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Abstract. The Waseda_Meisei_SoftBank team participated in the TRECVID
2020 Ad-hoc Video Search (AVS) task [I]. As with last year’s AVS task, we sub-
mitted both manually assisted and fully automatic runs this year. Our approach
consisted of concept-based video retrieval for manually assisted runs and visual-
semantic embedding for fully automatic runs. Our best manually assisted run
achieved a mean average precision (mAP) of 25.2%, which ranked the highest
among all the manually assisted systems. Our fully automatic run achieved an
mAP of 20.0%, which ranked fifth among all participants.

1 System Description

We used two approaches (concept-based approach and visual-semantic embedding ap-
proach) for video retrieval from large-scale video data using query sentences. This
section introduces how both systems were created.

1.1 Concept-based Approach

For a concept-based approach, we first built a large concept bank comprising of several
concept types as shown in Table [I} It contained classifiers such as persons, objects,
scenes, and actions to deal with various forms of query sentences. Using this concept
bank, all concept scores for all videos were calculated. Here, we explain how to create
concept classifiers for each database and pre-trained models.

1. TRECVID346, FCVID239, UCF101, and ACTIVITYNET200

First, a maximum of ten frames from each shot were selected at regular intervals,
and the corresponding images were input to the GoogLeNet model [I1] pre-trained
on the ImageNet database [6]. This allowed us to obtain 1,024-dimensional feature
vectors from poolb layers. These feature vectors (maximum ten) were then bound
to a single vector using element-wise max-pooling. We trained SVMs using data-
given labels of concepts for each database as positive samples and randomly selected
images from the TRECVID SIN dataset as negative samples. The shot score for
each concept was calculated as the distance to the hyperplane in the SVM model.



Table 1. Concept bank used in our systems.

Name Database # Concepts Concept Type(s) Models
TRECVID346 TRECVID SIN [2] 346|Person, Object, Scene, Action GoogLeNet + SVM
FCVID239 FCVID [3] 239|Person, Object, Scene, Action GoogLeNet + SVM
UCF101 UCF101 [ 101|Action GoogLeNet + SVM
PLACES205 Places [5] 205|Scene AlexNet
PLACES365 Places 365|Scene GoogLeNet
HYBRID1183 Places, ImageNet [6] 1,183|Person, Object, Scene AlexNet
IMAGENET1000 ImageNet 1,000 |Person, Object GoogLeNet
IMAGENET4000 ImageNet 4,000|Person, Object GoogLeNet
IMAGENET4437 ImageNet 4,437|Person, Object GoogLeNet
IMAGENET8201 ImageNet 8,201|Person, Object GoogLeNet
IMAGENET12988 |ImageNet 12,988|Person, Object GoogLeNet
IMAGENET21841 |ImageNet 21,841 |Person, Object GoogLeNet
ACTIVITYNET200 |ActivityNet [7] 200|Action GoogLeNet + SVM
KINETICS400 Kinetics [8] 400|Action 3D-ResNet
ATTRIBUTES300 |Visual Genome [9] 300|Attributes of persons/objects GoogLeNet + SVM
RELATIONSHIPS53|Visual Genome 53|Relationships b/w persons/objects|GoogLeNet + SVM
FACES40 CelebA [10] 40|Face Attributes face detector + CNN

2. PLACES205/365, HYBRID1183, and IMAGENET1000/4000/4437/8201/12988/21841

We calculated the concept scores using a scene classification model pre-trained
with the Places database [5] or image classification models [12][13][14] pre-trained
with the ImageNet database [6]. Since each unit of the convolution neural network
(CNN) output layer identifies a concept in a scene/object, the values representing a
concept of the CNN output layer (before softmax was applied) were used as concept
scores. The maximum concept score for each video was obtained after inputting at
most ten images to the CNN.

. KINETICS400

We used a 3D-ResNet model [16][I7] pre-trained with the Kinetics database [§].
Sixteen consecutive frames were input into 3D-ResNet and the maximum score of
each concept obtained from the output layer was taken as the concept score for
each video.

. ATTRIBUTES300 and RELATIONSHIPS53

Using annotations of attributes of persons/objects and relationships between per-
sons/objects in the Visual Genome Database [9], 300 types of attributes and 53
types of relationship concepts were created. The attributes used “adjective +
noun” concepts such as “blue_sky,” “white_plate.” As for the relationships, we
selected the data whose subject was a person and which had specific verbs such as
“wear” (34 types) and “hold/have” (19 types). Finally, we created concepts such
as “wear_shirt”, “have_ski_pole”.

. FACES40

First, we trained the 40 face attributes using CelebA dataset [10]. For testing, face
regions were cropped using dlib’s face detectorﬂ Then, the attribute scores were
calculated for at most ten images per video, and the maximum score among all
images in each video was used as the video’s attribute score.

® https://github.com/davisking/dlib.git


https://github.com/davisking/dlib.git

After calculating the concept score&ﬁ for every video sequence in advance, we re-
trieved video using word-based keyword selection through the following pipeline.

1. Extract one or more keywords from a query sentence.

2. Select one or more concept classifiers related to a keyword. The corresponding
concept may not exist in the concept bank.

3. For each video, a score is calculated for the query sentence by integrating the scores
from multiple concept classifiers.

Given a query sentence, we manually selected some visually important keywords.
For example, given the query sentence “a woman sitting on the floor,” we picked out
the keywords “woman,” “sitting,” and “floor.” We then matched the keywords with
concepts using a concept classifier. Semantically similar concepts were also chosen using
the word2vec algorithm [I8] to select as many concept classifiers as possible.

1.2 Visual-semantic Embedding Approach

In recent years, visual-semantic embedding methods, which map visual and semantic
features onto a common space, have been actively researched [19][20]. Visual-semantic
embedding approaches were also seen in the TRECVID benchmark [21][22][23], and
they achieved relatively high mAPs.

We used the implementatiorﬂ of VSE++ [24] for training. For training the visual-
semantic embedding, four image caption datasets, Flickr8k [25], Flickr30k [26], MS
COCO [27], and Conceptual Captions [28], were used. The total number of data was
3,559,009, including 65,000 from Flickr8k, 295,070 from Flickr30k, 423,915 from MS
COCO, and 2,809,024 from Conceptual Captionsﬂ We used gated recurrent unit for
feature extraction from query sentences and the ResNet-50, ResNet-101, and ResNet-
152 models for feature extraction from images. Due to the large amount of training data,
500,000 training data and 50,000 validation data to train visual-semantic embedding
models were randomly selected. We repeated this data selection process 32 times for
each of the three types of ResNet model, and trained 96 embedding models. Finally,
test data were ranked by an average of the scores obtained from the 96 modelsﬂ

2 Submissions

This year we submitted four manually assisted runs (Manuall, Manual2, Manual3,
and Manuald) and four fully automatic run (Automaticl, Automatic2, Automatic3,
and Automatic4) to the TRECVID 2020 Ad-hoc Video Search (AVS) task as shown
in Table 2] For manually assisted runs, Manual4 adapted the concept-based approach
alone. Other runs were the fusion of the concept-based and visual-semantic embedding
approaches, because we consider the concept-based and visual-semantic embedding
approaches to be complementary. These two approaches were combined to re-rank the
video retrieval result using reciprocal rank fusion (RRF) [30],

1
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RRFscore = Z
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(1)

5 The score for each semantic concept was normalized for all test shots iterations using a min-
max normalization, that is, the maximum and minimum scores were 1.0 (most probable)
and 0.0 (least probable), respectively.

" https://github.com/fartashf/vsepp

8 The total number of data in Conceptual Captions dataset was 3,334,173 including 3,318,333
training data and 15,840 validation data; however, only downloadable data were used.

9 The score for each model was normalized over all test shots using min-max normalization,
that is, the maximum and minimum scores were 1.0 and 0.0, respectively.



Table 2. Our submitted runs for TRECVID 2020.

Run Concept—;Visual—semantic Additional VSE++ models mAP
name based 1 embedding for Visual-semantic embedding
Manuall VR v TREC-VTT-VSE++ 24.5
Manual2 v : v TREC-VTT-VSE++, MSR-VTT-VSE++| 24.1
Manual3 v v 25.2
Manual4 v ‘ 18.3
Automaticl | v TREC-VTT-VSE++ 19.6
Automatic2 | v TREC-VTT-VSE++4, MSR-VTT-VSE++| 19.8
Automatic3 [ v 20.0
Automatic4 ‘ v MSR-VTT-VSE++ 19.2
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Fig. 1. Comparison of Waseda_Meisei_SoftBank runs with the runs of other teams for all the
submitted runs including manually assisted (blue).

where R is the set of ranking, and k is a fixed parameter.

This year we trained other VSE+4+ models using the additional video captioning
dataset (Twitter Vines + Flicker Videos for TRECVID VTT task, and MSR-VTT
[29]). Because the number of videos of TRECVID VTT task was not large enough, we
trained the VSE++ models using both Flickr30k and TRECVID VTT task dataset.
The number of data selected for a VSE++ model was 160,000 for training and 22,667
for validation. In this paper we refer to this model as TREC-VTT-VSE+4. We also
refer the VSE++ model trained using MSR-VTT as MSR-VTT-VSE++. The number
of data selected for training MSE++ models was 154,980 for training and 14,980 for
validation.

3 Results

Figure [T] shows the results for all the submitted runs including manually assisted and
fully automatic. The mAPs of our manually assisted runs (Manuall, Manual2, Man-
ual3 and Manual4) were 24.5%, 24.1%, 25.2% and 18.3%, respectively, and the best run
(Manual3) ranked 1st among all manually assisted systems. However, the best auto-
matic system among all participants achieved a higher mAP of 35.9%, more than that
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Fig. 2. The average precision for each query sentence. Blue: Concept-based approach alone
(Manual4). Green: Visual-semantic embedding approach (Automatic3). Red: The combination
of concept-based and visual-semantic embedding approaches (Manual3).

obtained by our manual system. The mAP of our fully automatic run (Automatic3)
was 20.0%.

Figure [2] shows the average precision for each query sentence. Average precision
for the fusion of concept-based approach combined with the visual-semantic embed-
ding approaches was significantly better than each of the approaches alone. It was
confirmed that the video retrieval performance could be improved by integrating these
two approaches because of their complementarity.

4 Conclusion

For this year’s submissions, we solved the problem of ad-hoc video search using a
combination of the concept-based approach and visual-semantic embedding approaches.
As these two approaches were complementary, we could improve the video retrieval
performance by integrating them.

For future works, we will analyze the advantages and disadvantages of each approach
and develop a new method to automatically determine the best approach to be used
depending on the query sentence. We will also introduce recently proposed visual-
semantic embedding approaches [31][32][33] to improve the video search performance.
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