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There is a paradigm shift in industrial machine learning
pipelines where data is becoming one of the most important
factors when building performant systems [5, 18, 17, 13, 9,
3]. Previously, ML pipelines followed a more“model-centric”
paradigm, where engineers customized model architectures
and hand curated features for training. These pipelines are
being replaced by“foundation model”[4] ecosystems that fol-
low a “data-centric” [14] viewpoint—commoditized architec-
tures (e.g., Transformers [20] or MLPs) are trained without
manual labels (i.e., with self-supervision) on massive corpora
and adapted to hundreds of downstream tasks. In this new
paradigm, the differentiating factor between models is the
data they are “fed”, not the architecture. Managing these
foundation models is essentially the problem of managing
their data lifecycle.

As foundation models are guided by their training data,
one of their most important industrial benefits is that they
often require dramatically less engineer effort to maintain
(and can provide an improvement in quality compared to
their hand-tuned predecessors). Before foundation model
pipelines, teams of engineers spent hundreds of man-hours
manually labeling data or curating features for each desired
locale or domain. Now an engineer simply has to gather and
manage unlabeled data for each locale. This reduction in
engineer effort has contributed to their rapid rise in impor-
tance. Foundation models are already in production (e.g.,
Google Search [19] and Bootleg [11]), and a research insti-
tution recently formed a large interdisciplinary community
to study them [1].

This paper seeks to highlight key data management chal-
lenges and opportunities with the foundation model data
lifecycle. Our perspective is shaped by our experiences build-
ing and deploying a first-of-its-kind self-supervised model
for entity disambiguation with Apple and a toolkit for end-
to-end model monitoring with Salesforce. We believe the
data management community is uniquely situated to address
these challenges as many of them are twists on traditional
data management problems spanning data integration, data
exploration, and data programming.
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Challenges and Opportunities.
We now discuss three challenges and opportunities for

data management.

1. Data Integration: Recent works [11, 12] show how en-
hancing unstructured text data with structured meta-
data allows foundation models to have better factual
recall and improved performance over rare items that
do not occur frequently in training data but are com-
mon in deployed settings. At its core, this is a data
integration problem between unstructured and struc-
tured data. Foundation models bring a new set of
challenges to the data integration problem as they are
trained on complex multi-modalities including code [2],
images, videos, text, and robotic simulations [4]. In-
tegration solutions must adapt to the heterogeneous
nature of the data and must scale to handle petabytes
of business and personal data used for training [10].

2. Model Monitoring: As foundation models are trained
on typically unlabeled datasets with less engineer ma-
nipulation, there is an increased importance on mon-
itoring model performance and detecting undesirable
behavior. Recent works highlight how engineers ben-
efit from the ability to easily filter relevant subpopu-
lations and construct test examples for targeted per-
formance metrics [8, 15, 16]. This is the data man-
agement challenge of data exploration over model pre-
dictions. Foundation model ecosystems make the data
exploration challenge more complex as there are model
artifacts for both the pretrained models (i.e., embed-
dings) and downstream models (i.e., model predictions).
Further, model monitoring solutions need to tie per-
formance results back to the underlying training data
that caused the behavior (i.e., provenance for model
predictions).

3. Model Patching and Maintenance: Foundation models
are continuously evolving and need constant mainte-
nance. When a model demonstrates undesirable be-
havior, an engineer needs to quickly update the model
and correct for the error. Recent work by a subset
of authors describe how models can be corrected all
through the underlying training data [11, 7]. The
authors used common data engineering methods, like
weak supervision and augmentation, to“correct”a pre-
trained entity disambiguation model. The ability to
engineer data for models is a fundamental data man-
agement challenge. As foundation models are adapted



to hundreds of downstream tasks, model patching solu-
tions need to correct the underlying pretrained model
rather than each downstream model individually. This
presents an efficiency challenge as pretraining can take
on the order of days to weeks [6]. Further, users will
need automated suggestions for how to engineer the
data given an undesirable behavior.

Call to Action.
We believe the data management community can have an

outsized impact on deciding how these models are managed
and maintained. We hope the community is excited by these
ideas and can build off them.
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