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1 TRECVID 2016 Instance Search Task:
Searching Specific Persons in Specific Locations

Abstract. This paper presents our proposed system for TRECVID In-
stance Search Task with novel compound query type. A query is to search
a specific person in a specific location. The system consists of two main
stages. First, we use Bag-of-Visual Word model with geometric verifi-
cation to search for shots with the query location. Using deep features
encoded by a Convolutional Neural Network (CNN), we filter out irrel-
evant ones. Second, we employ VGG-Face model with a linear kernel
classifer to find out shots containing query person among filtered shots
from previous stage. The final result shows that, the proposed system
achieved very high recognition rate. Compared to other teams, our sys-
tem is ranked at the third place for fully automatic run.

1.1 Introduction

Fig.1: A query topic includes location examples (first row images) and person
examples (second row images) marked by magenta boundaries. Programme ma-
terial copyrighted by BBC.

This year, TRECVID Instance Search task (INS) changes format of queries
from searching a single instance such as object, person, location to a new one:
retrieving a specific person at a specific location. This type of query has many
applications in practice such as: surveillance systems, personal video archive
management. Figure 1 gives an example of this type of query. Images in the first
row are examples of a pub that a user want to search. These images cover mul-
tiple views of a location with many irrelevant or noisy objects such as humans,
temporary decorations. These objects may cause low retrieval accuracy due to
noisy features. Images in the second row are examples of the person that the
user also need to find if he appears at the pub.



For location search, this problem can be solved to some extent by using Bag-
of-Visual-Word (BOW) model[l] and its extensions e.g. geometric consistency
checking [2], query expansion[3]. However, the performance of searching spe-
cific person is still very low due to the limited capacity of representation of the
BOW model. This year, we propose a system which leverages both BOW and
CNN based feature for retrieving this new type of query. For location search, we
combine BOW based and CNN based features to improve the performance. For
person search, we use VGG-face feature[4] for recognizing the first video shot
that the human appears. In stead of using distance metric such Lo, we propose
to use a linear kernel method to learn high-level feature encoded by deep CNN.

1.2 Framework Overview

This section describes our framework used in our experiments and its configu-
rations. Query topic of the framework includes location and person examples.
Output of the system is a rank list of video shots sorted in descending order of
similarity score to both location and person examples.
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Fig. 2: Framework overview.

Our proposed system includes three main parts: BOW based retrieval, loca-
tion verification and face recognition for re-ranking. Figure 2 sketches out the
work flow of main components in our INS system. From location example im-
ages, we use Faster RCNNJ5] with pretrained network on PASCAL VOC 2007
to remove human regions which contain a lot of noisy features. These features
encode the person’s clothes texture which sometime increases the bad effect of
burstiness phenomena. Using BOW model, remained region are encoded by a
very sparse feature vector which would be used to build inverted index and
retrieval top ranked list of location.



However, BOW model is a non-structured model which does not take into
account the spatial relationship between visual words. To remove irrelevant shot,
we combine both RANSAC based algorithm and learning based approach for
high level feature vector produced by a very deep CNN network VGG-19]6].

The second main part of this year query is person instance examples. From
the person examples including color images and its masks which help the system
to separate interested person from irrelevant objects. We localize and describe
face examples by using DPM cascade[7] and deep face model [4] included in
MatConvNet library. After this stage, each person is represented by a set of
deep feature vectors. These vectors are then used to learn for a classifier which
will be used to re-rank the ranked list returned for location retrieval stage.

Location Search First, we retrieve shots containing the query location. Our
approach is to fuse rank lists of both holistic and local feature based searching
systems. For the local feature approach, we use the configuration of the state-
of-the-art Bag-of-Visual-Word (BOW) framework for image retrieval. Local fea-
tures of each key frame of a shot are extracted using Hessian-Affine detector and
rootSIFT feature descriptor. All features gathered from database video frames
are clustered using approximate K-Mean algorithm (AKM) with a very large
number of codewords. Then, these features are quantized using last pretrained
codebook with hard-assignment strategy. Finally, each frame is represented by
a very sparse BOW feature using TF-IDF weighting scheme. For compact rep-
resenting, we sum up all BOW vectors of frame of a shot to a single one. These
single feature vectors are used to build inverted index which significantly boost
the speed of retrieval. Top K shots returned from BOW model are then used to
reranking in the next steps. One important parameter in this initial step is the
threshold of top K list. K should be vary when changing query location exam-
ple. When we visualize the z-score normalized distance of all query example, we
found that they have the same distribution as shown in Figure 3. Intuitively, we
fixed the cut off threshold for top K is —2.5.

For the holistic feature based approach, each video frame is represented by a
single high level feature vector which is the output of a fully connected layer of
CNN network. We use a very deep pretrained network, i.e. VGG-19, and remove
the last layer which previously used for classification task. Video frames are re-
sized and normalized before transferring to the feed forward network. The output
of the network is a 4096 dimensional feature vector which is used to represent a
whole video frame. Comparing two video frames is equivalent to comparing their
representing feature vectors. However, using symmetric metric such as Euclidean
distance (L) gets low performance because it takes into account all components
of feature vector evenly. In fact, for each location, some of the components are
important. A learning method is proposed to magnify the role of these key
components.

Face feature learning for reranking The second main part of the query is
person identification. Face recognition is a very popular approach to identify a
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Fig. 3: Distribution of z-score normalized distance.

person. First, DPM cascade detector[3] is applied to point out locations of faces
in maximum 5 keyframes per shot. Then, face images are described by a deep
feature using VGG-Face descriptor[4]. After this module, each face will be rep-
resented by a 4096 dimensional feature vector. Although this feature is designed
to best fit with Lo distance metric, there still has a big gap in performance.
This could be explained that, the face feature vector does not have the same
weight for all components. For each face, the weights of components are differ-
ent. Therefore, we propose to learn these features by a large margin classifier
with linear kernel such as Linear SVM[J]. Each face candidate of a frame of a
shot after transferred to classified will be scored by a value. Where positive value
is equivalent to classified as positive example, and vice versa.

1.3 Owur runs submitted to TRECVID INS 2016

We submitted 4 automatic runs using only image examples of locations and
queries. Table 2 shows run IDs, descriptions and performances in mean average
precision of 4 runs where their priority is sorted from the highest to lowest.
The final result shows that, the proposed system achieved very high recognition
rate but lower at recall (as shown in Figure 4). Compared to other teams, our
performance is ranked at third place for fully automatic run.

There is a big gap from our best run to the first rank team. There are many
reasons to explain this gap. First, we did not use any video query examples for
improving the searching performance. Moreover, in many cases, target persons



Table 1: Description of submitted runs for TRECVID INS 2016

RUN-ID[Description [MAP]
RUN1 |RANSAC and CNN verification + Face reranking using SVM with|0.244
linear kernel
RUN2 |Fusion of RANSAC and CNN verification + Face reranking using L2[0.229
dist.
RUN3 |RANSAC and CNN verification + Face reranking using Lo dist. 0.179
RUN4 |RANSAC verification + Face reranking using Lo dist. 0.231
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Fig. 4: Precision-recall curve of RUN1.

put their backs to the camera so that our system can not detect their faces.
Therefore the final rank lists missed a lot of relevant shots.



2 TRECVID 2016 Ad-hoc Video Search: Enriching
Semantic Features using Multiple Neural Networks

Abstract. Ad-hoc Video Search is a very challenging problem due to
the semantic gap. A rich source of semantic information is video meta-
data e.g. title, summary, or textual transcript provided by video owners.
However, such amount of semantic information is still far from enough
to fully describe video content as it can be observed by human being.
Hence, it causes low accuracy in searching videos with complex query. In
this paper, we introduce an approach to enrich semantic description and
presentation of a video at frame-level by using multiple neural networks
pretrained on different domains. The semantic description and presenta-
tion includes object concepts, location related concepts, scene attributes,
and object relationships. Compared to other teams, our system got the
first rank for fully automatic run.

2.1 Introduction

With the rapid growth of video data from many sources such as social sites,
broadcast TVs, films, one of the most fundamental demand is to search a partic-
ular video in huge video databases. In some cases, users did not see any target
video shots before. No visual example is provided. The input query could be a
text string with ad-hoc description about the content they want to search. Fig 1.
gives an example of this query type, ”finding shots of a man lying on a tree near
a beach”. In the second scenario, people already saw the target video shot and
the task of the system is to to find exactly that one. In the Video Browser Show-
down 2017, the dataset contains 4593 videos collected from the internet with
144GB in storage and 600 hours in duration. The participants need to solve two
tasks: Ad-hoc Video Search (AVS) and Known-Item Search (KIS) corresponding
to two types of query as mentioned above. In this paper, we only mention about
AVS task.

To deal with AVS query type, when users describe what they are looking for
by using verbal description, high-level features (i.e. semantic based features) are
usually extracted to match with human language. The result of last year Video
Browser Showdown has shown that, leveraging high level feature using deep
convolutional neural network (CNN) is one of the-state-of the-art methods [10].
Although the performance of these neural networks are increasing every year, the
number of concepts used for training is limited. On the other hand, query topics
given by users are unpredictable. In this paper, we proposed combine multi-
ple concepts from multiple datasets including ImageNet[11], Visual Genome][2],
MIT Places[13] and SUN Attribute[l4] to hopefully cover most popular topics
that users may be interested in.

2.2 Semantic Extraction

In this section, we propose to extract semantic features to match with ad-hoc
query given by users. Because the users may pay attention to any aspects of a



video frame, the set of semantic concepts is unknown. Figure 5 shows an example
in which users may be interested in varying from single objects e.g. the man,
the beach, the coconut tree to their complex relations e.g. the man lying on the
tree, the tree next to the beach.

Fig.5: Users may be interested in single objects e.g. the man, the beach, the
coconut tree, or the complex relations between objects e.g. the man lying on the
tree, the tree next to the beach.

Since the number of concepts is unlimited and the query of the user is un-
predictable, to increase the recall of the system, we propose to extract as much
semantic description and presentation of a video at frame-level as possible. The
proposed system includes two main stages: i)semantic extraction using deep
models trained on large scale datasets, and ii) semantic features indexing using
inverted file. Figure 6 illustrates our proposed framework with two main stages.

Semantic Extraction. This is the most important part of our proposed
system to detect main semantic concepts in a video frame. Inspired by recent
success of deep learning techniques, in this paper, we attempt to leverage the
powerful of deep features in semantic search task. Compared to low-level fea-
ture based approach, deep features (also known as high-level features) are closer
to semantic based query representation and require lower storage cost. In this
system, semantic concepts includes:

— Main Objects: ones that appear in a large enough region of the video frame
with assumption that the higher salient object gives the higher score from
the output activation of the pretrained deep convolutional neural network.
In this paper, we use VGG-16 network proposed by K. Simonyan and A.
Zisserman [6] to extract main objects. This is one of the state-of-the-art
models for object classification on ImageNet. We sample the original video
frame to overlapping 224x224 patches then transfer to the pretrained feed
forward network. Feature maps from the output activation are aggregated



together using average pooling approach. Five objects which give highest
scores will be used to represent a video frame.

— Scene Attributes: includes indoor/outdoor labels, building, park, kitchen
etc.. In our system, the attributes are extracted from the state-of-the-art
models trained on MIT scene and SUN attribute dataset [13].

— Object Relationship: to describe relationships between objects, we propose
to use dense captioning approach which is based on a Convolutional Neu-
ral Network-Recurrent Neural Network (CNN-RNN) to generate many sen-
tences from the detected objects[15].

— Metadata: provided by video sharing users. Metadata includes title, sum-
mary content, and tags. They are usually about the main topic of the videos
but not in detail. However, such information is helpful to improve the per-
formance of the system by combining with other semantic concepts as men-
tioned above.

Building Inverted Index. After extracting semantic features, the searching
task is now equivalent to text based retrieval task. This stage is to index semantic
text returned from the previous stage. A standard TF-IDF scheme is used to
calculate weight of each word. In the online searching stage, the system computes
similarity scores between query text and video semantic features using inverted
index structure.
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Fig. 6: Proposed system for searching based on semantic description.

2.3 Results

We submitted 4 automatic runs to this year Ad-hoc Video Search task. Table
2 shows run IDs, descriptions and performances in mean average precision of 4
runs where their priority is sorted from the highest to lowest. Our best run got
first rank in fully automatic setting.



Table 2: Description of submitted runs for TRECVID AVS 2016

[RUN-ID[Description [MAP (%)]

RUN4 |All concepts, sentences, scene attributes, metadata are merged| 5.43
together and index by Lucene library. We also use similarity metric
of Lucene for retrieval.

RUNS |Similar to RUN4 but number of ImageNet concepts are extracted| 4.58
at maximum 5 per shot.

RUN2 |This run use RUN4 as an initial rank list. We rerank topK rank| 4.32
list from RUN4 using TF-IDF weighting.

RUN1 |Similar to RUN2 with a slightly difference in final score formula. 4.35




3 NII at TRECVID 2016 Localization

Abstract. In this paper, we present our work in TRECVID 2016 Local-
ization (LOC). In this task, we employed the object detection with region
proposal networks. We applied this framework to different network archi-
tectures and dataset combinations: provided by NIST and others public
dataset. Results show the advantage/disadvantage of each configuration
to the final system.

3.1 Problem

For this year, LOC task introduces 10 new concepts to localize including Animal,
Bicycling, Boy, Dancing, Explosion fire, Instrumental Musician, Running, Sitting
Down, Skier, Baby. It’s noticeable that most of the concept is related to human
and human activities when some of them can be only determined by a sequence of
frames (Sitting, Running). It is quite different when comparing with the previous
year when the concept was mostly static like object, animal (without action).
Another difference in this year’s task comes from the dataset. The development
data compromises IACC.1.A-C datasets and contains only shot-level annotations
while test dataset compromises IACC.2.A-C, which is all test and development
dataset from previous years.

3.2 Dataset

LOC task is provided with more than 1800 shots which contains concepts. Since
this year dataset includes annotation at shot-level only, preparing a object-level
bounding boxes is an inevitable step. To do this, we created a annotation tools
which allows user draw a bounding boxes in some key frames of video shots
and generate the bounding box for the image between those key frames in the
sequence using interpolation. However, for some concepts, the number of shots
is very small eg: around 10 shots with Skier and some is very hard even for
annotate because of the complex context or having multiple object in the scene
eg: lot of people is dancing in the pub.

Other datasets In order to enrich the training data, we have collected datasets
from other sources which has bounding boxes at object-level. Those datasets are:

— VOC 2012" for detection task, including those TRECVID’s concepts: Instru-
mental Playing, Person, Boy, Running, Bicycling

— Activity dataset? for concepts: dancing, running

ILSVRC2015 - VID dataset® for concept animal

UCF101 - Action Recognition Data Set* for Skier and Bicycling concepts

! http:/ /host.robots.ox.ac.uk/pascal /VOC/voc2012/

2 http://vhosts.eecs.umich.edu/vision//activity-dataset.html
3 http://image-net.org/challenges/LSVRC/2015/#vid

4 http://crev.uct.edu/data/UCF101.php
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— UCF Action dataset® for concept Running and Person

Table 3 shows the number of training images for each dataset.

Table 3: Number of training images for each dataset

TRECVID|[VOC| A% 11 svRC|UCF101 | UCFACtion
dataset

Images|54000 4568 (1243 3463 3322 1076

3.3 LOC Framework

We tried to adopted framework from [16] - the winner team at ILSVRC 2015
[11] in VID challenge. This framework includes Image Object Proposal, Object
Scoring, High-confidence Tracking, Tubelet Perturbation and Max Pooling, Tem-
poral Convolution and Re-scoring. However, the tracking step is based on [17]
when applying to TRECVID dataset shows low accuracy. It’s mainly because
with TRECVID dataset, most of the image has low quality and the changing
between different scenes in the shot is often occurred which cause losing the
tracker. So finally, we decided to apply only object re-scoring based on the re-
sult of object detection to remain the dominate concept in the shot.

Since most of the concept in this year is related to human and human’s
activities (8/10 concepts), we proposed to add an extra class named “people” to
put all the person who isn’t listed in 10 concepts.

We also trained the system with a different configuration. We tested with
two networks: VGG-16 [18], and Resnet-50 [19] on two dataset TRECVID,
TRECVID+Other dataset that mentioned in 3.2

3.4 Result and Conclusion

We used Faster R-CNN [20] with Python wrapper to perform object detection
on image. As mention before, we fine tune on VGG-16 and Resnet-50 model with
two different datasets. After that, we keep only object with score larger than 0.8
then make a suppressing and re-scoring the object.

We submitted three runs: NII_Hitachi_UIT.run_1 with Res-net fine tuned on
TRECVID dataset only, NII_Hitachi_UIT.run-2 and NII_Hitachi_UIT.run_3 is
using VGG-16 with TRECVID+other datasets. However, due to the restrict of
time, with run 1, we only submit with the result is taken from a small portion
of the testing dataset (about 200k/2 millions of images).

As can be seen in Fig. 7, when using both TRECVID and others datasets,
the training loss is cannot converge as it has when using only TRECVID dataset.

® http://crev.ucf.edu/data/UCF _Sports_Action.php
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This true for both VGG-16 and Resnet-50 network. That’s why our second and
third run show very bad results (mostly zero).

For comparison between VGG-16 and Resnet-50, Resnet-50 show slightly
higher in accuracy than VGG-16. But it’s running time is much lower (1 FPS
vs TFPS). We also re-run our first submit using Resnet-50 with all image in the
testing dataset and using ground truth file provided by NIST to evaluate the
system. Fig.8 shows the results, our run still has low fscore in iframe level but
has high fscore in mean pixel level, especially in Boy and Instrumental musician
concepts.

In conclusion, we have shown in this section the bad effect of using the out-
domain dataset to training the system as well as the benefit of Resnet with
object detection task, which is helpful when apply to TRECVID dataset. The
final result is still low because we did not exploit the benefit of sequences frame
to determine human action.

a 10000 20000 30000 40000 50000 60000 a 10000 20000 30000 40000 50000 60000

(a) (b)

Fig. 7: Training loss with Resnet-50 over iteration when using different dataset
(a) TRECVID (b) TRECVID+others
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4 NII-Hitachi-UITQTRECVID2016 Surveillance Event
Detection

Abstract. In this paper, we present a retrospective system for surveil-
lance event detection (SED) task in TRECVID2016. The system detects
people using high-precision head detector trained by deep learning, and
tracks head regions using generic object tracker. Then the system clas-
sifies person actions in tracked image sequences using spatiotemporal
features obtained from 3D convolutional neural network. In SED sys-
tem development, we introduced state-of-the-art deep learning methods,
and fine-tuned pre-trained models by Gatwick airport videos with extra
annotations to improve performances of components.

4.1 SED system overview

Fig.9 shows an overview of our SED system.

SED system
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Object > ROI
tracking determination

(2-2)
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extraction
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Fig.9: NII_Hitachi_UIT surveillance event detection system.

Our SED system consists of two major components: (1) person tracking mod-
ule and (2) person action recognition module. For the input image sequences the
system returns frame-span and classification scores as detection results.

In the person tracking module, the system detect regions by head detector
and tracks them with a generic object tracker. We introduced a deep learning
method to detect objects proposed in [21]. This method achieves high-accuracy
head detection in crowded scenes, by a combination of CNN-based feature ex-
traction and LSTM-based bounding box determination. After head detection,
detected head regions are associated across multiple frames using generic ob-
ject detection method proposed in [22], and we can obtain temporal coordinates
information of detected people.

In the action recognition module, for each detected people, the system de-
termines ROI (Region Of Interest) images for feature extraction, and extracts
spatiotemporal features from sequential ROI images to classify the action in the
sequence. In ROI determination, we use head coordinates to calculate the whole
body region. Also we use the same ROI in a sequence to avoid an effect of global
camera motion. For event detection task in TRECVID, Improved Dense Tra-
jectory (IDT)[23] with Fisher Vector coding [24] is known as good features to
represent action in videos. In our system, we introduced 3D convolutional neu-
ral network [25] to extract spatiotemporal features. The network provides one

13



fixed-dimensional vectors from a sequence. We used SVM solvers to learn action
recognition modules.

4.2 Performance evaluation

In SED system development, we introduced state-of-the-art deep learning algo-
rithms, and fine-tuned pre-trained models by Gatwick airport videos with extra
annotation data to improve performances of person tracking and action recog-
nition.

4.3 Fine-tuning of head detection

In our system, we use head detector by a combination of CNN and LSTM
learning[21]. We used publically available pre-trained models and fine-tuned
them with extra annotations (11,970 images, 82,583 head region coordinates).

Fig.10 shows performance evaluation of pre-trained and fine-tuned head de-
tector for each camera. Average hit-rate across the camera was improved by 16.1
% using fine-tuned model. Detecting small target in scenes with depth is still
difficult, and more improvement is required.

Using fine-tuned head detector and generic object tracker, we extract 120,781
sequences with 8,564,221 head regions from 10 hours evaluation videos (EVAL16).
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Fig. 10: Performance evaluation of head detection.
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4.4 Fine-tuning of spatiotemporal features

In our system, 3D convolutional neural network proposed in [25] is used to
extract spatiotemporal features for action classification. The network has five 3-
dimensional convolution layers with 3d-pooling layers and three fully connected
layers. The network accepts multiple images (e.g. 16 frames) and can extract
spatiotemporal features. We fine-tuned Sport-1M pre-trained models training
videos: 559,814 frames, 10,272 positive (10-actions defined in SED task) se-
quences and 12,249 negative (no action) sequences.

Fig.11 shows performance comparison of action classification using pre-trained
and fine-tuned models. In this experiment, we used 4,096 outputs of interme-
diate fully connected layer (FCT7) as spatiotemporal features, and trained SVM
classifiers (RBF-kernel). Average classification accuracy was improved by 16.3
% using fine-tuned features.
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Fig. 11: Performance evaluation of action recognition.

4.5 Results

In this paper, we have presented SED system based on person tracking and per-
son action recognition. We fine-tuned head detector and spatiotemporal feature
extractor using deep learning methods.

Table 4 shows our evaluation results for EVAL16 provided by NIST, along
with the best performance achieved by other participants. Although fine-tuning
improves performance of each component, the overall performance is not accurate
enough. Further consideration will be needed to yield any findings about ROI

15



determination policy and a combination (or switching) of spatiotemporal and
still image features.

Table 4: Evaluation results of surveillance event detection task (EVAL16).

Other best system Our system Our best sub-
event system
aDCR | mDCR | aDCR | mDCR | aDCR | mDCR
CellToEar 1.0080, 1.0005 1.0200; 1.0005 0.9980, 0.9815
Embrace 0.6622] 0.6602] 0.9823] 0.9746, 0.9813] 0.9353
ObjectPut 0.9666| 0.9646| 1.0132] 0.9986, 1.0051] 0.9975
PeopleMeet 0.8774) 0.8774] 1.0056/ 0.9986/ 1.0004| 0.9944
PeopleSplitUp 0.8329] 0.8097| 1.0076| 0.9932 0.9892] 0.9545
PersonRuns 0.6563] 0.6563] 1.0036] 0.9896] 0.9945 0.9595
Pointing 0.9354| 0.9321] 1.0105] 1.0005] 1.0062| 0.9975

16



5 NII-Hitachi-UITQTRECVID2016 Multimedia Event
Detection

Abstract. With our system we analyze how much information the tem-
poral component of videos carry to classify the MED events. Our sys-
tem utilizes 3D convolution over the consecutive frames generating high
level feature descriptors. Feature descriptors of several non-uniformly
distributed timespans in the video are feed into a LSTM for final classi-
fication.

5.1 Introduction

With DeepLearning remarkable performance has been achieved over the last
years for plain image classification. However, the temporal component is less re-
searched which also hold for the submissions done in the MED task of TRECVid.
We analyzed how much information the temporal component of the videos car-
ries. One major challenge in this aspect is, that the meta data provided for
the videos in MED only tells that a certain event happen in an video, but the
concrete timestamps are not known. The discrepancy between unrelated and
important information for an event can become arbitrary large. Simply taking
all frames and extracting motion feature from them will most likely not result
in a good performance. A Long Short-Term memory (LSTM) [26] seems like a
good fit for this problem as it can decide which information is important and,
therefore, should be remembered and which information should be skipped or
forgotten. However, LSTM have not yet successfully applied for more than sev-
eral hundreds of time steps. In a video with thousands of frames, some frames
must be either skipped or other ways to combine them must be found. Skip-
ping holds the risk, that important frames required to classify the event are
skipped. Another approach of skipping would be to uniformly skip 1 out of 2
or 2 out of 3 frames, etc. However, some samples in the TRECVid corpus are
several thousand frames long and even removing 80% of the frames do not fun-
damentally address our problems. Skipping more than ten consecutive can also
become critical, as important motion information might get lost over so many
frames. We decided to extract temporal information from consecutive frames by
3-dimensional convolution at full frame rate.

5.2 3D-Convolution

We constructed a convolutional network of 8 convolution layers followed by two
Maxout layers and the logistic regression. The input for the first convolutional
layers is of size 106 x 106 pixels and 22 consecutive frames. The convolutional
layers compress the images to a final size of the feature maps of 3 x 3 and 2
time steps. Both Maxout layers have a 512 dimensional output. This construc-
tion follows the results published by Facebook [25], beside that the last two fully
connected layers have been replaced by Maxout layers. To avoid overfitting ran-
dom cropping of a 128x128 pixels image to the 106 x 106 pixels network input
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has been applied. Furthermore, the 22 frames input for the network are pooled
out of a larger sequence of 31 frames.

5.3 LSTM

After pre-training the 3D-convolutional network the final logistic regression was
dropped and the output of the last Maxout unit is used as a 512 dimensional
feature descriptor. 20 such descriptors from randomly pooled timestamps of the
video, but in consecutive sequence, have been feed into a LSTM unit with 256
memory cells. By averaging out the output of the LSTM in each timestep the
input for a following Maxout unit is formed and a logistic regression makes the
final classification of the event.

5.4 Experiments

For training of the 3D convolutional network the UCF101 dataset [27] have
been utilized. This is the only outside dataset which has been utilized in our
experiments. For the EX10 dataset the ”DeepFeatures” of this 3D-convolutional
network have been extracted and feed into the LSTM. For training this LSTM
no other data beside the TRECVid corpus has been utilized.

During classification 20 uniformly distributed timespans each covering 22
frames are feed into the 3D-convolution network and the LSTM. The average per-
formance achieved with our system is 0.67% suggesting that motion alone is not
enough to achieve high performance. However, results from previous TRECVid
competitions suggest that temporal information is orthogonal to spatial infor-
mation and directly adds on top of systems working with spatial information.
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6 TRECVID 2016 Video-to-Text: Learning Semantic
Embedding for Video with 3D Convolutional Networks

Abstract. We present in this paper our results and analyses on Video-
to-Text (V2T) task, which is a new pilot task in TRECVID 2016.

For the matching task, we employ 3D Convulutional Neural Networks (3D-
CNN) to generate a video representation, and use ParagraphVector ap-
proach to build a representation for sentence with the same dimension-
ality. We minimize the distance between two representation to build an
unique representation for semantic video embedding.

For the description generation task, we use a multimedia embedding
that is a combination of multimedia features extracted from frames,
spatial-temporal volumes and also from audio segments. Moreover, we
also employ the temporal attention mechanism in the language model to
generate better video descriptions.

6.1 Subtask 1: Matching and Ranking

Problem V2T task [28] promotes the following problem: Given N videos {v1, va,
...vn}, and N description sentences of these videos {c1, ca,...cn}, the task is
generating N pairs (4,7;),4 = 1,2,..., N so that, sentences c;, describes the
content in video v;.

Dataset V2T task is provided with 200 videos for training and 1915 videos
for blind evaluation. Each videos has two descriptions, which is divided into
two sets (A and B). Participants is asked to submit four runs in each set A
and B, therefore, there are eight runs in total. To train the 3D-CNN [25], we
use the provided training set of 200 videos and the Youtube2Text dataset [29],
which contains 1970 videos. To train the ParagraphVector, we use the SBU
image captions dataset [30], which consists of one million image captions, and
the captions provided with Youtube2Text (YT2T) and the V2T training set.

Methodology Our approach is based on the ECNN [31], which also uses a 2D-
CNN to extract deep features from each frames in video, then use a mean pooling
to generate the input of the 2D-CNN, and also adopts a ParagraphVector with
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roPadding3D)
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roPadding3D)

flatten_I (Flatten)

dropout_1 (Dropout)
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maxpooling3d_2 (MaxPooling3D)
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zeropadding3d_3 (Ze
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zeropadding3d_4 (Ze
convolution3d_4 (C

Fig.12: Our 3D-CNN architecture
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Table 5: V2T results on several test sets

Run name Train set Test set A Test set B
Run 1 (Model A 0.181 0.005 0.005

)
Run 2 (Model B) - 0.006 0.004
Run 3 (Model ) — 0.004 _ 0.004
Run 4 (Model D) - 0.005 0.003

Bag-of-Words approach to generate sentence representation. Finally, the ranking
loss to minimize the distance between these representations to learn the optimal
embedding space. In this submission, we replace the 2D-CNN with a 3D-CNN
which is illustrated in Figure 12. The input of the 3D-CNN is a M x D x D
tensor, which is generated as follows: First, a video is divided into M chunks,
from each chunk, we take a frame from the middle of chunk and resize it to has
size D x D. The final input tensor is a stack of these M resized frames.

Result and discusssion Implementation details To learn the 3D-CNN,
we employ the 3D Convolutional Layer, which is available in Keras®. To train
the ParagraphVector [32], we use the implementation in gensim”. Our imple-
mentation is publicly available®. Result We submitted the following four runs:
1. Model A: 3D-CNN w/o 3D-Dropout + Doc2Vec model learned on SBU
captions; 2. Model B: 3D-CNN with 3D-Dropout + Doc2Vec model learned
on SBU captions; 3. Model C: 3D-CNN with 3D-Dropout + Doc2Vec model
learned on SBU captions + Youtube2Text captions (+ Early stopping); and
4. Model D: 3D-CNN with 3D-Dropout + Doc2Vec model learned on YT2T
captions + V2T captions (+ Early stopping). Early stopping is a technique to
judge the validation loss in training process. After n epochs which do not im-
prove the validation loss, the training process is terminated. Model C and D was
trained on a merged set of YT2T dataset and V2T train set, thus, the total num-
ber of training video is 2170. The mean Inverted Rank (MIR) is used to evaluate
the raked list return by our algorithm. The results on blind test sets A and B, as
well as our preliminary results on a train set (a subset of 20 videos which is not
used in training processes) are presented in Table 5. Compared to other teams’
results, our results is ranked at 6-th over 7 participant teams. Discussion MIR
of our method is approximately 1/200, i. e., averagely, the ground truth items
are ranked at 200-th over 1915 items. Compared to the result on traing set, our
method is not generalized well on test set. As our observations, the reason for
this degradation is the training processes of Model B, C, D were overfitting.
Training losses at the end of epochs were decreased, but inside each epochs, the
losses were varying and were unstable.

5 https://keras.io/layers/convolutional /#convolution3d
" https://radimrehurek.com/gensim/models/doc2vec.html
8 https://github.com/marker68/video-matching
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6.2 Subtask 2: Description Generation

Problem In this subtask, our system is required to generate a natural language
sentence to describe a given video, without mining knowledge of the provided
descriptions in the previous task.

Methods We use three features: ResNet [19], C3D [25], and audio MFCC which
represents for three main different streams in video. For each feature, we apply
a linear layer to learn an embedded vector that has 512 dimension. We combine
these three features by concatenating its embedded vector that results in a 1,536-
dimensional vector.

We follow the temporal attention network described in [33] for video descrip-
tion generation task. This is a modified version of the encoder-decoder network
that presented in [34], where the decoder can adaptively learn a weighting com-
bination of features over all frames, instead of just summing as in the former
work. We decompose a video into 6 equally-sampled chunks for the temporal
attention experiments. Our network is illustrated in Fig. 13.

[ LSTM H LSTM ]—% LSTM

51 2-d 512-d
Multimedia S12-d

Embedding o9 q\
,048-d 4,096-d 9,868-d

Mean

Pooling

ResNet Audio

Fig. 13: Our video description architecture

Results We train our captioning model on MSRVTT dataset [35], which contain
around 6,500 videos. We use the provided 200 training videos for validation and
test the selected model on the provided test set.

Results of our description task is presented in Table 6. On the validation set,
we show the results in terms of Bleu_4, METEOR, ROUGH_L, and CIDEr. We
only obtain the results in terms of METEOR on the test set. Our combining run
(Run 1) performs the best on the validation set in all measurement metrics. This
confirms the benefit of combining multimodal features for the description task.
Our C3D feature does not perform well on the test set because of a bug in the
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Table 6: Results of the video captioning task

Run | Model Validation Results Test Results
Bleu_ 4| METEOR|ROUGH_L|CIDEr| METEOR
ResNet+
Run 1|C3D+ 0.111 0.158 0.393 0.412 0.185
MFCC
Run 2|ResNet | 0.092 0.153 0.377 0.369 0.185
Run 3|C3D 0.099 0.150 0.378 0.346 0.161
Run 4|MFCC 0.065 0.126 0.338 0.174 0.178

feature extraction step. Surprisingly, audio MFCC itself achieves a rather good
performance on the test set, compared to its low performance on the validation
set.
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