	Lebenslauf

