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ABSTRACT 
 

Hyperspectral (HS) data contains spectral response information that provides detailed chemical, moisture, and other 
descriptions of constituent parts of an item. These new sensor data are useful in USDA product inspection and in 
automatic target recognition (ATR) applications. However, such data introduces problems such as the curse of 
dimensionality, the need to reduce the number of features used to accommodate realistic small training set sizes, and the 
need to employ discriminatory features and still achieve good generalization (comparable training and test set 
performance). HS produces high-dimensional data; this is characterized by a training set size (Ni) per class that is less 
than the number of input features (HS λ bands). A new high-dimensional generalized discriminant (HDGD) feature 
extraction algorithm and a new high-dimensional branch and bound (HDBB) feature selection algorithm are described 
and compared to other feature reduction methods for two HS product inspection applications. Cross-validation methods, 
not using the test set, select algorithm parameters.  
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1. INTRODUCTION 
 
Hyperspectral (HS) data is very powerful and provides excellent detailed information useful for many USDA product 
inspection applications. Initial HS results have been achieved in determining wheat grain quality [1-5], in analyzing the 
quality of rice [6-7], in analyzing crops and weeds to control herbicide use [8-9], in determining moisture in soybean 
seeds [10], sugar content in potatoes [11], sausage quality [12], raisin quality [13], fat content in salmon [14], almond nut 
quality [15-16] and corn quality [17]. 

Use of HS data introduces new problems due to the high dimensionality NF of the input data (the spectral response 
at NF different wavelengths λ produces NF features). When the number of training samples Ni (per class i) does not 
satisfy [18] Fi 10NN > , then generalization problems are expected [19], i.e, training and test set classification 
performance Pc differ. The training set size is rarely adequate and thus this issue is of concern in HS data processing. 
This causes poor estimates of matrices such as the covariance matrix C  and its inverse 1−C required in many 
discrimination algorithms. Thus, we address dimensionality reduction (reducing the number of features NF used) to 
achieve good generalization. We also address use of discriminating features (discriminating functions); much product 
inspection HS work [1-14] and other HS processing [20] have surprisingly used principal component analysis (PCA) 
related methods that are intended for compression, not for discrimination; these methods achieve dimensionality 
reduction and good generalization, but yield poor Pc. Most prior food inspection work [1-14] has involved methods such 
as the partial least square (PLS) method [34] to locate the presence and amount of specific chemicals or elements in a 
given product; this does not require discriminating two types of products as our present applications do. Our applications 
are quite different and involve classification of good and bad products (discrimination). Our proposed features and 
algorithms provide improved Pc as well as good generalization. In all algorithms, various parameters must be selected; 
this is often done ad hoc; we utilize cross-validation methods to achieve algorithm parameter selection (using a 
validation set of data, separate from the test set data) for our almond database. 



 

  

In this paper, we present two new feature reduction algorithms for high-dimensional (HD) HS data. They achieve 
dimensionality reduction and generalization plus discrimination. Most linear discriminant analysis (LDA) methods used 
in high dimensional space require the reduction of feature space first in order to make the covariance matrix invertible; 
this generally uses principal component analysis (PCA) methods, which reduce the feature space without considering the 
loss of discriminating information. These PCA/LDA methods have been used for face recognition [21, 22], and for HS 
processing. We compare our new feature extraction algorithm to PCA, LDA, and PCA/LDA methods. Our high-
dimensional generalized discriminant (HDGD) feature extraction algorithm extracts discriminant features and achieves 
generalization without an initial PCA reduction of the original feature space, since this results in a loss of discriminating 
information. Feature extraction algorithms use all original features. For speed reasons, feature selection (use of only 
several of the original high-dimensional features) is often needed; our high-dimensional branch and bound (HDBB) 
feature selection algorithm achieves this. It is preferable to forward selection methods [23, 24] to select the best λ 
features that are widely used in HS processing. We compare our HDBB algorithm (and our optimal modified MBB 
algorithm) to exhaustive search and the standard BB [25] methods (these three methods are optimal) and to use of 
forward selection (FS) and Kullback-Leibler distance [26] (KLD) to order and select the best reduced set of features.  

Sect. 2 describes the databases used. Various background methods and issues are discussed and demonstrated in 
Sect. 3. Our new algorithms are then presented (Section 4) followed by initial test results (Sections 5, 6, and 7).     

 
2. DATBASES 

 
Initial results are presented for two USDA HS databases. In the almond nut database, the central region of each 

almond is illuminated by a quartz lamp and the transmission spectra from from λ  = 710 to 1390 nm from two different 
fiber optic transmission spectrometers, as detailed elsewhere [15, 16]. The data was obtained in NF =  137 spectral bands 
equally spaced at λ∆  = 5 nm increments. The database consists of the responses for 454 almonds. The problem is to 
classify almond nuts as good or bad (in terms of concealed internal damage that affects taste) from HS data. The 454 nuts 
are divided into a training set of 228 nuts (173 good and 55 bad nuts) and a test set of 226 nuts (172 good and 54 bad); 
we intentionally made the training set and test set approximately equally-sized. For this database, there is not a sufficient 
number of samples for each class, e.g., only 109 bad nuts with only 55 bad nuts in the training set (this is less than the 
number NF = 137 of features); thus, this is a high-dimensional problem and feature reduction is needed. Normalization of 
this HS data is needed because of the wide variations in the spectral transmittance of different nuts due to their skin 
quality, nut thickness, and nut shape [15, 16]. Each data sample is normalized by dividing its spectral response at each λ 
by the average λ response for that sample; this normalization is separately repeated for each sample (training and test 
sets). To select parameters for our algorithms, cross-validation methods [27, 28] are used on a validation set. We use 1/6 
of the training set as a validation set; this selection is randomly repeated six times with a different training and validation 
set, and Pc(train) and Pc(valid) results are averaged and analyzed to select parameters with the best average Pc(valid) 
performance using a nearest neighbor (NNB) classifier. We use Pc over six sets of training and validation set data, since 
the validation set size (1/6 × 228 = 38) is very small. We use this to select the final number of features used in our new 
algorithm, the number of PCA features used in PCA and PCA/LDA algorithms, and in selecting the noise parameter in 
our HDGD algorithm. The test set is always separate from the training and validation sets in all database tests. Use of a 
validation set to select algorithm parameters does not seem to be employed in prior HS work.   

An initial set of corn kernels was also used with hyperspectral data provided by T. Pearson (ARS, Kansas) and with 
aflatoxin level data provided by D. Wicklow (ARS, Peoria, Il). For the corn kernel database, the central 3 mm diameter 
of each kernel was illuminated with a 100 W quartz lamp in a fiber-optic spectrometer and the kernel transmission 
spectra from 500 to 950 nm was obtained. After spectrometer measurements were obtained, each kernel sample was 
chemically analyzed and the amount of aflatoxin in each kernel (in units of ppb, parts per billion) was obtained. The corn 
kernels were grouped into good (0 ppb aflatoxin) and bad (≥ 100 ppb aflatoxin) samples. We have HS data for an initial 
set of 385 corn kernels in NF = 86 spectral bands from 525 to 950 nm, each band covering an equally spaced width of 

λ∆ = 5nm. Data in the first five bands (from 500 - 520 nm) was removed because they are noisy. Of the available 385 
corn kernel samples, 343 kernel samples are good and have no aflatoxin (0 ppb) and the remaining 42 samples are bad 
(infested) and have an aflatoxin level ≥ 100 ppb. These represent all presently available good and bad corn kernel 
samples. In this product inspection problem, the purpose is to classify each corn kernel as either good (aflatoxin negative, 
or no aflatoxin present) or bad (aflatoxin positive, or aflatoxin present). The same normalization used for the almond 
database was employed for the corn database. This is a high-dimensional problem with NF = 86 features, which is larger 



 

  

than the total number of bad samples 42. Since there are so few bad samples, bootstrapping Pc scores are used. We used 
172 of the 343 good samples and half (21) of the bad samples as the training set and the remaining 171 good and 21 bad 
samples are used as the test set. This training and test set selection is repeated 100 times with a different random choice 
of 172 good and 21 bad training set samples selected each time; the average Pc scores for these 100 tests are used to 
select algorithm parameters and for final test results. The purpose is to classify each kernel as good or bad. USDA 
regulations require an average aflatoxin in level of < 20 ppb in a 5 kg random sample. Since a single kernel can have a 
very high aflatoxin in level (> 10,000 ppb), inspection of a larger sample is preferable and this should be possible using 
HS methods. Our present purpose is to determine if HS data can separate whole corn kernels. Initial results indicate that 
this is possible with HS data if a larger training set is available, so that the training set is representative of the test data. 
For the present database and our initial results, we analyze both the training and test set performance to select algorithm 
parameters. Prior work [17] on this corn kernel database used leave-one-out scoring (which yields questionable results) 
and used a Mahalanobis-distance classifier. 

 
 

3. BACKGROUND AND PROBLEM DEFINITIONS 
 
3.1 Poor Generalization 
 

The Fisher discriminant is a widely used linear discrimination analysis (LDA) method [29]. It involves 
transforming the original x data of high dimension (the number of spectral features) to a new 1-D feature space y = ϕϕϕϕTx in 
which good/bad products are better separated. The transformation ϕϕϕϕ is chosen to maximizing the Fisher ratio 
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where R = (µµµµ1 - µµµµ2)(µµµµ1 - µµµµ2)T is the between-class covariance matrix (µµµµi is the mean vector of class i) and 

21w CCC += is the within-class covariance matrix, where 1C and 2C are the covariance matrices for good and bad 
classes 1 and 2. The solution φ is well-known to be the dominant eigenvector solution to the generalized eigenvalue 
problem  
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If wC  is non-singular, the solution is 
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Since R has rank 1, there is only one eigenvector solution. The new feature is the scalar y = ϕϕϕϕTx. For our cases, wC is ill-
conditioned, but is not singular. For this reason, Pc for LDA is expected to have poor generalization, as we now show. As 
Table 1 shows Pc(train) is nearly perfect. However, because wC is ill-conditioned, small changes or the addition of noise 

to the training set can drastically change wC and 1−
wC and hence ϕϕϕϕ [30]. The test set data can be viewed as the training 

set data with small changes; thus, quite different test set performance results and hence poor generalization, as Table 1 
shows. 

 
 

Table 1. Almond HS Pc results using the LDA feature 
  

   Pc(train)               Pc(test) 
    99.6%                  83.6%     

 



 

  

3.2    Reduced Dimensionality Methods (PCA and PCA/LDA) 
 

The standard approaches to achieve good generalization involve dimensionality reduction of the feature space to a 
smaller space such that Fi 10NN > is satisfied. These methods are variations of principal component analysis (PCA) or 
Karhunen-Loeve (KL) analysis  (Partial-least squares (PLS) is a related method for different applications). We now 
review PCA for dimensionality reduction. The full covariance matrix C of all the data (in both classes) is calculated. To 
reduce the dimensionality of the data from NF to d < Ni, while preserving the most information in the original data, we 
calculate the d dominant eigenvectors of C and denote them as iv′ . We form a NF × d matrix A with the iv′  as its 
columns (each of dimension NF). We then transform the original x data (of dimension NF) to a reduced d < NF 
dimensional space with new features xTAy = . This projects the high-dimensional original data onto the eigenvectors 

iv′  to produce new features of reduced dimension. To demonstrate that these PCA features provide generalization, we 
consider the almond database. From cross-validation, we found that m = 6 PCA features was best. Table 2 shows the 
classification results using PCA features. As seen, generalization is excellent. However, the scores do not represent the 
best Pc. This is expected, since PCA uses only the dominate eigenvectors; these contain the information that is common 
to both the good and bad classes of data. It is best for representation of both classes of data (hence generalization is 
good); but it is not best for discrimination between the two classes of data (hence, Pc is poor). In practice, the lower 
eigenvectors are expected to contain information that is more useful for discrimination between the two classes of data. 
Thus, use of dominate vectors (PCA, KL, PLS, etc) is not expected to give good Pc results. This vital point is emphasized 
as it seems to largely not be appreciated. 

 
Table 2. HS almond Pc results using m = 6 PCA features 

 
Pc(train)            Pc(valid)            Pc(test) 
85.1%               83.8%                84.1% 

 
To improve the Pc of PCA features, LDA has been applied to the PCA features; an LDA combination of PCA 

features is produced. This is referred to as PCA/LDA feature extraction. Table 3 shows the results obtained for the 
almond database. Generalization is good, as expected, due to the PCA feature reduction step. However, Pc performance is 
not noticeably better than when only PCA features were used. This is due to the fact that the data is not linearly separable 
in LDA feature space. This is not unexpected. This notes yet another disadvantage of LDA feature extraction: it only 
provides one resultant feature. An NNB classifier is used in Table 2-3 and utilizes the more than one PCA features in 
Table 2, thus improving its Pc. Our new HDGD feature extraction algorithm also provides more than one feature. This is 
expected to improve results, since now higher-order decision surfaces can be used in the classifier. 

   
Table 3. HS almond Pc results using the PCA/LDA feature (with m = 8 PCA features) 

 
Pc(train)            Pc(valid)            Pc(test) 
85.5%               85.6%                85.8% 

 
3.3 Waveband Selection   
 

For different HS applications, the use of fewer λ is preferable, as it can lead to faster sensor systems. With LEDs 
or laser diodes at only several λ used, more detected light in certain λ bands is possible; hence, the total integration time 
can be reduced, and thus the number of samples inspected per second can be increased. Similarly, a set of several optical 
filters can be used to allow rapid imaging at several λ onto several detector arrays. In waveband selection, we select a 
reduced number of the original features. Several summaries of feature selection methods exist [31, 32], with no method 
being clearly best for high-dimensional data (although versions of forward selection perform well). Recall that optimal 
feature selection is an N-P complete problem. Only an exhaustive search can determine the best set of m features out of 
NF original features [33]. Forward selection has been found [32] to be one of the better methods to order a set of features 
by which are best. However, it exhibits nesting problems. It adds additional features to previously selected features such 
that the combination gives better performance than the prior set of features did. However, the best set of 3 features may 



 

  

not contain the best set of 2 features, etc. Forward selection only orders the set of features by which are best; it will not 
tell us how many features to use (we use cross-validation methods for this). We also considered use of the Kullback-
Leibler distance (KLD) [38] to select a subset of m features, since it selects features which are most different (and does 
not require inversion of C); however, the most different features are not necessarily best for discrimination. Exhaustive 
search methods are the only optimal methods to select the best subset m of n original features. The branch and bound 
(BB) algorithm [25] is an efficient optimal solution for the best feature subset. However, neither method is 
computationally practical for high-dimensional feature data. 
 

4. HIGH-DIMENSIONAL FEATURE REDUCTION ALGORITHMS 
 
4.1 High-Dimensional Generalized Discriminant (HDGD) Feature Extraction Algorithm 
 

For high-dimensional feature extraction, we rewrite Cw as ∑
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From this spectral decomposition of Cw, we see that iw

T
ii vCv=λ  and that the denominator iλ  in (4) is the variance of 

the projections of the two classes onto the corresponding eigenvector. Eq. (4) shows that the LDA solution is just a 
weighted linear combination of the n eigenvectors vi of the within-class covariance matrix Cw. The linear combination is 
heavily weighted by the smallest eigenvectors (these are unreliable) and this leads to an unreliable (noise sensitive) 
estimate of 1−

wC and of ϕ  and hence poor generalization. Thus, LDA involves projecting the data onto all of the 
eigenvectors vi of Cw and then linearly combining all of these projections.    

In our new HDGD algorithm, we use only some of the eigenvectors vi and as our features we use the projections 
onto these vi. Thus, we produce multiple output features, rather than just one (as in LDA) and we thus expect better 
performance. To select the vi to use, we add zero-mean Gaussian noise to the training set data, we note the amount ∆λi by 
which the eigenvalue λi for a given vi changes. For each eigenvector vi, we calculate the new performance measure 

                                                )/|∆|/(|(| 2
2

T
iλiλiλiJ +−= )µµv 1i .                                                      (5) 

 
We order the vi by Ji and select the number of HDGD features and the amplitude of noise by cross-validation. In (5), the 
numerator of Ji is large if the mean separation of the projections of the two classes is large (i.e., if discrimination is good) 
and the denominator of Ji is small if ∆λi is small (i.e., if generalization is good, if the eigenvalue is reliable) and if the 
variance of the projection (λI) is small. Thus, the vi so selected have good discrimination, low scatter, and good 
generalization. 
 
4.2 High-Dimensional Branch and Bound (HDBB) Feature Selection Algorithm 
 

To select the best m out of NF high-dimensional features to use, we use KLD to select an initial subset of 30 
features (more are possible, as the number of subsequent calculations is not excessive). We then use a modified branch 
and bound (MBB) algorithm to select the best m of NF features. This is our new HDBB feature selection algorithm. This 
is still an optimal search algorithm over the reduced set of initial features. It is faster than BB and much faster than an 
exhaustive search. We use cross-validation to select m. To describe our MBB algorithm, we now review the basic BB 
algorithm [25]. 



 

  

In the BB algorithm, a search tree is produced with n - m levels to select m features out of n, and one feature is 
omitted at each level of the tree. The algorithm first follows one complete path of n - m nodes to the bottom of the tree 
and for that path (set of m features) it computes an estimate (a bound B) on the criteria function J being used. Larger J 
values are better. J is then evaluated at the nodes at a given level of the tree; if J < B for a given node, then J need not be 
evaluated at nodes under that node (J decreases as we proceed down the tree, since fewer features are then used, i.e., 
more features are omitted). In our MBB algorithm, we use the Bhattacharya distance as the criteria function J. The 
modifications in our MBB algorithm include: efficient evaluation of paths through the tree with no branches [35], starting 
searches at levels 1/4 and 1/2 of the way down the tree, use of an ordered set of features (nodes) by which are best using 
forward selection, and calculation of a good initial bound B (using the m best features chosen by forward selection). At 
the upper levels of the search tree, we do not expect J < B, since only one or two features (the best ones by forward 
selection) are omitted. Thus, starting searches further down the tree speeds-up the search (as J must typically be 
evaluated for most of the nodes at the top of the tree). Ordering the features by some estimate of which features are best 
(the original BB algorithm uses an arbitrary order) significantly speeds up the search since the best features are at the top 
of tree and omitting these "better" features first is expected to produce a J < B sooner (hence, J need not be evaluated for 
nodes below such a node). Rapid selection of a good initial large B (using features ordered by any estimate of which are 
best, such as forward selection) also makes J < B more likely to occur earlier in the tree search (thus, allowing evaluation 
of J to be omitted for regions of the tree).         

 
                                                                 

5. FEATURE EXTRACTION ALGORITHMS (ALMOND DATABASE) 
 

For visualization, we project the original feature space (137) onto a 2-D space. Figure 1 shows the PCA projections 
for the two best PCA vectors (those with the largest eigenvalues of Cw) for the training and test sets; Figure 2 shows 
projections onto the two eigenvectors with the two smallest eigenvalues of Cw for the training and test sets; Figure 3 
shows the projections onto the two best vectors for our HDGD algorithm for the training and test sets. Class 1 samples 
are shown as ‘•’ and class 2 samples as ‘*’. As seen, the samples in the two classes after projection onto the PCA vectors 
overlap considerably (thus, poor discrimination is expected); training samples in the two classes after projection onto the 
eigenvectors corresponding to the smallest eigenvalues of Cw are well separated, but test samples are not (this clearly 
demonstrates that eigenvectors corresponding to smallest eigenvalues are sensitive to noise or small changes; thus, we 
expect poor generalization in LDA); for our HDGD algorithm, the samples in the two classes are well separated for both 
the training and test sets (thus, we expect good generalization and good discrimination).  

 
 

                         
 

(a)                                                                                                          (b) 
 

Figure 1. 2-D projections onto the two best PCA vectors for the almond database. (a) training set and (b) test set.  
 



 

  

                      
(a)                                                                                                               (b) 

Figure 2. 2-D projections onto the two smallest eigenvectors of Cw for the almond database. (a) training set and (b) test set.  
 

                          
(a)                                                                                                                (b) 

Figure 3. 2-D projections onto the two best HDGD algorithm vectors for the almond database. (a) training set and (b) test set. 
 
From cross-validation tests, we selected: the σn noise level used in the HDGD algorithm (σn = 0.01σs, where σs is 

the variance of the training set), the number of final features in PCA feature extraction (m = 5) and in the PCA step (m = 
8) in the PCA/LDA algorithm, and the number of our HDGD features used (m = 4). Table 4 summarizes Pc scores for the 
four feature extraction algorithms. As expected and noted earlier, generalization is poor for LDA features, generalization 
is excellent but Pc is poor for PCA features and Pc is poor for PCA/LDA features. Our new HDGD features perform best 
by a significantly 6 - 7%. Thus, almond nut classification is possible using HS data and our new HDGD feature 
extraction algorithm. 

 
Table 4. Classification results using PCA, LDA, PCA/LDA, and HDGD algorithms on the almond database. 

 
    LDA          PCA         PCA/LDA        HDGD 

Pc(train)% 

Pc(test) % 

    99.6           85.1              85.5                92.5  

    83.6           84.1              85.8                90.7 

 
 

6. FEATURE SELECTION ALGORITHMS (ALMOND DATABASE) 
 

To compare the computation times for our modified Branch and Bound (MBB) algorithm to these for the BB and 
exhaustive search algorithms, we first used the KLD algorithm to reduce the number of original λ wavebands from 137 
to 30. The three optimal feature selection algorithms were then used to select different smaller feature subsets from the 
reduced 30-dimensional feature space. Figure 4 is a semi-log scale plot, in which a logarithmic (base 10) axis is used for 
the Y-axis. It shows the number of times that the three algorithms had to evaluate the criteria function J for different 



 

  

numbers of final selected features. The number of calculations of J is a measure of the speed of the different algorithms. 
By definition, exhaustive search evaluates all possible subsets. When a small number of features is selected, the 
exhaustive search algorithm is faster than BB based methods. When the number of selected features exceeds three, our 
MBB algorithm is more efficient than both the exhaustive search algorithm and the basic BB algorithm. When more than 
four features are selected, both BB based algorithms are faster, with our MBB algorithm being the most efficient and 
with the number of calculations of J in the exhaustive search algorithm increasing exponentially, as expected.  

We used both forward selection (FS) and KLD to select the set of 30 features to which our fast MBB algorithm was 
applied to produce different numbers m of final features. Table 5 lists the best 1 through 7 features selected by our MBB 
algorithm from the 30 initial FS and KLD features. The numbers represent the number of the feature (out of 137). Each 
list of best features is quite different; however, only 8 of the 30 features selected as best by the two algorithms were the 
same (features 1, 46, 86, 90, 93, 101, 103, 130).  
 

 

Figure 4. Comparison of the computation efficiency of the optimal feature selection algorithms on the almond database. 

 
Table 5. Optimal subsets for the almond database 

 
The number of features                       FS/MBB                                HDBB (KLD/MBB) 

1 
2 
3 
4 
5 
6 
7 

                          43                                          40 
                21, 100                                    12, 54 
               3, 86, 98                                 1, 23, 40 
          28, 39, 43, 107                         1, 23, 40, 78 
        10, 11, 42, 43, 53                    1, 23, 40, 72, 78 
    11, 43, 53, 54, 93, 94             12, 35, 40, 46, 54, 103 
 11, 46, 49, 53, 94, 95, 103      1, 23, 40, 46, 72, 78, 103 

 
The FS/MBB data shows the “nesting” problem in FS feature selection, i.e., the best subset of four features (28, 39, 

43, 107) does not contain any feature in the best subset of three features (3, 86, 98) or two features (21, 100). The subsets 
selected by the HDBB algorithm (the MBB algorithm used to select a subset of features from the 30 features selected by 
KLD) are seen to be very different from those selected by FS/MBB. For the best subsets of one to three features selected 
by the HDBB algorithm, there is also little similarity. Our HDBB algorithm selects two new features 12 and 35 in the 
subset of six features, which are not shown in the subsets of three to five features; feature 12 is selected in the subset of 
two features. Thus, an additional optimal algorithm (such as MBB) is needed to select the best subset of m final features 
out of an initial larger set of n = 30 features selected by some suboptimal algorithms to order features (such as FS or 
KLD). Features 1, 23, 40 etc. seem to consistently be in most of the best HDBB subsets of three or more features. 
Adjacent features seem to be useful as the FS/MBB algorithm selects features 42 and 43 in the subset of five features and 
features 53 and 54 in the subset of six features. In the set of 30 best bands selected by KLD, adjacent bands are also 

(MBB) 



 

  

selected (bands 85, 86, 87 and 88). Thus, combining adjacent λ responses to reduce the number of features is not 
advisable and the λ∆  = 5 nm initial resolution seems to be needed. 

To select the final number of features m to use, we used cross-validation for the KLD/MBB feature subsets in 
Table 5 and found the best Pc(valid) to occur with m = 6 features. We thus choose m = 6 features for all algorithms and 
calculated Pc for each case to confirm which feature selection method performance best. Table 6 lists the results. Each 
algorithm selected different subset of the six best features. The best six features ordered by KLD perform worse than the 
best six features selected by FS for this database. However, the best six features chosen by an optimal selection method 
(such as MBB) from a larger set of 30 best FS or KLD features give better performance. Such optimal selection methods 
are thus needed and our HDBB algorithm (using KLD to select the initial subset of features) performs best. 

Table 6. Classification results with 6 selected features for the almond database 
Algorithm               KLD                FS                 FS/MBB             HDBB 
Features selected            1, 46, 55,        11, 43, 48        11, 43, 53        12, 35, 40 

        78, 101, 128     53, 90, 130       54, 93, 94      46, 54, 103 
Pc(train)%  
Pc(test)% 

               77.2                82.3                   84.2                86.0  
               79.2                81.8                   83.5                85.9  

 
            Thus, feature selection (using only six specific λ features vs 137) is also useful for HS inspection (with a 
reduction of ≈ 4% in performance for this database). Feature selection is needed to achieve the high-speed inspection 
rates needed.    

  It is interesting to compare the subset of the best four features selected by our HDBB algorithm with the best 
subset of four features chosen from all 137 original features using the optimal algorithms. We applied our MBB 
algorithm and exhaustive search to the full original data (137 features) to select the best subset of four features. We then 
applied our HDBB algorithm (MBB applied to 30 KLD features). Table 7 lists the subsets of the best four features 
selected by the three algorithms. Table 7 also notes the number of times J was evaluated for the three algorithms (this is a 
measure of the computation load for each algorithm) and the associated computer time required for each algorithm on a 
250 MHz Pentium PC. Our MBB algorithm is about twice as fast as an exhaustive search, while our HDBB algorithm is 
much faster (by a factor of 1600) than exhaustive search. As can be seen, the HDBB algorithm is much faster than both 
the exhaustive search and MBB algorithms (when applied to all 137 original features). The best subset of four features 
chosen was the same for the MBB and exhaustive search algorithms (as expected). The best subset selected by our HDBB 
algorithm has three common features (1, 23, and 40) with the other algorithm. The only different feature is that band 81 
was chosen by the optimal algorithms and band 78 was selected by our HDBB algorithm. All methods generated the 
same J value (= 0.1064) for the best subset of four features. Band 81 was not selected as one of the 30 best features by the 
KLD algorithm and thus it could not be included in the final four HDBB features. Analysis showed negligible difference 
in the response for bands 78 and 81 over the 228 samples in the training set. Thus, the four best bands selected by all 
three algorithms are essential equivalent.  
 

Table 7. The subset of four features selected from the original 137 features for almond HS data 
Algorithm    Number of calculations of J (times)      Four features selected 
Exhaustive search 
MBB 
HDBB 

         14,043,870 (seven days)                        1, 23, 40, 81 
           7,541,999 (four days)                          1, 23, 40, 81  
                15,614 (six minutes)                       1, 23, 40, 78 

   
7. INITIAL HS CORN KERNEL DATABASE RESULTS 

 
Recall that all of these data used bootstrapping and are the average of 100 different training and test set scores. 
 

7.1 Feature Extraction Results 
 

For the HDGD algorithm, we chose σn = 0.02σs for the added noise level. We increased the number of features 
used and selected m for the different algorithms that gave the largest Pc(test). This resulted in use of eight final PCA 
features, four features in the PCA portion of the PCA/LDA algorithm, and seven of our HDGD features. Table 8 lists the 



 

  

total Pc test set scores for the four different feature extraction algorithms. Our HDGD features perform best. Surprisingly, 
PCA features perform quite good. PCA/LDA features perform poorly, since use of more than one final feature seems 
essential. 

Table 8. Test results for the four feature extraction algorithms for the corn kernel database  

Algorithm          PCA/LDA        LDA                   PCA             HDGD 
Pc(test)%               89.4              93.4                     95.5                96.7 

 
These initial results are encouraging. New neural net classifiers are expected to provide even better results [36, 

37], but will require a larger infested kernel database. 
 

7.2       Feature Selection Results 
 

For completeness, feature selection was also addressed to confirm that it also appears possible. Table 9 
summarizes the test set results. These tests are very extensive; they involved analysis of 100 different sets of optimal λ 
bands (one for each of the 100 choices of the training and test set) and employing the MBB algorithm for each of the 
different training sets. From Pc(test) bootstrapped data, we found that five features were best (for our HDBB algorithm) 
and thus, as before, all Pc scores used five final output features. Average scores over 100 runs for our HDBB algorithm 
are slightly higher than for feature extraction (Pc = 97.5% versus 96.7). Thus, feature selection seems possible using only 
five λ bands (allowing faster inspection rates). Tests on a larger database are thus merited.   
 

Table 9. Test results for the feature selection algorithms (using the best five features) for the corn kernel database  

Algorithm       KLD              FS             FS/MBB         KLD/MBB (HDBB)   

Pc(test)%        90.2              93.8                94.0                      97.5 

 
8. SUMMARY AND CONCLUSIONS 

 
Our new feature extraction (HDGD) and feature selection (HDBB) algorithms for high-dimensional data were 

described. On two HS databases, we found them preferable to others. Out feature selection algorithm uses an improved 
branch and bound algorithm. Such an optimal subset feature selection algorithm is needed as we have shown; standard 
methods cannot provide the best ordered set of features, since nesting problems occur in optimal subsets of different 
sizes. Our new techniques appear very useful for product inspection using HS data. Other tests have shown their use on 
several different ATR object detection databases. 
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